矩阵分析期末考试2012
矩阵考试题及答案详解
矩阵考试题及答案详解一、单项选择题(每题3分,共30分)1. 矩阵A与矩阵B相乘,结果为零矩阵,下列哪项说法是正确的?A. A和B中至少有一个是零矩阵。
B. A和B都是零矩阵。
C. A和B的行列式都为0。
D. A和B的秩之和小于它们各自维度的乘积。
答案:D2. 矩阵的转置操作,下列哪项说法是错误的?A. 矩阵的转置是将矩阵的行变为列。
B. 矩阵的转置不会改变矩阵的行列式。
C. 矩阵的转置不会改变矩阵的秩。
D. 矩阵的转置会改变矩阵的特征值。
答案:D3. 对于一个3x3矩阵,下列哪项说法是正确的?A. 它有9个元素。
B. 它有3个行向量。
C. 它有3个列向量。
D. 以上说法都正确。
答案:D4. 矩阵的逆矩阵,下列哪项说法是错误的?A. 只有方阵才有逆矩阵。
B. 矩阵的逆矩阵的逆矩阵是原矩阵。
C. 矩阵的逆矩阵与原矩阵相乘结果为单位矩阵。
D. 矩阵的逆矩阵一定存在。
答案:D5. 矩阵的秩,下列哪项说法是正确的?A. 矩阵的秩等于矩阵中非零行(或列)的最大数量。
B. 矩阵的秩不会超过矩阵的行数。
C. 矩阵的秩不会超过矩阵的列数。
D. 以上说法都正确。
答案:D6. 矩阵的特征值,下列哪项说法是错误的?A. 特征值是矩阵的特征多项式的根。
B. 矩阵的特征值可以是复数。
C. 矩阵的特征值一定是实数。
D. 矩阵的特征值与矩阵的迹有关。
答案:C7. 矩阵的行列式,下列哪项说法是正确的?A. 行列式为0的矩阵是可逆的。
B. 行列式为0的矩阵是奇异矩阵。
C. 行列式为1的矩阵是单位矩阵。
D. 行列式为-1的矩阵是正交矩阵。
答案:B8. 矩阵的相似性,下列哪项说法是错误的?A. 相似矩阵有相同的特征值。
B. 相似矩阵有相同的行列式。
C. 相似矩阵有相同的秩。
D. 相似矩阵有相同的迹。
答案:D9. 矩阵的正交性,下列哪项说法是正确的?A. 正交矩阵的行列式为1或-1。
B. 正交矩阵的转置是其逆矩阵。
C. 正交矩阵的元素都是实数。
矩阵试题及答案
矩阵试题及答案一、选择题(每题5分,共20分)1. 矩阵A的行列式为0,那么矩阵A是:A. 可逆的B. 不可逆的C. 正交的D. 单位的答案:B2. 如果矩阵B是正交矩阵,那么其逆矩阵是:A. B的转置B. B的负转置C. B的正转置D. B的负答案:A3. 对于任意矩阵C,下列哪个操作不会改变其行列式:A. 行交换B. 行乘以常数C. 行加到另一行D. 行乘以常数后加到另一行答案:C4. 矩阵D的秩为2,那么其行最简形矩阵的行数是:A. 1B. 2C. 3D. 4答案:B二、填空题(每题5分,共20分)1. 若矩阵E是3x3的单位矩阵,则E的行列式值为______。
答案:12. 矩阵F的转置矩阵记作F',则F'的转置矩阵是______。
答案:F3. 矩阵G的逆矩阵存在,则G的行列式值不能为______。
答案:04. 若矩阵H的秩为3,则其至少有______个非零行。
答案:3三、计算题(每题15分,共30分)1. 给定矩阵J:\[ J = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{bmatrix} \]求J的行列式。
答案:\[ \text{det}(J) = 1(5\cdot9 - 6\cdot8) - 2(4\cdot9 - 6\cdot7)+ 3(4\cdot8 - 5\cdot7) = 0 \]2. 已知矩阵K:\[ K = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \]求K的逆矩阵。
答案:\[ K^{-1} = \frac{1}{(2\cdot4 - 3\cdot1)} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1.5 \\ -0.5 & 1 \end{bmatrix} \]四、简答题(每题10分,共20分)1. 简述矩阵的转置操作及其性质。
矩阵分析期末考试
错误!2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A)一、(共30分,每小题6分)完成下列各题:(1)设4R 空间中的向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=23121α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=32232α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=78013α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=43234α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=30475αSpan V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V 的维数.