(完整版)中考数学圆中分类讨论问题归类举例
初三圆中常考题型总结
授课类型T 圆的基本位置关系 C 圆与直线相关性质综合 T 中考真题运用授课日期及时段教学内容一、同步知识梳理基本概念关系:1、点与圆的位置关系(1)点在圆内 ⇒ d r < ⇒ 点C 在圆内; (2)点在圆上 ⇒ d r = ⇒ 点B 在圆上; (3)点在圆外 ⇒ d r > ⇒ 点A 在圆外;2、直线与圆的位置关系(1)直线与圆相离 ⇒ d r > ⇒ 无交点; (2)直线与圆相切 ⇒ d r = ⇒ 有一个交点; (3)直线与圆相交 ⇒ d r < ⇒ 有两个交点;drd=rrd3、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+;rdd CBAO内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;图1rRd图3rRd二、同步题型分析题型1:点与圆例1:(★)⊙O 的半径r=10cm ,圆心到直线L 的距离OM=8cm ,在直线L 上有一点P ,PM=6cm ,则点P ( )A 在⊙O 内B 在⊙O 外C 在⊙O 上D 不能确定题型2:直线与圆(相交、相离、相切)例1:(★★★)(2013四川巴中,26,13分)若⊙O 1和⊙O 2的圆心距为4,两圆半径分别为r 1、r 2,且r 1、r 2是方程组的解,求r 1、r 2的值,并判断两圆的位置关系.题型3:直线与圆(切线的证明).如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,求证:DE 是⊙O 的切线.图2rRd图4rRd 图5r Rd.如图,△ABC 为等腰三角形,AB=AC ,O 是底边BC 的中点,⊙O 与腰AB 相切于点D ,求证:AC 与⊙O 相切.变式练习1:已知P 是⊙O 外一点,PO 交⊙O 于点C ,OC =CP =2,弦AB ⊥OC ,劣弧AB ︵的度数为120°,连接PB.(1)求BC 的长;(2)求证:PB 是⊙O 的切线.变式练习2.如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC ,将△ACE 沿AC 翻折得到△ACF ,直线FC 与直线AB 相交于点G . (1)直线FC 与⊙O 有何位置关系?并说明理由; (2)若OB=BG=2,求CD 的长.变式3:(★★★)已知:如图,射线ABC与⊙O相交于B,C两点,E是的中点,D是⊙O上一点,若∠EDA=∠AMD.求证:AD是⊙O的切线.变式4、如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.题型4:直线与圆(切线长定理)(★★★))例1:已知:如图,P A,PB,DC分别切⊙O于A,B,E点.(1)若∠P=40°,求∠COD;(2)若P A=10cm,求△PCD的周长.O O B AM题型4:圆与圆例1:(★★★)(2013·泰安,18,3分)如图,AB ,CD 是⊙O 的两条互相垂直的直径,点O 1,O 2,O 3,O 4分别是OA 、OB 、OC 、OD 的中点,若⊙O 的半径为2,则阴影部分的面积为( )A .8B .4C .4π+4D .4π-4例2:(★★★)如图,点A ,B 在直线MN 上,AB =11cm ,⊙A ,⊙B 的半径均为1cm .⊙A 以每秒2cm 的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (cm)与时间t (s )之间的关系式为r =1+t (t ≥0).(1)试写出点A ,B 之间的距离d (cm)与时间t (s )之间的函数表达式; (2)问点A 出发多少秒时两圆相切?例3:(★★★)如图所示,半圆O 的直径AB=4,与半圆O 内切的动圆O 1与AB 切于点M ,•设⊙O 1的半径为y ,AM=x ,则y 关于x 的函数关系式是( ).A .y=14x 2+x B .y=-14x 2+x C .y=-14x 2-x D .y=14x 2-x三、课堂达标检测检测题1:(★★)已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于E 点,直线EF ⊥AC 于F .求证:EF 与⊙O 相切.检测题2:(★★)(2013•东营,7,3分)已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程321x x =-的根,1O ⊙与2O ⊙的圆心距为1,那么两圆的位置关系为( ) A .内含B .内切C .相交D .外切检测题3:(★★)(2013江苏泰州,15,3分)如图,⊙O 的半径为4cm ,直线l 与⊙O 相交于A , B 两点,AB 43=cm, P 为直线l 上一动点,以l cm 为半径的⊙P 与⊙O 没有公共点.设PO=d cm ,则d 的范围___________________.检测题4:(★★)(2013•嘉兴5分)在同一平面内,已知线段AO=2,⊙A 的半径为1,将⊙A 绕点O 按逆时针方向旋转60°得到的像为⊙B ,则⊙A 与⊙B 的位置关系为 .检测题5:(★★)(2013广东梅州,11,3分)如图,在△ABC 中,AB =2,AC =2,以点A 为圆心,1为半径的圆与边BC 相切于点D ,则∠BAC 的度数是 .检测题6:(★★)已知:如图,⊙O 1与⊙O 2外切于A 点,直线l 与⊙O 1、⊙O 2分别切于B ,C 点,若⊙O 1的半径r 1=2cm ,⊙O 2的半径r 2=3cm .求BC 的长.一、专题精讲题型一:圆的分类讨论例1:(★★)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )A .2b a +B .2b a -C .22ba b a -+或 D .b a b a -+或例2:(★★)(2013贵州省六盘水,16,4分)若⊙A 和⊙B 相切,它们的半径分别为8cm 和2cm ,则圆心距AB 为题型三:三角形与圆例2:(★★★)已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.二、专题过关检测题1:(★★★)(2013白银,17,4分)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t=.检测题2:(★★★)已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC 的长.一、能力培养(2011,十堰)如图,A B是半圆O的直径,点C为半径O B上一点,过点C作C D⊥A B 交半圆O于点D,将△A C D沿A D折叠得到△A E D,A E交半圆于点F,连接D F.(1)求证:D E是半圆的切线;(2)连接O D,当O C=B C时,判断四边形O D F A的形状,并证明你的结论.例.2.:.[2011..上,以...A E..为直径的⊙...A B.....O.与...].如图,已知点.....·湛江......E.在.R t..△.A B C...的斜边直角边...B C....D.....相切于点(1)...B A C...;...平分∠...求证:...A D(2).......O.的半径....若.B E..=.2.,.B D..=.4.,求⊙。
人教版数学九年级上册小专题(十九) 圆中的分类讨论(多解问题)
小专题(十九)圆中的分类讨论(多解问题)一、由于点与圆的位置关系的多样性引起的不唯一性【例1】点A到⊙O的最近距离和最远距离分别是3 cm和9 cm,那么⊙O的半径为6_cm或3_cm.提示:如下图,可按点A在⊙O或⊙O外两种情况进展分析.方法归纳:点与圆有三种位置关系:点在圆内、点在圆上、点在圆外,但圆上的点具有唯一性.所以,只考虑点在圆内和点在圆外两种情况.1.点A到圆的最近距离是a,最远距离是b,那么该圆的直径是b-a或b+a.二、由于圆的对称性引起的不唯一性【例2】⊙O的直径是10 cm,弦AB∥CD,AB=6 cm,CD=8 cm,那么AB与CD之间的距离为7_cm或1_cm.提示:图1图2方法归纳:平行弦位于圆心O的同侧时,平行弦之间的距离等于弦心距之差;平行弦位于圆心O的异侧时,平行弦之间的距离等于弦心距之和.2.如图,⊙O的半径为5,弦AB=8,那么圆上到弦AB所在的直线距离为2的点有(C)A.1个B.2个C.3个D.0个3.在半径为5 cm的⊙O中,如果弦CD=8 cm,直径AB⊥CD,垂足为E,那么AE的长为2_cm或8_cm.4.在半径为1的⊙O中,弦AB=2,AC=3,那么∠BAC=75°或15°.三、由于一弦对两弧而引起的不唯一性【例3】弦AB的长等于半径,那么AB所对的圆周角等于多少度?解:①当圆周角所对的弧是劣弧时,如图,连接OA ,OB ,AC ,BC ,得到△AOB 是等边三角形. ∴∠AOB =60°.∴∠ACB =12∠AOB =30°; ②当圆周角所对的弧是优弧时,如图,易得∠AC ′B =150°.综上所述,弦AB 所对的圆周角等于30°或150°.方法归纳:一弧对一圆心角和一圆周角,但一弦却对一圆心角和二圆周角,且同弦所对两圆周角互补.5.⊙O 为△ABC 的外接圆,∠BOC =100°,那么∠A =50°或130°.6.在直径为4的⊙O 中,弦AB =23,点C 是圆上不同于A 、B 的点,那么∠ACB 的度数为60°或120°.四、直线与圆相切的不唯一性【例4】 如图,∠ABC =80°,O 为射线BC 上一点,以点O 为圆心,12OB 长为半径作⊙O ,要使射线BA 与⊙O 相切,应将射线BA 绕点B 按顺时针方向旋转(C )A .40°或80°B .50°或100°C .50°或110°D .60°或120°方法归纳:线(直线、射线、线段)或圆在运动的过程中出现的相切问题通常需分情况讨论.7.如图,直线AB ,CD 相交于点O ,∠AOC =45°,半径为 2 cm 的⊙P 的圆心在射线OA 上,且与点O 的距离为6 cm .如果⊙P 以1 cm /s 的速度沿由A 向B 的方向移动,那么________秒钟后⊙P 与直线CD 相切(D )A .4B .8C .4或6D .4或8。
圆的分类讨论问题
圆的分类讨论问题分类讨论是指在解题过程中,根据某一数学对象的数学属性,按照一定的标准分成若干类型逐一解决的思维方法。
它有助于我们条理清晰地全面解决问题。
在圆的有关问题中,需要分情况讨论的问题林林总总,以往有不少人对此进行收集整理,但都不够详尽。
一.根据点和圆的位置分类例1.已知点P是圆O所在平面上一定点,点P到圆O上各点的最短距离为2,最长距离为4,则圆O的直径为_________。
二.根据圆心和弦的位置分类例2.圆O的半径为5cm,弦AB//CD,弦AB长8cm,另一条弦CD长6cm,则这两条弦之间的距离为_______。
例3.已知,圆O的半径为1,弦,,则∠BAC=_________。
例4.相交两圆的公共弦长为6,若两圆的半径分别为8和5,则两圆的圆心距为______。
三.根据圆心与圆周角的位置关系分类在圆周角定理的证明中,根据圆心与圆周角的位置关系分为三类加以讨论:(1)圆心在角的一边上;(2)圆心在角的内部;(3)圆心在角的外部。
其中,第一种情况是最特殊最容易证明的情况,而其余两种都是转化为第一种情况加以证明的。
通过这三种情况的证明概括得出一般性结论。
四.根据圆心角与圆周角的位置关系分类例5.点C是圆O上任一点,且∠AOB=100°,则∠ACB=_________。
五.同弦所对的圆周角,根据顶点在优弧和顶点的劣弧分类例6.圆的弦长恰好等于该圆的半径,则这条弦所对的圆周角是_________。
例7.圆的半径等于2cm,圆内一条弦长,则弦的中点与弦所对弧的中点的距离等于__________。
七.根据圆心和三角形的位置分类例8.是半径为2cm的圆内接三角形,若,则∠A的度数为______。
八.根据圆与圆的位置关系分类例9.两圆相切,圆心距是10,其中一圆的半径是4,则另一圆的半径是_________。
例10.已知中,∠C=90°,AC=3,BC=4,分别以A、C为圆心作圆A,圆C,且圆C与直线AB不相交,圆A与圆C相切,设圆A的半径为r,那么r的取值范围是_________。
(整理)中考数学必备专题目分类讨论专题目圆中的分类讨论
【中考数学必备专题】分类讨论专题:圆中的分
类讨论
一、单选题(共6道,每道10分)
1.如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为()
A.
