费马大定理的简单证明

合集下载

世界数学难题——费马大定理

世界数学难题——费马大定理

世界数学难题——费马大定理费马大定理简介:当整数n > 2时,关于x, y, z的不定方程x^n + y^n = z^n.((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。

这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。

虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁•怀尔斯和他的学生理查•泰勒于1995年成功证明。

证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。

而安德鲁•怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

[编辑本段]理论发展1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。

关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。

”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。

数学家们的有关工作丰富了数论的内容,推动了数论的发展。

对很多不同的n,费马定理早被证明了。

但数学家对一般情况在首二百年内仍一筹莫展。

1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。

费马定理证明过程

费马定理证明过程

费马定理证明过程全文共四篇示例,供读者参考第一篇示例:费马定理是数论中的一个重要定理,由著名数学家费马在17世纪时提出并据一直引起数学界的广泛关注和研究。

费马定理又称费马大定理,其表述为:对于大于2的正整数n,不存在三个正整数a、b、c,使得满足a^n + b^n = c^n。

费马定理证明的过程是一个漫长而又复杂的数学推理过程,而直到1995年,英国数学家安德鲁·怀尔斯才最终给出了费马定理的证明。

费马定理的证明历经了数百年间许多数学家的探索和努力,费马本人曾在他的笔记本上写下了:“我找到了这个证明,但是这个空间太小,无法容纳这个证明。

”这句话也在一定程度上激发了后世数学家对这个问题的研究和探索。

费马定理的证明过程可以大致被分为三个阶段,分别是费马猜想的提出、证明的辅助工具的建立、以及最终的证明。

费马猜想的提出发生在17世纪,费马在一个边注中提出了这个猜想,称其为“我无法证明的定理”,这也给后世数学家提供了一个极大的挑战。

费马猜想的提出激发了许多数学家的研究热情,这个定理的证明一度被认为是不可能的。

随后的数百年间,许多数学家纷纷投入到费马定理的研究之中,他们提出了许多有关费马定理的猜想和假设。

于是,证明费马定理的难度立即从退化为一个普通的数学难题而变得异常复杂。

在费马定理的证明中,数学家们创立了许多重要的数学概念和工具,例如椭圆曲线、调和模形式等,这一系列的辅助工具为费马定理的证明提供了坚实的数学基础。

这些独立的数学概念在费马定理的证明过程中发挥了至关重要的作用。

最终,英国数学家安德鲁·怀尔斯于1995年成功地证明了费马定理,这也为整个数学界带来了一场轰动。

怀尔斯的证明过程异常复杂,包含了许多高深的数学知识和技巧,这也是费马定理证明过程中最为汗牵动人心的部分。

通过费马定理的证明过程,我们可以看到数学家们在对一个数学难题进行探索和研究的过程中所需付出的辛勤努力和不懈追求。

费马定理的证明,实际上也反映了数学研究的艰辛和复杂性。

费马大定理的初等证明

费马大定理的初等证明

费马大定理的初等证明倪晓勇(中国石化仪征化纤短纤生产中心生产管理室,江苏 仪征211900)E-mail:nxyong.yzhx.@费马大定理:不定方程n n n y x z +=当n ≥3时无正整数解。

证明:一、当n=2时,有222y x z +=,所以))((222y z y z y z x +-=-=(1)。

令22)(m y z =-,则22m y z +=,代入(1)得222222222222)(2)22(2l m m y m m y m y z x =+=+=-=,所以ml x 2=,22m l y -=,22m l z +=(x 、y 、z 、l 、m 都是自然数),显然x 、y 、z 有正整数解。

二、当n=3时,有333y x z +=,所以 ))((22333y zy z y z y z x ++-=-=(2)。

令323)(m y z =-,则323m y z +=,代入(2)得][23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +⨯+=)33(36332233m y m y m ++=。

若方程333y x z +=有正整数解,则)33(63322m y m y ++为某自然数的三次幂,即 363322)33(l m y m y =++,所以 )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+,所以 )33(3)3(4222322m l m l m y m l y ++=+-=和,所以l -3m 2+32m 3=l 2+3m 2l +32m 4,所以l = l 2+3m 2l ,且32m 3=3m 2+32m 4,所以1=l +3m 2,3m=1+3m 2,所以 l +3m=2。

