水热合成法-修改-雷鸣PPT课件
合集下载
课件:第五章 水热合成
构。其它9种经粉末X射线衍射分析以及吸附性能的研
究,确定为新的分子筛晶相。
• 研究组又在中温中压下开发出了一系列钛酸盐,硼 酸盐和砷酸盐微孔晶体。进一步丰富了中温中压水热 下的无机造孔合成领域。
2. 介孔材料
介孔材料是指孔径位于2~50nm,且具有一 定长程有序性的多孔材料。介孔材料因表面积大、 孔径分布均一及结构有序的特性而被广泛应用于 催化载体、吸附材料及分离介质等领域。1992年 Mobil公司的研究人员首次使用烷基季铵盐型阳 离子表面活性剂作为模板剂成功合成出M41S介 孔材料(MCM-41、MCM-48、MCM-50等),从 而将多孔材料从微孔扩展到介孔。
[BeAl2(SiO2)6]以及彩色的水晶等(掺过渡金属等)。
水热反应通常是以水为溶剂。目前也有用NH3,醇, 为溶剂进行新型无机物的合成。
二.作为反应介质的水的有关性质
1. 在高温高压水热体系中,水的性质将产生下列变化:
(1)蒸气压
变高
(2)密 度
变低
(3)表面张力 变低
(4)粘 度
变低
(5)离子积
5.介电常数
以水为溶剂时,介电常数是一个十分重要的性质。它 随温度升高而下降,随压力增加而升高。
有时温度又是主要的,在通常情况下电解质在水中全 部溶解,然而随着温度的提高,电解质可能趋向于重新 结合。对于大多数物质来说,这种变化在200~500℃之 间发生。
NaBr解离常数k与 T的关系曲线。可以看出:恒温下,k随压强 的增加而上升;恒压下,k随温度升高而下降。
矿石, 铬以可溶性盐铬酸钠形式提取。
4. 水热分解法 例如:自ZrSiO4中,在 NaOH水溶液使其分解而制
取ZrO2。 ZrSiO4→ZrO2↓+Na2SiO3 (条件为NaOH(aq)
水热合成法 ppt课件
• 制备具体过程:以抛光的钛金属片衬底或沉积钛的玻璃衬底作为阳极,Pt 金属 片作为阴极,以Ba(OH)2 水溶液为前驱物,通过两电极,经100~200 ℃的水热处 理,得到了表面无宏观缺陷,呈金属光泽的BaTiO3 薄膜。
• 在衬底上形成稳定结晶相薄膜
5.3 其他应用
煤的液体化、气体化:在水热条件下,煤可以液化、气体化,产生油性状,所以 如果煤在水热条件下处理实现工业化,煤的运输,煤的有效利用,因烧煤而造成的 环境污染,将会得到较大的改变。
• 反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差, 即反应向吉布斯焓减小的方向进行。
二、水热生长体系中的晶粒形成可分为三种类型:
➢ “均匀溶液饱和析出”机制:由于水热反应温度和体系压力的升高,溶质在溶 液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒。
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法; 苗鸿雁; 罗宏杰; 姚熹; ) • TiO2和BaTiO3纳米晶的水热合成及其光电性能的研究( 中南大学, 王丽丽) • 水热合成法及其应用(惠春)
水热合成法
水热合成法 Hydrothermalsynthesis
无机
1
• 在衬底上形成稳定结晶相薄膜
5.3 其他应用
煤的液体化、气体化:在水热条件下,煤可以液化、气体化,产生油性状,所以 如果煤在水热条件下处理实现工业化,煤的运输,煤的有效利用,因烧煤而造成的 环境污染,将会得到较大的改变。
• 反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差, 即反应向吉布斯焓减小的方向进行。
二、水热生长体系中的晶粒形成可分为三种类型:
➢ “均匀溶液饱和析出”机制:由于水热反应温度和体系压力的升高,溶质在溶 液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒。
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法; 苗鸿雁; 罗宏杰; 姚熹; ) • TiO2和BaTiO3纳米晶的水热合成及其光电性能的研究( 中南大学, 王丽丽) • 水热合成法及其应用(惠春)
水热合成法
水热合成法 Hydrothermalsynthesis
无机
1
水热与溶剂热合成方法的概念水热法ppt课件
15
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之 间的团聚和联接遭到破坏,从而使微粒自身在水 热介质中溶解,以离子或离子团的形式进入溶 液,进而成核、结晶而形成晶粒;
16
“结晶”是指当水热介质中溶质的浓度高于晶粒 的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于 结晶的物料浓度又变得低于前驱物的溶解度,这 使得前驱物的溶解继续进行。如此反复,只要反 应时间足够长,前驱物将完全溶解,生成相应的 晶粒。
