盖革-弥勒计数管及核衰变的统计规律实验报告
盖革技术管实验报告
一、实验目的1. 了解盖革技术管的工作原理和结构;2. 掌握盖革技术管的使用方法和操作技巧;3. 通过实验,验证盖革技术管在核辐射检测中的实际应用效果。
二、实验原理盖革技术管(Geiger-Müller Tube,简称GMT)是一种用于检测和测量辐射的探测器。
它基于气体放电原理,当辐射粒子穿过盖革管时,会引起气体电离,产生电流脉冲。
通过测量电流脉冲的数量和强度,可以确定辐射粒子的类型和强度。
实验中,我们使用盖革技术管来检测α、β、γ等辐射粒子,并分析其计数率和能量响应。
三、实验器材1. 盖革技术管(包括α、β、γ三种探测器);2. 高压电源;3. 探测器支架;4. 计数器;5. 标准α、β、γ辐射源;6. 实验室安全防护设备。
四、实验步骤1. 准备实验器材,检查仪器设备是否正常;2. 将盖革技术管安装在探测器支架上,连接高压电源;3. 将探测器支架放置在实验台上,调整位置,使探测器正对辐射源;4. 打开高压电源,调节电压,使盖革技术管正常工作;5. 记录不同辐射源的计数率和能量响应;6. 对实验数据进行整理和分析。
五、实验结果与分析1. α辐射实验实验中,我们使用标准α辐射源,在距离探测器1cm、2cm、3cm、4cm、5cm处进行测量。
实验结果显示,随着距离的增加,计数率逐渐降低,符合α辐射的穿透能力。
2. β辐射实验实验中,我们使用标准β辐射源,在距离探测器1cm、2cm、3cm、4cm、5cm处进行测量。
实验结果显示,计数率随距离增加逐渐降低,符合β辐射的穿透能力。
3. γ辐射实验实验中,我们使用标准γ辐射源,在距离探测器1cm、2cm、3cm、4cm、5cm处进行测量。
实验结果显示,计数率随距离增加逐渐降低,符合γ辐射的穿透能力。
4. 能量响应实验实验中,我们使用不同能量的α、β、γ辐射源进行测量,分析盖革技术管的能量响应。
实验结果显示,盖革技术管对不同能量的辐射粒子具有较好的响应。
盖革弥勒计数器及核衰变的统计规律
盖革--弥勒计数器及核衰变的统计规律一.实验目的1. 掌握G-M计数器的工作基础,测定其有关特性,学会使用。
2. 以G-M计数器为测试设备,验证核衰变的统计规律。
3. 学会使用放射性测量结果的误差表示法,学会多次测量结果的误差计算及测试时间的选择。
二.实验仪器盖革--弥勒计数器、放射源、铅室、定标器三.实验原理1. G-M计数器的工作原理G-M计数管有各种不同的结构,本实验选用长圆柱形γ计数管,它们都由圆筒状的阴极和装在轴线上的阳极丝共同密封在玻璃管内组成。
管内充以一定量的惰性气体(氩居多)和少量猝灭气体(为了使一个放射性粒子引起放电后只记一次)。
计数管工作时,在计数管阳极加上直流高压,则在计数管的阳极和阴极(接地)之间形成径向分布的电场。
射线进入管内,与管壁或气体分子相互作用引起管内气体电离,所产生的负离子(实际上即电子)在电场加速下向阳极移动,在到达阳极之前与气体分子发生多次碰撞,打出很多次级电子,这些次级电子也在电场加速下向阳极运动,并在运动过程中与气体分子发生多次碰撞,打出更多次级电子,这样就引起了“雪崩”放电。
在“雪崩”过程中,由于受激原子的退激和正负离子复合产生的光子被猝灭分子吸收。
电子质量小,运动速度快,正离子质量大,运动速度慢,电子到达阳极后,阳极周围形成一层“正离子鞘”,阳极附近的电场随“正离子鞘”的形成而减弱,以致新电子无法增值,放电便终止了。
计数管可看做一个电容器,放电前加了高压,于是在两极上就带有了一定量的电荷,放电过程中在阳极得到一个负电压脉冲。
负脉冲的幅度与电源电压以及电阻R的大小有关,电压高则负脉冲的幅度高;电阻大,脉冲的宽度较大,幅度也较高。
2. G-M计数器的特性1)坪特性——包括起始电压、坪长、坪斜等当射入计数管的粒子数目不变时,改变计数管两极间所加电压值,发现定标器计得的计数率(单位时间内计数)是变化的,曲线中间有一段平坦的部分,所以称其为“坪特性曲线”。
在强度不变的放射源照射下,G-M管的计数率n 随外加电压变化的曲线即坪曲线如图所示。
盖革一米勒计数管的特性及放射性衰变的统计规律
1.计数管在什么情况下出现连续放电? 出现连续放电时怎徉处理? 如何延长计数管的使用寿命?当电场强度大到一定程度时,由于放大后的次级离子数足够多,电离电荷所产生的电场抵消一部分外加电场,即所谓空间电荷效应,这时气体放大系数不是恒定的,而与原电离有关。
区域Ⅴ为G-M 区,进入该区后,离子倍增更加猛烈,空间电荷效应越来越强,此时电离电流强度不再与原电离有关,反映在曲线上是α和β两根曲线重合,并且随电压的变化较小。
工作在该区的气体探测器是G-M 计数管。
当工作电压超过2V 继续升高时,计数率将急剧上升,这时计数管已进入“连续放电区”。
计数管经过一次连续放电,就会使猝熄气体大量分解。