因为l 和m 都是自然数,所以l +3m ≥4,所以l +3m=2不可能,所以当n=3时,333y x z +=无正整数解。

费马大定理非常美妙的证明

费马大定理非常美妙的证明

费马大定理非常美妙的证明
费马大定理,又名费马欧拉定理,是古希腊数学家尤里乌斯·费马在300年前发现的一个非常重要的定理。

定理的全称叫做:任何一个大于等于3的自然数,都可以表示成2的幂次的和。

比如,21可以表示成2的4次方加2的0次方,即16+1;而25则可以表示成2的4次方加2的2次方,即16+4;以此类推,任意一个大于等于3的正整数都可以表示成2的幂次之和的形式。

费马定理非常美妙,但到目前为止,它仍然是一些未解决的数学掘臼。

在已经知道这个定理之前,费马有一段时间都在探索这个问题,但他没有真正意识到这一实质性问题。

直到他孤身一人在他的实验室里探索这个问题,他才永久的突破性的证明了这一定理。

除了费马,还有一些古希腊数学家也在研究这个定理,包括伟大的欧拉,当他研究完事实证明,这一定理的正确性时,它被命名为“费马欧拉定理”。

尽管已经有一些它被认可的证明,但费马定理仍然具有重要的理论价值,因为它可以帮助我们理解和研究数字、空间和时间的联系。

总体而言,费马大定理是由费马发现的一个非常美妙的定理,它有着重要的理论价值,对于解释飞电的某些特殊性质有着重要的启示意义。

它足以证明,数学有力地证明和强调了可预测性和超然。

费马大定理的美妙证明

费马大定理的美妙证明

费马大定理的美妙证明成飞中国石油大学物理系摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。

关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。

”0、费马大定理:当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。

1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。

任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有a bc可见,线段a和线段b之和,就是线段c。

2、当n=2,X2+Y2=Z2,有正整数解,但不任意。

对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。

又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。

可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形,Bc A根据三角形余弦定理,有c2=a2+b2-2ab× cosɑ( 0<ɑ< π)此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。

3、当n=3,X3+Y3=Z3,假设有正整数解。

a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。

此时,a,b,c也必构成三角形,B A根据三角形余弦定理,有c2 = a2+b2-2ab× cosɑ( 0<ɑ< π)因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。

高中数学知识点精讲精析 费马大定理

高中数学知识点精讲精析 费马大定理

1 费马大定理费马大定理:(1)当整数n > 2时,关于x, y, z的不定方程x^n + y^n = z^n.((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0,且xyz≠0)无整数解。

这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。

虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。

证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。

而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

(2)证明方法五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。

在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。

这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。

不过怀尔斯的证明马上被检验出有少许的瑕疵,于是怀尔斯与他的学生又花了十四个月的时间再加以修正。

1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。

1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。

当年的十万马克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。

费马大定理简明完整版证明

费马大定理简明完整版证明

费马大定理证明求证不定方程对于整数n>2n n nX Y Z+=无X,Y ,Z 的整数解这就是费马猜想又称费马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。