13
水热生长体系中的晶粒形成可分为三种类型:
“均匀溶液饱和析出”机制 “溶解-结晶”机制
“原位结晶”机制
14
“均匀溶液饱和析出”机制
由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应 ,生成相应的配位聚集体(可以是单聚体,也可 以是多聚体)当其浓度达到过饱和时就开始析出 晶核,最终长大成晶粒。
• 用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱
石(祖母绿、海蓝宝石)、及其它多种硅酸盐和钨酸盐等上 百种晶体。
绿柱石(铍铝硅酸盐矿物) 石榴子石(A3B2[SiO4]3 7
水热法(hydrothermal)(高压溶液法)
8
溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
31
热处理反应
利用水热条件处理一般晶体
而得到具有特定性晶体的反 应。
利用水热条件下物质热
力学和动力学稳定性差 异进行的反应。
转晶反应
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之 间的团聚和联接遭到破坏,从而使微粒自身在水 热介质中溶解,以离子或离子团的形式进入溶 液,进而成核、结晶而形成晶粒;
16
“结晶”是指当水热介质中溶质的浓度高于晶粒 的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于 结晶的物料浓度又变得低于前驱物的溶解度,这 使得前驱物的溶解继续进行。如此反复,只要反 应时间足够长,前驱物将完全溶解,生成相应的 晶粒。
13
水热生长体系中的晶粒形成可分为三种类型:
“均匀溶液饱和析出”机制 “溶解-结晶”机制
“原位结晶”机制
14
“均匀溶液饱和析出”机制
由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应 ,生成相应的配位聚集体(可以是单聚体,也可 以是多聚体)当其浓度达到过饱和时就开始析出 晶核,最终长大成晶粒。
• 用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱
石(祖母绿、海蓝宝石)、及其它多种硅酸盐和钨酸盐等上 百种晶体。
绿柱石(铍铝硅酸盐矿物) 石榴子石(A3B2[SiO4]3 7
水热法(hydrothermal)(高压溶液法)
8
溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
31
热处理反应
利用水热条件处理一般晶体
而得到具有特定性晶体的反 应。
利用水热条件下物质热
力学和动力学稳定性差 异进行的反应。
转晶反应
水热法合成宝石 ppt课件
形态 略有不同,合成的边缘圆滑且较规则。
b、气泡群:早期的较多,现在一般难以见到。 c、籽晶片 d、固体包裹体:呈点絮状或团絮状分布的黄金或箔
金微晶集合体,还可见白的Al(OH)3粉末,外 形似面包屑。
Hale Waihona Puke 晶体内部特征e、生长纹理和色带 锯齿状微波纹,分布在籽晶片与生长层之
间。色带不规则,多呈楔状或者条带状。 f、云烟状裂纹
等温法高压釜
3.2 摆动法
摆动法的装置由A、B两个圆筒组成,其中 A筒放置培养液,B筒放置籽晶,两筒间保持一定的 温度差。定时地摆动A、B两个圆筒以加速它们之间 的对流,利用两筒之间的温差在高压环境下生长出 晶体,此法也曾用于水晶的生长。
3.3 温差法
温差法是在立式高压釜内生产晶体,高压釜内部的 对流挡板将釜腔分成上、下两部分,籽晶挂在生长 区的培育架上,晶体在籽晶上逐步生长;对流挡板 的下部为培养料区(也称溶解区),溶解区内放人适 量的高纯度原料和矿化剂。加热,使高压釜的上、 下部分形成一定的温差。当高压釜温度超过100℃后, 由于热膨胀和大量蒸汽的形成,釜内形成气压。
b、晶面条纹: 六方双锥晶面上普遍发育有各种生长花 纹,常见的有舌状或乳滴生长丘、阶状生长台阶、格状 生长纹理和不规则生长斜纹,偶见放射纤维状条纹。
c、开裂现象: 沿籽晶面裂开或者在(22-43)晶面上 呈规则的网状开裂。
晶体内部特征
a、气液包裹体:生长过程中水的参与而形成,与天 然的极为相似,主要区别在于二者包裹体
自然界热液成矿就是在一定的温度和压力下,成矿 热液中成矿物质从溶液中析出的过程。水热法合成 宝石就是模拟自然界热液成矿过程中晶体的生长。
2.合成装置
主要装置:
高压釜 加热器 控温设备 原料、溶剂、 籽晶等
b、气泡群:早期的较多,现在一般难以见到。 c、籽晶片 d、固体包裹体:呈点絮状或团絮状分布的黄金或箔
金微晶集合体,还可见白的Al(OH)3粉末,外 形似面包屑。