使用时,要小心避免发生连续放电。
升高电压时,应该特别注意其计数情况,如发现计数率剧增,要立刻降低电压!计数管每计数一次,就有部分猝熄气体分子被分解(每次约1010个),从而失去猝熄作用,所以G-M 计数管有一定的寿命。
在正常条件下,有机管约为891010次计数。
卤素气体分解后有可能重新复合,因此尽管含量少,但计数寿命可达9101010次计数。
G-M 计数管必须在一定温度范围内才能正常工作。
温度太低时,部分猝熄气体会凝聚,使猝熄作用减弱,坪长缩短直至完全丧失猝熄能力而连续放电。
一般有机管的工作温度约为0~40℃,卤素管约为-10~50℃。
2.G-M 计数管的计数与哪些因素有关? 能否用它来测量能量和区分射线种类?与坪曲线、分辨时间、探测效率和寿命等因素有关。
在一定的外加电压下,不论射线在计数管内打出多少正负离子对,最后形成的正离子鞘总是一样的。
因此,G-M 计数管不能区分不同种类,不同能量的粒子,只要射入的粒子引起电离,就可以被记录。
3.分辨时间的存在对计数有什么影响? 能否克服? 如何用示波器来测量分辨时间? 一般情况下,G-M 计数管的分辨时间在100μs ~400μs 之间。
由于分辨时间较长,故G-M 计数管不能进行快速计数。
盖革—弥勒计数器和核衰变的统计规律
分辨时间的测量
假设测得计数率m,分辨时间为τ,则单位时间内有mτ 时间要产生漏记。若实际的计数率为n,则单位时间内的 漏记数为nmτ
n-m=nmτ
修正后的计数率公式 :n=m/(1-mτ)
双源法测量分辨时间
• nA=mA/(1-ma τ) • nB=mB/(1-mB τ) • Nab=nA+nB=mAB/(1-mAB τ) • τ =(mA+mB-mAB)/2mAmB
fj :每个分组区间中实际观测到的次数 fj’:每个分组区间中按理论分布应有的出现次数
• 算出随机变数x2所取的值大于某个预定值x21- α的概率P(x2>x21- α), 令此概率为α
• 在检验时,先设定一个小概率α,称为显著性水平,一般设为0.10,可 从表中找到对应的x21- α
• 自由度v=r-s-1 • 若x2<x21- α,则小概率事件未发生,认为此组数据服从泊松分布
核衰变的统计规律
在t时间内平均衰变的原子核的数目:m=N(1-e-λt)
每个核在t时间内发生衰变的几率为1-e-λt,不发生衰变 的几率为e-λt
在t时间内,在N个原子核中有n个核发生衰变的几率为
p(n)=CNn(1-e-λt)n(e-λt)N-n
当N很大且λt<<1时,二项式分布简化为泊松分布
射粒子的数目
所产生的负离子在电场 加速下向阳极运动
负离子与气体分子发生 碰撞打出更多的次级电
子,引起了“雪崩放 电”,在阳极上便得到
一个负的电压脉冲
为了使一个辐射粒子 引起放电后只计一次 数,在计数管内加入 少量猝灭的气体,用 来猝灭正离子鞘和电 离产生的离子增殖。
电流I与计数率的关系
图(1)
盖革一米勒计数管的特性及放射性衰变的统计规律
佛山科学技术学院实 验 报告课程名称 近代物理实验 实验项目 盖革一米勒计数管的特性及放射性衰变的统计规律专业班级 10物师 姓名 李福潘 学号 2010284113 仪器组号指导教师 李斌老师 成绩 日期 2013年4月8日星期一 一.实验目的(1)了解盖革—米勒计数管的工作原理及特点;(2)学会如何测量其特性参数及确定管子的工作电压;(3)掌握测量物质吸收系数的方法,并验证核衰变的统计规律。
二 实验仪器实验装置包括G-M 计数管、计数管探头、自动定标器、铝吸收片和β放射源。
计数管探头是一个前置放大器,用于将计数管产生的脉冲进行放大。
自动定标器已集高、低压电源和定标器为一体,计数管所需高压便由自动定标器提供。
三.实验原理计数管可看成是一个电容,雪崩放电前加有高压,因而在两极上有一定量的电荷存在,放电后电子中和了阳极上一部分电荷,使阳极电位降低。
随着正离子向阴极运动,高压电源便通过电阻 R 向计数管充电,使阳极电位恢复,在阳极上就得到一个负的电压脉冲。
因此,一次雪崩放电就得到一个脉冲,即一个入射粒子入射只形成一个脉冲,脉冲幅度的大小由高压电源电压和电阻R 决定,与入射粒子的能量和带电量无关。
2、G-M 管的特性(1) 坪曲线。
在强度不变的放射源照射下,G-M 管的计数率n 随外加电压变化的曲线如图1所示。
由于该曲线存在一段随外加电压变化而变化较小的区间即坪区,因此把它叫做坪曲线。
坪曲线的主要参数有起始电压、坪长和坪斜。
起始电压即计数管开始放电时的外加电压,图中用0V 表示。
坪长即坪区的长度,图中为21V V 和之差。
坪斜即坪区的坡度,通常用坪区内电压每增加l00V 时计数率增长的百分比表示:42112211012n n T n n V V -=⨯+-()(V ) [单位:%/(l00V)], (1) 式中T 表示坪斜,1n ,2n 分别对应于1V 和2V 时的计数率。