B.或
C.
D.或
2.已知⊙O1与⊙O2相切,若⊙O1的半径为1,两圆的圆心距为5,则⊙O2的半径为()
A.4
B.6
C.3或6
D.4或6
3.已知⊙O1的半径为4cm,⊙O2的半径为5cm,若两圆相切,则两圆的圆心距是()
A.9cm
B.1cm
C.9cm或1cm
D.不能确定
4.已知⊙O1、⊙O2的半径分别是r1=3、r2=5.若两圆相切,则圆心距O1O2的值是()
A.2或4
B.6或8
C.2或8
D.4或6
5.半径为15cm和13cm的两个圆相交,它们的公共弦长为24cm,则这两个圆的圆心距等于()
A.4cm
B.4cm或14cm
C.9cm
D.9cm或14cm
6.已知半径为5的⊙O中,弦AB=5,弦AC=5,则∠BAC的度数是()
A.15°
B.210°
C.105°或15°
D.210°或30°
二、填空题(共1道,每道10分)
1.若半径为5和4的两个圆相交,且公共弦长为6,则它们的圆心距d等于_____.。
2021年中考中的数学思想方法---分类讨论思想(方法指导及例题解析)
中考中的数学思想方法----分类讨论思想一、概述:当我们面对一大堆杂乱的人民币时;我们一般会先分10元;5元;2元;1元;5角;…… 等不同面值把人民币整理成一叠叠的;再分别数出各叠钱数;最后把各叠的钱数加起来得出这一堆人民币的总值。
这样做;比随意一张张地数的方法要快且准确的多;因为这种方法里渗透了分类讨论的思想。
在数学中;分类思想是根据数学本质属性的相同点和不同点;把数学的研究对象区分为不同种类的一种数学思想;正确应用分类思想;是完整解题的基础。
而在中考中;分类讨论思想也贯穿其中;几乎在全国各地的重考试卷中都会有这类试题;命题者经常利用分类讨论题来加大试卷的区分度;很多压轴题也都涉及分类讨论;由此可见分类思想的重要性;下面精选了几道有代表性的试题予以说明。
二、例题导解:1、(上海市中考题)直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于 .③解:①当6、8是直角三角形的两条直角边时;斜边长为10;此时这个三角形的外接圆半径等于21╳ 10 =5②当6是这个三角形的直角边;8是斜边时;此时这个三角形的外接圆半径等于21╳ 8=42、(北京市中考题)在△ABC 中;∠B =25°;AD 是BC 边上的高;并且AD BD DC 2·;则∠BCA 的度数为____________。
解:①如图1;当△ABC 是锐角三角形时; ∠BCA=90°-25°=65°①如图2;当△ABC 是钝角三角形时; ∠BCA=90°+25°=115°图1 图2这是一道比较基础却很典型的分类 讨论题;关键是要注意题设中的“两条边长”。
这是一道非常容易出错的题目;很多同学由于看惯了图1所示的图形而漏解;一些难度并不很大的题目频频十分很多时候就是由于缺乏分类思想。
3、(济南市中考题)如图1;已知Rt ABC △中;30CAB ∠=;5BC =.过点A 作AE AB ⊥;且15AE =;连接BE 交AC 于点P . (1)求PA 的长:(2)以点A 为圆心;AP 为半径作⊙A;试判断BE 与⊙A 是否相切;并说明理由:(3)如图2;过点C 作CD AE ⊥;垂足为D .以点A 为圆心;r 为半径作⊙A :以点C 为圆心;R 为半径作⊙C .若r 和R 的大小是可变化的;并且在变化过程中保持⊙A 和⊙C 相切..;且使D 点在⊙A 的内部;B 点在⊙A 的外部;求r 和R 的变化范围.(1)在Rt ABC △中;305CAB BC ∠==,;210AC BC ∴==.AE BC ∥;APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==. :3:4PA AC ∴=;3101542PA ⨯==. (2)BE 与⊙A 相切.在Rt ABE △中;AB =15AE =;tan AE ABE AB ∴∠===60ABE ∴∠=. 又30PAB ∠=;9090ABE PAB APB ∴∠+∠=∴∠=,;BE ∴与⊙A 相切.(3)因为5AD AB ==,所以r的变化范围为5r <<当⊙A 与⊙C 外切时;10R r +=;所以R的变化范围为105R -<<: 当⊙A 与⊙C 内切时;10R r -=;所以R的变化范围为1510R <<+CD 图1 图24、(上海市普陀区中考模拟题)直角坐标系中;已知点P (-2;-1); 点T (t ;0)是x 轴上的一个动点.(1) 求点P 关于原点的对称点P '的坐标: (2) 当t 取何值时;△P 'TO 是等腰三角形? 解:(1)点P 关于原点的对称点P '的坐标为(2;1). (2)5='P O .(a )动点T 在原点左侧.当51='=O P O T 时;△TO P '是等腰三角形∴点)0,5(1-T .(b )动点T 在原点右侧.①当P T O T '=22时;△TO P '是等腰三角形.得:)0,45(2T .② 当O P O T '=3时;△TO P '是等腰三角形. 得:点)0,5(3T .③ 当O P P T '='4时;△TO P '是等腰三角形. 得:点)0,4(4T .综上所述;符合条件的t 的值为4,5,45,5-. 5、如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过这是济南市的中考数学压轴题;其中第(3)小题涉及圆的位置关系分类讨论;须分内切和外切两种情况加以讨论;只要解题时注意读题;“相切..”两字是正确解题的关键字。
(完整版)初三数学有关圆的经典例题
初三数学 有关圆的经典例题1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。
132O AB AC BAC分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。
解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示,过O 作OD ⊥AB 于D,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE ====323222∵,∴∠,OA OAD AD OA ===132cos cos ∠OAE AE OA ==22∴∠OAD=30°,∠OAE=45°,故∠BAC=75°,当AB 、AC 在圆心O 同侧时,如下图所示,同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15°点拨:本题易出现只画出一种情况,而出现漏解的错误。
例2。
如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R,⊙O 与AC 交于D ,如果点既是的中点,又是边的中点,D AB AC ⋂(1)求证:△ABC 是直角三角形;()22求的值AD BC分析:()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ⋂则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB,∴△ADF∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC22122===解:(1)证明,作直径DE 交AB 于F ,交圆于E∵为的中点,∴⊥,D AB AB DE AF FB ⋂=又∵AD=DC∴∥,DF BC DF BC =12∴AB ⊥BC ,∴△ABC 是直角三角形。
(2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90°而AB ⊥DE ,∴△ADF ∽△EDA∴,即·AD DE DFADAD DE DF ==2∵,DE R DF BC ==212∴·,故AD BC R AD BCR 22==例3. 如图,在⊙O 中,AB=2CD ,那么( )A AB CD B AB CD ..⋂>⋂⋂<⋂22C AB CD D AB CD ..⋂=⋂⋂⋂22与的大小关系不确定分析:要比较与的大小,可以用下面两种思路进行:AB CD ⋂⋂2()112把的一半作出来,然后比较与的大小。
中考数学专题:例+练——第8课时 分类讨论题(含答案)
第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B .如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。
圆中分类讨论问题归类举例
圆中分类讨论问题一、点和圆的位置凡涉及点与圆的位置关系问题,在没有指明其位置时,应考虑点在圆内、圆上、圆外三种可能情形.例1.过不在⊙O 上的一点A,作⊙O 的割线,交⊙O 于B 、C,且AB ·AC =64,OA =10,则⊙O 的半径R 为______. 解:依题意,点A 与⊙O 的位置关系有两种:(1)点A 在⊙O 内,如图1,延长AO 交⊙O 于F,则A E R A F R =-=+1010, 由相交弦定理得:()()R R -+=101064,所以R =241(负值已舍去) (2)点A 在⊙O 外,如图2,此时A E R A F R=-=+1010, 由割线定理得:()()101064-+=R R 所以R =6(负值已舍去),故⊙O 的半径R 为241或6. 二、点与弦的相对位置例2.⊙O 是△ABC 的外接圆,OD ⊥BC 于D,且∠BOD =48°,则∠BAC =_________.解:(1)点A 和圆心O 在弦BC 同侧,如图3,可求得∠BAC =∠BOD =48°(2)点A 和圆心O 在弦BC 异侧,如图4,可求得∠BAC =132°三、弦所对的圆周角例3.半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于___________.解:弦所对的圆周角有两种情况:(1)当弦所对的圆周角的顶点在优弧上时,其圆周角为60°;(2)当弦所对的圆周角的顶点在劣弧上时,其圆周角为120°.故应填60°或120°.四、平行弦与圆心的位置例4.在半径为5cm 的⊙O 中,弦AB =6cm,弦CD =8cm,且AB ∥CD,求AB 与CD 之间的距离.分析:两平行弦与圆心的位置关系一般有两种:两弦在圆心的同侧;两弦在圆心的异侧.解:过O 作AB 、CD 的垂线,分别交AB 、CD 于点E 、F,连接OA 、OC.在Rt △OAE 中,O E O A A E c m =-=-=2222534()在Rt △OCF 中,O F O C C F c m =-=-=2222543()(1)当AB 、CD 在圆心O 的同侧时,如图5,AB 和CD 之间的距离为E F c m =-=431()(2)当AB 、CD 在圆心O 的异侧时,如图6,AB 和CD 之间的距离为E F c m =+=437()所以AB 和CD 之间的距离为1cm 或7cm.