Hale Waihona Puke 晶体内部特征e、生长纹理和色带 锯齿状微波纹,分布在籽晶片与生长层之
间。色带不规则,多呈楔状或者条带状。 f、云烟状裂纹
等温法高压釜
3.2 摆动法
摆动法的装置由A、B两个圆筒组成,其中 A筒放置培养液,B筒放置籽晶,两筒间保持一定的 温度差。定时地摆动A、B两个圆筒以加速它们之间 的对流,利用两筒之间的温差在高压环境下生长出 晶体,此法也曾用于水晶的生长。
3.3 温差法
温差法是在立式高压釜内生产晶体,高压釜内部的 对流挡板将釜腔分成上、下两部分,籽晶挂在生长 区的培育架上,晶体在籽晶上逐步生长;对流挡板 的下部为培养料区(也称溶解区),溶解区内放人适 量的高纯度原料和矿化剂。加热,使高压釜的上、 下部分形成一定的温差。当高压釜温度超过100℃后, 由于热膨胀和大量蒸汽的形成,釜内形成气压。
b、晶面条纹: 六方双锥晶面上普遍发育有各种生长花 纹,常见的有舌状或乳滴生长丘、阶状生长台阶、格状 生长纹理和不规则生长斜纹,偶见放射纤维状条纹。
c、开裂现象: 沿籽晶面裂开或者在(22-43)晶面上 呈规则的网状开裂。
晶体内部特征
a、气液包裹体:生长过程中水的参与而形成,与天 然的极为相似,主要区别在于二者包裹体
自然界热液成矿就是在一定的温度和压力下,成矿 热液中成矿物质从溶液中析出的过程。水热法合成 宝石就是模拟自然界热液成矿过程中晶体的生长。
2.合成装置
主要装置:
高压釜 加热器 控温设备 原料、溶剂、 籽晶等
水热合成法演示课件
水热合成法 Hydrothermalsynthesis
无机 1
1
原理
2
分类
目录
3
过程
5
具体应用
4
与核壳结构 的关系
2
沉淀法
水解法
制备微粉
喷雾法 氧化还原法
冻结干燥法
要得到化合物微粉,加热处理必 不可少。 而高温易造成缺陷,不能保持组 分的均匀性。
水热合成法 提纯与合成双重 作用!
3
一、原理:水热合成是什么?
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法。
TEM image and ED pattern of CdS / ZnO nanoparticles
8Hale Waihona Puke 五、水热合成法的具体应用• 1.制备超细(纳米)粉末 • 2.制备薄膜 • 3.其他应用
9
5.1 制备超细(纳米)粉末
• 制备金属氧化物超微粉因金属铁在潮湿空气中氧化非常慢,但是把这个氧化反 应置于水热条件下,氧化速度非常快,要得到几十到100nm左右的Fe304;,只要把 金属铁在98MPa,40℃的水热条件下反应1小时即可。
制作硬化体:用水热合成法能制作各种各样无机化合物硬化体,应用于建筑材 料、耐火材料。
处理环境污染物质:一些有害物质(PCB,ABC噬粉)在常温常压下不易分解, 而在高温高压下就很容易分解。
12附:资料来源• 百科 • 水热法合成 CdS /ZnO核壳结构纳米微粒 (孙聆东 付雪峰 钱 程 廖春生 严纯
无机 1
1
原理
2
分类
目录
3
过程
5
具体应用
4
与核壳结构 的关系
2
沉淀法
水解法
制备微粉
喷雾法 氧化还原法
冻结干燥法
要得到化合物微粉,加热处理必 不可少。 而高温易造成缺陷,不能保持组 分的均匀性。
水热合成法 提纯与合成双重 作用!
3
一、原理:水热合成是什么?
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法。
TEM image and ED pattern of CdS / ZnO nanoparticles
8Hale Waihona Puke 五、水热合成法的具体应用• 1.制备超细(纳米)粉末 • 2.制备薄膜 • 3.其他应用
9
5.1 制备超细(纳米)粉末
• 制备金属氧化物超微粉因金属铁在潮湿空气中氧化非常慢,但是把这个氧化反 应置于水热条件下,氧化速度非常快,要得到几十到100nm左右的Fe304;,只要把 金属铁在98MPa,40℃的水热条件下反应1小时即可。
制作硬化体:用水热合成法能制作各种各样无机化合物硬化体,应用于建筑材 料、耐火材料。
处理环境污染物质:一些有害物质(PCB,ABC噬粉)在常温常压下不易分解, 而在高温高压下就很容易分解。
12附:资料来源• 百科 • 水热法合成 CdS /ZnO核壳结构纳米微粒 (孙聆东 付雪峰 钱 程 廖春生 严纯
化学鲁教版九年级上册第2课时 水的合成 PPT课件
(1)图中①的微观实质是 氢分子分裂为氢原子, 氧分子分裂为氧原子 ,
②的微观实质是 氢原子与氧原子重新结合为水分子
。
(2)图中方框内表示纯净物的是 C (填字母)。
MING XIAO KE TANG
考点 2 化合反应 4.下列反应属于化合反应的是( A) A.碳+氧气点燃二氧化碳 B.酒精+氧气点燃二氧化碳+水 C.氧化汞加热汞+氧气 D.碳酸钙+盐酸 氯化钙+水+二氧化碳
MING XIAO KE TANG
