1流体力学基础

合集下载

流体力学知识点范文

流体力学知识点范文

流体力学知识点范文流体力学是研究流体静力学和流体动力学的一个学科,涉及到流体的运动、力学性质以及相关实验和数值模拟方法。

流体力学的应用广泛,包括气象学、海洋学、土木工程、航空航天工程等领域。

以下是流体力学的一些重要知识点。

1.流体的性质流体是一种能够自由流动的物质,包括气体和液体。

与固体不同,流体具有可塑性、可挤压性和物质变形后恢复自然形状的性质。

流体的密度、压力、体积、温度和粘度是流体性质的基本参数。

2.流体的运动描述流体的运动包括膨胀、收缩、旋转和流动等。

为了描述流体的运动,需要引入一些描述流体运动的物理量,如速度、流速、加速度和流量。

流体的速度矢量表示流体粒子的运动方向和速度大小。

3.流体静力学流体静力学研究的是在静压力的作用下,流体内各点之间的静力平衡关系。

流体的静力压力与深度成正比,由于流体的可塑性,静压力会均匀传输到容器中的各个部分。

流体静力学应用于液压系统、液态储存设备和液压机械等领域。

4.流体动力学流体动力学研究的是流体在外力作用下的运动行为。

流体动力学分为流体动力学和流体动量守恒两个方面。

流体动力学研究的是流体的速度和加速度,以及流体流动的力学性质。

流体动量守恒研究的是流体在内外力作用下动量的转移和守恒。

流体动力学应用于气象学、水力学、航空航天工程等领域。

5.流体的流动方程流体力学的基本方程是质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述了流体的质量守恒原理,即质量在流体中是守恒的。

动量守恒方程描述了流体的动量守恒原理,即外力对流体的动量变化率等于流体的加速度乘以单位质量的流体体积。

能量守恒方程描述了流体的能量守恒原理,即流体在流动过程中能量的转化和传输。

6.流体力学问题的数值模拟由于流体力学问题具有复杂性和非线性性,很多问题难以通过解析方法得到解析解。

因此,数值模拟成为解决流体力学问题的一种重要方法。

数值模拟方法包括有限元法、有限差分法和有限体积法等。

这些方法通过将流体力学问题离散化为一组代数方程来进行数值求解。

于治明主编液压传动课件第一章 流体力学基础

于治明主编液压传动课件第一章   流体力学基础

静止液体在单位面积上所受的法向力称为静压力。 静止液体在微小面积上所受的内法线方向的法向力, 该点的压力为。 (3-1) 静压力性质: 静压力垂直于承压面,其方向和该面的内法线方向一致。 静止液体内任意一点所受到的压力在各个方向上都相等。
• 压力及其性质: 质量力:力的作用反映在液体内部每一个质点上。如重力、惯性力、离心力等。质量力的大小 和液体的质量成正比。 表面力:力的作用反映在外部表面或内部截面上。表面力的大小和作用面积成正比。如液体边 界上的大气压力,液体内部各部分之间相互作用的压力、内摩擦力等。 单位质量力数值上等于加速度。 单位面积上作用的表面力称为应力。 法向应力和切向应力 液体在单位面积上所受的内法线方向的法向应力称为压力。
压力为p时液体的运动粘度
p
大气压力下液体的运动粘度
a
(1 9)
(5)气泡对粘度的影响
b 0 (1 0.015b)
b为混入空气的体积分数 混入b空气时液体的运动粘度
不含空气时液体的运动粘度
0
b
(三)、选用与维护
1、工作介质的选择 品种、粘度 2、工作介质的使用和维护 1)污染物种类及其危害 固体颗粒、水、空气、化学物质、微生物 污染能量。 2)污染原因 3)污染物等级 指单位体积工作介质中固体颗粒污染物的含 量,即工作介质中固体颗粒的浓度。 ISO4406:1987,1999
一、基本概念
(一)、理想液体、恒定流动和一维流动
既无粘性不可压缩的假想液体,称为理想液体。 液体流动时,液体中任意点处的压力、速度和密度都不随 时间而变化,液体作恒定流动。
只要压力、速度或密度有一个随时间变化,液体作非恒 定流动。当液体整体作线性流动时,称为一维流动。
(二)、流线、流束和通流截面

第一章 流体力学基础(10)

第一章 流体力学基础(10)