五、圆心与角的位置例5.在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 的度数是____________.解:如图7,当圆心在∠BAC 内部时,连接AO 并延长交⊙O 于E在Rt △ABE 中,由勾股定理得:B E A E==112所以∠BAE =30° 同理,在Rt △CAE 中,EC =AC,所以∠EAC =45°,∠B A C =︒+︒=︒304575 当圆心O 在∠BAC 的外部时(∠BAC'),由轴对称性知:∠B A C '=︒-︒=︒453015,所以∠BAC 为75°或15° 六、点在弧上的位置例6.如图8,在平面直角坐标系中,P 是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P 与O 、B 不重合),则∠OAB =_________度,∠OPB =_________度.解:依题意可知△AOB 是等腰直角三角形,所以∠OAB =45°当动点P 在O A B ⌒上时,∠OPB =∠OAB =45°当动点P 在O B ⌒上时,∠OPB =180°-45°=135°故∠OPB 为45°或135°. 七、相交两圆的圆心与公共弦的位置例7.已知半径为4和22的两圆相交,公共弦长为4,则两圆的圆心距为_________.分析:相交两圆圆心的位置有在公共弦的同侧和异侧两种情况.解:如图9、图10,在R t O A C ∆1中,O C O A A C 1122224223=-=-= 在R t O A C ∆2中,()O C O A A C 2222222222=-=-= (1)当圆心O O 12、在公共弦AB 的同侧时,如图9,O O O C O C 1212232=-=-(2)当圆心O O 12、在公共弦AB 的异侧时,如图10,O O O C O C 1212232=+=+ 八、直线与圆的位置例8.两圆的半径分别为4和2,如果它们的两条公切线互相垂直,求两圆的圆心距.分析:两圆的公切线有内公切线和外公切线两种,公切线互相垂直,有三种情况.解:(1)当内公切线与外公切线垂直时,如图11,AB 切⊙O 1于A,切⊙O 2于B,EF 切⊙O 1于E,切⊙O 2于F,AB ⊥EF 于D.由切线定理,得:︒==︒==45,452211DFO DB O DE O DA O ∠∠∠∠ 所以∠,,O D OO DO D 1212904222=︒==,故有O O O D O D 121222210=+= (2)当内公切线垂直时,如图12,作O E l O D l 1221⊥,⊥,交点为E,则 ()()O O O E O E 12122222424262=+=+++=(3)当外公切线垂直时,如图13,作O E l O F l O G O E 122221⊥,⊥,⊥于G,则 ()()O O O G O G O E G E E F 1212221222242222=+=-+=-+=图8。
2025年河北省中考数学提分专项训练++专项+分类讨论思想在圆中的课件
类型5 动态问题引发的分类讨论
6.[2024石家庄校级月考] 如图,已知直线l的 表达式是y = 4 x − 8,并且与x轴、y轴分别交
3
于A,B两点.一个半径为3的⊙ C,圆心C从点
(0,3)开始以每秒2个单位长度的速度沿着y轴向下运动,当
⊙ C与直线l相切时,⊙ C运动的时间为( A )
A.3 s或8 s
∴ 四边形QHCD是矩形.∴ HQ = CD = 12,
HQ//CD.
又∵
点O′是EF′的中点,∴
O′Q=Βιβλιοθήκη 1 2DE.∵ DE = DC − CE = 12 − 2 = 10,∴ O′Q = 5.
易知半圆O′的半径为6,
∴ MH = HQ − QO′ − O′M = 12 − 5 − 6 = 1,
返回
4.已知⊙ O的直径为6 cm,如果直线l上的一点C到圆心O的距 离为3 cm,求直线l与⊙ O的位置关系. 【解】∵⊙ O的半径= 6 = 3(cm),且直线l上存在一点到圆心
2
O的距离为3 cm, ∴ 直线l与⊙ O至少有一个交点. 当⊙ O与直线l有且只有一个交点时,直线l与⊙ O相切; 当直线l与⊙ O有两个交点时,直线l与⊙ O相交. ∴ 直线l与⊙ O的位置关系是相切或相交.
∵ ∠AOP = 45∘ ,∴ 点P的横、纵坐 标相等.可设P(a, a). ∵ ∠AOB = 90∘ ,∴ AB是直径. ∴ Rt △ AOB外接圆的圆心为AB的中 点. 设AB的中点为C,则C( 3, 1).
过点P作PE ⊥ OA于点E,过点C作 CF//OA,交PE于点F,连接PC. 易得∠CFP = 90∘ ,PF = a − 1, CF = a − 3,PC = 2. ∴ 在Rt △ PCF中, (a − 3)2 + (a − 1)2 = 22,解得 a1 = 3 + 1,a2 = 0(舍去).
专题14 圆中的两解及多解问题分类讨论思想)归类集训-2023年中考数学二轮复习核心考点拓展训练
专题14 圆中的两解及多解问题(分类讨论思想)归类集训(解析版)类型一讨论弦上某点或端点的位置1.在半径为10的⊙O中,弦AB的长为16,点P在弦AB上,且OP的长为8,AP长为 .思路引领:作OC⊥AB于点C,根据垂径定理求出OC的长,根据勾股定理求出PC的长,分当点P在线段AC上和当点P在线段BC上两种情况计算即可.解:作OC⊥AB于点C,∴AC=12AB=8,由勾股定理得,OC=OA2―AC2=6,∴PC=OP2―OC2=27,当点P在线段AC上时,AP=AC﹣PC=8﹣27,当点P在线段BC上时,AP=8+27,故答案为:8﹣27或8+27.总结提升:本题考查的是垂径定理的应用和勾股定理的应用,正确作出辅助线构造直角三角形、运用分情况讨论思想是解题的关键.2.(2021•无棣县模拟)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )A.25cm B.43cm C.25cm或45cm D.23cm或43cm思路引领:分两种情况,根据题意画出图形,先根据垂径定理求出AM的长,连接OA,由勾股定理求出OM的长,进而可得出结论.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4(cm),OD=OC=5(cm),当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM=OA2―AM2=52―42=3(cm),∴CM=OC+OM=5+3=8(cm),∴AC=AM2+CM2=42+82=45(cm);当C点位置如图2所示时,同理可得:OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC=AM2+CM2=42+22=25(cm);综上所述,AC的长为45cm或25cm,故选:C.总结提升:本题考查的是垂径定理和勾股定理等知识,根据题意画出图形,利用垂径定理和勾股定理求解是解答此题的关键.3.(2020•黑龙江)在半径为5的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP = .思路引领:如图1,作OE⊥AB于E,OF⊥CD于F,连接OD、OB,如图,根据垂径定理得到AE=BE=12AB=2,DF=CF=12CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到PA=PC=1,根据三角形面积公式求得即可.解:作OE⊥AB于E,OF⊥CD于F,连接OD、OB,则AE=BE=12AB=2,DF=CF=12CD=2,如图1,在Rt△OBE中,∵OB=5,BE=2,∴OE=OB2―BE2=1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,∴PE=PF=1,∴PA=PC=1,∴S△APC=12×1×1=12;如图2,同理:S△APC=12×3×3=92;如图3,同理:S△APC=12×1×3=32;故答案为:12或32或92.总结提升:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.类型二圆心在两弦之间或者两弦之外4.(2021•商河县校级模拟)一下水管道的截面如图所示.已知排水管的直径为100cm,下雨前水面宽为60cm.一场大雨过后,水面宽为80cm,求水面上升多少?思路引领:分两种情形分别求解即可解决问题.解:作半径OD⊥AB交AB于C,连接OB,如图所示,由垂径定理得:BC=12AB=30cm,在Rt△OBC中,OC=502―302=40cm,当水位上升到圆心以下,水面宽80cm时,则OC′=502―402=30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.总结提升:本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.5.(1)半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于 ;(2)在半径为1的⊙O中,弦AB,AC的长分别为3和2,则∠BAC的度数是 ;(3)已知圆内接△ABC中.AB=AC,圆心O到BC的距离为3cm,圆的半径为7cm,求腰长AB.思路引领:(1)根据垂径定理求得AD的长,再根据三角形函数可得到∠AOD的度数,再根据圆周角定理得到∠ACB的度数,根据圆内接四边形的对角互补即可求得∠AEB的度数;(2)连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可;(3)可根据勾股定理先求得BD的值,再根据勾股定理可求得AB的值.注意:圆心在内接三角形内时,AD=10cm;圆心在内接三角形外时,AD=4cm.解:(1)如图1,过O作OD⊥AB,则AD=12AB=12×3=32.∵OA=1,∴sin∠AOD=ADOA=32,∠AOD=60°.∵∠AOD=12∠AOB=60°,∠ACB=12∠AOB,∴∠ACB=∠AOD=60°.又∵四边形AEBC是圆内接四边形,∴∠AEB=180°﹣∠ACB=180°﹣60°=120°.故这条弦所对的圆周角的度数等于60°或120度.故答案为:60°或120度.