实验报告内容:一.实验目的 二.实验仪器 (仪器名称,型号,参数,编号) 三.实验原理(原理文字叙述和公式,原理图) 四.实验步骤 五,实验数据和数据处理 六,实验结果 七,分析讨论(实验结果的误差来源和减小误差的方法,实验现象的分析,问题的讨论) 八,思考题坪曲线是衡量G-M 管性能的重要指标,在使用前必须进行测量,以鉴别计数管的质量并确定工作电压。
盖革米勒计数器实验报告
近代物理实验报告指导教师:得分:实验时间: 2009 年 10 月 22 日,第九周,周四,第 5-8 节实验者:班级材料0705 学号 200767025 姓名童凌炜同组者:班级材料0705 学号 2007670 姓名车宏龙实验地点:综合楼 507实验条件:室内温度℃,相对湿度 %,室内气压实验题目:盖革-米勒计数器实验仪器:(注明规格和型号)圆柱形γ计数管一支,自动定标器一台(带高压电源),示波器一台,137Cs放射源一枚。
实验目的:1.掌握盖革-米勒计数器的结构、原理、使用方法2.验证核衰变的统计规律,熟悉放射性测量误差的表示方法实验原理简述:1.计数管的构造与工作原理GM计数管有圆柱形和钟罩型两种,其共同结构为圆筒状的阴极和装在轴线上的阳极丝共同密封在玻璃管内而成。
管内通常充有约10kpa的惰性气体及相应的猝熄气体。
当带电粒子进入计数管的灵敏区域时,将引起管内气体的电离,电力产生的电子在电场加速下向阳极运动,一方面因电场加速获得能量,一方面又因与气体分子碰撞而损失能量。
在充有猝熄气体的计数管中,这些光子大部分将被猝熄气体所吸收,因而达不到阴极,但却会逐步沿铅丝极方向扩展并产生新的电子(光电作用),这些电子又会进一步产生雪崩式的放电。
当电子到达阳极的时候,因为正离子移动的很慢,基本上没有移动能力,从而形成了围绕着丝级的正离子鞘。
由于放电后电子中和了阳极上的一部分电荷, 使得阳极电位降低, 随着正粒子向着阳极运动, 高压电源便通过电阻R 向计数管充电, 使得阳极电位回复, 在阳极上变得到一个负的脉冲电压。
这个负的脉冲电压, 便起到了计数的显示作用。
2. 计数管的特性2.1 坪特性——包括起始电压、 坪长、 坪斜等 当射入计数管的粒子数目不变时, 改变计数管两级之间所加的高压值, 发现由定标器测得的计数率有变化, 如图所示的曲线。
在这个图中, V0称为起始电压, ΔV=V2-V1称为坪长, 在坪区内, 电压每升高1V 是, 计数率增加的百分数称为坪斜, 由公式表示为%100*)(12112V V n n n k l --=坪特性曲线反映了计数管的性能, 所以使用前必须对它进行测量。
盖革弥勒计数器及核衰变的统计规律实验报告
盖革-弥勒计数器及核衰变的统计规律盖革-弥勒计数器是气体探测器的一种,用来测定射线强度,既单位时间的粒子个数。
近年来,随着闪烁探测器及半导体探测器的发展,其重要性有所下降,但由于它的设备简单,使用方便,在有关的放射性测量中仍在广泛使用。
一、实验目的掌握G-M计数器的工作基础,测定其有关特性,学会使用;以G-M计数器未测试设备,验证核衰变的统计规律;学会使用放射性测量结果的误差表示法,学会多次测量结果的误差计算及测试时间的选择。
二、实验原理1、G-M计数器原理:G-M计数器是利用射线使计数管内的工作气体电离,然后收集产生的电荷来记录射线的探测器。
玻璃管内有圆筒状阴极,在阴极对称轴上装有丝状阳极。
先将管内抽成真空,再充入一定量的惰性气体和少量猝灭气体(卤素或有机物)在G-M计数管两级加上电压,设其阳极半径为a,阴极半径为b,阳极与阴极间的电压为U,则沿着管径向位置为r处的电场强度为,可见随着r减小,电场强度增大,且阳极附近急剧增大。
2、脉冲原理(1)当射线进入G-M管中使得管中气体电离后,正离子和负离子在管内电场的作用下分别向阴极和阳极移动。
在阳极附近强大的电场作用下,电子获得强大的动能以至于将阳极附近的气体电离。
经过多次碰撞,殃及附近的电子急剧增多,形成了“雪崩电子”;在这些碰撞中会产生大量的紫外线光子,这些光子能进一步的产生第二波的“雪崩”效应,增加电子。
这个电子不断增加的过程称为气体放大。
(2)雪崩过程发生在殃及附近,加上电子的质量远远小于阳离子的质量,速度比阳离子快,因此电子很快被阳极吸收,在管内留下一个被大量阳离子构成的阳离子鞘包围着的阳极。
正离子鞘将随着电离的发生逐渐增厚,由于正离子鞘的作用,阳极附近的电场将随之减小,以致新电子无法增殖,即电场强度不足以引发雪崩效应,雪崩效应停止,正离子鞘停止生成,放电便终止了,伺候,正离子鞘在电场的作用下慢慢移向阴极,最后到达阴极被中和,阳极附近的电场也随之恢复,使得与G-M串联的电阻记录下一个电压脉冲。
盖革米勒计数器核衰变统计规律实验
X光机模拟放射源
高压、电流调节
GM计数管
管内气体电离 负离子加速到阳极 引起“雪崩放电” “正离子鞘” 中和 高电阻R、充电 负的电压脉冲
