高等数学全微分方程PPT课件
合集下载
高等数学 全微分PPT课件
若函数在域 D 内各点都可微, 则称此函数在D 内可微.
由微分定义 : lim z lim ( A x B y ) o ( ) 0
x 0 y 0
0
得
x 0 y 0
lim f ( x x, y y ) f ( x, y )
lim 0 , lim 0 x 0 x 0 y 0 y 0
z f x ( x, y ) x f y ( x, y ) y x y
lim 0 , lim 0 x 0 x 0 y 0 y 0
2. 重要关系: 函数连续 函数可微 函数可导
偏导数连续
机动 目录 上页 下页 返回 结束
思考与练习 1. P72 题 1 (总习题八)
2. 选择题 函数 z f ( x, y ) 在 ( x0 , y0 ) 可微的充分条件是( D )
将 x , z 看成常数: u x w , w y z .
u y
( 2 , 2 ,1)
yz yz x ln x z y z 1 ( 2, 2,1) ( x ) ( 2, 2,1) y 4 ln 2
将 x , y 看成常数:u x w , w y z .
u y
第三节
2. 可微的条件
全微分
1. 全微分的定义
3. 连续、可导与可微的关系
4. 小结、作业
一元函数 y = f (x) 的微分
y Ax o( x)
d y f ( x)x
应用
近似计算 估计误差
机动
目录
上页
下页
返回
结束
一、全微分的定义
由微分定义 : lim z lim ( A x B y ) o ( ) 0
x 0 y 0
0
得
x 0 y 0
lim f ( x x, y y ) f ( x, y )
lim 0 , lim 0 x 0 x 0 y 0 y 0
z f x ( x, y ) x f y ( x, y ) y x y
lim 0 , lim 0 x 0 x 0 y 0 y 0
2. 重要关系: 函数连续 函数可微 函数可导
偏导数连续
机动 目录 上页 下页 返回 结束
思考与练习 1. P72 题 1 (总习题八)
2. 选择题 函数 z f ( x, y ) 在 ( x0 , y0 ) 可微的充分条件是( D )
将 x , z 看成常数: u x w , w y z .
u y
( 2 , 2 ,1)
yz yz x ln x z y z 1 ( 2, 2,1) ( x ) ( 2, 2,1) y 4 ln 2
将 x , y 看成常数:u x w , w y z .
u y
第三节
2. 可微的条件
全微分
1. 全微分的定义
3. 连续、可导与可微的关系
4. 小结、作业
一元函数 y = f (x) 的微分
y Ax o( x)
d y f ( x)x
应用
近似计算 估计误差
机动
目录
上页
下页
返回
结束
一、全微分的定义
高等数学全微分方程精品PPT课件
dx x
dy y
0
即 d 1 d( ln x ) d( ln y ) 0
xy
1
因此通解为 1 ln x ln C , 即 x C e xy
xy y
y
因 x = 0 也是方程的解 , 故 C 为任意常数 .
练习题 解方程 y d x ( y x) d y 0.
解法1 积分因子法. 原方程变形为
2
3
因此方程的通解为
y (x, y)
x5 3 x2 y2 xy3 1 y3 C
2
3
o (x,0) x
例2. 求解
(
x
y x2
)
dx
1 x
dy
0
解:
P y
1 x2
Q , x
∴ 这是一个全微分方程 .
用凑微分法求通解. 将方程改写为
x
dx
x
d
y x2
y
dx
0
即
d 1 x2 d y 0, 或 d 1 x2 y 0
为全微分方程 ( 又叫做恰当方程 ) .
判别: P, Q 在某单连通域D内有连续一阶偏导数, 则
① 为全微分方程 求解步骤:
P Q , (x, y) D y x
1. 求原函数 u (x, y)
方法1 凑微分法;
方法2 利用积分与路径无关的条件.
2. 由 d u = 0 知通解为 u (x, y) = C .