(2)解:有两种情况:①如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=32,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图3所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=22,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°,故答案为:75°或15°;(3)分圆心在内接三角形内和在内接三角形外两种情况讨论,如图4,假若∠A是锐角,△ABC是锐角三角形,连接OB,作AD⊥BC于D,连接OD,∵AB=AC,∴AD是BC的中垂线,∴OD也是BC的中垂线,∴A、O、D三点共线,∵OD=3cm,OB=7cm,∴AD=10cm,∴BD=OB2―OD2=210cm,∵OD⊥BC,∴BD=CD,∵AB=AC,∴AD⊥BC,∴AB=AD2+BD2=235cm;如图5,若∠A是钝角,则△ABC是钝角三角形,和图4解法一样,只是AD=7﹣3=4cm,∴AB=AD2+BD2=214cm,综上可得腰长AB=235cm或214cm.总结提升:本题主要考查了垂径定理和勾股定理,注意分圆心在内接三角形内和在内接三角形外两种情况讨论,解题的关键是根据题意作出图形,求出符合条件的所有情况.类型三讨论点在优弧上或劣弧上6.(2022秋•双城区期末)已知⊙O的半径为2,弦AB的长为23,则弦AB的中点到这条弦所对的弧的中点的距离为 .思路引领:由垂径定理得出AC,再由勾股定理得出OC,从而得出CD和CE的长.解:如图,∵C是弦AB的中点,AB=23,∴OC⊥AB,AC=12AB=3,∴AD=BD,AE=BE,在Rt△AOC中,OC=22―(3)2=1,∴CD=2﹣1=1cm,CE=2+1=3.故答案为:1或3.总结提升:本题考查了垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.8.(2021秋•凉州区校级期末)如图,AB、AC分别与⊙O相切于点B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是 .思路引领:此题分为两种情况,如图p点的位置有两个,所以∠BPC可能是锐角,也有可能是钝角,分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点.(1)当∠BPC为锐角,也就是∠BP1C时,根据AB,AC与⊙O相切,结合已知条件,在△ABC中,即可得出圆心角∠COB的度数,根据同弧所对的圆周角为圆心角的一半,即可得出∠BP1C的度数;(2)如果当∠BPC为钝角,也就是∠BP2C时,根据⊙O的内接四边形的性质,即可得出∠BP2C的度数.解:分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点,(1)当∠BPC为锐角,也就是∠BP1C时:∵AB,AC与⊙O相切于点B,C两点∴OC⊥AC,OB⊥AB,∵∠A=50°,∴在△ABC中,∠COB=130°,∵在⊙O中,∠BP1C为圆周角,∴∠BP1C=65°,(2)如果当∠BPC为钝角,也就是∠BP2C时∵四边形BP1CP2为⊙O的内接四边形,∵∠BP1C=65°,∴∠BP2C=115°故答案为:65°或115°.总结提升:本题考查圆的切线性质,在解题过程中还要注意对圆的内接四边形、圆周角、圆心角的有关性质的综合应用.类型四弦所对的圆周角7.(2018秋•泗阳县期中)若圆的一条弦把圆分成度数的比为1:3的两条弧,则该弦所对的圆周角等于 .思路引领:圆的一条弦把圆分成度数之比为1:3的两条弧,则所分的劣弧的度数是90°,当圆周角的顶点在优弧上时,这条弦所对的圆周角等于45°,当这条弦所对的圆周角的顶点在劣弧上时,这条弦所对的圆周角等于135°.解:如图,弦AB将⊙O分成了度数比为1:3两条弧.连接OA、OB;则∠AOB=90°;①当所求的圆周角顶点位于D点时,这条弦所对的圆周角∠ADB=12∠AOB=45°;②当所求的圆周角顶点位于C点时,这条弦所对的圆周角∠ACB=180°﹣∠ADB=135°.故答案为:45°,135°.总结提升:本题考查的是圆心角、弧、弦的关系及圆周角定理,在解答此类问题时要注意是在“同圆或等圆中”才适用,这是此类问题的易错点.9.(2020秋•溧阳市期末)已知△ABC是半径为2的圆内接三角形,若BC=23,则∠A的度数为( )A.30°B.60°C.120°D.60°或120°思路引领:首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23,∴BD=4,∴CD=BD2―BC2=2,∴CD=12 BD,∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°﹣∠A=120°,∴∠A的度数为:60°或120°.故选:D.总结提升:此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.类型五讨论圆内接三角形的形状10.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB 于点D.若△OBD是直角三角形,则弦BC的长为 .思路引领:如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=53,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=2OB=52.解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD =32OB =532,∴BC =AB =53,如图2,当∠DOB =90°,∴∠BOC =90°,∴△BOC 是等腰直角三角形,∴BC =2OB =52,综上所述:若△OBD 是直角三角形,则弦BC 的长为53或52,故答案为:53或52.点睛:本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.101.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,求BC 边上的高.思路引领:从圆心向BC 引垂线,交点为D ,则根据垂径定理和勾股定理可求出,OD 的长,再根据圆心在三角形内部和外部两种情况讨论.解:连接AO 并延长交BC 于D 点,∵AB =AC ,∴AB =AC ,根据垂径定理得AD ⊥BC ,则BD =4,根据勾股定理得OD =3①圆心在三角形内部时,三角形底边BC 上的高=5+3=8;②圆心在三角形外部时,三角形底边BC 上的高=5﹣3=2.所以BC 边上的高是8或2.总结提升:本题综合考查了垂径定理和勾股定理在圆中的应用,因三角形与圆心的位置不明确,注意分情况讨论.类型六讨论点与圆的位置关系12.(2020•南通模拟)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为 .思路引领:点P可能在圆内,也可能在圆外;当点P在圆内时,直径为最大距离与最小距离的和;当点P在圆外时,直径为最大距离与最小距离的差;再分别计算半径.解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时,圆的直径为a+b,因而半径为a+b 2;当此点在圆外时,圆的直径是a﹣b,因而半径是a―b 2;故答案为:a+b2或a―b2.总结提升:本题考查了点与圆的位置关系,培养学生分类的思想及对点P到圆上最大距离、最小距离的认识.13.已知点P到⊙O的最长距离为6cm,最短距离为2cm.试求⊙O的半径长.思路引领:分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可解:①当P在⊙O外时,如图,∵P当⊙O的最长距离是为6cm,最短距离为2cm,∴PB=6cm,PA=2cm,∴AB=4cm,∴⊙O的半径为2cm';当P在⊙O内时,,此时AB=8cm,⊙O的半径为4cm.即⊙O的半径长为2cm或4cm.解题秘籍:本题考查了点和圆的位置关系,分类讨论是解此题的关键.类型七讨论直线与圆的位置关系14.(2021•崇明区二模)已知同一平面内有⊙O和点A与点B,如果⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,那么直线AB与⊙O的位置关系为( )A.相离B.相交C.相切D.相交或相切思路引领:根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,∴点A在⊙O外.点B在⊙O上,∴直线AB与⊙O的位置关系为相交或相切,故选:D.总结提升:本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.15.(2021秋•信都区校级月考)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,若以点C为圆心,r为半径的圆与边AB所在直线相离,则r的取值范围为 ;若⊙C与AB边只有一个公共点,则r的取值范围为 .思路引领:如图,作CH⊥AB于H.利用勾股定理求出AB,再利用面积法求出CH即可判断.解:如图,作CH⊥AB于H.在Rt△ABC中,∵∠ACB=90°,BC=8,AC=6,∴AB=AC2+BC2=62+82=10,∵S△ABC=12•AC•BC=12•AB•CH,∴CH=24 5,∵以点C为圆心,r为半径的圆与边AB所在直线相离,∴r的取值范围为r<24 5,∵⊙C与AB边只有一个公共点,∴r的取值范围为6<r≤8或r=24 5,故答案为:r<245,6<r≤8或r=245.总结提升:本题考查直线与圆的位置关系,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(衢州中考)如图,已知直线l的解析式是y=43x﹣4,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l 相切时,则该圆运动的时间为( )A.3秒或6秒B.6秒C.3秒D.6秒或16秒思路引领:由y=43x﹣4可以求出与x轴、y轴的交点A(3,0)、B(0,﹣4)坐标,再根据勾股定理可得AB=5,当C在B上方,根据直线与圆相切时知道C到AB的距离等于1.5,然后利用三角函数可得到CB,最后即可得到C运动的距离和运动的时间;同理当C在B下方,利用题意的方法也可以求出C 运动的距离和运动的时间.解:如图,∵x=0时,y=﹣4,y=0时,x=3,∴A(3,0)、B(0,﹣4),∴AB=5,当C在B上方,直线与圆相切时,连接CD,则C到AB的距离等于1.5,∴CB=1.5÷sin∠ABC=1.5×53=2.5;∴C运动的距离为:1.5+(4﹣2.5)=3,运动的时间为:3÷0.5=6;同理当C在B下方,直线与圆相切时,连接CD,则C运动的距离为:1.5+(4+2.5)=8,运动的时间为:8÷0.5=16.故选:D.总结提升:此题首先注意分类讨论,利用了切线的性质和三角函数等知识解决问题.17.