Pa s
在物理单位制中: P,泊 SI单位制和物理单位制粘度单位的换算关系为:
1Pa s 10P 第一章 流体力学基础
牛顿型流体和非流动流体
1)凡遵循牛顿粘性定义的流体称为牛顿型流体;否则 为非流动型流体。 牛顿型流体,如水、空气等; 2) 非流动型流体,如某些高分子溶液、悬浮液、泥浆 和血液等。 3) 本书所涉及的流体多为牛顿型流体。
第一章 流体力学基础
(2)通过喷嘴的流动
1 2
q+w=△h+ g△Z+
1 2 △ u 2
u2 2h1 h2
流体流过收缩喷嘴时获得的动能等于流体韩志的增加
第一章 流体力学基础
(3)通过节流阀的流动
q+w=△h+ g△Z+
1 2 △ u 2
h1 h2
流体截流前后的焓值不变
第一章 流体力学基础
在过程生产中,有些仪表是以静力学基本方程式为理论依
一、压强与压强差测量
1 U型管液柱压差计 指示液密度ρ0,被测流体密度为ρ,图中a、 b两点的压力是相等的,因为这两点都在同一 种静止液体(指示液)的同一水平面上。通 过这个关系,便可求出p1-p2的值。
指示剂的选择
@ 指示液必须与被测流体不 互容; @ 不起化学反应; @ 大于被测流体的密度。 指示液随被测流体的 不同而不同。
实际上流体都是可压缩的,一般把液体当作不可压缩流体; 气体应当属于可压缩流体。但是,如果压力或温度变化率很小 时,通常也可以当作不可压缩流体处理。
第一章 流体力学基础
稳定流动(定态流动)
稳定流动:流体在流动时,在任一点上的流速、压力等有关 物理参数仅随位置变化而不随时间改变。

化工原理第一章流体力学基础

化工原理第一章流体力学基础

第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP

1流体力学的基础知识

1流体力学的基础知识
1 流体力学基础知识
ρ=1000kg/m3 γ=9.807kN/m3 ρ=992.2kg/m3 ρ=958.4kg/m3
1.1 流体主要的物理性质
4. 粘滞性 由于流体各流层的流速不同,相邻流层间有相对运动, 由于流体各流层的流速不同,相邻流层间有相对运动, 便在接触面上产生一种相互作用的剪切力, 便在接触面上产生一种相互作用的剪切力,这个力叫做 流体的内摩擦力,或称黏滞力。流体在黏滞力的作用下, 流体的内摩擦力,或称黏滞力。流体在黏滞力的作用下, 具有抵抗流体的相对运动(或变形 的能力, 或变形)的能力 具有抵抗流体的相对运动 或变形 的能力,称为流体的 黏滞性。对于静止流体,由于各流层间没有相对运动, 黏滞性。对于静止流体,由于各流层间没有相对运动, 黏滞性不显示。 黏滞性不显示。 流体的运动克服粘滞性,耗能。 流体的运动克服粘滞性,耗能。
1 流体力学基础知识


合理设计建筑设备工程,保证建筑物的使用质量, 合理设计建筑设备工程,保证建筑物的使用质量,不 仅与建筑设计、结构设计、施工方法有密切关系, 仅与建筑设计、结构设计、施工方法有密切关系,而 且对生产、经济、人民生活具有重要的意义。因此, 且对生产、经济、人民生活具有重要的意义。因此, 建筑学专业以及建筑学类其他专业, 建筑学专业以及建筑学类其他专业,应掌握建筑设备 工程的基本知识。 工程的基本知识。 随着我国各种类型工业企业的不断建立、 随着我国各种类型工业企业的不断建立、城镇各类民 用建筑的兴建、人民生活居住条件的逐步改善、 用建筑的兴建、人民生活居住条件的逐步改善、基本 建设工业化施工的迅速发展, 建设工业化施工的迅速发展,建筑设备工程技术水平 正在不断提高。同时,由于近代科学技术的发展, 正在不断提高。同时,由于近代科学技术的发展,各 门学科互相渗透和互相影响, 门学科互相渗透和互相影响,建筑设备技术也受到交 叉学科发展的影响而日新月异。 叉学科发展的影响而日新月异。

(完整版)流体力学

(完整版)流体力学

第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。

分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V)压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变Ev=dp/(dρ/ρ)(低速流动气体不可压缩)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。

质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动.第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程 =0 流体平衡微分方程重力场下的简化:dρ=—ρdW=—ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;不可压缩流体静压强基本公式z+p/ρg=C不可压缩流体静压强分布规律 p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强—当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。

第一章流体力学基本概念

第一章流体力学基本概念

分别运动至A’,B’,C’,D’点,则有
A
B
A'
B'
udt
E D D D A A (u d)d u u t d dtudt
图1-2 速度梯度
由于
du ED
dt
因此得速度梯度 duED tgd d
dy dydt dt dt
可以看出dθ为矩形ABCD在dt时间后剪切变形角度,这就表明速度梯度实质上就 是流体运动时剪切变形角速度
•第一章流体力学基本概念
随着科学技术的不断进步,计算机的发展和应用,流体力学的研究领域和应用范 围将不断加深和扩大。从总的发展趋势来看,随着工业应用日益扩大,生产技术 飞速发展,不仅可以推动人们对流动现象深入了解,为科学研究提供丰富的课题 内容,而且也为验证已有的理论、假设和关系提供机会。理论和实践密切结合, 科学研究和工业应用相互促进,必将推动本学科逐步成熟并趋于完善。
第一章 流体力学基本概念
第一节 流体力学的发展、应用及其研究方法 第二节 流体的特征和连续介质假设 第三节 流体的主要物理性质及分类 第四节 作用在流体上的力
•第一章流体力学基本概念
第一节 流体力学的发展、应用及其研究方法
一、流体力学发展简史
流体力学是研究流体的平衡及运动规律,流体与固体之间的相互作 用规律,以及研究流体的机械运动与其他形式的运动(如热运动、化学 运动等)之间的相互作用规律的一门学科。 流体力学属于力学范畴,是 力学的一个重要分支。其发展和数学、普通力学的发展密不可分。流体 力学起源于阿基米德(Archimedes,公元前278~公元前212)对浮力的 研究。
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。