U=20.0KV,I=0.07mA。 6次,每次100s。(“target”scan,△t=1s)
本底测量300s,本底平均计数率为0.3/s。
α>0.50
U=15.0KV
I=0.09mA
70
300数据点
60
“target”scan
50
△t=2s
40
计数平均值
30
476.5
20
10
0
理论次数 实验次数
中间值
P=0.7311
利用X光机可以任意调节辐射强度的特点
τ≈2.36*10-4s k≈2857mA-1*s-1
I/m (mA*s)
0.99056 0.97745
Intercept Slope
Value 3.49925E-4 2.36255E-4
Standard Error 2.36209E-6 1.4621E-5
0.1
0.2
I (mA)
改变电压/电流 改变电流模拟双源 n12=n1+n2 n=n0+KI no≈0
m为计数间隔数 r为净计数率
r1≈0.66/sm值越高越近于高斯分布; m值越高,由于计数分布变宽,统计性 涨落的影响变显著;
r1≈0.66/s r2≈0.61/s r5≈0.64/s r10≈0.65/s 平均值:0.64/s
平均计数率r=966/1500=0.64/s
0.00041 0.00040 0.00039 0.00038 0.00037 0.00036 0.00035 0.00034 0.00033
盖革一米勒计数管的特性及放射性衰变的统计规律
盖革一米勒计数管的特性及放射性衰变的统计规律盖革一米勒计数管是一种用于测量放射性物质活度的仪器。
其特性与放射性衰变的统计规律密切相关。
下面将详细介绍盖革一米勒计数管的特性及放射性衰变的统计规律。
盖革一米勒计数管是由法国物理学家盖革和德国物理学家米勒在1913年发明的。
它是一种形如圆柱的金属壳,在其中装有一个压低的臭氧气体。
在管壳的中心沿着一条垂直的轴线上插入一个细管,细管两端开口。
当放射性粒子通过细管时,会将小部分气体离子化。
气体离子受电场作用,向电极移动,产生电流。
电流被放大并记录,由此可测出放射性物质的活度。
盖革一米勒计数管的工作原理基于放射性衰变的特性。
放射性元素会自行衰变,释放出粒子或辐射能。
放射性衰变的过程是随机的,不可预测。
因此,在一定时间内,放射性元素发生衰变的数量是随机的,服从泊松分布。
泊松分布是一种描述随机事件发生次数的概率分布函数。
它与时间和平均事件发生率有关。
具体来说,放射性元素发生衰变的平均速率称为活度(单位为贝克勒尔),而发生k次衰变的概率可以用泊松分布的公式P(k)来表示:P(k) = (λt)^ke^(-λt)/k!其中,λ是单位时间内发生的平均次数,t是时间,k是具体的发生次数。
泊松分布的均值和方差都等于λt。
由于放射性衰变是随机的,所以盖革一米勒计数管测量的结果也是有误差的。
这个误差可以用统计分析来描述。
假设在一连续多个独立的时间间隔内,放射性元素发生衰变的平均速率始终不变。
则在每个时间间隔内,衰变次数服从泊松分布。
因此,如果测量n个时间间隔,每个时间间隔的测量结果都可以采用泊松分布来描述。
这些结果的总和也是服从泊松分布的。
根据泊松分布的性质,其标准差为平均值的开方。
因此,盖革一米勒计数管的误差与时间间隔的开方成反比,即误差随时间间隔的增加而减小。
综上所述,盖革一米勒计数管的特性与放射性衰变的统计规律密切相关。
该仪器利用放射性元素的随机衰变来测量其活度,并根据泊松分布的特性来描述衰变次数的随机性和误差的大小。
近代物理实验2-1盖革-米勒计数器及核衰变统计规律
盖革-米勒计数器及核衰变统计规律方啸(南开大学物理科学学院,天津 300071)【摘要】本文介绍了盖革-米勒计数器的基本结构、工作原理和性能,并给出了核衰变的理论统计规律。
之后作者通过设计实验和分析数据测量了盖革-米勒计数管的坪特性,并验证了核衰变的统计规律。
【关键字】盖革-米勒计数器计数管坪特性核衰变统计规律1.引言盖革-米勒计数器(G-M计数器)是一种气体电离探测器,由德国物理学家盖革(Hans Wilhelm Geiger,1882~1945)和米勒(E. Walther Muller,1905~1979)在1928年发明[1]。
G-M计数器与正比计数器类似,但所加的电压更高。
带电粒子射入气体,在离子增殖过程中,受激原子退激,发射紫外光子,这些光子射到阴极上产生光电子,光电子向阳极漂移,又引起离子增殖,于是在管中形成自激放电。
为了使之能够计数,计数器中充有有机气体或卤素蒸气,能吸收光子,起到猝灭作用。
盖革-米勒计数器优点是灵敏度高,脉冲幅度大,缺点是不能快速计数。
1908年,盖革按照卢瑟福( E. Ernest Rutherford,1871~1937)的要求,设计制成了一台α粒子计数器。
卢瑟福和盖革利用这一计数器对α粒子进行了探测。