解:=A {}54321,,,,ααααα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→00000410003011020201 21V V +和21V V 的维数为3和1(2) 设()Ti i 11-=α,()Ti i 11-=β是酉空间中两向量,求内积()βα,及它们的长度(i =). (0, 2, 2);(3)求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A 的满秩分解. 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→0000747510737201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=775211⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----747510737201* (4)设-λ矩阵⎪⎪⎪⎭⎫ ⎝⎛++=2)1(000000)1()(λλλλλA ,求)(λA 的Sm ith 标准形及其行列式因子.解:⎪⎪⎪⎭⎫ ⎝⎛++=2)1(000000)1()(λλλλλA ()()⎪⎪⎪⎭⎫ ⎝⎛++→2111λλλλ(5)设*A 是矩阵范数,给定一个非零向量α,定义 *Hx x α=,验证x 是向量范数.二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基.解:(1)由题意知 T [ε1,ε2,ε3]=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-021110111,,321εεε 线性变换T的值域为T(V)= {}321312,span εεεεε+++ 所以A (V)的维数为2, 基为{}321312,εεεεε+++(2)矩阵A的核为AX=0的解空间。
矩阵分析考试题及答案
矩阵分析考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A和矩阵B的乘积AB是()。
A. 可逆的B. 不可逆的C. 非方阵D. 零矩阵答案:A2. 矩阵的秩是指()。
A. 矩阵中非零元素的个数B. 矩阵中行向量的最大线性无关组的个数C. 矩阵中列向量的最大线性无关组的个数D. 矩阵中行向量和列向量的最大线性无关组的个数答案:B3. 矩阵的特征值是()。
A. 矩阵的对角线元素B. 矩阵的非对角线元素C. 矩阵的特征多项式的根D. 矩阵的行列式答案:C4. 矩阵A和矩阵B相似的条件是()。
A. A和B的行列式相等B. A和B的迹相等C. A和B有相同的特征值D. A和B的秩相等答案:C5. 矩阵A的逆矩阵记作()。
A. A'B. A^TC. A^-1D. A^*答案:C二、填空题(每题2分,共10分)1. 如果矩阵A的行列式为0,则矩阵A是不可逆的。
答案:不可逆的2. 矩阵A和矩阵B的乘积AB等于BA的条件是A和B都是方阵。
答案:方阵3. 矩阵的秩等于矩阵的。
答案:行秩或列秩4. 矩阵的特征值是矩阵的特征多项式的根。
答案:特征多项式5. 矩阵的转置记作。
答案:A^T三、计算题(每题10分,共20分)1. 计算矩阵A=\(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)的行列式。
答案:\(\boxed{-2}\)2. 求矩阵B=\(\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}\)的特征值。
答案:特征值为\(\boxed{1}\)和\(\boxed{5}\)四、证明题(每题15分,共30分)1. 证明如果矩阵A和B是可逆的,则它们的乘积AB也是可逆的。
答案:略2. 证明矩阵A的特征值的和等于矩阵A的迹。
答案:略。
矩阵分析试卷
2007《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)1. 设函数矩阵⎪⎪⎪⎭⎫⎝⎛=001t e -sint t e cost A(t)t2t 试求 )t A(t d d ; )t A(lim 0t →.2. 设矩阵⎪⎪⎭⎫ ⎝⎛=441-0A 试求 Ae . 3. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛110011-111.4. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-020021。