(1)从以上报道获得的信息中,你了解到氨气有哪些性质?(至少写出 3 条)
① 氨气有刺激性气味 。 ② 易溶于水 。 ③ 有毒性 。 (2)请解释接触液氨可能引起严重冻伤的原因: 液氨汽化时会吸收大量 的热, 使温度降低 。
MING XIAO KE TANG
MING XIAO KE TANG
MING XIAO KE TANG
考点 3 物理性质和化学性质
5.(恩施中考)下列属于物质化学性质的是( C )
A.颜色、状态
B.密度、硬度
C.可燃性、酸碱性
D.熔点、沸点
MING XIAO KE TANG
6.下列描述中属于物理性质的是(B ) A.氢气是一种可燃气体 B.空气是没有颜色、没有气味的气体 C.二氧化碳能使澄清石灰水变浑浊 D.水在通电条件下能分解
MING XIAO KE TANG
12.氢气在氧气中燃烧生成水,该变化不能证明的事实是(D ) A.氢气具有可燃性 B.该变化中的最小粒子是氢原子和氧原子 C.化学变化的实质是分子分成原子,原子重新组合成新分子 D.分子在不停地运动,且分子间有间隔
MING XIAO KE TANG
13.下列哪些性质可以鉴别以下物质,请将有关的序号填在横线上: ①颜色 ②状态 ③气味 ④味道 ⑤硬度 糖水和盐水 ④ ; 氧气和水 ② ; 铜和铝 ① ; 食醋和白酒 ③ 。
水热法与溶剂热法培训课件
合成新材料、新结构和亚稳相
制备超细(纳米)粉末
1/26/2021
水热法与溶剂热法 14
14
2.4水热与溶剂热合成存在的问题
无 法 观察 晶 体生 长 和材 料 合成 的 过程 , 不 直 观。
设 备 要求 高 耐高 温 高压 的 钢材 , 耐腐 蚀 的 内 衬、技术难度大温压控制严格、成本高。
安 全 性差 , 加热 时 密闭 反 应釜 中 流体 体 积 膨 胀,能够产生极大的压强,存在极大的安全隐 患。
8
并非所有晶体都适合在水热环境生长。判明适合采 用水热法的一般原则是:
结晶物质各组分的一致性溶解(在不同的温度压力 下不会发生过大的改变);
结晶物质足够高的溶解度(可溶);
溶解度的温度系数有足够大的绝对值(溶解度随温 度变化明显);
中间产物通过改变温度较容易分解(降温时杂质少)。
1/26/2021
压釜中利用非水溶剂合成沸石的方法,拉开了溶剂热合成 的序幕。
到目前为止,溶剂热合成法已得到很快的发展,并在纳米
材料制备中具有越来越重要的作用。
1/26/2021
水热法与溶剂热法 3
3
1/26/2021
水热法与溶剂热法 4
4
2.1水热与溶剂热合成方法的概念
水热法(Hydrothermal Synthesis),是指在特制的 密闭反应器(高压釜)中,采用水溶液作为反应 体系,通过对反应体系加热、加压(或自生蒸气 压),创造一个相对高温、高压的反应环境,使 得通常难溶或不溶的物质溶解,并且重结晶而进 行无机合成与材料处理的一种有效方法。
年已制备出约80种矿物,其中经鉴定确定有石英,长石, 硅灰石等 ;
1900年以后,G.W. Morey和他的同事在华盛顿地球物理
水热法与溶剂热法PPT课件
47
第47页/共48页
感谢您的观看!
48
第48页/共48页
目
录
Hale Waihona Puke 1. 水热与溶剂热合成方法的发展 2. 水热与溶剂热合成方法原理
水热与溶剂热合成工艺
3.
水热与溶剂热合成方法应用实例
4.
1
第1页/共48页
1.1水热合成方法的发展
最 早 采 用 水 热 法 制 备 材 料 的 是 1845 年 K.F. Eschafhautl以硅酸为原料在水热条件下制备石英晶体 ;
30
第30页/共48页
加入PAM的量不同的Pd/C核壳结构在200的TEM图(a)0, (b)0.1, (c)0.3, (d)0.4g
31
第31页/共48页
加入PdCl2的量不同的Pd/C核壳结构在200的TEM图 (a) 10*105, (b) 15*105mol
32
第32页/共48页
在不同的反应时间下的Pd/C核 壳结构在200的TEM图 (a) 1, (b) 2,(c)3h
无法观察晶体生长和材料合成的过程,不直观。 设备要求高耐高温高压的钢材,耐腐蚀的内衬、 技术难度大温压控制严格、成本高。 安全性差,加热时密闭反应釜中流体体积膨胀, 能够产生极大的压强,存在极大的安全隐患。
15
第15页/共48页
16
第16页/共48页
水热与溶剂热合成的生产设备
高压釜是进行高温高压水热与溶剂热合成的 基本设备;
高压容器一般用特种不锈钢制成,釜内衬有化学惰性 材料,如Pt、Au等贵金属和聚四氟乙烯等耐酸碱材 料。
17
第17页/共48页
简易高压反应釜实物图
18
第18页/共48页
第47页/共48页
感谢您的观看!
48
第48页/共48页
目
录
Hale Waihona Puke 1. 水热与溶剂热合成方法的发展 2. 水热与溶剂热合成方法原理
水热与溶剂热合成工艺
3.
水热与溶剂热合成方法应用实例
4.