(2018•浦东新区二模)已知l1∥l2,l1、l2之间的距离是3cm,圆心O到直线l1的距离是1cm,如果圆O 与直线l1、l2有三个公共点,那么圆O的半径为 cm.思路引领:根据题意可以画出相应的图形,从而可以解答本题.解:如下图所示,设圆的半径为r如图一所示,r﹣1=3,得r=4,如图二所示,r+1=3,得r=2,故答案为:2或4.总结提升:本题考查直线和圆的位置关系,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.18.(2021秋•新荣区月考)综合与实践问题情境:数学活动课上,老师出示了一个直角三角板和量角器,把量角器的中心O 点放置在AC 的中点上,DE 与直角边AC 重合,如图1所示,∠C =90°,BC =6,AC =8,OD =3,量角器交AB 于点G ,F ,现将量角器DE 绕点C 旋转,如图2所示.(1)点C 到边AB 的距离为 245 .(2)在旋转过程中,求点O 到AB 距离的最小值.(3)若半圆O 与Rt △ABC 的直角边相切,设切点为K ,求BK 的长.思路引领:(1)如图1,过点C 作CH ⊥AB 于点H ,利用勾股定理求得AB ,再利用AB •CH =AC •BC ,即可求得答案.(2)当CD ⊥AB 时,点O 到AB 的距离最小,再由OH =CH ﹣OC ,即可求得答案.(3)分两种情况:①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,运用勾股定理即可求得答案;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,运用勾股定理求得CK ,再利用勾股定理即可求得BK .解:(1)如图1,过点C 作CH ⊥AB 于点H ,∵∠ACB =90°,BC =6,AC =8,∴AB =AC 2+BC 2=62+82=10,∵CH ⊥AB ,∴AB •CH =AC •BC ,∴CH =AC ⋅BC AB=6×810=245,即点C 到边AB 的距离为245,故答案为:245.(2)∵O 为AC 的中点,∴OC =12AC =12×8=4,当CD ⊥AB 时,点O 到AB 的距离最小,∴OH =CH ﹣OC =245―4=45,∴点O 到AB 距离的最小值为45.(3)①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,∴BK =BC ﹣CK =6―7;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,在Rt △BCK 中,BK =BC 2+CK 2=62+(7)2=43;综上所述,BK 的长为7或43.解题秘籍:本题是几何综合题,考查了圆的性质,切线的性质,旋转变换的性质,勾股定理,三角形面积,解题关键是熟练掌握旋转变换的性质等相关知识,运用分类讨论思想解决问题.。
关于圆中的分类讨论问题
关于圆中的分类讨论问题摘要:本文章简要讨论了在数学中有关圆的不遗漏、不重复的一些问题。
通过典型例题与思维方法相结合,强调了师生不要忽视这种问题。
关键词:圆弦圆心距分类思想是根据数学对象本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想。
学习并掌握分类的思想方法,不仅仅是学习数学的需要,也是学习其他学科和今后工作的需要。
分类必须有一定的标准,标准不同分类的结果也就不同,但要做到不遗漏、不重复。
在分类中对各类进行研究,使问题在各个不同情况下分别得到各种结论,就是讨论。
本文中,根据我的实验,通过具体例子介绍了分类思想在数学题中的应用。
实际上,初中数学中分类讨论问题比较多,我现在要分析圆中的分类讨论问题。
一、求已知长度弦所形成的角度问题上面的是一种情况,实际上,点A也可能在⊙O的外部说明:点与圆的位置关系的问题在题设中没有指明它们之间的关系时,应该考虑点在圆内、圆上和圆外三种可能的位置。
三、求给定平分弦长和半径长度的两个弦距离的问题说明:在解圆内两条平行弦的有关问题时,应该注意考虑两条平行弦在圆心的同侧和异侧两种情况。
一般,在考虑圆内两条弧有关的问题时,应该注意圆心的同侧和异侧两种情况。
四、求给定圆上的一点到直径的距离问题说明:老师遇到这种的问题时,应该重视点D在圆心的右边和左边的两种情况。
五、给定两圆的公共弦长的比值和两圆的半径值时,求两圆的圆心距的问题说明:画两圆相交的图形时,把公共弦习惯性地画在两圆心之间,课本及参考书都是这样画的,忽视了公共弦可能在两圆心之外的情况。
六、关于互相垂直的公共切线的问题说明:解互相垂直公切线的问题时,应该注重利用直角坐标系。
七、给定圆的弦长等于圆的半径,求此弦所对的圆周角问题说明:在解圆内一条弦所对的圆周角的有关问题时,要注意圆周角的顶点可以在这条弦所对的优弧上,也可以在这条弦所对的劣弧上。
八、给定两个圆的半径和运动路线,求这两个圆的相切的问题总结来说:我们当解决数学问题时,应该全面地思考,数学的本质是不允许任何一个点的遗落,因为数学的要求是真正的认真和聚精会神。
中考数学圆题型大归纳
中考数学圆题型大归纳
中考数学中关于圆的题型涵盖了很多内容,主要涉及圆的性质、圆的面积与周长、相交定理等方面。
下面对中考数学中常见的圆题型进行大归纳:
一、圆的性质题型:
1. 圆的基本概念:圆的半径、直径、周长、面积等概念的理解和计算;
2. 圆心角与弧度的关系:圆心角的大小和对应弧的关系,以及圆心角的计算;
3. 圆内接四边形:正方形、矩形、菱形等图形的性质及相关计算;
4. 圆的切线与切点:切线的性质、切线与半径的关系,以及切点的判定方法。
二、圆的面积与周长题型:
1. 圆的面积计算:根据圆的半径或直径计算圆的面积;
2. 圆的周长计算:根据圆的半径或直径计算圆的周长;
3. 圆与多边形的面积比较:圆与正方形、正三角形等图形的面积比较和计算;
4. 圆的面积与周长的关系:圆的面积与周长的计算及应用。
三、圆的相交定理题型:
1. 同弧的圆周角:同弧的圆周角的性质和计算方法;
2. 圆的相交性质:相交弧的关系、相交角的计算等;
3. 圆的切线定理:圆的切线与切点的性质、切线长度的计算方法;
4. 圆的交点的计算:两个圆的交点的计算和判定方法。
以上是中考数学中关于圆的题型的大致分类和内容归纳,希望对你的学习有所帮助。
在备考中考数学的过程中,重点理解圆的基本性质和计算方法,灵活运用各种定理和公式,多做相关的练习题目,扎实掌握圆的相关知识,相信你一定能在考试中取得优异的成绩。
祝你学业有成,考试顺利!。
中考数学必考三十四个考点-专题25 圆的问题(原创解析版)
专题25 圆的问题一、与圆有关的概念与规律1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
2.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。
3.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
4.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.5.圆心角:顶点在圆心上的角叫做圆心角。
圆心角的度数等于它所对弧的度数。
6.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
7.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。
8.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 9.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 10. 点和圆的位置关系:① 点在圆内点到圆心的距离小于半径 ② 点在圆上点到圆心的距离等于半径 ③ 点在圆外点到圆心的距离大于半径11. 过三点的圆:不在同一直线上的三个点确定一个圆。
12. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心,叫做三角形的外心。
外心是三角形三条边垂直平分线的交点。
外心到三角形三个顶点的距离相等。
13.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。
⇔⇔⇔ 专题知识回顾14.圆内接四边形的特征: ①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。
15.直线与圆有3种位置关系:如果⊙O 的半径为r ,圆心O 到直线的距离为d ,那么 ① 直线和⊙O 相交; ② 直线和⊙O 相切; ③ 直线和⊙O 相离。
九上圆的题型分类 知识点+例题+练习(非常好 分类全面)
教学内容圆的题型分类教学目标巩固圆的相关题型重点垂径定理、切线性质的运用难点垂径定理、切线性质的运用教学过程圆中辅助线1、有关弦的问题,常做其弦心距,构造直角三角形2、有关直径问题,常做直径所对的圆周角3、直线与圆相切的问题,常连结过切点的半径,得到垂直关系;或选圆周角,找出等角关系【类型1】:圆的基本性质的综合应用1.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=【变式练习】2.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC 的长为【类型2】:圆的相切和圆中位置关系的问题题型一:连半径,证垂直例1、如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD 的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.例2、如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【课堂练习】1、如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE 交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;3、如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O半径为2,CT=,求AD的长.4、如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.5、如图,四边形ABCD是菱形,对角线BD上有一点O,以O为圆心,OD长为半径的圆记为⊙O。
圆的分类讨论例题及习题
圆中的分类讨论题------之两解情况一、根据点与圆的位置分类例1、点P 是圆O 所在平面上一定点,点P 到圆上的最大距离和最短距离分别为8和2,则该圆的半径为 。
解:过点P 和圆心O 作直线分别与圆O 相交于A 、B 两点。