二、证明题(每题10分,共30分)1. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321183232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.2. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥+=⋂2121V V V V .3. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)1. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?2. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 试给出主要的过程.2007《矩阵分析》试题(B 卷)一、 计算题 (每题10分,共40分)5. 设函数矩阵⎪⎪⎪⎭⎝=003t 02e eA(t)t 2t-试求 t d )t A(1⎰.6. 设矩阵⎪⎪⎭⎫⎝⎛=12-10A 试求 Ae . 7. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛011-1-3241-1.8. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎪⎪⎭⎫⎝⎛1213214321.二、证明题(每题10分,共30分)4. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321113423232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.5. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥⋂=+2121V V V V .6. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)3. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?4. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 给出主要的过程.2008硕士研究生《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)9. 设函数矩阵⎪⎪⎪⎭⎝=001t e -sint A(t)t试求 t )d t A(1⎰; )t A(lim 0t →.10. 设矩阵⎪⎪⎭⎫⎝⎛=441-0A 试求 sinA . 11. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛11002-1-011.12. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-010012。
矩阵期末试题及答案
矩阵期末试题及答案一、选择题1. 矩阵的主对角线元素是指:A. 矩阵的第一行元素B. 矩阵的第一列元素C. 矩阵的第一行和第一列元素D. 矩阵从左上角到右下角的元素答案:D2. 已知矩阵A = [1 2 3; 4 5 6; 7 8 9],则矩阵A的转置矩阵为:A. [1 2 3; 4 5 6; 7 8 9]B. [1 4 7; 2 5 8; 3 6 9]C. [1 2 3; 7 8 9; 4 5 6]D. [9 8 7; 6 5 4; 3 2 1]答案:B3. 若矩阵A是m×n矩阵,矩阵B是n×p矩阵,则矩阵A乘以矩阵B得到的矩阵维度为:A. m×pB. n×pD. n×n答案:A4. 若矩阵A = [2 4; 6 8; 10 12],则矩阵A的行数和列数分别为:A. 3,2B. 2,3C. 3,3D. 2,2答案:A5. 矩阵的逆矩阵存在的条件是:A. 矩阵可逆B. 矩阵为零矩阵C. 矩阵是方阵D. 矩阵不存在逆矩阵答案:C二、填空题1. 一个3×4矩阵由36个元素构成,其中每个元素都是实数。
则该矩阵共有________个元素。
2. 若矩阵A = [1 0; 0 -1],则矩阵A的特征值为________。
答案:1,-13. 以矩阵A = [1 2; 3 4; 5 6]为被乘矩阵,矩阵B = [7 8; 9 10]为乘矩阵,两矩阵相乘的结果为矩阵C = ________。
答案:[25 28; 57 64; 89 100]4. 若矩阵A = [1 2; 3 4],则矩阵A的转置矩阵为矩阵______。
答案:[1 3; 2 4]5. 设矩阵A = [2 4; 6 8],矩阵B = [1 2; 3 4],则矩阵A与矩阵B的乘积为矩阵______。
答案:[14 20; 30 44]三、计算题1. 计算矩阵A = [2 1; -3 4; 5 6]的转置矩阵。
矩阵分析期末试题及答案
矩阵分析期末试题及答案矩阵分析是一门重要的数学课程,在科学、工程和经济等领域都有广泛的应用。
期末试题的设置既考查学生对于矩阵分析理论的理解,也测试其应用能力和解决问题的能力。
本文将为您提供一套矩阵分析的期末试题,并附有答案解析。
1. 简答题(每小题2分,共20分)(1) 请简述矩阵的定义和基本术语。
答案:矩阵是由数个数排成m行n列的一个数表。
行数和列数分别称作矩阵的行数和列数。
矩阵的元素用a[i, j]表示,其中i表示所在的行数,j表示所在的列数。