1
第1页/共48页
1.1水热合成方法的发展
最 早 采 用 水 热 法 制 备 材 料 的 是 1845 年 K.F. Eschafhautl以硅酸为原料在水热条件下制备石英晶体 ;
30
第30页/共48页
加入PAM的量不同的Pd/C核壳结构在200的TEM图(a)0, (b)0.1, (c)0.3, (d)0.4g
31
第31页/共48页
加入PdCl2的量不同的Pd/C核壳结构在200的TEM图 (a) 10*105, (b) 15*105mol
32
第32页/共48页
在不同的反应时间下的Pd/C核 壳结构在200的TEM图 (a) 1, (b) 2,(c)3h
无法观察晶体生长和材料合成的过程,不直观。 设备要求高耐高温高压的钢材,耐腐蚀的内衬、 技术难度大温压控制严格、成本高。 安全性差,加热时密闭反应釜中流体体积膨胀, 能够产生极大的压强,存在极大的安全隐患。
15
第15页/共48页
16
第16页/共48页
水热与溶剂热合成的生产设备
高压釜是进行高温高压水热与溶剂热合成的 基本设备;
高压容器一般用特种不锈钢制成,釜内衬有化学惰性 材料,如Pt、Au等贵金属和聚四氟乙烯等耐酸碱材 料。
17
第17页/共48页
简易高压反应釜实物图
18
第18页/共48页
《水热与溶剂热合成》课件
在化学中的应用
01
02
03
合成有机分子
水热与溶剂热合成可用于 合成有机分子,如药物分 子、染料分子等。
合成无机纳米材料
利用水热与溶剂热合成技 术,可以制备各种无机纳 米材料,如金属纳米粒子 、氧化物纳米粒子等。
合成功能性配合物
通过水热与溶剂热合成, 可以制备具有特殊功能的 配合物,如荧光配合物、 电致变色配合物等。
。
反应机制与动力学研究
02
深入了解水热与溶剂热合成的反应机制和动力学过程,为优化
反应条件提供理论支持。
新型合成方法的开发
03
结合其他合成方法,如微波合成、超声合成等,开发出更高效
、环保的水热与溶剂热合成方法。
新的应用领域探索
新材料的合成
利用水热与溶剂热合成方法探索合成具有特殊性能和功能的新材 料。
溶剂热合成是指在密封的压力容器中,以有机溶剂为反应介 质,在一定的温度和压力条件下进行的化学反应过程。
详细描述
溶剂热合成利用高温高压的有机溶剂作为反应介质,使物质 在高温高压下发生化学反应,从而合成所需的物质。溶剂热 合成具有反应温度高、压力大、反应条件温和、产物纯净等 优点。
水热与溶剂热合成的基本原理
水热合成的定义
总结词
水热合成是指在密封的压力容器中,以水为溶剂,在一定的温度和压力条件下 进行的化学反应过程。
详细描述
水热合成利用高温高压的水环境作为反应介质,使物质在高温高压下发生化学 反应,从而合成所需的物质。水热合成具有反应温度高、压力大、反应条件温 和、产物纯净等优点。
溶剂热合成的定义
总结词
04
对未来学习的建议
建议1
深入学习相关理论,掌握基本 概念和原理
水热合成法 PPT
水热合成法分类
1)水热氧化:高温高压水、水溶液等 溶剂与金属或合金可直接反应生长性 的化合物。 例如:M+[0]——MxOy
2)水热沉淀:某些化合物在通常条件 下无法或很难生成沉淀,而在水热条 件下却生成新的化合物沉淀。 例如: KF+MnCI2——KMnF2
3)水热合成:可允许在很宽的范围内 改变参数,使两种或两种以上的化合 物起反应,合成新的化合物。例如: FeTiO3+K0H——K20•nTiO2
水热法制备纳米二氧化锡微粉:纳米SnO2具有很大的比表面积,是一种很好 的气皿和湿皿材料。水热法制备纳米氧化物微粉有很多优点,如产物直接为晶 体,无需经过焙烧净化过程,因而可以减少其它方法难以避免的颗粒团聚,同 时粒度比较均匀,形态比较规则。
5.2 水热法制备BaTiO3薄膜
利用Sol-gel法等其他湿化学方法来制备多晶薄膜,灼烧工艺过程则是必不可少 的,在这一过程中易造成薄膜开裂、脱落等缺陷。水热法目前主要用于制备多 晶薄膜,其原因在于它不需要高温灼烧处理来实现由无定形向结晶态的转变。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒。
➢ “原位结晶”机制:当选用常温常压下不可溶的固体粉末,凝胶或沉淀为前驱 物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动 力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变 为结晶态。