第二节 一阶微分方程
第十二章
一、可分离变量方程 二、齐次型微分方程 三、可化为齐次型的微分方程 四、一阶线性微分方程 五、全微分方程
五、全微分方程
若存在 u(x, y) 使 d u(x, y) P (x, y) dx Q (x, y) dy
高等数学上册第七章课件.ppt
y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程
例
解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
大一高数下全微分课件
乘积法则
总结词
乘积法则用于计算两个函数的乘积的 全微分。
详细描述
乘积法则是全微分的另一个重要法则, 它指出如果z是两个函数u和v的乘积, 那么dz=u*du+v*dv。具体来说,如果 z=u*v,那么全微分 dz=d(u*v)/du*du+d(u*v)/dv*dv=u*d u+v*dv。
商的法则
大一高数下全微分课件
• 全微分的定义 • 全微分的基本公式和法则 • 全微分的应用 • 常见函数的微分 • 微分中值定理与导数的应用 • 习题与解答
01
全微分的定义
全微分的概念
全微分是指在函数定义域内 某一点处,将函数在该点的 值与自变量在该点的值分别 进行微小变化,函数值变化
量的线性部分。
全微分是函数在一点处对所 有自变量偏导数的加权和, 权因子是偏导数与自变量变
答案2
dz = cos(x + y) * (cos/sin)(π/4) * (cos/sin)(π/6) = -√3/3
解析2
函数z = sin(x + y)在点(π/4, π/6)的 全微分为dz = cos(x + y) * cos(π/4) * cos(π/6) = -√3/3。
答案3
dz = e^(x + y) * (e^1) * (e^0) = e^(1+0) = e
高阶导数与高阶全微分
高阶导数可以用于计算高阶全微分, 高阶全微分可以用于研究函数的更高 阶的几何特性。
02
全微分的基本公式和法则
链式法则
总结词
链式法则描述了复合函数的全微分计算方法。
详细描述
链式法则是全微分的重要法则之一,它指出如果z是由y和x通过复合函数f(g(y)) 得到的,那么全微分dz=d(f(g(y)))/dz * dy。具体来说,如果u=g(y)且z=f(u) ,那么dz=d(f(u))/du * du=d(f(u))/du * d(g(y))/dy * dy。
大学课件高等数学微分方程
rx
将 y , y , y 代入微分方程中, 得
r 3r 2 0
2
( r 2 )( r 1 ) 0
r1 2 , r2 1
得两个解 y1 e 2 x , y 2 e x .
15
微分方程的基本概念
最后,看一个相反的问题
例 求含有两个任意常数C1, C2的曲线族
一般的n阶微分方程为
, , y ( n ) ) 0 , F ( x, y, y
已解出最高阶导数的微分方程 今后讨论
y
(n)
f ( x , y , y , , y
( n 1 )
).
y f ( x, y ) 一阶 几何意义 是过定点的积分曲线; y x x0 y 0 y f ( x , y , y ) 二阶 y x x0 y 0 , y x x0 y 0
微分方程的基本概念
问题的提出 基本概念
(differential equation)
小结
思考题
作业
第十二章
微分方程
4
微分方程的基本概念
一、问题的提出
例 一曲线通过点 (1 , 2 ), 且在该曲线上任一点
M ( x , y ) 处的切线的斜率为 2 x , 求这曲线的方程.
解 设所求曲线为 y y ( x )
第十二章
微分方程
2
本章主要介绍微分方程的一些基本概念和几 种常用的微分方程的解法,讨论如下几个问题: 1. 微分方程的基本概念; 2. 一阶微分方程; 3. 几种可积的高阶微分方程; 4. 线性微分方程及其通解的结构; 5. 常系数齐次线性方程;
6. 常系数非齐次线性方程.
将 y , y , y 代入微分方程中, 得
r 3r 2 0
2
( r 2 )( r 1 ) 0
r1 2 , r2 1
得两个解 y1 e 2 x , y 2 e x .
15
微分方程的基本概念
最后,看一个相反的问题
例 求含有两个任意常数C1, C2的曲线族
一般的n阶微分方程为
, , y ( n ) ) 0 , F ( x, y, y
已解出最高阶导数的微分方程 今后讨论
y
(n)
f ( x , y , y , , y
( n 1 )
).
y f ( x, y ) 一阶 几何意义 是过定点的积分曲线; y x x0 y 0 y f ( x , y , y ) 二阶 y x x0 y 0 , y x x0 y 0
微分方程的基本概念
问题的提出 基本概念
(differential equation)
小结
思考题
作业
第十二章
微分方程
4
微分方程的基本概念
一、问题的提出
例 一曲线通过点 (1 , 2 ), 且在该曲线上任一点
M ( x , y ) 处的切线的斜率为 2 x , 求这曲线的方程.
解 设所求曲线为 y y ( x )
第十二章
微分方程
2
本章主要介绍微分方程的一些基本概念和几 种常用的微分方程的解法,讨论如下几个问题: 1. 微分方程的基本概念; 2. 一阶微分方程; 3. 几种可积的高阶微分方程; 4. 线性微分方程及其通解的结构; 5. 常系数齐次线性方程;
6. 常系数非齐次线性方程.