(2) 请解释什么是方阵和对角矩阵。
答案:方阵是行数和列数相等的矩阵。
对角矩阵是除了主对角线上的元素外,其他元素都为零的矩阵。
(3) 请解释矩阵的转置和逆矩阵。
答案:矩阵的转置是指将矩阵的行和列进行互换得到的新矩阵。
逆矩阵是满足A * A^(-1) = I的矩阵A的逆矩阵,其中I是单位矩阵。
(4) 请简述特征值和特征向量的定义。
答案:特征值是方阵A满足方程A * X = λ * X的标量λ,其中X是非零的列向量。
特征向量是对应特征值的零空间上的非零向量。
(5) 请解释矩阵的秩和行列式。
答案:矩阵的秩是指矩阵中线性无关的行或列的最大个数。
行列式是将矩阵的元素按照一定规则相乘并相加得到的一个标量。
(6) 请解释正交矩阵和幂等矩阵。
答案:正交矩阵是满足A * A^T = I的矩阵A。
幂等矩阵是满足A *A = A的矩阵A。
(7) 请解释矩阵的特征分解和奇异值分解。
答案:矩阵的特征分解是将一个矩阵表示为特征向量矩阵、特征值矩阵和其逆的乘积。
奇异值分解是将一个矩阵表示为三个矩阵相乘的形式,其中一个是正交矩阵,一个是对角矩阵。
(8) 请解释矩阵的迹和范数。
答案:矩阵的迹是指矩阵对角线上元素的和。
范数是用来衡量矩阵与向量的差异程度的指标。
(9) 请解释矩阵的稀疏性和块状矩阵。
答案:矩阵的稀疏性是指矩阵中大部分元素为零的特性。
块状矩阵是由多个子矩阵组成的一个矩阵。
(10) 请解释矩阵的正定性和对称性。
中国农业大学2012-2013(秋)《线性代数》期末考试试题解析
2012~2013学年秋季学期线性代数(B)课程考试试题解析一.填空题(本题满分15分,共5道小题,每道小题3分)1.设A 为3阶方阵,且||3A =,A *为A 的伴随矩阵,若交换A 的第1行与第2行得到B ,则||BA *=27-.解析:||BA *=()2*-3-27==B A A注释本题知识点:1.互换行列式的两行,行列式改变符号。
2.*||=n -1AA 2.A 为n 阶矩阵,且()R A E n -<,则A 的一个特征值为1.解析:由于()R A E n -<,所以||=0A -E ,所以A 的一个特征值为1.注释本题知识点:1.()R A E n -<,知道A -E 不可逆,其行列式值为0.2.特征值的定义。
3.设A 为34⨯矩阵,()3R A =,且已知非齐次线性方程组Ax b =的两个解为121211,0124ηη⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪== ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则非齐次线性方程组Ax b =的通解为1112()0122k k R ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪+∈ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.解析:由于()3R A =,对应的齐次线性方程组的基础解系有一个解向量,2112-=-12ηη⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭就是对应的齐次线性方程组的基础解系。
1η是非齐次线性方程组的特解。
所以非齐次线性方程组Ax b =的通解为k k R 1112()0122⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪+∈ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭注释本题知识点:1.基础解系的概念2.非齐次线性方程组解的构成。
4.若2221231231223(,,)2+2f x x x x x x x x tx x =+++为正定二次型,则t.解析:正定二次型对应的矩阵为t2t 22101101⎛⎫⎪ ⎪ ⎪⎝⎭,它的各阶顺序主子大于零,所以t 2t 22101101>21102t->,所以t 注释本题知识点:1.二次型对应的矩阵是对称矩阵。
矩阵论试题参考答案(2012年)
n n 1 , det X xik X ik xij X ij xik X ik ,其中 X ik 是 xik 的代数 det X k 1 k j
余子式,
det X X ij ,从而 xij
det X 1 xij
xij
1 det X
2012 年矩阵论试题参考答案
一、(16 分) 已知 4 阶方阵 A 的特征值为 1, 2, 2, 2 ,且其一阶和二阶行列式因子分别为
D1 1, D2 2.
1.(6 分) 求 A 的不变因子和最小多项式; 2.(4 分) 求 A 的 Jordan 标准形; 3.(6 分) 求实数 t 的取值范围,使 cos At 为收敛矩阵. 解 . 1 . 因 为 D4 即 为 A 的 特 征 多 项 式 , 且 A 的 特 征 值 为 1, 2, 2, 2 , 故
A 的最小多项式为 mA d 4 1 2 .