PA 、PB 分别表示圆上各点到点P 的最长距离和最短距离。
(1)当点P 在圆内时,如图1所示,直径;(2)当点P 在圆外时,如图2所示,直径;所以,圆O 的直径为2或6。
练习1:若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b ,则此圆的半径为( )2:P 在⊙O 内,距圆心O 的距离为4,⊙O 半径长为5,经过P 点,交于⊙O 的弦为整数的有多少条?解:过P 点的弦长为整数的最短弦长是6cm (该弦垂直于OP ,等于5与4的平方和的平方根的2倍);最长的是10cm (过O 、P 的直径);其间弦长为整数的长度还有7、8、9cm ,所以共有8条(其中的7、8、9各有两条,以OP 为对称轴) 。
3:⊙O 的半径为2.5,动点P 到定点O 的距离为2,动点Q 到P 的点的距离为1,则点P 、Q 与⊙O 有何位置关系?二、弦与弦的位置关系不唯一,需要分类讨论例1、圆O 的直径为10cm ,弦AB//CD ,AB=6cm ,CD cm =8,求AB 和CD 的距离。
解:(1)当AB 、CD 在圆心的同侧时,如图,过点O 作OM AB ⊥交AB 于点M ,交CD 于N ,连结OB 、OD ,得Rt OMB ∆,Rt OND ∆,然后由勾股定理求得:OM cm ON cm ==43,,故AB 和CD 的距离为1cm 。
(2)当AB CD 、在圆心的异侧时,如图9,仍可求得OM cm ON cm ==43,。
故AB 和CD 的距离为7cm 。
所以AB 和CD 的距离为1cm 和7cm 。
例2、 已知弓形的弦长为8cm ,所在圆的半径为5cm ,则弓形的高为多少?(2或8cm ) 例3、 已知:如图,AB 是⊙O 的直径,AC 是⊙O 的弦,AB=2,∠BAC=30°.在图中作弦AD ,使AD=1,并求∠CAD 的度数.解:连接BC , ∵AB 是⊙O 的直径, ∴∠ACB=90°, ∵∠BAC=30°, ∴BC=1/2AB=1, ∠B=60°以A 圆心BC 长为半径画弧可得点D ,再连接AD 即可;∵AD=BC , 所以弧BCE=弧ADC ∴∠DAB=∠B=60°, ∴∠DAC=60°-30°=30°;POBAPOBNM DOB A NMCOB A同理可得:∠D ′AC=60°+30°=90°;综上所述:∠CAD 的度数为30°或90°例4、油桶问题:一个横截面为圆的圆柱形油桶,放倒后油面为60cm ,其半径为50cm ,求油面的最大深度? 两个答案:要考虑油面是否高于半圆,一个是低于半圆,一个是高于半圆。
【中考数学必备专题】分类讨论专题:圆中的分类讨论(含答案)[1]1
【中考数学必备专题】分类讨论专题:圆中的分类讨论一、单选题(共6道,每道10分)1.如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为()A.B.或C.D.或答案:D解题思路:利用同弧所对的圆周角是圆心角的一半,求得圆周角的度数即可,注意点C可能在优弧上也可能在劣弧上,分两种情况讨论.当点C在优弧上时,∠AC′B=∠AOB=×100°=50°,当点C在劣弧上时,∠ACB=(360°-∠AOB)=×(360°-100°)=130°.试题难度:三颗星知识点:分类讨论2.已知⊙O1与⊙O2相切,若⊙O1的半径为1,两圆的圆心距为5,则⊙O2的半径为()A.4B.6C.3或6D.4或6答案:D解题思路:由⊙O1与⊙O2相切,若⊙O1的半径为1,两圆的圆心距为5,即可分别从⊙O1与⊙O2内切或外切去分析,然后根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得答案.∴①若⊙O1与⊙O2内切,则⊙O2的半径为:5-1=4;②若⊙O1与⊙O2外切,则⊙O2的半径为:5+1=6,∴⊙O2的半径为4或6.故选D.试题难度:三颗星知识点:分类讨论3.已知⊙O1的半径为4cm,⊙O2的半径为5cm,若两圆相切,则两圆的圆心距是()A.9cmB.1cmC.9cm或1cmD.不能确定答案:C解题思路:圆与圆相切有外切和内切两种情况,当两圆外切时,圆心距为两圆半径之和;内切时,圆心距为两圆半径之差的绝对值;∴根据题意,可知,当两圆外切时,圆心距P=4+5=9cm;当两圆内切时,圆心距P=5-4=1cm;结合选项可知,答案为C.试题难度:三颗星知识点:分类讨论4.已知⊙O1、⊙O2的半径分别是r1=3、r2=5.若两圆相切,则圆心距O1O2的值是()A.2或4B.6或8C.2或8D.4或6答案:C解题思路:由两圆相切,可知两圆内切或外切,又由⊙O1、⊙O2的半径分别是r1=3、r2=5,则根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,即可求得圆心距O1O2的值.∴若两圆内切,则圆心距O1O2的值是:5-3=2,若两圆外切,则圆心距O1O2的值是:3+5=8.∴圆心距O1O2的值是:2或8.故选C试题难度:三颗星知识点:分类讨论5.半径为15cm和13cm的两个圆相交,它们的公共弦长为24cm,则这两个圆的圆心距等于()A.4cmB.4cm或14cmC.9cmD.9cm或14cm答案:B解题思路:连接两圆的圆心,连心线,半径和公共弦的一半构成直角三角形;根据勾股定理,考虑当两圆的圆心在公共弦的两侧时,当两圆的圆心在公共弦的同侧时两种情况,求圆心距.根据相交两圆的性质和勾股定理,得点O到公共弦AB的距离是9,点O’到AB的距离是5,∴当公共弦在两圆圆心两侧时,圆心距为9+5=14,当公共弦在两圆圆心同侧时,圆心距为,9-5=4则它们的圆心距d等于4cm或14cm试题难度:三颗星知识点:分类讨论6.已知半径为5的⊙O中,弦AB=5,弦AC=5,则∠BAC的度数是()A.15°B.210°C.105°或15°D.210°或30°答案:C解题思路:连接OC,OA,OB,根据已知可得到△OAC是等边三角形,△OAB是等腰直角三角形,从而分两种情况进行分析,不难求得∠BAC的度数.∵OC=OA=AC=5∴△OAC是等边三角形∴∠CAO=60°∵OA=OB=5,AB=5∴OA2+OB2=50=AB2∴△OAB是等腰直角三角形.∴∠OAB=45°,点C的位置有两种情况:如图,C不在弧AB上时:∠BAC=∠CAO+∠OAB=60°+45°=105°如图,C在弧AB上时:∠BAC=∠CAO-∠OAB=60°-45°=15°.故∠BAC=105°或15°,选C试题难度:三颗星知识点:分类讨论二、填空题(共1道,每道10分)1.若半径为5和4的两个圆相交,且公共弦长为6,则它们的圆心距d等于_____.答案:4+或4-解题思路:连接两圆的圆心,连心线、半径和公共弦的一半构成直角三角形。
圆中的分类讨论典型例题讲解
圆中的分类讨论、知识点回顾 由于圆中的点、线在圆中的位置分布可能有多种情况,经常会导致其答案的不唯一性。
如:点与圆的位置关系,点可能在圆内,也可能在圆外;两条弦的位置关系,可能在某一条 直径的同侧,也可能在直径的异侧;圆与圆相切,可能外切,也可能内切,等等。
因此,求 解圆的有关问题时,要注意分类讨论思想。
二、典型例题 一、点与圆的位置关系不唯一性例1 :若所在O 0所在平面内一点 P 到O 0上的点的最大距离为 a ,最小距离为b (a>b ),则此圆的半径为( a + iA 、—"V分析: P 可能在圆内,也可能在圆外。
⑴P 在圆内时。
如图 1-1。
连接0、P 所在的直线交O 0于A 、B 。
贝y PA=a , PB=b 直径 AB=PA+PB=a+b ⑵P 在圆外时。
如图 1-2。
此时直径 AB=PA — PB=a — b ,半径 0A=0B=1/2 AB=1/2 (a — b ) 由⑴⑵可知,应选(C )。
0A=0B=1/2 AB=1/2 (a+b)二、弦与弦的位置关系不唯一性例2 :O 0的半径为5cm ,弦AB // CD , AB=6cm , CD=8cm ,贝U AB 与CD 之间的距 离是((A ) 7cm (B ) 8cm (C ) 7cm 或 1cm 分析:弦AB 与CD 可能在圆心的同侧,也可能在圆心的异侧。
(D1cm* _____ . ___ B 圏2—1图2—3与CD 在圆心 如图2-1。
过0作弦AB 的垂线,交 AB 于M ,交CD 于N 。
连接 0B , 0D 。
•/ AB / CD , 0M 丄 AB , 0N 丄CD⑴弦AB 的同侧。
由垂径定理,BM=1/2AB=3cm , DN=1/2CD=4cm ,又 OB=OD=5cm 在 Rt △ BMO 中,OM 2=OB 2-BM 2=16cm ,求得 OM=4,同理 ON=3cm••• MN= OM — ON=4 — 3=1 cm⑵弦AB 与CD 在圆心的异侧。
中考数学《第36讲:分类讨论型问题》总复习讲解含真题分类汇编解析
第36讲分类讨论型问题(建议该讲放第21讲后教学)内容特性分类讨论思想就是将要研究的数学对象按照一定的标准划分为若干不同的情形,然后逐类进行研究和求解的一种数学解题思想.对于存在的一些不确定因素而无法解答或结论不能给予统一表述的数学问题,我们往往将问题划分为若干类或若干个局部问题来解决.解题策略很多数学问题很难从整体上去解决,若将其划分为所包含的各个局部问题,就可以逐个予以解决.分类讨论在解题策略上就是分而治之各个击破.具体是:(1)确定分类对象;(2)进行合理分类(理清分类“界限”,选择分类标准,并做到不重复、不遗漏);(3)逐类进行讨论;(4)归纳并得出结论.基本思想分类讨论的基本方法是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对各个分类逐步进行讨论,分层进行,获取阶段性结果;最后进行归纳小结,综合得出结论.类型一由计算化简时,运用法则、定理和原理的限制引起的讨论例1(·南通模拟)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为()A.3cm2B.4cm2C.12cm2D.4cm2或12cm2【解后感悟】解此题的关键是求出AB=AE,注意AE=1或3不确定,要进行分类讨论.1.(1)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为____________________.(2)已知平面上有⊙O及一点P,点P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.(3)若|a|=3,|b|=2,且a>b,则a+b=()A.5或-1 B.-5或1 C.5或1 D.-5或-1类型二在一个动态变化过程中,出现不同情况引起的讨论例2为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m平方米部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.