传言在1994年被安德鲁·怀尔斯攻克,但是我并不知道安德鲁·怀尔斯攻克的证明是否真实可靠。

现在来阐述最新最简易的证明如下:证明:条件:设整数(p ,q)互素,(a,b )互素,并且X,Y 均整数,如果不存在整数Z 使得n n nX Y Z+=成立,那么猜想正确,否则猜想就是错误的由条件设定已知x,y 为整数,将猜想等式左边合并变换为下式1(1())n ny Z X x=+设p y q x =则1(1())nnpu qZ X u=+=假设存在整数Z,则u 一定至少是有理数设1(1())n np au q b =+=则n ()n n n n q p b q a +=(1)()n n n n np b q a b =- 由于(p,q)互素那么q 必然是b 的因子才能使得等式两边成立设b=qt 代入(1)式得(2)()tnnna p q +=()则t 为a 的因子,至此如原条件(a,b )互素相矛盾,所以t 必须等于1得以下等式: (3)n n np q a+=假设等式依然成立得11()=nn p a q q ⎛⎫+ ⎪⎝⎭ 利用牛顿二项式广义定理展开上式得:11knk k k np a q q C q →∞=⎛⎫-= ⎪⎝⎭∑23123111111(.....)knnnnknk k k k n n n n n p p p p p a q q C q C C C C q q q q q →∞=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-==++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑展开式曲线簇附图如下23123111111(.....)kn n n n knk kk k nn n n n p p p p p a q q C q C C C C q q q q q →∞=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-==+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑要使得a-q 为整数,至少a-q 的小数部分为有理数,而a-q 的展开式是无限级数,那么只有一个条件下a-q 才可能是有理数,就是级数的系数的绝对值相等,由此只有n 趋近无穷大时才会出现此种情况如下:()()()()()111111lim =1lim 121..(1)1!knknk knk k k kn n x n p p p C n n k n q k n q knq ++→∞→∞-⎛⎫⎛⎫-----=⎪ ⎪⎝⎭⎝⎭只有a-q 才是-()n p q 的等比数列之和才可能是有理数,由上式知道就算是极限状态也不存在系数的绝对值相等 所以在有限整数n>2 的条件下,或n 无穷大时23123111111(......)knnnnknk k k k n n n n n p p p p p a q q C q C C C C q q q q q →∞=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-==+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑均不可能是有限的或无限循环的,那么它只能是无理数,所以a 也只能是无理数,据此整数n>2时,对于互素的p,q ,(q>p )没有整数a 使得(4)等式成立(4)11()nn p a q q ⎛⎫+= ⎪⎝⎭ 结论11()n n p u q ⎛⎫=+ ⎪⎝⎭为无理数(整数n>2, q>p ) 那么Z Xu =同样也是无理数至此对于整数n>2n n nX Y Z+=X,Y,Z 没有同为整数的解 费马猜想证明完毕 后记:11()nn p u q ⎛⎫=+ ⎪⎝⎭为无理数已经写入无理数的百度词条中,便于知识的传播。

x的三方加y的三方等于z的三方没有正整数解的证明

x的三方加y的三方等于z的三方没有正整数解的证明

费马大定理x 的三方加 y 的三方等于 z 的三方没有正整数解的证明费马大定理是数学中的一个经典问题,它的证明是数学史上的里程碑之一。

本文将介绍费马大定理的背景、定理内容以及其证明方法。

下面是本店铺为大家精心编写的5篇《费马大定理x 的三方加 y 的三方等于 z 的三方没有正整数解的证明》,供大家借鉴与参考,希望对大家有所帮助。

《费马大定理x 的三方加 y 的三方等于 z 的三方没有正整数解的证明》篇1引言费马大定理是数学中的一个经典问题,它的证明是数学史上的里程碑之一。

该定理最早由法国数学家费马在 17 世纪提出,它的内容是:对于任意正整数 x、y、z,如果 x 的三方加 y 的三方等于 z 的三方,则 x、y、z 必须都是负整数。

该定理的证明一直是数学界的难题,直到 1995 年,英国数学家安德鲁·怀尔斯通过引入椭圆曲线等高级数学工具终于证明了该定理。

定理内容费马大定理的定理内容可以表述为:对于任意正整数 x、y、z,如果 x 的三方加 y 的三方等于 z 的三方,则 x、y、z 必须都是负整数。

换句话说,如果三个正整数的立方和等于另一个正整数的立方,则这三个正整数必须是负数。

证明方法费马大定理的证明是数学史上的里程碑之一,它的证明方法涉及到许多高级数学工具,如椭圆曲线、模形式等。

下面我们将介绍怀尔斯的证明方法。

怀尔斯证明了一个更加广泛的定理,即所谓的“Taniyama-Shimura 猜想”。

该定理将椭圆曲线和模形式联系起来,它表明如果一个椭圆曲线满足一定的条件,则它对应的模形式必须满足某些特定的性质。

怀尔斯证明了如果一个椭圆曲线满足一定的条件,则它对应的模形式必须满足某些特定的性质,从而证明了费马大定理。

结论费马大定理是数学中的一个经典问题,它的证明是数学史上的里程碑之一。

该定理表明三个正整数的立方和等于另一个正整数的立方时,这三个正整数必须是负整数。

《费马大定理x 的三方加 y 的三方等于 z 的三方没有正整数解的证明》篇2费马大定理指出:对于任意大于 2 的正整数 n,不存在正整数解 x、y、z 使得 x 的 n 次方加 y 的 n 次方等于 z 的 n 次方。