2.由 A 的不变因子知, A 的初等因子为
1, 2, 2, 2 ,故 A 的 Jordan 标准形
1 2 . 为 J 2 2
u1 1 , , m , v1 m 1 , , m n , u2 1 , , m , v2 m 1 , , m n ,则
T T T T
x y u1 u2
a
v1 v2
b
u1 a u2
D4 1 2 . 再由行列式因子与不变因子的性质与相互关系知 D3 2 ,
3 2
从而 A 的不变因子为
中国农业大学2012-2013(春)《线性代数》期末考试试题解析版
2012-2013学年春季学期《线性代数》课程考试试题解析一、填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在每题的空中)1.设A 为3阶方阵,A 的第2行的元素分别为2,3,1-,其对应的余子式为3,2,3,则||A =9.解析:行列式等于某行元素与其对应的代数余子式乘积之和,所以||()()A =-⋅-+⋅+⋅-=2332139注释本题知识点:(1)||i i i i in in A a A a A a A =+++1122 答案:92.设A 为4阶矩阵,*A 为其伴随矩阵,且12A =,则1(2)3*A A --=2.解析:A A A A A A A ------=-=-=-=1111411(2)3*3||(1)22注释本题知识点:(1)B ∗=∗=H (2) B =.答案:23.设,αβ是非齐次方程()E A x b λ-=的两个不同的解,则A 对应于特征值λ的特征向量为αβ-解析:A 对应于特征值λ的特征向量为满足E A x λ-=()0的解注释本题知识点:1).非齐次线性方程组解的结构,若Ax b ηη=12,是的解,则Ax ηη=120-是齐次方程的解2).特征值与特征向量的定义:若有实数λ以及非零向量α,使得A αλα=即()A E λα-=0则λ为矩阵A的特征值,非零向量α为矩阵A的特征向量答案:αβ-4.已知矩阵(0,1,0,1).Tα=若矩阵T E b αα+是矩阵2T E αα+的逆矩阵(其中b 是数),则b =.解析:若矩阵T E b αα+是矩阵2T E αα+的逆矩阵,则()()T T E b E E αααα++=2,由此可得,T T T T E b b E αααααααα+++=22,因为T αα=2,所以T T b αααα+=520,b =-25注释本题知识点:(1)逆矩阵定义,若矩阵AB=E,则B 为A 的逆矩阵。
答案:b =-255.已知矩阵11011303A a ⎛⎫ ⎪ ⎪ ⎪⎝⎭=与100030003B ⎛⎫ ⎪⎪ ⎪⎝⎭=-相似,则a =.解析:矩阵A,B 相似,故有相同的特征值,因此1+1+a=1+3-3,可知a=-1.注释本题知识点:(1)矩阵A,B 相似,故有相同的特征值(2)矩阵特征值之和等于其主对角线元素的乘积答案:-1二、选择题(本题满分15分,共有5道小题,每道小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.设n 阶矩阵A 与B 等价,则下列结论不正确的是【】(A)当0=A 时,0B =;(B)A 可以通过初等变换得到B ;(C)()()R A R B =;(D)A 与B 相似。
矩阵考试题及答案详解
矩阵考试题及答案详解一、单项选择题(每题2分,共10分)1. 矩阵的行列式为零,意味着什么?A. 矩阵是奇异的B. 矩阵是偶数阶的C. 矩阵是对称的D. 矩阵是单位矩阵答案:A2. 矩阵A和矩阵B可以相乘的条件是?A. A的列数等于B的行数B. A的行数等于B的列数C. A和B的行数相同D. A和B的列数相同答案:A3. 矩阵的转置操作会改变矩阵的什么?A. 行列数B. 元素位置C. 行列式值D. 秩答案:B4. 矩阵的逆矩阵存在的条件是?A. 矩阵是方阵B. 矩阵是满秩的C. 矩阵的行列式非零D. 所有以上条件答案:D5. 矩阵的秩是指?A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中最大线性无关行或列的数量D. 矩阵的行数和列数之和答案:C二、填空题(每题3分,共15分)1. 如果矩阵A的行列式为1,则称矩阵A为________矩阵。
答案:单位2. 矩阵的________是指矩阵中任意两行(或两列)的元素对应相乘后求和的结果。
答案:元素3. 矩阵的________是指矩阵中所有元素的平方和的平方根。
答案:范数4. 矩阵A和矩阵B相乘得到单位矩阵,称矩阵B为矩阵A的________。
答案:逆矩阵5. 如果矩阵A和矩阵B的秩相等,则称矩阵A和矩阵B是________的。
答案:等价三、解答题(每题10分,共20分)1. 给定矩阵A和矩阵B,求它们的乘积AB,并说明结果矩阵的行列式。
答案:首先计算矩阵A和矩阵B的乘积AB,然后根据行列式的性质,结果矩阵AB的行列式等于矩阵A的行列式乘以矩阵B的行列式。
2. 证明矩阵的秩等于其行秩和列秩。
答案:矩阵的秩是指矩阵中最大线性无关行或列的数量。
由于矩阵的行和列可以相互转换(通过转置操作),因此矩阵的行秩和列秩实际上是相等的,即矩阵的秩等于其行秩和列秩。
四、证明题(每题15分,共30分)1. 证明矩阵的行列式等于其转置矩阵的行列式。
答案:设矩阵A的行列式为det(A),矩阵A的转置为A^T。
矩阵期末练习题及答案
矩阵期末练习题及答案例1若A 是对称矩阵,则A T -A=______。
答案:0例2若矩阵A 可逆,则(A T )-1=____.答案:(A -1)T例3设A ,B 均为方阵,若AB =I ,则A -1=_____,B -1=______.答案:B ,A例2 矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100020100,则A -1=( )。
答案:⎢⎢⎢⎣⎡001 0210 ⎥⎥⎥⎦⎤-100 例3、 设A 、B 均为方阵,则下列结论正确的是( )。
A .(AB )T =A T B TB .AA T =A T AC .若A T =A ,则(A 2)T =A 2D .若A T =A ,B T =B ,则(AB )T =AB 。
答案:(C )。
例4、 设A 是三角形矩阵,若主对角线上元素( ),则A 可逆。
A .全部为0B .可以有零元素C .不全为0D .全不为0答案:(D )例5、设A=⎢⎢⎢⎣⎡-342 ⎥⎥⎥⎦⎤-101,B=⎢⎣⎡-87 ⎥⎦⎤-109,求A.B 。
解:A.B=⎢⎢⎢⎣⎡-342 ⎥⎥⎥⎦⎤-101⎢⎣⎡-87 ⎥⎦⎤-109=⎢⎢⎢⎣⎡-132822 ⎥⎥⎥⎦⎤--173628例6、设A=⎢⎢⎢⎣⎡321 422 ⎥⎥⎥⎦⎤313,求A -1。