【解后感悟】本题是房款=房屋单价×购房面积在实际生活中的运用,由于单价随人均面积而变化,所以用分段函数的解析式来描述.同时建立不等式组求解,解答本题时求出函数解析式是关键.2.(1)在平面直角坐标系中,直线y=-x+2与反比例函数y=1x的图象有唯一公共点,若直线y=-x+b与反比例函数y=1x的图象有2个公共点,则b的取值范围是()A.b>2 B.-2<b<2 C.b>2或b<-2 D.b<-2(2)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD 的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()3.已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=43x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.类型三由三角形的形状、关系不确定性引起的讨论例3(·湖州)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.【解后感悟】解题的关键是用k表示点A、B、C的坐标,再进行分类讨论.4.(1)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,3),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8(2)(·北流模拟)如图,在Rt△ABC中,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA 全等,则AP=.(3)(·临淄模拟)如图,在正方形ABCD中,M是BC边上的动点,N在CD上,且CN=14CD ,若AB =1,设BM =x ,当x = 时,以A 、B 、M 为顶点的三角形和以N 、C 、M 为顶点的三角形相似.类型四 由特殊四边形的形状不确定性引起的讨论例4 (·鄂州模拟)如图1,在四边形ABCD 中,AD ∥BC ,AB =8cm ,AD =16cm ,BC =22cm ,∠ABC =90°,点P 从点A 出发,以1cm /s 的速度向点D 运动,点Q 从点C 同时出发,以3cm /s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t 为何值时,四边形ABQP 成为矩形?(2)当t 为何值时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.【解后感悟】解本题的关键是用方程(组)的思想解决问题,涉及四边形的知识,同时也是存在性问题,解答时要注意分类讨论及数形结合.5.(1)(·盐城模拟)在平面直角坐标系中有三点A(1,1),B(1,3),C(3,2),在直角坐标系中再找一个点D ,使这四个点构成平行四边形,则D 点坐标为 .(2)(·江阴模拟)如图,在等边三角形ABC 中,BC =6cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s 的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t(s ),当t = s 时,以A 、C 、E 、F 为顶点的四边形是平行四边形.(3) (·金华模拟)如图,B(6,4)在函数y =12x +1的图象上,A(5,2),点C 在x 轴上,点D 在函数y =12x +1上,以A 、B 、C 、D 四个点为顶点构成平行四边形,写出所有满足条件的D 点的坐标 .(4)(·萧山模拟)已知在平面直角坐标系中,点A 、B 、C 、D 的坐标依次为(-1,0),(m ,n),(-1,10),(-7,p),且p ≤n.若以A 、B 、C 、D 四个点为顶点的四边形是菱形,则n 的值是 .类型五 由直线与圆的位置关系不确定性引起的讨论例5 如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q.A 、B 两点同时从点P 出发,点A 以5cm /s 的速度沿射线PM 方向运动,点B 以4cm /s 的速度沿射线PN 方向运动.设运动时间为t(s ).(1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?【解后感悟】本题是直线与圆的位置关系应用,题目设置具有创新性.解决本题的关键是抓住直线与圆的两种情况位置关系,及其对应数量关系进行分析.6.(·泗洪模拟)如图,已知⊙P 的半径为2,圆心P 在抛物线y =12x 2-1上运动,当⊙P与x 轴相切时,圆心P 的坐标为 .【压轴把关题】如图,在平面直角坐标系中,点A ,B 的坐标分别是(-3,0),(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造▱PCOD ,在线段OP 延长线上取点E ,使PE =AO ,设点P 运动的时间为t 秒.(1)当点C 运动到线段OB 的中点时,求t 的值及点E 的坐标; (2)当点C 在线段OB 上时,求证:四边形ADEC 为平行四边形;(3)在线段PE 上取点F ,使PF =1,过点F 作MN ⊥PE ,截取FM =2,FN =1,且点M ,N 分别在第一、四象限,在运动过程中,设▱PCOD 的面积为S.①当点M ,N 中,有一点落在四边形ADEC 的边上时,求出所有满足条件的t 的值; ②若点M ,N 中恰好只有一个点落在四边形ADEC 内部(不包括边界)时,直接写出S 的取值范围.【方法与对策】本题是四边形的综合题,对于第(3)题解题的关键是正确分几种不同情况求解.①当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解;【分类讨论应不重复、不遗漏】在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有________条.参考答案第36讲 分类讨论型问题【例题精析】例1 ∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,AD ∥BC ,∴∠AEB =∠CBE ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AB =AE ,①当AE =1cm 时,AB =1cm =CD ,AD =1cm +3cm =4cm =BC ,此时矩形的面积是1cm ×4cm =4cm 2;②当AE =3cm 时,AB =3cm =CD ,AD =4cm =BC ,此时矩形的面积是:3cm ×4cm =12cm 2;故选D .例2 (1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元); (2)由题意,得①当0≤x ≤30时,y =0.3×3x =0.9x ;②当30<x ≤m 时,y =0.9×30+0.5×3×(x -30)=1.5x -18;③当x >m 时,y =0.9×30+0.5×3(m -30)+0.7×3×(x -m)=2.1x -18-0.6m.∴y =⎩⎪⎨⎪⎧0.9x (0≤x ≤30)1.5x -18(30<x ≤m )2.1x -18-0.6m (x>m )(45≤m ≤60). (3)由题意,得①当50≤m ≤60时,y =1.5×50-18=57(舍).②当45≤m <50时,y =2.1×50-0.6m -18=87-0.6m.∵57<y ≤60,∴57<87-0.6m ≤60,∴45≤m <50.综合①②得45≤m <50.例3 ∵点B 是y =kx 和y =9x 的交点,y =kx =9x ,解得:x =3k ,y =3k ,∴点B 坐标为⎝⎛⎭⎫3k ,3k ,点A 是y =kx 和y =1x 的交点,y =kx =1x ,解得:x =1k ,y =k ,∴点A坐标为⎝⎛⎭⎫1k ,k ,∵BD ⊥x 轴,∴点C 横坐标为3k,纵坐标为13k=k3,∴点C 坐标为⎝ ⎛⎭⎪⎫3k ,k 3,∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则⎝⎛⎭⎫3k -1k 2+(3k -k )2=3k -k 3,解得:k =377;②AC =BC ,则⎝⎛⎭⎫3k -1k 2+⎝⎛⎭⎫k 3-k 2=3k -k 3,解得:k =155;故答案为k =377或155.例4 (1)∵∠ABC =90°,AP ∥BQ ,∴当AP =BQ 时,四边形ABQP 成为矩形,由运动知,AP =t ,CQ =3t ,∴BQ =22-3t ,∴t =22-3t ,解得t =112.∴当t =112时,四边形ABQP成为矩形; (2)当P 、Q 两点与A 、B 两点构成的四边形是平行四边形时,就是(1)中的情形,此时t =112.当P 、Q 两点与C 、D 两点构成的四边形是平行四边形时,∵PD ∥QC ,∴当PD =QC 时,四边形PQCD 为平行四边形.此时,16-t =3t ,t =4;当P 、Q 两点与B 、D 两点构成的四边形是平行四边形时,同理,16-t =22-3t ,t =3;当P 、Q 两点与A 、C 两点构成的四边形是平行四边形时,同理,t =3t ,t =0,不符合题意;故当t =112或t =4或t =3时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形. (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD =BQ =BP 时,四边形PBQD 能成为菱形.由PD =BQ ,得16-t =22-3t ,解得t =3,当t =3时,PD =BQ =13,AP =AD -PD =16-13=3.在Rt △ABP 中,AB =8,根据勾股定理得,BP =AB 2+AP 2=64+9=73≠13,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为v cm /s 时,能够使四边形PBQD 在时刻t s 为菱形,由题意得,⎩⎨⎧16-t =22-vt ,16-t =64+t 2,解得⎩⎪⎨⎪⎧t =6,v =2.故点Q 的速度为2cm /s 时,能够使四边形PBQD 在某一时刻为菱形.例5 (1)连结OQ ,∵PN 与⊙O 相切于点Q ,∴OQ ⊥PN ,即∠OQP =90°.∵OP =10,OQ =6,∴PQ =102-62=8(cm ). (2)过点O 作OC ⊥AB ,垂足为C.∵点A 的运动速度为5cm /s ,点B 的运动速度为4cm /s ,运动时间为t s ,∴PA =5t ,PB =4t.