简述费马大定理的内容、发现过程以及证明状况。

简述费马大定理的内容、发现过程以及证明状况。

费马大定理的内容、发现过程以及证明状况费马大定理是数学中一个非常重要的定理,其内容是:如果一个数n大于2,且n不是素数,则存在两个整数a和b使得a^n+b^n=n。

费马大定理是由德国数学家费马在1742年发现的。

当时,费马正在研究一个函数f(x)=x^n+1,并想要证明其对于所有的正整数n都存在一个数x使得f(x)=0。

他发现,当n=4时,存在数x=2使得f(x)=0,但是当n=5时,就不存在这样的数x了。

这个结论使费马意识到,对于不同的n,存在的数x是有限制的,并且这些限制是由n的值决定的。

随后,费马将这个结论表述为费马大定理,并进行了证明。

他证明了,如果n是素数,则必定存在数x使得f(x)=0;如果n不是素数,则必定不存在这样的数x。

费马的证明方法是使用反证法。

他假设n不是素数,并试图证明存在数x 使得f(x)=0。

他发现,如果存在数x使得f(x)=0,则必定有a^n=n-b^n,其中a和b都是正整数。

他又发现,如果a和n互质,则a和b一定也是互质的,这与费马大定理的假设矛盾。

因此,费马认为a和n一定不互质。

接着,费马进一步讨论了a和n的关系。

他发现,如果a和n有公因数d,则必定有d^n|a^n,因此d^n|n-b^n。

这意味着d^n也是n和b^n的公因数,因此d|b。

但是,如果a和b有公因数d,则d|a和d|b,因此d|(n-b^n)。

这与前面的结论矛盾,因此a和b一定互质。

费马得出的结论是,如果n不是素数,则a和b一定互质,这与假设矛盾。

因此,费马得出结论:如果n不是素数,则必定不存在数x使得f(x)=0。

费马的证明方法被称为反证法,即假设某种情况不成立,然后试图证明这种假设会导致矛盾,从而得出结论。

费马的证明方法被广泛使用,并在数学界中产生了深远的影响。

费马大定理的证明在当时并没有得到完全的证明,直到19世纪末,才有人用分类讨论的方法对费马大定理进行了证明。

这种方法的思想是,对于n的不同取值,分别考虑费马大定理是否成立。

费马大定理是怎么证明的

费马大定理是怎么证明的

费马大定理是怎么证明的费马大定理是怎么证明的已故数学大师陈省身说道,20世纪最杰出的数学成就有两个,一个是阿蒂亚—辛格指标定理,另一个是费马大定理。

当然,20世纪的重大数学成就远不止这两个,不过这两大成就却颇具代表性,特别是从科普的角度来看。

说实在的,数学虽然总是居于科学之首,可是一般人对数学可以说几乎一无所知,尤其是说到数学有什么成就、有什么突破的时候。

理、化、天、地、生,门门都有很专门的概念、知识、技术,可不久之前的大成绩很容易就可以普及到寻常百姓家。

激光器制造出来还不到50年,激光唱盘早已尽人皆知了,克隆出现不到10年,克隆这字眼已经满天飞了。

即使人们不太懂黑洞的来龙去脉,一般人理解起来也不会有太大障碍。

可是有多少人知道最新的数学成就呢?恐怕很难很难。

数学隔行都难以沟通,更何况一般人呢。

正因为如此,99%的数学很难普及,成百上千的基本概念就让人不知所云,一些当前的热门,如量子群、非交换几何、椭圆上同调,听起来就让人发晕。

幸好,还有1%的数学还能对普通的人说清楚,费马大定理就是其中的一个。

费马大定理在世界上引起的兴趣就正如哥德巴赫猜想在中国引起的热潮差不多。

之所以受到许多人的关注,关键在于它们不需要太多的准备知识。

对于费马大定理,人们只要知道数学中头一个重要定理就行了。

这个定理在中国叫勾股定学家、草根科学家。

可是他们真的爱好数学吗?他们真的肯为解决一个问题认真地学点什么东西吗?一句话,他们肯钻研吗?《费马大定理》这本书的确告诉我们,最终证明费马大定理的怀尔斯九年面壁之路是多么坎坷。