解:(AE )=⎢⎢⎢⎣⎡321 422 313 001 010 ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 222-- 653-- 321-- 010 ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 022- 153-- 121-- 110- ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 022 153 121 110-⎥⎥⎥⎦⎤-100→⎢⎢⎢⎣⎡001 022 100 132-- 163-- ⎥⎥⎥⎦⎤-153→⎢⎢⎢⎣⎡001 020 100 131- 163- ⎥⎥⎥⎦⎤--152→⎢⎢⎢⎣⎡001 010 100 1231- 133- ⎥⎥⎥⎥⎦⎤--1252 ∴A -1=⎢⎢⎢⎣⎡1231- 133- ⎥⎥⎥⎥⎦⎤--1252例7.设矩阵 ⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C ,计算C BA -T . 解 C BA -T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-042006⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200210例8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321221211A ,求1-A . .解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010110011010001211100321010221001211)(I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→110100011010001211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→110100*********011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→110100*********001 所以,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1100112121A . 例9.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=143102010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I ,求1)(-+A I . 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+243112011A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-103210012110001011100243010112001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→115100012110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→115100127010001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→115100127010126001所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+-115127126)(1A I 例10、解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--214332X . 解 因为⎥⎦⎤⎢⎣⎡--10430132⎥⎦⎤⎢⎣⎡→10431111 ⎥⎦⎤⎢⎣⎡--→23101111⎥⎦⎤⎢⎣⎡--→23103401 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---233443321 所以,X =⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--212334=⎥⎦⎤⎢⎣⎡-12例8、证明:若A 2=I ,且AA T =I ,则A 为对称矩阵。
关于矩阵考试题及答案
关于矩阵考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵的行列式为0,说明该矩阵是:A. 可逆的B. 不可逆的C. 正交的D. 对称的答案:B2. 矩阵A与矩阵B相乘的结果为零矩阵,那么矩阵A和矩阵B:A. 至少有一个是零矩阵B. 都是零矩阵C. 都是单位矩阵D. 至少有一个不可逆答案:D3. 矩阵的秩是指:A. 矩阵中非零元素的数量B. 矩阵中线性无关的行或列的最大数量C. 矩阵的行数D. 矩阵的列数答案:B4. 矩阵的特征值是:A. 矩阵的对角线元素B. 矩阵的非对角线元素C. 满足特征方程的λ值D. 矩阵的转置答案:C5. 矩阵的迹是指:A. 矩阵的行列式B. 矩阵的秩C. 矩阵对角线元素的和D. 矩阵的逆矩阵答案:C二、填空题(每题3分,共15分)1. 如果矩阵A的行列式为-5,则矩阵A的逆矩阵的行列式为______。
答案:-1/52. 矩阵A和矩阵B相乘得到单位矩阵,那么矩阵A和矩阵B互为______。
答案:逆矩阵3. 对于一个3x3的矩阵,其秩最大为______。
答案:34. 如果一个矩阵的所有行(或列)都线性相关,则该矩阵的秩为______。
答案:05. 矩阵的特征值可以通过求解特征方程______得到。
答案:det(A-λI)=0三、计算题(每题10分,共20分)1. 给定矩阵A=[1 2; 3 4],求矩阵A的行列式。
答案:det(A) = 1*4 - 2*3 = -22. 给定矩阵B=[2 0; 0 3],求矩阵B的逆矩阵。
答案:B^(-1) = [1/2 0; 0 1/3]四、证明题(每题15分,共30分)1. 证明:如果矩阵A和矩阵B可交换,即AB=BA,那么它们的特征值可以同时对角化。
答案:略2. 证明:对于任意的方阵A,有tr(A) = tr(A^T)。
答案:略。
太原理工大学2012矩阵论试题-推荐下载
题号
得分
得分
一
二
一、本题共 10 小题,每小题 3 分,满分 30 分.