《高数全微分方程》课件
参数方程法
总结词
参数方程法是通过引入参数,将全微分 方程转化为参数微分方程,然后求解参 数的微分,最后得到原全微分方程的解 。
VS
详细描述
参数方程法的步骤包括引入参数、将全微 分方程转化为参数微分方程、求解参数的 微分、将参数的解代回原方程,最后得到 原全微分方程的解。这种方法适用于具有 参数形式的全微分方程,能够简化求解过 程。
变量分离法
总结词
变量分离法是将全微分方程转化为可分离变量的微分方程,然后分别求解每个变量的微分,最后得到 原全微分方程的解。
详细描述
变量分离法的步骤包括将全微分方程转化为可分离变量的微分方程、分别求解每个变量的微分、将各 个变量的解代回原方程,最后得到原全微分方程的解。这种方法适用于具有可分离变量形式的全微分 方程,能够简化求解过程。
总结词
全微分方程描述了曲线的斜率在各个方向上的变化情 况。
详细描述
全微分方程可以表示曲线上任意一点的切线斜率的变 化情况,即该点处曲线在各个方向上的弯曲程度。通 过求解全微分方程,可以了解曲线的弯曲程度,从而 更好地理解曲线的几何特性。
曲线的弯曲程度与全微分方程
总结词
全微分方程描述了曲线的弯曲程度在各个方向上的变 化情况。
二阶全微分方程实例
总结词
二阶全微分方程是描述物理现象和工程问题的重要工具,具有丰富的数学性质和实际应 用价值。
详细描述
二阶全微分方程的一般形式为 d²y/dx² = f(x, y, dy/dx),其中 f(x, y, z) 是关于 x、y 和 z 的函数。通过求解二阶全微分方程,可以找到满足特定边界条件的解,从而解决实际
高数全微分方程目录来自• 全微分方程简介 • 全微分方程的求解方法 • 全微分方程的实例分析 • 全微分方程的几何意义 • 全微分方程的扩展知识
高等数学第九章第三节全微分课件.ppt
(x)2 (y)2
当 (x)2 (y)2 0 时是无穷小量 .
3. 已知 答案:
Ex:
证明函数
在点 (0,0) 连续且偏导数存在, 但偏导数在点 (0,0) 不连
续, 而 f (x, y) 在点 (0,0) 可微 .
证: 1) 因
xy sin
1 x2 y2
xy
x2 y2 2
所以
lim f (x, y) 0 f (0,0)
下面两个定理给出了可微与偏导数的关系:
(1) 函数可微
偏导数存在
(2) 偏导数连续
函数可微
定理1(必要条件) 若函数 z = f (x, y) 在点(x, y) 可微 ,
则该函数在该点偏导数
必存在,且有
d z z x z y x y
证: 由全增量公式
得到对 x 的偏增量
x x
x
z lim x z A x x0 x
z [ fx ( 0, 0)x f y ( 0, 0)y]
x y (x)2 (y)2
x y (x)2 (
y)
2
0
o( ) 因此,函数在点 (0,0) 不可微 .
定理2 (充分条件) 若函数
的偏导数 z , z
在点 (x, y) 连续, 则函数在该点可微分.
x y
推广: 类似可讨论三元及三元以上函数的可微性问题.
x0 y0
故函数在点 (0, 0) 连续 ;
2) f (x,0) 0, fx (0,0) 0 ; 同理 f y (0,0) 0.
3) 当(x, y) (0,0)时,
fx (x, y)
sin
1 x2 y2
x2 y (x2 y2)3
lim
当 (x)2 (y)2 0 时是无穷小量 .
3. 已知 答案:
Ex:
证明函数
在点 (0,0) 连续且偏导数存在, 但偏导数在点 (0,0) 不连
续, 而 f (x, y) 在点 (0,0) 可微 .
证: 1) 因
xy sin
1 x2 y2
xy
x2 y2 2
所以
lim f (x, y) 0 f (0,0)
下面两个定理给出了可微与偏导数的关系:
(1) 函数可微
偏导数存在
(2) 偏导数连续
函数可微
定理1(必要条件) 若函数 z = f (x, y) 在点(x, y) 可微 ,
则该函数在该点偏导数
必存在,且有
d z z x z y x y
证: 由全增量公式
得到对 x 的偏增量
x x
x
z lim x z A x x0 x
z [ fx ( 0, 0)x f y ( 0, 0)y]
x y (x)2 (y)2
x y (x)2 (
y)
2
0
o( ) 因此,函数在点 (0,0) 不可微 .
定理2 (充分条件) 若函数
的偏导数 z , z
在点 (x, y) 连续, 则函数在该点可微分.
x y
推广: 类似可讨论三元及三元以上函数的可微性问题.
x0 y0
故函数在点 (0, 0) 连续 ;
2) f (x,0) 0, fx (0,0) 0 ; 同理 f y (0,0) 0.