从1986年到1994年他几乎没有发表任何论文,这对职业数学家常常是致命的。

怀尔斯为了保密,也搞一点小名堂,局外人也许只数你论文的篇数,内容则完全看不懂。

可是要说大定理证得对不对,专家无疑起着决定性的作用。

这本书生动地讲述一位在数学中心生活的数学家的生存状态。

他有一些朋友,他要靠这些朋友,当时他也有失误或挫折,幸运的是,他走到底。

人类智慧的象征:证明费马大定理

人类智慧的象征:证明费马大定理

国数学科学研究所(MSRI),在旧金山市向公众介绍费
文化时空 马定理的证明情况,美国数学会的《通报》(Notices)刊 登了该报导,并评论说“:这是对人类文化的珍视.”
怀尔斯 紧接着,美国、欧洲以及香港等地召开了多次的 专家会议,审查怀尔斯的证明,结果是发现了一些漏 洞,大家试图补救它,但都没有成功.1993 年 12 月,怀 尔斯向数学界的同行发出电子信件,承认他的证明还 有一条沟坎没有越过去,但他相信在普林斯顿工作几 个月以后,将会顺利获得解决.1994 年,怀尔斯的又一 封电子信件说,他利用和自己的学生泰勒(R.Taylor)合 作的一条定理,采取另一种方法绕过了那个沟坎,费 马定理可以获证.这一次,大家都没有轻易下结论,而 是投入了更多的研究.同行们评论说,怀尔斯的工作是 非常好的,即使作为推论的费马定理的证明失败了, 但是他证明费马定理的想法和其他结果是很好 的.1995 年 5 月,世界权威的学术刊物《数学纪年》(An⁃ nals of Mathematics)在第 141 卷第 3 期上,以整期的篇 幅,发表了怀尔斯修正后的证明《模椭圆曲线与费马 大定理》,以及他和泰勒的文章《某些赫克代数环的性 质》.三百年的费马大定理悬案,就此画上了句号.一个 20 世纪伟大的数学成就从此诞生.1998 年的柏林国际 数学家大会,授予怀尔斯以“特别奖”,以表彰他的历 史功绩. 希尔伯特曾说:“费马大定理是一只‘会下金蛋的 鹅’.”因为它,扩展了“无穷递降法”和虚数的应用;催 生 出 库 默 尔 的“ 理 想 数 论 ”;促 成 了 莫 德 尔 猜 想 、谷 山--志村猜想得证;拓展了群论的应用;加深了椭圆 方程的研究;找到了微分几何在数论上的生长点…… 费马大定理从 1637 年诞生,到 1994 年怀尔斯将 它攻克,整整用了 358 年的时间,而在这其中,无数数 学家前赴后继,虽然它耗尽了众多数学家的精力和心 数 血,但却推动了数学的发展,同时又催生出一批又一 学 批重量级的数学家.怀尔斯正是综合了前面众多数学 篇 家的成果,终于证明了费马大定理是正确的.

费马大定理证明过程

费马大定理证明过程

费马大定理证明过程
费马大定理的证明过程
费马大定理的证明过程如下:a = d (n/2),b = h (n/2),c = p(n/2);那么a 2+b 2 = c 2可以写成d n+h n = p n,n=***当n = 1时,d+h=p,d,h和p可以是任何整数。

证明过程(第1部分)。

如果a,b,c都是大于0的不同整数,并且m是大于1的整数,如果a m+b m = c m+d m+e m具有相同的幂关系,那么在a,b,c,d,e增加比率之后,相同的幂关系仍然成立。

证明:在原公式中a m+b m = c m+d m+e m的定理中,增率是n,n,n>1。

get:(na)m+(nb)m =(NC)m+(nd)m+(ne)m
原来的公式是:n m (a m+b m) = n m (c m+d m+e m) 两边去掉n m后,得到原始公式。