三
1-5 题为填空题:
1.已知 X (t) 为 n 阶未知函数矩阵, A 为已知的 n 阶数字矩阵,并且 d X (t) AX (t) ,则 dt
2.如果
3.
X (t)
A
1
2
3
4
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
矩阵分析习题附答案
一、空题(每小题5分,共30分)1、若矩阵A =0110101002103202211010352234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的满秩分解为A =BC ,则 B =⎡⎢⎢⎢⎢⎣⎤⎥⎥⎥⎥⎦,C =⎡⎢⎢⎢⎣⎤⎥⎥⎥⎦。
解:由初等行变换A =0110101002103202211010352234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦→01101011300112200011010000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦→1310100222133001022200011010000000⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦, 知:B =110021221352⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,C =13101002221330010222110001⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦。
2、矩阵A =101010403-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦的最小多项式为()ϕλ= 。
解:由于[]()()()21011011000100100140300314001I A λλλλλλλλλλ⎡⎤+---⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--++⎣⎦-⎣⎦⎢⎥⎣⎦ 知A 的初等因子为(λ—1),(λ—1)2,故A 的最小多项式为()ϕλ=(λ—1)2。
3、设1010221202A ⎡⎤=⎢⎥⎣⎦,则N (A )的一个标准正交基为。
解:由于1213531235452101020222212020x x x x x Ax x x x x x x x ⎡⎤⎢⎥⎢⎥++⎡⎤⎡⎤⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦等价于 135252020x x x x x ++⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,而其解空间的一个基为 α1=(-1,0,1,0,0)T ,α2=(0,0,0,1,0)T ,α3=(-2,2,0,0,1)T对其作标准正交化即得其一个标准正交基为(0,0,0)T ,(0,0,0,1,0)T ,(0,T 4、设12121121,;,2013e e e e ⎡⎤⎡⎤⎡⎤⎡⎤''====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦为2R 的两个基,T 为2R 的线性变换,且1213(),()21T e T e ⎡⎤⎡⎤''==⎢⎥⎢⎥⎣⎦⎣⎦, 则T 在基12,e e 下的矩阵为A =⎡⎤⎢⎥⎣⎦。
2016-2017-1西科研究生矩阵分析期末考试参考答案及评分细则(A)
西南科技大学2016-2017-1学期《线性代数与矩阵分析》研究生期末考试试卷(A 卷)参考答案及评分细则一、单项选择题(每小题5分,共15分) 1、C ;2、B ;3、A 。
二、填空题(每小题5分,共15分)1、()22100010001λλ⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭;2、2;3、1000101012⎛⎫ ⎪- ⎪- ⎪ ⎪-- ⎪⎝⎭。
三、解答题(每小题10分,共70分) 1、解:4max||||311==∑=i ijjaA ;7max ||||31==∑=∞j ij ia A ;1322,1||||()F ij i j A a ===∑5||||22===A A A T A λλ;3})(max{)(==A A λρ。
2、解:(1)因为OA AO =,所以φ≠V ;假设V Y X ∈,,那么Y AY X AX λλ==,,于是)()(Y X Y X AY AX Y X A +=+=+=+λλλ,所以V Y X ∈+;假设R k V X ∈∈,,那么X AX λ=,所以)()()()(kX X k AX k kX A λλ===,所以V kX ∈。
所以V 是nn R⨯的一个线性子空间。
(2)当1≠λ并且2≠λ时,则}{o V=。
没有基,0dim =V 。
当1=λ时,方程组0)(=-X E A 的解为032==X X ,所以一个基为⎪⎪⎪⎭⎫ ⎝⎛001,1dim =V 。
当2=λ时,方程组0)(=-X E A 的解为01=X ,所以一个基为⎪⎪⎪⎭⎫ ⎝⎛010、⎪⎪⎪⎭⎫ ⎝⎛100,2dim =V 。
3、解:(1)3R x ∈∀,因为A 为3阶矩阵,所以3R Ax ∈,所以33:R R T →。
3,R y x ∈∀,Ty Tx Ay Ax y x A y x T +=+=+=+)()(; R k R x ∈∀∈∀,3,kTx Ax k kx A kx T ===)()()(。
所以T 是3R 上的线性变换。
关于矩阵考试题及答案