3) 当(x, y) (0,0)时,
fx (x, y)
sin
1 x2 y2
x2 y (x2 y2)3
lim
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为全微分方程, 则称 (x,y)为原方程的积分因子.
在简单情况下, 可凭观察和经验根据微分倒推式得到
积分因子.
.
5
常用微分倒推公式:
1 )d x d y d (xy)
2 )x d y y d x d (xy )
3 ) x d x y d y d ( 12(x2 y2))
4) ydxy2xdyd(xy )
5) ydxx 2xdyd( x y )
6) ydxxdyd(ln x )
xy
y
积分因子不一定唯一 .
例如, 对 ydxxdy0
7) yd xx 2 y xd 2yd(arctan
x) y
可取
1 y2
,
1 x2
,
8) xdxydyd( x2y2
x2 y2 )
.
1 xy
,
1 x2 y2
6
例3. 求解 ( 1 x y ) y d x ( 1 x y ) x d y 0
为全微分方程 ( 又叫做恰当方程 ) .
判别: P, Q 在某单连通域D内有连续一阶偏导数, 则
① 为全微分方程 求解步骤:
P Q , (x,y)D y x
1. 求原函数 u (x, y)
方法1 凑微分法;
方法2 利用积分与路径无关的条件.
2. 由 d u = 0 知通解为 u (x, y) = C .
解: 分项组合得 (ydxxdy) x y (y d x x d y ) 0
即 d(xy)x2y2(dxdy)0 xy
选择积分因子 (x,y)x21y2,同乘方程两边 , 得
(dx(xy)y2)dxxdyy0
即 d1dl(nx)dl(ny)0
xy
1
因此通解为 1lnx lnC, 即 x C e x y
第二节 一阶微分方程
第十二章
一、可分离变量方程 二、齐次型微分方程 三、可化为齐次型的微分方程 四、一阶线性微分方程 五、全微分方程
.
1
五、全微分方程
若存 u(x在 ,y)使d u ( x , y ) P ( x , y ) d x Q ( x , y ) d y
则称
P ( x ,y ) d x Q ( x ,y ) d y 0①
x5 3 x2y2 xy3 1 y 3
2
3
因此方程的通解为
y (x, y)
x53x2y2xy31y3C o (x,0) x
2
3
.
3
例2. 求解 (xxy2)dx1 xdy0
解:
P y
1 x2
Q x
,
∴ 这是一个全微分方程 .
用凑微分法求通解. 将方程改写为
xdxxdyx2ydx0
即
d1x2dy0, 或 d1x2y 0
.
2
例1. 求解
( 5 x 4 3 x y 2 y 3 ) d x ( 3 x 2 y 3 x y 2 y 2 ) d y 0
解: 因为 P 6xy3y2 Q , 故这是全微分方程.
y
x
取 x 0 0 ,y 0 0 ,则有
u(x,y)0x5x4dx0 y(3x2y3xy2y2)dy
.
8
解法2 化为齐次方程. 原方程变形为
dy dx
y
y
x
1
y
x y
x
令yux,则 yuxu,
uxu u 1u
(1uu2)dudxx
积分得
1lnulnxC u
将 u y 代入 , 得通解 x ln y C
x
y
此外, y = 0 也是方程的解.
.
9
解法3 化为线性方程. 原方程变形为
dx 1 x 1 dy y
2
x
2x
故原方程的通解为 1x2 y C 2x
.
4
思考: 如何解方程 (x3y)d xxdy0?
这不是一个全微分方程
,
但若在方程两边同乘
1 x2
,
就化成例2 的方程 .
积分因子法
P ( x ,y ) d x Q ( x ,y ) d y 0
若存在连续可微函数 (x ,y) 0 ,使 ( x , y ) P ( x , y ) d x ( x , y ) Q ( x , y ) d y 0
xy y
y
因 x = 0 也是方程的解 , 故 C 为任意常数 .
.
7
练习题 解方程 y d x (y x )d y 0 .
解法1 积分因子法. 原方程变形为
( y d x x d y ) y d y 0
取积分因子
1 y2
ydxy2xdydyy0
故通解为 x ln y C y
此外, y = 0 也是方程的解.
P1, Q1 y
其通解为
x e 1yd y
(1)
e
1 y
d
ydyC
y C
1d y
y
yC ln y
即
x ln y C
此外, y =y0y也e是P方(x程)dx的解Q . (x)eP(x)dxdxC
.
10