流体力学1

流体力学1
-40C
水 0.294 106 m 2 /s
1000C
空气 1.49 105 Pa s
空气 2.18 105 Pa s
空气 0.98 105 m 2 /s
空气 2.31 105 m 2 /s
空气的动力粘性系数比水小2个数量级,但空气的 运动粘性系数比水大。 空气的粘性系数随温度升高而增大,而水的粘性系 数随温度升高而减小。
微观(分子自由程的尺度)上看,流体质点是一个足够大的
分子团,包含了足够多的流体分子,以致于对这些分子行为 的统计平均值将是稳定的,作为表征流体物理特性和运动要 素的物理量定义在流体质点上。
2.7 1016 个分子
1mm3空气 ( 1个大气压,00C)
• 连续介质假设
连 续 介 质 假 设 将 流 体 区 域 看 成 由 流 体 质 点 连 续 组 成 , 占
力)予以抵抗,并在撤除外力后恢复原形,流体的这种性质称 为压缩性。
p V
p+Δp V-ΔV

d V / V d/ dV 将相对压缩值 与压强增量 d p之比值 称 dp dp V 1 dp 为压缩系数,其倒数 K 称为体积 K 随温度和压强而变,随温度变化不显著。液体的 K
值很大,除非压强变化很剧烈、很迅速,一般可不考虑压缩 性,作不可压缩流体假设,即认为液体的 K 值为无穷大,密 度为常数。但若考虑水下爆炸、水击问题时,则必须考虑压 缩性。
§1—3 作用在流体上的力
流体不能承受集中力,只能承受分布力。分布力按表现形式 又分为:质量力、表面力。
,指向表 面力受体外侧,所受表面力为 ΔP ,则应力
P p n lim A0 A
n

1_流体力学与传热学

1_流体力学与传热学

P p lim A
A 0
返回首页
第二节 流体静力学
一、流体静压强及其特性
P Z dA n

流体静压强的方向与受 压面垂直并指向受压面
Y X 0

作用于同一点上各方 向的静压强大小相等
流体静 压强的 特性
第二节 流体静力学
二、流体静压强的分布规律
分析静止液体中压强分布 作用于轴向的外力有:
可忽略。 2、气体有显著的压缩性和膨胀性,t与P的变化对v 影响很大。 3、当气体的温度不过低压强不过高时,T、P、v三
者关系服从理想气体状态方程。
第二节 流体静力学
目的:学习和讨论流体静止状态下 的力学规律及其应用
流体静止时的特点:
不显示其粘滞性,不存在切相应力
流体静止是运动中的一种特殊状态
流体静力学研究的中心问题:
流体静压强的分布规律
第二节 流体静力学
一、流体静压强及其特性
静水压力与静水压强

静止液体作用在与之接触的表面上的水压力称为 静水压力P.
在静水中表面积为A的水体,微小面积△A所受作 用力△P, P P 该微小面积上的平均压强为 A 当△A无限缩小至趋于点K时,K点的静水压强
p1
2
2
图2-5
圆管中有压流动的总水头线与测压管水头线
第四节 流动阻力和水头损失
能量损失的计算
沿程损失
hf
l v2 d 2g
沿管长 均匀发 生
局部损失
局部障 碍引起 的
hm
v2 2g
整个管路的能量损失等于:
各管段的沿程损失和局部 损失之和
第五节 流动阻力和水头损失
整个管路的能量损失等于各管段的沿程损失和局部损失之和.