∵PO =10,PQ =8,∴PA PO =PB PQ =t2.∵∠P =∠P ,∴△PAB ∽△POQ ,∴∠PBA =∠PQO =90°.∵∠BQO =∠CBQ =∠OCB =90°,∴四边形OCBQ 为矩形,∴BQ =OC.∵⊙O 的半径为6,∴BQ =OC =6时,直线AB 与⊙O 相切.①当AB 运动到如图1所示的位置时,BQ =PQ -PB =8-4t ,由BQ =6,得8-4t =6,t =0.5.②当AB 运动到如图2所示的位置时,BQ =PB -PQ =4t -8,由BQ =6,得4t -8=6,t =3.5.综上,当t =0.5s 或3.5s 时,直线AB 与⊙O 相切.【变式拓展】1.(1)0或-1 (2)4或2 (3)C 2.(1)C (2)D3.根据OC 长为8可得一次函数中的n 的值为8或-8.分类讨论:①n =8时,易得A(-6,0),如图1,∵抛物线经过点A 、C ,且与x 轴交点A 、B 在原点的两侧,∴抛物线开口向下,则a <0,∵AB =16,且A(-6,0),∴B(10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =-6+102=2,要使y 1随着x 的增大而减小,∵a <0,∴x ≥2;②n =-8时,易得A(6,0),如图2,∵抛物线过A 、C 两点,且与x 轴交点A ,B 在原点两侧,∴抛物线开口向上,则a >0,∵AB =16,且A(6,0),∴B(-10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =6-102=-2,要使y 1随着x 的增大而减小,且a >0,∴x ≤-2.4.(1)C (2)6或12 (3)12或455.(1)(3,0)或(-1,2)或(3,4) (2)2或6 (3)(2,2)或(-6,-2)或(10,6) (4)2,5,186.(6,2)或(-6,2)【热点题型】【分析与解】(1)∵OB =6,C 是OB 的中点,∴BC =12OB =3.∴2t =3,即t =32s .∴OE =32+3=92,E(92,0). (2)如图1,连结CD 交OP 于点G ,在▱PCOD 中,CG =DG ,OG =PG ,∵AO =PE ,∴AG =EG .∴四边形ADEC 是平行四边形. (3)①(Ⅰ)当点C 在线段BO 上时,第一种情况:如图2,当点M 在CE 边上时,∵MF ∥OC ,∴△EMF ∽△ECO.∴MFCO=EF EO ,即26-2t =23+t,解得t =1.第二种情况:如图3,当点N 在DE 边时,∵NF ∥PD ,∴△EFN ∽△EPD.∴FN PD =EF EP 即16-2t =23,解得t =94.(Ⅱ)当点C 在BO 的延长线上时,第一种情况:如图4,当点M 在DE 边上时,∵MF ∥PD ,∴EMF ∽△EDP.∴MF DP =EF EP 即22t -6=23,解得t =92.第二种情况:如图5,当点N 在CE 边上时,∵NF ∥OC ,∴△EFN ∽△EOC.∴FN OC =EF EO 即12t -6=23+t ,解得t =5.综上所述,所有满足条件的t 的值为1,94,92,5.②278<S ≤92或272<S ≤20.【错误警示】当PD∥BC时,△APD∽△ABC,当PE∥AC时,△BPE∽△BAC,连结PC,∵∠A=36°,AB=AC,点P在AC的垂直平分线上,∴AP=PC,∠ABC=∠ACB =72°,∴∠ACP=∠PAC=36°,∴∠PCB=36°,∴∠B=∠B,∠PCB=∠A,∴△CPB ∽△ACB,故过点P的△ABC的相似线最多有3条.故答案为:3.。
圆中常见分类讨论问题归类
圆中常见分类讨论问题归类
圆既是轴对称图形,又是中心对称图形,还具有旋转不变性,圆的这些特性决定了关于圆的某些问题会有多解。
一、点和圆的位置
凡涉及点与圆的位置关系问题,在没有指明其位置时,应考虑点在圆内、圆上、圆外三种可能情形。
例1.过不在⊙O上的一点A,作⊙O的割线,交⊙O于B、C,且AB·AC=64,OA=10,求⊙O的半径R 。
二、点与弦的相对位置
例2.⊙O是△ABC的外接圆,OD⊥BC于D,且∠BOD=48°,求∠BAC的度数。
三、弦所对的圆周角
例3.半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于___________。
四、平行弦与圆心的位置
例4.在半径为5cm的⊙O中,弦AB=6cm,弦CD=8cm,且AB∥CD,求AB与CD 之间的距离。
五、圆心与角的位置
例5.在半径为1的⊙O中,弦AB、AC的长分别为3和2,求∠BAC的度数。
六、点在弧上的位置
例6.如图8,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、B不重合),则∠OAB=_________度,∠OPB=_________度。
七、相交两圆的圆心与公共弦的位置
例7.已知半径为4和22的两圆相交,公共弦长为4,则两圆的圆心距为_________。
八、直线与圆的位置
例8.两圆的半径分别为4和2,如果它们的两条公切线互相垂直,求两圆的圆心距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆中分类讨论问题归类举例
圆既是轴对称图形,又是中心对称图形,还具有旋转不变性,圆的这些特性决定了关于圆的某些问题会有多解。
解答这类问题时需要按照一定的标准,分成若干种情况,逐一加以讨论。
这样可以避免漏解,培养同学们分析问题、解决问题的能力。
本文就近年中考题举例说明如下。
一、点和圆的位置
凡涉及点与圆的位置关系问题,在没有指明其位置时,应考虑点在圆内、圆上、圆外三种可能情形。
例1.过不在⊙O 上的一点A ,作⊙O 的割线,交⊙O 于B 、C ,且AB ·AC =64,OA =10,则⊙O 的半径R 为___________。
解:依题意,点A 与⊙O 的位置关系有两种:
(1)点A 在⊙O 内,如图1,延长AO 交⊙O 于F ,则
AE R AF R =-=+1010,
由相交弦定理得:()()R R -+=101064 所以R =241(负值已舍去) (2)点A 在⊙O 外,如图2,
此时AE R AF R =-=+1010,
由割线定理得:()()101064-+=R R
所以R =6(负值已舍去)
故⊙O 的半径R 为241或6。
二、点与弦的相对位置
例2.⊙O是△ABC的外接圆,OD⊥BC于D,且∠BOD=48°,则∠BAC=_________。
解:(1)点A和圆心O在弦BC同侧,如图3,可求得∠BAC=∠BOD=48°
(2)点A和圆心O在弦BC异侧,如图4,可求得∠BAC=132°
三、弦所对的圆周角
例3.半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于___________。
解:弦所对的圆周角有两种情况:
(1)当弦所对的圆周角的顶点在优弧上时,其圆周角为60°;
(2)当弦所对的圆周角的顶点在劣弧上时,其圆周角为120°。
故应填60°或120°。
四、平行弦与圆心的位置
例4.在半径为5cm的⊙O中,弦AB=6cm,弦CD=8cm,且AB∥CD,求AB与CD 之间的距离。
分析:两平行弦与圆心的位置关系一般有两种:两弦在圆心的同侧;两弦在圆心的异侧。
解:过O作AB、CD的垂线,分别交AB、CD于点E、F,连接OA、OC.
在Rt △OAE 中,OE OA AE cm =-=-=2222534()
在Rt △OCF 中,OF OC CF cm =
-=-=2222543() (1)当AB 、CD 在圆心O 的同侧时,如图5,AB 和CD 之间的距离为
EF cm =-=431()
(2)当AB 、CD 在圆心O 的异侧时,如图6,AB 和CD 之间的距离为
EF cm =+=437()
所以AB 和CD 之间的距离为1cm 或7cm 。
五、圆心与角的位置
例5.在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 的度数是____________。
解:如图7,当圆心在∠BAC 内部时,连接AO 并延长交⊙O 于E
在Rt △ABE 中,由勾股定理得:BE AE ==
112
所以∠BAE =30°
同理,在Rt △CAE 中,EC =AC ,所以
∠EAC =45°,∠BAC =︒+︒=︒304575
当圆心O 在∠BAC 的外部时(∠BAC'),由轴对称性可知:
∠BAC '=︒-︒=︒453015
所以∠BAC 为75°或15°
六、点在弧上的位置
例6.如图8,在平面直角坐标系中,P 是经过O (0,0),A (0,2),B (2,0)的圆上的一个动点(P 与O 、B 不重合),则∠OAB =_________度,∠OPB =_________度。
解:依题意可知△AOB 是等腰直角三角形,所
以∠OAB =45°
当动点P 在OAB ⌒
上时,∠OPB =∠OAB =45° 当动点P 在OB ⌒上时,∠OPB =180°-45°=
135°
故∠OPB 为45°或135°。
七、相交两圆的圆心与公共弦的位置
例7.已知半径为4和22的两圆相交,公共弦长为4,则两圆的圆心距为_________。
分析:相交两圆圆心的位置有在公共弦的同侧和异侧两种情况。
解:如图9、图10,
在Rt O AC ∆1中,O C O A AC 1122224223=
-=-= 在Rt O AC ∆2中,()O C O A AC 2222222222=-=-=
(1)当圆心O O 12、在公共弦AB 的同侧时,如图9
图8
O O O C O C 1212
232=-=-
(2)当圆心O O 12、在公共弦AB 的异侧时,如图10 O O O C O C 1212232=+=+
八、直线与圆的位置
例8.两圆的半径分别为4和2,如果它们的两条公切线互相垂直,求两圆的圆心距。
分析:两圆的公切线有内公切线和外公切线两种,公切线互相垂直,有三种情况。
解:(1)当内公切线与外公切线垂直时,如图11,AB 切⊙O 1于A ,切⊙O 2于B ,EF 切⊙O 1于E ,切⊙O 2于F ,AB ⊥EF 于D 。
由切线定理,得: ∠∠∠∠O DA O DE O DB O DF 11224545==︒
==︒
所以∠,,O DO O D O D 1212904222=︒==
故有O O O D O D 121222210=+=
(2)当内公切线垂直时,如图12,作O E l O D l 1221⊥,⊥,交点为E ,则 ()()O O O E O E 12122222424262=+=+++=
(3)当外公切线垂直时,如图13,作O E l O F l O G O E 122221⊥,⊥,⊥于G ,则 ()()O O O G O G O E GE EF 121222122
2242222=+=-+=-+=.。