从1920年起,盖革和米勒对计数器作了许多改进,灵敏度得到很大提高,被称为盖革-米勒计数器,应用十分广泛。
本文第二个部分先介绍了G-M计数器的结构组成,阐述了其重要部件G-M 计数管的工作原理和性能。
第三部分给出了核衰变的理论统计规律,并对测量误差做出了理论估计。
第四部分是实验的具体设计。
第五部分对实验获得的数据进行分析处理。
实验成功测得了G-M计数管的坪特性,并验证了核衰变的统计规律。
2.G-M计数器图1 G-M计数器实验装置图G-M计数器由G-M计数管、高压电源和定标器三部分组成(如图1)。
G-M计数管按用途可分为γ计数管(常见圆管型)和β计数管(常见钟罩型)(如图2)。
盖革弥勒计数器及核衰变的
为提高探测效率采取的措施。
实验原理和相关名词
使用G-M计数器测量时,两极间形成柱状轴对称电场。射线进 入,引起气体电离,所产生电子就向阳极移动,在阳极附近与 气体分子发生打出次级电子的碰撞,电子同样向阳极移动。引 起“雪崩”放电。将产生大量紫外光光子,引起全管放电。大 量电子移动到阳极被中和。大量正离子由于质量大,移动缓慢, 在阳极附近形成正离子鞘。
坪坡度
定义为电压升高1伏计数率的相对增加量。
死时间,恢复时间,分辨时间
随着正离子鞘向阴极移动,阳极附近电场逐渐回复,假定t时间 运动到某处,使得阳极附近电场恢复到能引起雪崩放电程度,t 就称为死时间。 正离子鞘从该处运动到阴极的时间称为恢复时间。 如果在时间t以后出现脉冲,开始能被定标器记录下来,称为分 辨时间。
盖革-弥勒计数器及核 衰变的统计规律
内容摘要
1. 仪器介绍 2.实验原理 3.相关名词 4.实验内容 5.注意事项
仪器介绍
盖革弥勒计数器(G-M计数器)是射线气体探测器中 应用最广泛的一种,主要测量ß射线 和 γ射线的强度。
由G-M计数管,高压电源,定标器三部分组成。
高压电源为计数管提供工作电压,计数管在射线作用 下产生脉冲,定标器则来记录计数管输出的脉冲数。
注意事项
1.放射性射线对人体有危害,开始前一定要阅读实验关于使用放 射性源的规定,严格遵守。
2.计数器是低气压玻璃器件,易碎,防止碰撞,使用时工作电压 选取适当,严防出现连续放电现象。
高压电源
R
G-M计数管
前置放大 器
C
定标器
G-M计数器可分为ß计数管和γ计数管。
阴 极
阳极
γ计数管 阳极
云母 片
玻璃壳
近代物理实验2-1 盖革-弥勒计数器及核衰变的统计规律
KN
整理课件
实验内容
• (一)测量G-M计数管的坪特性 • (二)观察测量次数对计数率标准误差的影响 • (三)观察本底对净计数率的影响 • (四)验证核衰变所遵从的统计规律 • (五)用示波器测量计数管的死时间,恢复时间
整理课件
整理课件
• 当m比较小时
• 当m比较大时,泊松分布公式化为高斯分布
整理课件
统计误差
单次测量
• 标准误差为: n n
• 若测量值N,则相对误差为: 1
N
• 结果为:
N 1N多次Fra bibliotek量• 若在完全相同的条件下,重复K次测量,平
均计数为: • 标准误差: • 相对误差:
1
K
K
Ni
i1
N
K
1
• 结果为:
KN
N 1
温度太低—猝灭分子凝聚—猝灭作用减弱—坪长缩短, 直至完全失去猝灭能力。
整理课件
G-M计数器
整理课件
核衰变统计规律
大量核的衰变的统计规律:
N(t)N0et
T时间内只有n个核衰变的几率为:
n
n
P(n)
en
n!
n平均较大时,泊松分布化为高斯分布:
P(n)
1
(nn)2
e 2n
2n
整理课件
核衰变统计规律
死时间:正离子鞘运行到能使电场恢复的地方r0所需时间 恢复时间:正离子鞘从r0运行到阴极所需时间 分辨时间:经过时间τ以后出现的脉冲能被定标器记录。
整理课件
G-M计数管
• 性能: • (1)坪特性:坪长、坪坡度、阈电压 • (2)死时间、恢复时间、分辨时间 • (3)探测效率 • (4)寿命 • (5)温度效应
盖革-米勒计数管
盖革—米勒计数管的特性及放射性衰变的统计摘要:盖革—米勒计数管是核辐射气体探测器的一种,通常简称为G-M计数管,它是由盖革和米勒两位科学家发明的,由于它具有结构简单、使用方便、成本低廉、可以做成便携式仪器等特点,至今在放射性同位素应用和剂量监测工作中,仍是常用的探测元件。
关键词:盖革—米勒计数管原理坪曲线泊松分布1.实验目的(1)了解盖革-米勒计数管的工作原理及特点。
(2)学会测量盖革-米勒计数管的特性参数及确定其工作电压。
(3)学会验证和衰变的统计规律。
2.实验仪器实验装置图如图1所示,包括G-M计数管、计数管、计数管探头、自动定标器和β放射源。
计数管探头是一个前置放大器,用于将计数管产生的脉冲进行放大,自动定标器已集高、低压电源和定标器为一体,计数管所需高压便由自动定标器提供。