流体力学基础知识汇总

流体力学基础知识汇总

流体力学基础知识汇总流体力学是研究流体静力学和流体动力学的学科。

流体力学是物理学领域中的一个重要分支,广泛应用于工程学、地球科学、生物学等领域。

本文将从流体力学的基础知识出发,概述流体力学的相关内容。

一、流体静力学流体静力学研究的是静止的流体以及受力平衡的流体。

静止的流体不受外力作用时,其内部各点的压力相等。

根据帕斯卡定律,压强在静止的流体中均匀分布。

流体静力学的重要概念包括压强、压力、密度等。

压强是单位面积上受到的力的大小,而压力是单位面积上受到的力的大小和方向。

密度是单位体积内质量的多少,与流体的压力和温度有关。

二、流体动力学流体动力学研究的是流体在受力作用下的运动规律。

流体动力学的重要概念包括流速、流量、雷诺数等。

流速是单位时间内流体通过某一截面的体积。

流速与流量之间存在着直接的关系,流量等于流速乘以截面积。

雷诺数是描述流体流动状态的无量纲参数,用于判断流体流动的稳定性和不稳定性。

三、伯努利定律伯努利定律是流体力学中的一个重要定律,描述了流体在沿流线方向上的压力、速度和高度之间的关系。

根据伯努利定律,当流体在流动过程中速度增加时,压力会降低;当流体在流动过程中速度减小时,压力会增加。

伯努利定律在飞行、航海、液压等领域有着重要的应用。

四、黏性流体黏性流体是指在流动过程中会发生内部层滑动的流体。

黏性流体的流动过程受到黏性力的影响,黏性力会导致流体的内部发生剪切变形。

黏性流体的流动规律可以通过纳维-斯托克斯方程来描述。

黏性流体在润滑、液体运输、地质勘探等领域有着广泛的应用。

五、边界层边界层是指在流体与固体表面接触的区域,流体的速度在边界层内逐渐从0增加到与远离表面的流体速度相等。

边界层的存在会导致流体的阻力增加。

研究边界层的特性可以帮助理解流体与固体的相互作用,对于设计高效的流体系统具有重要意义。

流体力学是研究流体静力学和流体动力学的学科。

流体力学的基础知识包括流体静力学、流体动力学、伯努利定律、黏性流体和边界层等内容。

第1章 流体力学基本知识

第1章 流体力学基本知识

数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;

hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流

实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即

从元流推广到总流,得:

由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2

带入上式,得:


ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)

(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介

本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。


v
2 2 2
2g
h12

化工原理-第一章

化工原理-第一章

29
返回
(3) 倒U形压差计
指示剂密度小于被测流体密度,如空 气作为指示剂
p1 p2 Rg( 0 ) Rg
(4) 倾斜式压差计 适用于压差较小的情况。
30
返回
例1-1 如附图所示,水在水平管道内流动。为测量流
体在某截面处的压力,直接在该处连接一U形压差计,
指示液为水银,读数
18
返回
表 压 = 绝对压力 - 大气压力 真空度 = 大气压力 - 绝对压力
p1
表压
大气压
真空度 绝对压力
p2
绝对压力 绝对真空
19
返回
1.1.3 流体静力学平衡方程
一、静力学基本方程 设流体不可压缩, (1)上端面所受总压力
P1 p1 A
Const.
p1 G p2
p0
重力场中对液柱进行受力分析:
5
返回
1.0.0 流体的特征
液体和气体统称为流体。
• 具有流动性;
• 无固定形状,随容器形状而变化; • 受外力作用时内部产生相对运动。 不可压缩流体:流体的体积不随压力变化而变化,
如液体;
可压缩性流体:流体的体积随压力发生变化,
如气体。
6
返回
1.0.1 研究流体流动的目的
1、流体输送:选择适宜流速、确定管路直径、 选用输送设备; 2、压强、流速和流量的测量:便于了解和控制 生产; 3、为强化设备提供适宜流动条件:如传热、传 质设备的强化。
9
返回
1.0.3 流体流动中的作用力
1、体积力: 体积力作用于流体的每一个质点上,并与流体的 质量成正比,也称为质量力,如重力、离心力。 2、表面力:包括压力与剪力 压力:垂直于表面的力 剪力:平行于表面的力,又称粘性力,与流体运动 有关。 返回

第1章流体力学基本知识-PPT精品

第1章流体力学基本知识-PPT精品
ρ1u1dω1dt=ρ2u2dω2dt 或 ρ1u1dω1=ρ2u2dω2
从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v