因此,在同侧的功率和差分公式之间有一个递增的比值计算规则,在增大比值后,它仍然是同侧的功率。

2.如果a、b和c是不同的整数,并且m+b = c m关系成立,其中b > 1,b不是a和c的相同幂,当a、b和c逐年增加时,b仍然不是a和c的相同幂。

证明:取定理a的原始公式m+b = c m
当氮、氮、氮的增加率大于1时,我们得到:(na) m+n MB = (NC) m
原来的公式是:n m (a m+b) = n mc m
两边去掉n m后,得到原始公式。

因为b不能转换成a和c的幂,所以n^mb不能转换成a 和c的幂。

因此,等式关系在不是同一个平方的幂的项一起增加后仍然有效。

其中,相同功率的数量项在比例增加后仍为相同功率,不同功率的数量项在比例增加后仍为不同功率。

数学费马大定理的证明思路

数学费马大定理的证明思路

数学费马大定理的证明思路费马大定理,又称费马猜想,是指对于任何大于2的整数n,不存在满足a^n + b^n = c^n的正整数解a、b、c。

这一问题是数学领域中的开放问题,在数学史上占据重要地位。

最初由法国数学家费马在1637年提出并在其笔记中写下:“我已有较好的证法,但此证法太大,无法容纳于此处,我恐怕再也无法找到与此相同美妙的证法了。

”然而,费马从未公布过其证明,使得数学界为之沉迷,直到1994年才由英国数学家安德鲁·怀尔斯给出了完整的证明。

费马大定理证明的思路主要分为以下几个步骤:1. 引入数学工具首先,为了证明费马大定理,需要引入一些数学工具和理论。

其中最重要的是代数、数论和解析几何等领域的数学知识。

特别是椭圆曲线和模形式的理论,它们被证明是证明费马大定理的关键。

2. 将费马大定理转化为等价问题由于费马大定理的难度相对较大,数学家们普遍采用转化为等价问题的方式来求解。

具体而言,将费马大定理转化为断言,即假设存在某个正整数n>2,使得a^n + b^n = c^n有正整数解。

然后,通过推理和逻辑推导,去掉其中的矛盾和不可能性,从而证明费马大定理。

3. 使用费马导数定理为了证明费马大定理,需要运用费马导数定理。

费马导数定理是费马在研究曲线的极值问题时发现的重要性质。

该定理指出,如果函数在某一点处取极值,且该点是函数图像的平坦点(即导数为零),那么该点也必然是该函数图像的极值点。

通过使用费马导数定理,可以对方程进行推理和变换,从而获得更多有用的信息。

4. 利用模形式理论安德鲁·怀尔斯在证明费马大定理时,运用了模形式理论。

模形式是一种数论和解析几何的重要数学对象,它具有深厚的数学基础和广泛的应用领域。

通过研究椭圆曲线和模形式的性质,怀尔斯得到了一组方程,这些方程揭示了费马大定理存在椭圆曲线的一种特殊情况。

5. 排除特殊情况在证明费马大定理时,需要考虑各种可能的特殊情况,以确保得出的结论适用于所有情况。

扩展证明费马大定理(全面版)资料

扩展证明费马大定理(全面版)资料

扩展证明费马大定理(全面版)资料扩展证明费马大定理:证明:m,n属于非负整数, x,y,z是正整数。

j 表示“奇数”,k=2^(m+1)j 表示“偶数”。

按奇数与偶数的加法形式讨论费马方程:1)偶数+偶数:k1^n+k2^n=k3^n2^n 2^m1n j1^n + 2^n 2^m2n j2^n = 2^n 2^m3n j3^n2^m1n j1^n + 2^m2n j2^n = 2^m3n j3^n等式两边同时除以 min (2^m1n,2^m2n ,2^m3n),又分七种情况:A)m1=m2=m3得:j1^n + j2^n = j3^n,偶数=奇数,产生矛盾。

B)仅m1=m2j1^n + j2^n = 2^(m3-m1)n j3^n ,令m4=m3-m1若m4<0j1^n + j2^n = [ j3 /2^(-m4)]^n,[j3 /2^(-m4)]^n为小数, j1^n + j2^n 为整数,产生矛盾。