图1 实验装置图3.实验原理:3.1G-M管的结构和工作原理G-M管的结构类型很多,最常见的有圆柱型和钟罩型两种,他们都是由同轴圆柱形电极构成。
图2是其结构示意图,中心的金属丝为阳极,管内壁圆筒状的金属套(或一层金属粉末)为阴极,管内充有一定量的混合气体(通常为惰性气体及少量的猝灭气体),钟罩型的入射窗在管底部,一般用薄的云母片作成,圆柱型的入射窗就是玻璃管壁。
测量时,根据射线的性质和测量环境来确定选择哪种类型的管子对于α和β等穿透力弱的射线用薄窗的管子来探测;对于穿透力较强的γ射线,一般可用圆柱型计数管。
图2 G-M计数管G-M管工作时,阳极上的直流高压由高压电源供给,于是在计数管内形成一个柱状对称电场。
带电粒子进入计数管,与管内气体分子发生碰撞,使气体分子电离,即初电离(γ粒子不能直接使气体分子电离,但它在阴极上打出的光电子可使气体分子发生电离)。
初电离产生的电子在电场的加速下向阳极运动,同时获得能量。
当能量增加到一定值时,又可使气体分子电离产生新的离子对,这些新离子对中的电子又在电场中被加速再次发生电离碰撞而产生更多的离子对,由于阳极附近很小区域内电场最强,故此区间内发生电离碰撞几率最大,从而倍增出大量的电子和正离子,这个现象称为雪崩,雪崩产生的大量电子很快被阳极收集,而正离子由于质量大、运动速度慢,便在阳极周围形成一层“正离子鞘”,阳极附近的电场随着正离子鞘的形成而逐渐减弱,使雪崩放电停止。
盖革-弥勒计数器及核衰变的统计规律
盖革-弥勒计数器及核衰变的统计规律盖革-弥勒计数器是一种用于测量放射性核素活度的仪器。
它基于核反应速率与放射性核素的活度之间的关系,通过测量辐射计数来估算样品的放射性活度。
本文将探讨盖革-弥勒计数器的工作原理以及核衰变的统计规律。
一、盖革-弥勒计数器的工作原理盖革-弥勒计数器主要由两个部分组成:探头和电子学装置。
探头是由放射性样品和闪烁体组成,通过放射线和闪烁效应将辐射计数转化成可感测的光脉冲。
电子学装置负责对探头输出的信号进行放大、滤波和数字化处理。
当探头接受放射性样品的辐射时,闪烁体被激发并发出光子。
这些光子与光导管中的正电子发生相遇,产生光电效应并产生电子-空穴对。
这些电子会经过倍增器的放大器,产生更多的电子-空穴对,最终形成一个能够被电子学装置记录和分析的电脉冲。
通过校准和标准曲线法,可以将盖革-弥勒计数器的输出辐射计数转化成样品的放射性活度。
在核废料储存和放射性医学诊断等领域中,盖革-弥勒计数器被广泛使用。
二、核衰变的统计规律核衰变是一种随机性过程,每个放射性核素的衰变和放射发生率并不是恒定值。
相反,这些过程遵循一些统计规律,包括:1.指数规律指数规律是最普遍的核衰变统计规律之一。
在这一规律下,放射性核素的活度随时间呈指数下降。
每个放射性核素的半衰期是指其放射性活度减半所需的时间。
每次单个核衰变的发生是一个独立的随机过程,发生的概率在时间上是均匀分布的。
2.泊松分布泊松分布是描述随机事件发生的分布。
在核衰变中,每次放射性衰变是一个随机过程,一个时间点上出现较多的衰变事件比出现较少的衰变事件的概率要小。
这种规律被称为泊松分布。
3.高斯分布高斯分布是另一种随机分布,常常用于描述实验测量误差。
在放射性核素活度的测量中,测量误差会引入高斯分布的误差,并将造成测量值与理论值之间存在一定差异。
结论盖革-弥勒计数器在核科学、医疗和环境监测等领域中起着重要作用。
这种仪器通过电子学装置对辐射计数进行放大和数字化处理,以确定放射性样品的含量和活度。
盖革米勒计数管的特性及放射性衰变的统计规律
实验背景
盖革的名字同一种在1913年发明的探测高能亚原
子粒子的仪器联系在一起,就是所谓的“盖革计数
器”。盖革计数器是一个装有气体的圆筒,上面加
有很高的电势,但是还没有高到能克服气体的电阻
将它击穿的地步。如果有一个高能亚原子粒子进入
圆筒,它将使其中气体的一个分子电离。新产生的
t t t 从这之后到正离子到达阴极的时间称为恢复时间,在恢复
时间内,粒子进入计数管所产生的脉冲幅度低于正常值. D R
D
因为任何电子线路总有一定的触发阈,脉冲幅度必须 超过触发阈时才能触动记录电路.因此,从第一个脉冲开 始到第二个脉冲的幅度恢复到触发阈的这段时间内,进入 计数管的粒子均无法记录下来,这段时间称为系统的分辨 时间.
3.次级电离 4.“电子雪崩” 5. 在阳极上便发生放电而产生一个电脉冲输出.
6.形成“正离子鞘”:使一个粒子入射只能引 起一次雪崩即只形成一个电脉冲
(三)、G-M计数管的性能:
1、坪曲线.在强度不变的放射源照射 下,G-M管的计数率n随外加电压变化 的曲线
起始电压V0,坪长即坪区的长度V2-V1, 坪斜即坪区的坡度T,通常用坪区内电
用高压电源提供G-M计数管的工作电压,计数管在射线作用下可以 产生电脉冲,而定标器则用来记录计数管所输出的脉冲数。
(二)、G-M管的结构和工作原理
1.工作时,柱状对称电场.