ud


Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。

国家开放大学流体力学基础形考作业1-4答案

国家开放大学流体力学基础形考作业1-4答案

国家开放大学《流体力学基础》形考作业1-4答案形考作业11均质流体是指各点密度完全相同的流体。

对2静止流体不显示粘性。

对3温度升高时,空气的粘度减小。

错4当两流层间无相对运动时,内摩擦力为零。

对5理想流体就是不考虑粘滞性的、实际不存在的,理想化的流体。

对6压缩性是指在温度不变的条件下,流体的体积随压力而变化的特性。

对7压缩性是指在压强不变的条件下,流体的体积随温度而变化的特性。

错8热胀性是指在压强不变的条件下,流体的体积随温度而变化的特性。

对9当流体随容器作匀速直线运动时,流体所受质量力除重力外还有惯性力。

错10静止流体中不会有拉应力和切应力,作用于其上的表面力只有压力。

对11静止流体上的表面力有法向压力与切向压力。

错12静止流体中任一点压强的大小在各个方向上均相等,与该点的位置无关。

错13处于静止或相对平衡液体的水平面是等压面。

错14相对静止状态的等压面一定也是水平面。

错15相对静止状态的等压面可以是斜面或曲面。

对16某点的绝对压强只能是正值。

对17某点的相对压强可以是正值,也可以是负值。

对18流线和迹线—定重合。

错19非均匀流的流线为相互平行的直线。

错20均匀流的流线为相互平行的直线。

对21液体粘度随温度升高而()。

B.减小22水力学中的一维流动是指()。

D.运动参数只与一个空间坐标有关的流动23测量水槽中某点水流流速的仪器是( )。

B.毕托管24常用于测量管道流量的仪器是( )。

B.文丘里流量计25相对压强的起量点是( )。

D.当地大气压强26从压力表读出的压强值一股是( )。

B.相对压强27相对压强是指该点的绝对压强与()的差值。

B.当地大气压28在平衡液体中,质量力与等压面( )。

D.正交29流体流动时,流场中运动参数的分布规律随时间发生变化的流动称为( )。

B.非恒定流30流体流动时,流场中各位置点运动参数不随时间发生变化的流动称为( )。

A.恒定流31若流动是一个坐标量的函数,又是时间t的函数,则流动为()。

第1章流体力学基础部分

第1章流体力学基础部分

∵ 液体在静止状态下不呈现粘性
∴ 内部不存在切向剪应力而只有法向应力 (2)各向压力相等
∵ 有一向压力不等,液体就会流动
∴ 各向压力必须相等
1.2.2 静止液体中的压力分布
1、液体静力学基本方程式
质量力(重力、惯性力)作用于液体的所有质点 作用于液体上的力
表面力(法向力、切向力、或其它物体或其它容器对液体、一部
赛氏秒SUS:
雷氏秒R:
美国用
英国用
巴氏度0B:
法国用
恩氏粘度与运动粘度之间的换算关系: ν=(7.310E – 6.31/0E)×10-6
m2/s
三、液体的可压缩性
可压缩性: 液体受压力作用而发生体积缩小性质 1、液体的体积压缩系数(液体的压缩率) 定义:体积为V的液体,当压力增大△p时,体积减小△V, 则液体在单位压力变化下体积的相对变化量 公式:
工作介质: 传递运动和动力 液压油的任务 润滑剂: 润滑运动部件 冷却、去污、防锈
1、 对液压油的要求
(1)合适的粘度和良好的粘温特性;
(2)良好的润滑性;
(3)纯净度好,杂质少; (4)对系统所用金属及密封件材料有良好的相容性。 (5)对热、氧化水解都有良好稳定性,使用寿命长; (6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小; (7)比热和传热系数大,体积膨胀系数小,闪点和燃点高,流 动点和凝固点低。(凝点:油液完全失去其流动性的最高温度) (8)对人体无害,对环境污染小,成本低,价格便宜
υ=q/A
1.3.2 连续性方程--质量守恒定律在流体力学中的应用
1、连续性原理--理想液体在管道中恒定流动时,根据质 量守恒定律,液体在管道内既不能增多,也不能减少,因此 在单位时间内流入液体的质量应恒等于流出液体的质量。 2、连续性方程 ρ 1υ1A1=ρ 2υ2A2 若忽略液体可压缩性 ρ 1=ρ 则 υ1A1=υ2A2 或q=υA=常数