可见,m4<0时,不成立。

若m4>0,j1^n + j2^n = j3^n 2^(m4)n,n>2若j3是j1^n与j2^n的公因数j1=j2=j3则有j4^n+j5^n=2^(m4)n ——待证明2^(m4)n不是j1^n与j2^n的公因数j1^n/ 2^(m4)n+ j2^n /2^(m4)n= j3^n若j1=j2则有2j1^n/ 2^(m4)n= j3^n奇数/偶数=奇数,产生矛盾,j1不等于j2奇数 /2^n ,为末尾为5的小数若要 j1^n/ 2^(m4)n+ j2^n /2^(m4)n等于整数, j1^n/ 2^(m4)n与 j2^n/2^(m4)n的小数位数要相同j1/ 2^(m4)与 j2 /2^(m4)的小数位数也要相同通过计算观察, j1^n/ 2^(m4)n+ j2^n /2^(m4)n要等于整数只能等于奇数,推出j3=奇数j1^n/ 2^(m4)n+ j2^n /2^(m4)n=奇数j1^n/2^n+ j2^n/2^n =奇数乘 2^(m4-1)n奇数乘2^(m4-1)n不等于奇数,产生矛盾,可见,m1<m3时,也不成立。

费马大定理的证明及其在密码学中的应用

费马大定理的证明及其在密码学中的应用

费马大定理的证明及其在密码学中的应用费马大定理(Fermat's last theorem)是数学史上的一个经典问题,直到1994年才被英国数学家安德鲁·怀尔斯证明,其证明过程极其复杂,消耗了大量的心血和数学工具。

这个问题的解决引起了数学界的轰动,不仅解决了费马大定理本身,也为后来群论、代数数论等领域的发展奠定了基础。

同时,在密码学中,费马大定理的应用也是极其重要的。

一、费马大定理的发现费马大定理的道出者是17世纪法国业余数学家皮埃尔·费马(Pierre de Fermat),他在自己的笔记里写道:“对于全体大于2的正整数n,方程$ x^{n}+y^{n}=z^{n}$ 无正整数解。

” 这个问题从出现到17世纪末,即费马所处的时代,已有两百多年的历史,不少数学家试图证明或者推翻费马的猜想。

二、费马大定理的证明费马大定理是最著名、最古老、最难的数学难题之一,大约有二百五十年的历史,一直没有解决。

直到1995年,加拿大数学家安德鲁·怀尔斯证明了费马大定理,得到了世界数学界的广泛认可。

怀尔斯用现代的代数数论和几何学的手段证明了这一定理。

怀尔斯的证明,大多使用了模形式(Modular forms)和Wiles的构造,一些古老的数学工具也被运用到了证明中。

怀尔斯的证明非常复杂,需要许多专业的知识和技术。

它也表明了现代数学研究的难度和复杂性,是数学史上的一个里程碑。

三、费马大定理的应用费马大定理的证明本身就是一个非常漫长和有用的数学研究过程,但这个定理也给密码学提供了一个非常重要的工具。

在密码学中,费马大定理的应用主要是用于现代数字签名和加密算法。

数字签名的基本思想是使用一种哈希函数将原始数据转换成固定长度的数据,然后用一个私钥对哈希函数的输出结果进行签名,接着用公钥验证签名。

这种数字签名算法是安全的,但它仍然存在某些问题,这些问题可以通过使用费马大定理来解决。

在密码学中,使用费马大定理的主要原因是它可以用来验证两个非常大的数的乘积是否等于一个特定的数。

费马大定理

费马大定理

费马大定理目录[隐藏]原理简介理论发展理论发展证明方法应用实例费马大定理Fermas last theorem[编辑本段]原理简介费马大定理:当整数n > 2时,关于x, y, z的不定方程x^n + y^n = z^n.((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。

这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。

虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。

证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。

而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

[编辑本段]理论发展1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。

关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。

”(拉丁文原文: "Cui us rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。

数学家们的有关工作丰富了数论的内容,推动了数论的发展。

对很多不同的n,费马定理早被证明了。

但数学家对一般情况在首二百年内仍一筹莫展。

费马大定理证明过程.

费马大定理证明过程.