2.初电离:带电粒子进入计数管,与管内气 体分子发生碰撞,使气体分子电离即初电离 (粒子不能直接使气体分子电离,但它在阴 极上打出的光电子可使气体分子发生电离)
五、思考题
六、注意事项:
1.放射性射线对人体有危害,开始实验前一定要阅读实 验室关于使用放射源的规定,并严格遵守; 2.计数管是低气压玻璃器件,易碎,要防止碰撞。使用 时工作电压要选取适当,严防出现连续放电现象。
物理实验报告
物理实验报告实验名称:测量同学们跑步的平均速度实验目的:实验器材:设计并进行试验:1、在操场上用测出奔跑的路程s1=20米,s2=30米。
2、用测出自己跑20米所用的时间t1,跑30米所用的时间t2、s3、根据公式v求出两次奔跑的平均速度。
t评估交流:自己记时好还是请同学计时好。
实验课程名称近代物理实验实验项目名称盖革—米勒计数管的研究姓名王仲洪一、实验目的1.了解盖革,弥勒计数管的结构、原理及特性。
2.测量盖革,弥勒计数管坪曲线,并正确选择其工作电压。
3.测量盖革,弥勒计数管的死时间、恢复时间和分辨时间。
二、使用仪器、材料G-M计数管(F5365计数管探头),前置放大器,自动定标器(FH46313Z智能定标),放射源2个。
三、实验原理盖革,弥勒计数管简称G-M计数管,是核辐射探测器的一种类型,它只能测定核辐射粒子的数目,而不能探测粒子的能量。
它具有价格低廉、设备简单、使用方便等优点,被广泛用于放射测量的工作中。
G-M计数有各种不同的结构,最常见的有钟罩形β计数管和圆柱形计数管两种,这两种计数管都是由圆柱状的阴极和装在轴线上的阳极丝密封在玻璃管内而构成的,玻璃管内充一定量的其中一种气体,例如,惰性气体氩、氖等,充气的气压比大气压低。
由于β射线容易被物质所吸收,所以β计数管在制造上安装了一层薄的云母做成的窗,以减少β射线通过时引起的吸收,而射线的贯穿能力强,可以不设此窗圆柱形G-M计数管计数管系统示意图在放射性强度不变的情况下,改变计数管电极上的电压,由定标器记录下的相应计数率(单位时间内的计数次数)可得如图所示的曲线,由于此曲线有一段比较平坦区域,因此把此曲线称为坪特性曲线,把这个平坦的部分(V1-V2)称为坪区;V0称为起始电压,V1称为阈电压,△V=V2-V1称为长度,在坪区内电压每升高1伏,计数率增加的百分数称为坪坡度。
G-M计数管的坪曲线由于正离子鞘的存在,因而减弱了阳极附近的电场,此时若再有粒子射入计数管,就不会引起计数管放电,定标器就没有计数,随着正离子鞘向阴极移动,阴极附近的电场就逐渐得到恢复,当正离子鞘到达计数管半径r0处时,阳极附近电场刚刚恢复到可以使进入计数管的粒子引起计数管放电,这段时间称为计数管的死时间,以td来表示;正离子鞘从r0到阴极的一段时间,我们称为恢复时间,以tr表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
改革-弥勒计数器及核衰变的统计规律
姓名:学号:
一、实验目的
了解盖革-弥勒计数器的结构、工作原理、性能、特性,学会其使用方法。
掌握核衰变的统计规律。
二、实验仪器
G-M计数器,β粒子放射源,脉冲示波器
三、实验原理
(一)盖革-弥勒计数的工作原理
结构:
原理:
盖革弥勒计数器(G-M计数器)是射线气体探测器中应用最广泛的一种,主要测量ß射线和γ射线的强度。
它由G-M计数管,高压电源,定标器三部分组成。
高压电源为计数管提供工作电压,计数管在射线作用下产生脉冲,定标器则来记录计数管输出的脉冲数。
玻璃管内有圆筒状阴极,在阴极对称轴上装有丝状阳极。
先将管内抽成真空,再冲入一定量惰性气体和少量猝灭气体(卤素或有机物)。
ß形和γ形不同在于钟罩下是云母片,因为ß射线穿透力低,为提高探测效率采取的措施。
使用G-M计数器测量时,两极间形成柱状轴对称电场。
射线进入,引起气体电离,所产生电子就向阳极移动,在阳极附近与气体分子发生打出次级电子的碰撞,电子同样向阳极移动。
引起“雪崩”放电。
将产生大量紫外光光子,引起全管放电。
大量电子移
动到阳极被中和。
大量正离子由于质量大,移动缓慢,在阳极附近形成正离子鞘。
可将计数器看作电容器,使阳极得到一个负的脉冲。
电源高,波幅大:电阻高,脉冲宽。
(二)计数管的特性
开始输出小,计数器示零,电压超过某一值时,定标器开始计数,此时电压Va 为阈电压。
随着脉冲幅度升高,计数率迅速增加,升到Vb 时,只要产生一个离子对,就能引起全管雪崩放电。
进一步升高,只能提高幅度,不能增加个数,直到Vc ,称为坪区。
Vc-Vb 为坪长度。
坪斜]%100[)(2
212
12
1每伏特⋅-⋅+-=
V V n n n n ε,
表示为电压升高1伏计数率的相对增加量。
(三)核衰变的统计规律及测量数据的处理 1、衰变规律:
对大量核而言,其衰变遵从统计规律,有衰变定律
-λλ0(t)e N =N
其中t 表示时间,N0为t=0时刻的放射性核数,N(t)为t 时刻的放射性核数,λ称为衰变常数。
泊松分布和高斯分布:
设N 为尚未衰变的放射性核数,n 为某时间t 内衰变的核数,假设该种放射性核的半衰期很长,即在测量过程中可以认为N 不变,可以推出t 时间内有n 个核衰变而其余的核不衰变的几率为(即泊松分布公式 )
n
n e
n n n P -=!)()(
当平均数比较大时,泊松分布公式化为高斯分布公式
σ
σπ22
21
)(∆-=
∆e P
2、测量数据的检验 直接检验:
平均值∑=k i N k N 11 标准误差∑-⋅-=k
i N N k 1
1)(11
σ 统计误差N =2σ
频率直方分布图:
组距2σ 分界点σσσ4
5
4341±±±N N N ,,
… 中间值,2
1
,σσ±±N N N ,… 3、测量时间选择
本底计数频b n 源加本底频数c n