流体力学基础及其工程应用

流体力学基础及其工程应用

流体力学基础及其工程应用流体力学是研究流体运动规律的学科,它是物理学、数学和工程学的交叉学科。

流体力学的基础是质量守恒、动量守恒和能量守恒定律,这些定律是研究流体运动的基础。

流体力学的应用非常广泛,包括航空、航天、汽车、船舶、能源、环境等领域。

在航空领域,流体力学的应用非常重要。

飞机的设计和性能评估需要对气流的流动进行分析和计算。

流体力学可以帮助工程师预测飞机在不同速度和高度下的飞行性能,包括升力、阻力、推力和稳定性等。

此外,流体力学还可以帮助工程师设计飞机的机翼、机身和发动机等部件,以提高飞机的性能和安全性。

在汽车领域,流体力学也是非常重要的。

汽车的设计和性能评估需要对气流的流动进行分析和计算。

流体力学可以帮助工程师预测汽车在不同速度和风向下的阻力和稳定性等。

此外,流体力学还可以帮助工程师设计汽车的外形和底盘等部件,以提高汽车的性能和安全性。

在船舶领域,流体力学也是非常重要的。

船舶的设计和性能评估需要对水流的流动进行分析和计算。

流体力学可以帮助工程师预测船舶在不同速度和海况下的阻力、推力和稳定性等。

此外,流体力学还可以帮助工程师设计船舶的船体和推进系统等部件,以提高船舶的性能和安全性。

在能源领域,流体力学也是非常重要的。

能源的开发和利用需要对流体的流动进行分析和计算。

流体力学可以帮助工程师预测风力发电机、水力发电机和燃气轮机等设备的性能和效率。

此外,流体力学还可以帮助工程师设计输油管道和储气罐等部件,以提高能源的生产和利用效率。

在环境领域,流体力学也是非常重要的。

环境保护和治理需要对流体的流动进行分析和计算。

流体力学可以帮助工程师预测大气污染和水污染的扩散和传播规律。

此外,流体力学还可以帮助工程师设计污水处理设备和空气净化设备等部件,以提高环境保护和治理的效率。

流体力学基础及其工程应用非常广泛,它在航空、航天、汽车、船舶、能源、环境等领域都有着重要的应用价值。

未来,随着科技的不断发展和进步,流体力学的应用将会越来越广泛,为人类的生产和生活带来更多的便利和福利。

1流体力学基本知识

1流体力学基本知识
G Mg γ = = = ρ⋅g V V
(kg/m3)
密度: 单位体积的质量称为流体的密度
(N/m3)
容重: 单位体积的重量称为流体的密度
二、流体的流动性和粘滞性
流体在运动状态时,由于流体各层的流速不同,就会在流层 粘滞性: 间产生阻滞相对运动和剪切变形的内摩擦力,称为粘滞力也 称粘滞性。
u ν0 = y h
作业:
1、名词解释: 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 2、写出流体的柏努利方程,并解释各部分意义。 写出流体的柏努利方程,并解释各部分意义。 3、如图判断压力的大小 4、判断图 中,A—A(a、b、c 、d),B—B,E—E是否为等压面,并说 判断图2中 是否为等压面, 明理由。 明理由。 5、如图3,液体1和液体3的密度相等,ρ1g=ρ3g=8.14 kN/m3,液体2的 如图3 液体1和液体3的密度相等, 1g=ρ = =ρ3g kN/m3,液体2 2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。( 。(1 ρ2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。(1)当 pB=68950Pa时,pA等于多少?(2)当pA=137900Pa时,且大气压力计 pB=68950Pa时 pA等于多少 等于多少? pA=137900Pa时 的读数为95976Pa时 点的表压力为多少? 的读数为95976Pa时,求B点的表压力为多少?
qv = ∫∫ v cos(v , x)dA
A
有效截面: 有效截面:
qv = ∫∫ vdA
A
3.平均流速: 3.平均流速:流经有效截 平均流速 面的体积流量除以有效截 面积而得到的商

第一章 流体力学基础ppt课件(共105张PPT)

第一章 流体力学基础ppt课件(共105张PPT)


力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为

ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:


件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述

交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用


大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1

R

A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用

交 大

2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•

电•
子•


又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回

交 大

1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液

流体力学知识点(1)

流体力学知识点(1)

流体力学知识点(1)1.方法:理论分析;实验;数值计算。

2.容重(重度)容重:指单位体积流体的重量。

水的容重常用值:=9800N/m33.流体的粘性流体内部质点之间或流层间因相对运动而产生内摩擦力(切力)以反抗相对运动的性质。

粘性产生的原因1)分子不规则运动的动量交换形成的阻力2)分子间吸引力形成的阻力运动的流体所产生的内摩擦力(即粘性力)的大小与与下列因素有关:接触面的面积A成正比;与两平板间的距离h成反比;AUT与流速U成正比;与流体的物理性质(黏度)成正比;hUdu牛顿内摩擦定律公式为:TAA4.压缩系数hdy压缩系数:流体体积的相对缩小值与压强增值之比,即当压强增大一个单位值时,流2d/体体积的相对减小值:dV/VdpdpddV(∵质量m不变,dm=d(v)=dv+vd=0,∴)dpdp体积弹性模量Kdpdp12体积弹性模量K是体积压缩系数的倒数。

dV/Vd/液体与K随温度和压强而变化,但变化甚微。

5.流体的压缩性是流体的基本属性。

6.理想流体:是一种假想的、完全没有粘性的流体。

实际上这种流体是不存在的。

根据理想流体的定义可知,当理想流体运动时,不论流层间有无相对运动,其内部都不会产生内摩擦力,流层间也没有热量传输。

这就给研究流体的运动规律等带来很大的方便。

因此,在研究实际流体的运动规律时,常先将其作为理想流体来处理。

Eg:按连续介质的概念,流体质点是指:A、流体的分子;B、流体内的固体颗粒;C、几何的点;D、几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