制备具体过程:以抛光的钛金属片衬底或沉积钛的玻璃衬底作为阳极,Pt 金属 片作为阴极,以Ba(OH)2 水溶液为前驱物,通过两电极,经100~200 ℃的水热处 理,得到了表面无宏观缺陷,呈金属光泽的BaTiO3 薄膜。
第三章-水热法PPT课件
-
2021/2/3
与水热法相比,溶剂热法具有以下优点:
✓ 在有机溶剂中进行的反应能够有效地抑制产 物的氧化过程或水中氧的污染;
✓ 非水溶剂的采用使得溶剂热法可选择原料的
范围大大扩大,比如氟化物,氮化物,硫化
合物等均可作为溶剂热反应的原材料;同
时,非水溶剂在亚临界或超临界状态下独特
的物理化学性质极大地扩大了所能制备的目
工艺条件,制备方法,设备加工要求都简单易 行,能量消耗相对较低;
产品微粒的粒径可以通过控制反应的过程参数 加以有效控制,便捷易行。参数不同,可以得到 不同粒径大小和分布范围的超细颗粒,并且微粒 粒径分布范围较窄;
页面 29
-
2021/2/3
该技术利用了超临界流体良好的物化性质,整 个实验过程无有机溶剂的参与,环保性能良好, 是可持续发展的“绿色化学”;
页面 25
-
2021/2/3
超临界水分子的扩散系数比普通水高10~100倍, 使它的运动速度和分离过程的传质速率大幅度提 高,因而有较好的流动性、渗透性和传递性能, 利于传质和热交换。
总体来看,水在超临界区的行为更像一个中 等极性的有机溶剂,许多在常温常压下不溶的有 机物和气体在超临界水中都有较好的溶解度,有 的可增加几个数量级,像氧气等甚至可与超临界 水无限混溶,这就为超临界水的应用开辟了广阔 的道路。
标产物的范围;
页面 10
-
2021/2/3
✓ 由于有机溶剂的低沸点,在同样的条件下, 它们可以达到比水热合成更高的气压,从而 有利于产物的结晶;
✓ 由于较低的反应温度,反应物中结构单元可 以保留到产物中,且不受破坏,同时,有机 溶剂官能团和反应物或产物作用,生成某些 新型在催化和储能方面有潜在应用的材料;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)脱水反应
一定温度、压力下物质脱水结晶的反应 例如
(7)分解反应 分解化合物得到结晶的反应
例如 FeTiO3 FeO + TiO2 ZrSiO4 + NaOH Na2SiO3 + ZrO2 FeTiO3 + K2O FeO + K2O·nTiO2 (n = 4, 6)
(8)提取反应 从化合物(或矿物)中提取金属的反应
(12)水解反应
例如 醇盐水解等
(13)烧结反应 水热、溶剂热条件下实现烧结的反应 例如 含OH-、F-、S2-等挥发性物质的陶
瓷材料的制备
(14)反应烧结 化学反应和烧结反应同时进行
例如
氧化铬、单斜氧化锆、氧化铝—氧化锆 复合体的制备
(15)水热热压反应 水热热压条件下,材料固
化与复合材料的生成反应
水热、溶剂热合成已成为无机合 成化学的一个重要的分支。
第一届水热反应和溶剂 热反应(Hydrothermal reactions and
solvothermal reactions) 国际会议
1982年4月在日本横滨
第八届水热反应和溶剂 热反应国际会议
2006年8月在日本森岱 (Sendai)
• 无机晶体材料的溶剂热合成研究是近三十 年发展起来的,主要指在有机溶剂热条件 下的合成,以区别于水热合成。
►水热、溶剂热反应主要以液相反应机理为其 特点,而固相反应主要以界面扩散为特点。
机理上的不同可导致不同结构的材料生成, 如液相条件能生成完美晶体、固相合成能 获得非整比化合物等,即材料的微结构、 性能等与材料的来源密切相关。
水热、溶剂热化学侧重于水热、溶剂热条 件下特殊化合物与材料的制备、合成和组 装,及固相反应无法制得的物相或物种, 或使反应在相对温和的水热、溶剂热条件 下进行。
水热、溶剂热合成化学的特点
①水热与溶剂热条件下反应物反应性能 的改变、活性的提高,水热与溶剂热合 成方法有可能代替固相反应以及难于进 行的合成反应,并产生一系列新的合成 方法。 ②水热与溶剂热条件下中间态、介稳态 及特殊物相易于生成,因此能合成与开 发一系列特种介稳结构、特种凝聚态的 新合成产物。
水热、溶剂热合成化学的特点
③能够使低熔点化合物、高蒸气压且不能在 融体中生成的物质、高温分解相在水热与溶 剂热低温条件下晶化生成。
④水热与溶剂热的低温、等压、溶液条件, 有利于生长极少缺陷、取向好、完美的晶体, 且合成产物结晶度高以及易于控制产物晶体 的粒度。
⑤由于易于调节水热与溶剂热条件下的环境 气氛,因而有利于低价态、中间价态与特殊 价态化合物的生成,并能均匀地进行掺杂。
二、水热、溶剂热反应的基本类型
(1)合成反应