b n n n -=
c a
相对误差b
c b
b
c c n n t n t n E -+=
测量时间 22a c n n n n t E b c c ⋅⋅+= 2
2a c b n n n n t E
b
b ⋅⋅+= 四、实验内容
1、测坪曲线
弄清G-M 计数管正负极,将高压极性调节好。
开启电源检查定标器是否正常。
找出起始电压,以6V 为间隔,30s 测一次数,共测12组,画出坪曲线,并求坪长,萍斜。
标出起始电压,选定工作电压。
2、验证核衰变所遵循的统计规律
1.)无放射源时,以选定的工作电压进行测量,计数30次,每次30s
2.)有放射源时,调整测量时间使每次计数在1000-1500,重复测量200次
3.)求平均值及标准差σ。
并作出频率分布直方图,与高斯曲线比较。
并求出在区间N
+
σ
内的频率。
3、合理的安排测量时间
粗略估计本底计数率b n 以及源加本底计数率c n 。
并在精度为1%的条件下,求出一次测量本第及源加本底的时间,并按时间测量,求出实验精度,验证公示准确性。
五、实验数据及其处理
1、测坪曲线
1)实验数据 ∆t=30s 工作电压:333V 测12次
电压(v )
303 309 315 321 327 333 339 345 351 357 363 369 计数频
578
3186 3524 3509 3720 3595 3647 3744 3691 3685 3643 3772
2)实验数据处理
由图得:
坪长L=52.09V 坪斜=3.51/V 起始电压:301.53V 工作电压:333V
2、验证核衰变所遵从的统计规律
无放射源:
1)实验数据 ∆t=30s 工作电压:333V 测30次
52 63 69 63 60 63 58 62 57 51 56 45 64 65 65 55 59 56 48 72 64
66
59
53
41
63
60
52
59
57
2)实验数据处理 ①平均值:N
=58.57 ②标准差:σ=6.93
③落在N
+σ
(51.64~65.5)内的频率值:
77.030
23
=
坪曲线
有放射源:
1)实验数据 ∆t=10s 工作电压:333V 测200次
1161 1229 1227 1192 1162 1190 1203 1206 1233 1207 1175 1185 1187 1203 1229 1225 1304 1218 1173 1176 1213 1225 1225 1262 1167 1262 1230 1236 1226 1268 1160 1223 1235 1250 1225 1183 1268 1136 1227 1217 1248 1224 1201 1207 1181 1231 1206 1185 1220 1222 1247 1210 1152 1178 1265 1223 1178 1177 1244 1241 1173 1232 1259 1252 1179 1155 1251 1198 1197 1232 1224 1239 1157 1172 1282 1196 1265 1226 1242 1198 1226 1260 1201 1214 1225 1215 1189 1173 1172 1175 1202 1194 1176 1159 1231 1157 1219 1203 1225 1151 1234 1257 1153 1216 1268 1288 1207 1189 1196 1197 1201 1225 1248 1251 1176 1197 1172 1304 1134 1224 1217 1213 1170 1186 1230 1210 1225 1215 1212 1183 1199 1195 1181 1283 1276 1223 1193 1229 1175 1184 1187 1183 1143 1187 1222 1149 1201 1257 1230 1244 1182 1181 1192 1209 1246 1205 1219 1215 1211 1251 1173 1224 1207 1184 1182 1239 1217 1198 1255 1145 1200 1274 1238 1179 1180 1243 1216 1200 1171 1206 1202 1205 1229 1210 1178 1219 1178 1238 1173 1204 1253 1224 1237 1254 1200
1181 1231 1245 1203 1229
2)实验数据处理 ①平均值:N
=1210.67 ②标准差:σ=33.09
③落在N
+σ
(1177.58~1243.76)内的频率值:
58.0200
116
= 频率直方分布图:
由频率直方分布图可知,核衰变的统计规律符合高斯分布,即核衰变所遵从的统计规律得到验证。
3、合理安排测量时间
59n =b 3653n =b b n n n -=c a
精度E=1%时,22a c n n n n t E b c c ⋅⋅+==95.4 s ,2
2
a c
b n n n n t E b b ⋅⋅+==12 s 据上,取s t b 10= s t
c 90=,得
s N b 21=,s n b 1.2= ;s N
c
12116=,s n c 6.134
= 得精度b
c b
b
c c n n t n t n E -+==0.975%
可看出精度0.975%与1%相近,证明所选时间合理,实验规律公式正确。
六、注意事项
1、放射性射线对人体有危害,开始前一定要阅读实验关于使用放射性源的规定,严格遵守。
2、计数器是低气压玻璃器件,易碎,防止碰撞,使用时工作电压选取适当,严防出现连续放电现象。