(D)如图,在两块相距20mm的平板间充满动力粘度为0.065(N·)/m2的油,如果以1m/速度拉动距上平板5mm,面积为0.5m2的薄板(不计厚度)。

求(1)需要的拉力F;(2)当薄板距下平面多少时?F最小。

duu1.解(1)dy14.33(N/m2)平板上侧摩擦切应力:10.0650.015平板下侧摩擦切应力:21(N/m)10.065130.005拉力:F(12)A(134.33)0.58.665(N)11)(2)F0.065(H20H'0对方程两边求导,当求得H10mm此时F最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 流体静力学
一、流体静力学概念 研究流体静止或平衡时的力学规律及其工程应 用的科学。
由于静止流体无相对速度,不呈现粘滞性, 不存在切力,也不能承受拉力,故其所受的力 只能是压力。
二、压强 在静水中,取一微小面积Δw,其上作用静 水压力ΔP,则面积上的平均压强
三、静止流体压强的两个特性: (1)静止压强的方向 必然沿着作用面的内法线方向,即垂直指向 作用面。这是因为静止流体内的应力只能是压 应力; (2)流体中任一点静水压强的大小
雷 诺 实 验 与 雷 诺 数
在一端装有阀门的长玻璃 管中充满水,稍开启阀门 放水,并由小管注入有颜 色水流,则可见管内颜色 水成一稳定细流,这种流 型称为层流。当阀门开大, 水流速增加时,管中有色 线产生振荡波动.再开大 阀门到一定程度,流速增 大,水流中色线掺混紊乱, 此时称为紊流。
2、雷诺数 英国物理学家雷诺曾作过试验并得到判断 流型的计算式,称为雷诺公式:
与作用的方向无关。换言之,一点上各个方向 的压强均相等。这是因为静止流体中某一点 受四面八方的压应力而达到平衡。
四、流体静力学基本方程
其中,p0——液面压强;p——液体内 部某点的压强; ——容重;h——深度。
它表示静止液体中,压强随深度按直线变化的规 律。任一点的压强由p0和h两部分组成。压强 的大小与容器的形状无关。 .深度相同,压强相同。由于液面是水平面,所以 这些压强相同的点组成的面是水平面,即:水 平面是压强处处相同的面。所以,水平面是等 压面。两种不相混杂的液体的分界面也是水平 面,自由表面是水深为0的各点组成的等压面。 注意:该规律是同种液体处于静止、连续的条件 下推出,所以,只适用于静止、同种、连续的 液体。
3、沿程损失和局部损失
1)沿程损失
流体流动中为克服摩擦阻力而损耗的能量 称为沿程损失。沿程阻力损失与长度、粗糙 度及流速的平方成正比,而与管径成反比, 通常采用达西一维斯巴赫公式计算:
h i l
i为 水力坡度,即单位管段 长度上的水头损失, mmH2O/m。 l为管段长度,m。
1-4 远程阻力计算
基础篇
第一章 流体力学基本知识
流体的基本性质
一、流体的概念 液体和气体易于流动,统称为流体。 二、流体力学的概念 研究流体平衡与运动的力学规律及其应用 的科学
一、流体的惯性、密度和容重 1.惯性 (1)定义:反抗改变其原有运动状态的特性。 or:保持其原有运动状态的特性。 (2)质量越大,惯性越大。 2.密度 (1)定义:单位体积的质量。 (2)公式:
二、流体运动的基本概念 流体运动是由无数流体质点的运动所组成 的,且各质点之间都有力相互作用,质 点上的力和其本身的运动存在一定的规 律性,找到其原因,就可以解决运动中 的问题。 下边介绍流体运动中的几个基本概念。
1、流线 液流中同一瞬间由许多质点组成的曲线, 该曲线上任一点的切线方向就是该点的 流速方向,它形象地描绘了该瞬时整个 液流的流动情况(图3—1)它是光滑曲线, 不相交,它的疏密可反映流速大小
三、流体运动的分类
流体运动受其物性和边界条件的影响呈现 复杂的运动情况。 常根据运动特点对其进行分类。
1.根据流动要素(流速与压强)与流行时间分类 1)恒定流 流场内任一点的流速与压强不随时间变化, 而仅与所处位置有关的流体流动称为恒定流。 在这种流动中.流线与质点运动的轨迹相重合。 2)非恒定流 运动流体各质点的流动要素随时间而改变的 运动则称为非恒定流,水位随水的放出而不断 改变的水流运动。 非恒定流的情况较复杂,以后一般问题多为恒定 流的。
2.根据流体流速变化分类 1)均匀流 流体流速的大小和方向沿流线不变的水 流称为均匀流。 这种稳定流动的流线为相互平行的直线, 在输送流体的等管径管道内的液流即属于 均匀流。 2)非均匀流 流体过流断面沿程改变或流动方向变化, 会使同一流线上的各点流速大小和方向发 生变化.这种流动称为非均匀流。 在管道上扩大或缩小处的水流运动即为非 均匀流。在非均匀流中,若流线几乎是平 行的且接近直线对称为渐变流,过流断面 可认为是平面;不能满足渐变流条件的非 均匀流即为急变流。
牛顿内摩擦定律 牛顿试验研究提出与粘滞性有关的内摩擦定律为
1.粘滞系数:动力粘滞系数µ (Pa.s),运动粘滞系数 ν(m2/s)。不同流体µ ν不同,温度较压力对其影响更大。 、 2.温度与粘滞性 粘滞性是分子之间的吸引力与分子不规则热运动引起的动量交 换的结果。温度升高,分子之间的吸引力降低,动量增大; 反之,温度降低,分子之间的吸引力增大,动量减小。对液 体,分子之间的吸引力是决定性因素,所以液体的粘滞性随 温度升高而减小;对于气体,分子之间的热运动产生动量交 换是决定性因素,所以,气体的粘滞性随温度升高而增大。
流体沿管道直径方向分成很多流层,各层的流速不同。 管轴心的流速最大,向着管壁的方向逐渐减小,直至 管壁处的流速最小,几乎为零,流速按某种曲线规律 连续变化。流速之所以有此分布规律,正是由于相邻 两流层的接触面上产生了阻碍流体层相对运动的内摩 擦力,或称粘滞力,这是流体的粘滞性显示出来的结 果。 流体在运动过程中,必须克服内摩擦阻力,因而 要不断消耗运动流体所具有的能量,所以流体的粘滞 性对流体的运动有很大的影响。在水力计算中,必须 考虑粘滞力的重要影响。对于静止流体,由于各流体 层间没有相对运动,粘滞性不显示。 流体粘滞性的大小,通常用动力粘滞性系数u和运 动粘滞性系数”来反映,它们是与流体种类有关的系 数。粘滞性大的流体,u和v的值也大,它们之间存在 一定的比例关系。同时,流体的粘滞性还与流体的温 度和所受压力有关,受温度影响大,受压力影响小。
3、按液流运动接触的壁面情况分类 1)有压流 流体过流断面的周界为壁面包围,没有自由面 为有压流或压力流。一般供水、供热管道均为 压力流。 2)无压流 流体过流断面的壁和底均为壁面包围,但有自 由面者称为无压流或重力流。如河流、明渠等。 3)射流
不受壁面约束的液流,如喷泉、消火栓等喷射
的水柱。
四、流体流动的因素 1、过流断面 流体流过通道的断面积称为 过流断面,单位为m2 。在均匀流,过流 断面为一平面。
第一节 流体的主要 物理性质
ቤተ መጻሕፍቲ ባይዱ