通过数种组分在水热或溶剂热条件下直接化 合或经中间态发生化合反Nd2O3 + H3PO4 NdP5O14 CaO·nAl2O3 + H3PO4 Ca(PO4)3OH + AlPO4 La2O3 + Fe2O3 + SrCl2 (La, Sr)FeO3 FeTiO3 + KOH K2O·nTiO2 (n = 4, 6)
(5)单晶培育 高温高压水热、溶剂热条件下,
从籽晶培养大单晶
例如SiO2单晶的生长,反应条件为0.5mol/LNaOH、 温度梯度410~300℃、压力120MPa、生长速率 1~2mm/d;若在0.25mol/L Na2CO3中,则温度梯度为 400~370℃、装满度为70%、生长速率1~2.5mm/d。
§3.1 水热、溶剂热合成基础
一、水热、溶剂热合成的特点
►水热、溶剂热合成化学是研究物质在高温和密闭 或高压条件下溶液中的化学行为与规律的化学分支
►水热、溶剂热合成是指在一定温度(1001000℃)和压强(1-l00 MPa)条件下利用溶液中物 质化学反应所进行的合成。
水热合成化学侧重于研究水热条件下物质的反应 性、合成规律及产物的结构与性质。反应需耐高温 高压与化学腐蚀的设备。体系处于非平衡状态,需 用非平衡热力学理论研究合成化学问题。
例如
Cr + H2O Cr2O3 + H2 Zr + H2O ZrO2 + H2 Me + n L MeLn (L = 有机配体)
(11)晶化反应 使溶胶、凝胶(so1、gel)等非晶
态物质晶化的反应
例如
CeO2·xH2O CeO2
ZrO2·H2O M-ZrO2 + T-ZrO2 硅铝酸盐凝胶 沸石
水热、溶剂热合成
最早采用水热法制备材料的是1845年K.F. Eschafhautl以硅酸为原料在水热条件下制 备石英晶体。
一些地质学家采用水热法制备得到了许多 矿物,到1900年已制备出约80种矿物,如 石英,长石,硅灰石等。
1900G.W. Morey和他的同事在华盛顿地球 物理实验室开始进行相平衡研究,建立了 水热合成理论,并研究了众多矿物系统。
1985年,Bindy首次在“Nature”杂志上发 表文章报道了高压釜中利用非水溶剂合成 沸石的方法,拉开了溶剂热合成的序幕。
现为无机功能材料、特种组成与结构的无 机化合物和特种凝聚态材料,如超微粒、 无机膜、单晶等的重要合成途径。
从模拟地矿生成开始 合成沸石分子筛和其他晶体材料的常用方法。
高温水蒸气压更高,其结构不同于室温水,在已升 高温度和压力的水中,几乎所有的无机物质都有较 大的溶解度。这对前驱体材料的转化起着重要作用
(2)热处理反应
条件处理一般晶体而得到具有 特定性能晶体的反应
例如:人工氟石棉人工氟云母
(3)转晶反应 利用水热与溶剂热条件下物质热力
学和动力学稳定性差异进行的反应
例如:良石高岭石; 橄榄石蛇纹石; NaA沸石NaS沸石
(4)离子交换反应 沸石阳离子交换;硬水的软化、
长石中的离子交换;高岭石、白 云母、温石棉的OH-交换为F-。
例如 钾矿石中钾的水热提取 重灰石中钨的水热提取
(9)沉淀反应
例如
生成沉淀得到新化合物的反应
KF + MnCl2 KMnF3 KF + CoCl2 KCoF3
(10)氧化反应
金属和高温高压的纯水、水溶液、有机溶剂等作 用得到新氧化物、配合物、金属有机化合物的反 应,以及超临界有机物种的全氧化反应
一定温度、压力下物质脱水结晶的反应 例如
(7)分解反应 分解化合物得到结晶的反应
例如 FeTiO3 FeO + TiO2 ZrSiO4 + NaOH Na2SiO3 + ZrO2 FeTiO3 + K2O FeO + K2O·nTiO2 (n = 4, 6)
(8)提取反应 从化合物(或矿物)中提取金属的反应
(12)水解反应
例如 醇盐水解等
(13)烧结反应 水热、溶剂热条件下实现烧结的反应 例如 含OH-、F-、S2-等挥发性物质的陶
瓷材料的制备
(14)反应烧结 化学反应和烧结反应同时进行
例如
氧化铬、单斜氧化锆、氧化铝—氧化锆 复合体的制备
(15)水热热压反应 水热热压条件下,材料固
化与复合材料的生成反应
水热、溶剂热合成已成为无机合 成化学的一个重要的分支。
第一届水热反应和溶剂 热反应(Hydrothermal reactions and
solvothermal reactions) 国际会议
1982年4月在日本横滨
第八届水热反应和溶剂 热反应国际会议
2006年8月在日本森岱 (Sendai)
• 无机晶体材料的溶剂热合成研究是近三十 年发展起来的,主要指在有机溶剂热条件 下的合成,以区别于水热合成。
►水热、溶剂热反应主要以液相反应机理为其 特点,而固相反应主要以界面扩散为特点。