费马大定理证明过程2017-07-22费马大定理证明过程原命题:Xn+Yn=Zn(其中X、Y、Z都是非零数)当n为大于2的正整数时X、Y、Z,不可能都是正整数。

证明步骤如下:我们只要证明当n为大于2的正整数时,X、Y、Z,不可能都是非零的有理数,原命题自然成立。

对于Xn+Yn=Zn来说如果等式二边无论如何都找不到有理对应关系,那么他们还有理数解吗?我们知道等式二边所有对应关系可列成下面三种情况。

1、Xn+ Yn=Zn 2、Xn=Zn-Yn 3、Yn=Zn-Xn分析第一种情况 Xn+ Yn=Zn当n等于3时,X3+ Y3=Z3一方面由于等式左边y不管取何非零值,都只能分解成关于X的二个有理因式,即:X3+ Y3=(X+ Y)(X2+XY+ Y2)另一方面,如果存在有理数解则X与Z之间必可通过有理置换,如:Z=X+某数形式即:等式右边Z3=(X+某数)(X+某数)(X+某数)三个因式这样,等式一边永远无法变成X三个有理因式,等式另一边总是可以变成X三个有理因式,因此出现了矛盾。

分析第二种情况 Xn=Zn-Yn当n等于3时 X3=Z3-Y3一方面由于等式右边Y不管取何非零值,都只能分解成关于Z的二个有理因式,即:右边Z3-Y3=(Z-Y)(Z2+ZY+Y2)二个有理因式另一方面,如果存在有理数解则Z与X之间必可通过有理置换,如:X=Z-有理数等式左边X3=(Z-有理数)(Z-有理数)(Z-有理数)三个因式这样,等式一边永远无法变成Z三个有理因式,等式另一边总是可以变成Z的三个有理因式,因此出现了矛盾。

第三种情况和第二种情况是相似的。

也就是说X、Y、Z为非零数时,所有的排列,都找不到等式二边会有理对应关系,因此当n等于3时X、Y、Z不可能都是有理数,更谈不上是整数。

当n=4时则Xn+Yn=Zn变成X4+Y4=Z4所有的排列有下面3种:1、X4+ Y4=Z42、 X4=Z4-Y43、 Y4=Z4-X4分析第一种情况,1、X4+ Y4=Z4一方面由于等式左边y不管取何非零值,都只能分解成关于X的一个有理因式,另一方面,如果存在有理数解则X与Z之间必可通过有理置换,如Z=X+有理数等式右边Z4=(X+有理数)(X+有理数)(X+有理数)(X+有理数)四个有理因式。

费马大定理是如何被证明的

费马大定理是如何被证明的

费马大定理是如何被证明的上世纪后半页,理论数学家们陷入了十分尴尬的境地,一方面他们已经很久没做出突破性工作,一方面借助计算机的机器证明开始兴起,著名的四色猜想就是机器证明的。

数学家们不喜欢使用蛮力的穷举法机器证明,也诟病机器证明的程序没法完全保证没有bug,以及没法验证,但心里也是颇为酸楚的。

这个时候救星出现了,他叫安德鲁怀尔斯,是普林斯顿大学的教授,美籍英裔,剑桥大学出身。

他躲在阁楼成一统,7年孤独磨一剑,又经过一年的审稿炼狱,最终证明了费马大定理!那么何为费马大定理呢?总所周知,x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数。

但x^3+y^3=z^3却始终没找到整数解,最接近的是:6^3+8^3=9^-1,还是差了1。

于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。

也就是:x^n+y^n=z^n,当n大于2时没有整数解。

这是一个描述起来非常简单的猜想,但358年来困扰了包括欧拉和柯西在内的一代代大数学家,他们得到了一些进展,比如当n等于3和4时猜想成立,但x、y、z和n的取值范围是无限,要证明整个猜想谈何容易!更气人的是费马在一本书的页边处写下这个猜想后还有一个评注:我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。

这不是一种赤裸裸的挑战嘛。

1984年事情有了转机,一个叫弗莱的德国数学家提出如果费马猜想不成立,那个就可以找到三个整数使方程成立,表示为:A^N+B^N=C^N,接着他通过复杂的变换,这个等式转换成了一个椭圆方程:y^2=x^3+(A^N-B^N)*x^2-A^N*B^N而这个椭圆曲线太过古怪,他断定由于这个由费马猜想不成立引出的椭圆方程是如此古怪,所以它不可能模形式化。

后来一个叫里贝特的数学家严格证明了这个椭圆方程确实不能模形式化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档