V
其中ρ——㎏/m3;M——㎏;V——m3。
M lim 对非均质流体, V 0 V
其中ΔM——微小体积ΔV的流体质量; ΔV——包含该点在内的流体体积。 3.容重 (1)定义:单位体积的重量。 G (2)公式:

V
其中 ——N/m3,G——N,V——m3
三、流体的主要物理性质 1、密度及比容: 物体单位容积所具有的质量称为密度; 而密度的倒数即单位质量的容积称为比 容
2、容重或重度 物体单位容积的重量
流体的密度和重度随其温度和所受压力的变化而 变化。也就是说同一流体的密度和重度在不同 状态下不是一个固定值。但在实际工程中,液 体的密度和重度随温度和压力的变化而变化的 数值不大,可视为一固定值;而气体的密度和 重度随温度和压力的变化而变化的数值较大, 设计计算中通常不能视为一固定值。 常用流体的密度和重度如下: 水在标准大气压,温度为4℃时密度和重 度分别为1000kg/m3,9.8kN/m3
p’=p+pa
3.真空值 流体中某处的低于大气压强的部分。 py=pa-p’ 4.图解p、p’、py、pa的关系
压强p
A 绝 对 压 强 p’A
A
A相对压强pA
pa
大气压强pa
B
B真空度PB=-pBy 相对压强基准0
B绝对压强p’B
绝对压强基准0
三、单位
1. pa 或N/m2 2. 液柱高度mH2O; mmH2O。
3、流体的压缩性及膨胀性 1)压缩性: 流体的容积与压强的变化成反比的性质 T不变时,P增大,V随之减小的性质。 2)膨胀性: 容积与温度变化成比例的性质 P不变,T升高时,V增大的性质。
液体的压缩性及膨胀性很小、在很多工程 技术常忽略不计,对工程计算误差影响 甚小。 但在热水工程中为了保证运行安全,还是 应考虑其膨胀性,如在热水工程中设膨 胀水箱、安全阀等。
四、静压力分布图 垂面、折面、斜面。

水 压 强 分
根据静水压强公式 和垂直于作用面的特性, 可绘制出斜面、折面以 及曲面上的分布图


第三节 流体动力学
一、 动力学的基本原理 流体动力学是研究流体运动规律的科学。
在流体静力学中.压强只与水深有关, 或者说与所处空间位置有关
在流体动力学中,压强还与运动情况有 关
液体的压缩性和膨胀性均很小,气体则较 明显,但通常均视流体为不可压缩、连 续的理想流体。(连续介质、无粘性 流体、不可压缩流体)
气体具有显著的压缩性和膨脓性,其容重、 压强和热力学温度三者的关系如下 式:
对于流速较低的气体,在压强及温度变 化不大时,其容重的变化也比较小,在 一般工程应用中可视为常数。
流体的粘滞性可通过流体在管道中流动情况来加以说明。
当流体在管内缓慢流动时,紧贴管壁的流体质点, 粘附在管壁上,流速为零。位于管轴上的流体质点,离 管壁的距离最远,受管壁的影响最小,因而流速最大。 介于管壁和管轴的流体质点,将不同的速度向前流动, 它们的速度从管壁到管轴,从零增大到最大的轴心速度。 用流速仪可测得流体管道中某一断面的流速分布,如图 1—1所示。
2.平均流速 在不能压缩及无粘滞性的理想均匀流中, 流速是不变的。 但在实际工程中,流体与流道壁间存在着 摩阻力,过流断面上各点的流速是不等 的,靠近壁处阻力大、流速小,近中心 处流速大(图3—2)。 为计算方便,常取过 流断面上的平均流速
3、流量
五、流体运动的基 本方程 1、连续性方程
2、能量方程
1.层流区 2.临界区
Re 2300 2300 Re 4000 Re 4000
8 7
3.光滑管紊流区
4.过渡区
相关文档
最新文档