机理上的不同可导致不同结构的材料生成, 如液相条件能生成完美晶体、固相合成能 获得非整比化合物等,即材料的微结构、 性能等与材料的来源密切相关。
水热、溶剂热化学侧重于水热、溶剂热条 件下特殊化合物与材料的制备、合成和组 装,及固相反应无法制得的物相或物种, 或使反应在相对温和的水热、溶剂热条件 下进行。
水热、溶剂热合成化学的特点
①水热与溶剂热条件下反应物反应性能 的改变、活性的提高,水热与溶剂热合 成方法有可能代替固相反应以及难于进 行的合成反应,并产生一系列新的合成 方法。 ②水热与溶剂热条件下中间态、介稳态 及特殊物相易于生成,因此能合成与开 发一系列特种介稳结构、特种凝聚态的 新合成产物。
水热、溶剂热合成化学的特点
③能够使低熔点化合物、高蒸气压且不能在 融体中生成的物质、高温分解相在水热与溶 剂热低温条件下晶化生成。
④水热与溶剂热的低温、等压、溶液条件, 有利于生长极少缺陷、取向好、完美的晶体, 且合成产物结晶度高以及易于控制产物晶体 的粒度。
⑤由于易于调节水热与溶剂热条件下的环境 气氛,因而有利于低价态、中间价态与特殊 价态化合物的生成,并能均匀地进行掺杂。
二、水热、溶剂热反应的基本类型
(1)合成反应
通过数种组分在水热或溶剂热条件下直接化 合或经中间态发生化合反Nd2O3 + H3PO4 NdP5O14 CaO·nAl2O3 + H3PO4 Ca(PO4)3OH + AlPO4 La2O3 + Fe2O3 + SrCl2 (La, Sr)FeO3 FeTiO3 + KOH K2O·nTiO2 (n = 4, 6)
(5)单晶培育 高温高压水热、溶剂热条件下,
从籽晶培养大单晶
例如SiO2单晶的生长,反应条件为0.5mol/LNaOH、 温度梯度410~300℃、压力120MPa、生长速率 1~2mm/d;若在0.25mol/L Na2CO3中,则温度梯度为 400~370℃、装满度为70%、生长速率1~2.5mm/d。
§3.1 水热、溶剂热合成基础
一、水热、溶剂热合成的特点
►水热、溶剂热合成化学是研究物质在高温和密闭 或高压条件下溶液中的化学行为与规律的化学分支
►水热、溶剂热合成是指在一定温度(1001000℃)和压强(1-l00 MPa)条件下利用溶液中物 质化学反应所进行的合成。
水热合成化学侧重于研究水热条件下物质的反应 性、合成规律及产物的结构与性质。反应需耐高温 高压与化学腐蚀的设备。体系处于非平衡状态,需 用非平衡热力学理论研究合成化学问题。
例如
Cr + H2O Cr2O3 + H2 Zr + H2O ZrO2 + H2 Me + n L MeLn (L = 有机配体)
(11)晶化反应 使溶胶、凝胶(so1、gel)等非晶
态物质晶化的反应
例如
CeO2·xH2O CeO2
ZrO2·H2O M-ZrO2 + T-ZrO2 硅铝酸盐凝胶 沸石
水热、溶剂热合成
最早采用水热法制备材料的是1845年K.F. Eschafhautl以硅酸为原料在水热条件下制 备石英晶体。
一些地质学家采用水热法制备得到了许多 矿物,到1900年已制备出约80种矿物,如 石英,长石,硅灰石等。
1900G.W. Morey和他的同事在华盛顿地球 物理实验室开始进行相平衡研究,建立了 水热合成理论,并研究了众多矿物系统。
1985年,Bindy首次在“Nature”杂志上发 表文章报道了高压釜中利用非水溶剂合成 沸石的方法,拉开了溶剂热合成的序幕。
现为无机功能材料、特种组成与结构的无 机化合物和特种凝聚态材料,如超微粒、 无机膜、单晶等的重要合成途径。
从模拟地矿生成开始 合成沸石分子筛和其他晶体材料的常用方法。
高温水蒸气压更高,其结构不同于室温水,在已升 高温度和压力的水中,几乎所有的无机物质都有较 大的溶解度。这对前驱体材料的转化起着重要作用
(2)热处理反应
条件处理一般晶体而得到具有 特定性能晶体的反应
例如:人工氟石棉人工氟云母
(3)转晶反应 利用水热与溶剂热条件下物质热力
学和动力学稳定性差异进行的反应
例如:良石高岭石; 橄榄石蛇纹石; NaA沸石NaS沸石
(4)离子交换反应 沸石阳离子交换;硬水的软化、
长石中的离子交换;高岭石、白 云母、温石棉的OH-交换为F-。
例如 钾矿石中钾的水热提取 重灰石中钨的水热提取
(9)沉淀反应
例如
生成沉淀得到新化合物的反应
KF + MnCl2 KMnF3 KF + CoCl2 KCoF3
(10)氧化反应
金属和高温高压的纯水、水溶液、有机溶剂等作 用得到新氧化物、配合物、金属有机化合物的反 应,以及超临界有机物种的全氧化反应