关于矩阵考试题及答案1. 矩阵的基本概念题目:定义矩阵,并说明矩阵的行数和列数如何确定。
答案:矩阵是由行和列组成的矩形数组,其中的元素按照一定的规则排列。
矩阵的行数是指矩阵中行的总数,列数是指矩阵中列的总数。
2. 矩阵的加法题目:给定两个矩阵A和B,其中A = \(\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}\),B = \(\begin{bmatrix} 5 & 6 \\ 7 &8 \end{bmatrix}\),计算矩阵A和B的和。
答案:矩阵A和B的和为C = \(\begin{bmatrix} 1+5 & 2+6 \\3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12\end{bmatrix}\)。
3. 矩阵的乘法题目:给定两个矩阵A和B,其中A = \(\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}\),B = \(\begin{bmatrix} 5 & 6 \\ 7 &8 \end{bmatrix}\),计算矩阵A和B的乘积。
答案:矩阵A和B的乘积为C = \(\begin{bmatrix} 1 \cdot 5 +2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\3 \cdot 5 +4 \cdot 7 &3 \cdot 6 +4 \cdot 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}\)。
4. 矩阵的转置题目:给定矩阵A = \(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}\),求矩阵A的转置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A)
专业 学号 姓名
一、(共30分,每小题6分)完成下列各题:
(1)设4
R 空间中的向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=23121α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=32232α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=78013α,⎥⎥⎥⎥
⎦⎤
⎢⎢⎢⎢⎣⎡--=43234α,
⎥⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎣⎡--=30475α
Span V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V I 的
维数.
解:=A {
}54321,,,,ααααα⎥
⎥
⎥⎥⎦
⎤
⎢⎢⎢
⎢⎣⎡--→000004100030110
202
01 21V V +和21V V I 的维数为
3和1
(2) 设()
T
i i 11-=α,()
T
i i 11-=β是酉空间中两向量,求
内积()βα, 及它们的长度(i =
. (0, 2, 2);
(3)求矩阵⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡----=137723521111A 的满秩分解.
解:⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎥⎥⎥⎦
⎤
⎢⎢⎢
⎢⎢⎢⎣⎡
--
--→0000747510737201 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=775211⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢
⎢⎢⎢
⎢⎣
⎡
----747
510737201* (4)设-λ矩阵⎪⎪⎪⎭
⎫ ⎝⎛++=2)1(000000
)1()(λλλλλA ,求)(λA 的标准形及其
行列式因子.
解:⎪⎪⎪⎭⎫ ⎝⎛++=2)1(000000)1()(λλλλλA ()()⎪⎪⎪
⎭
⎫
⎝⎛++→2111λλλλ
(5)设*A 是矩阵范数,给定一个非零向量α,定义 *H x x α=,
验证x 是向量范数.
二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为
⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基.
解:(1)由题意知 T [ε1,ε2,ε3]=[]⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡-021110111,,321εεε
线性变换T 的值域为T (V )= {}321312,span εεεεε+++ 所以A (V )的维数为2, 基为{}321312,εεεεε+++
(2)矩阵A 的核为0的解空间。
不难求得0的基础解系是[2, -1,
1]
T
,
因此)(A N 的维数为1, 基为3212εεε+-.
三、(8
分)求矩阵⎥⎥⎥
⎦
⎤⎢⎢⎢
⎣
⎡=66
0606
066
A 的正交三角分解UR A =,其中U 是酉矩阵,R 是正线上三角矩阵.
解: ⎥⎥⎥⎦⎤⎢⎢⎢
⎣
⎡=66
0606
066A =⎪⎪⎪⎪⎭
⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪
⎭
⎫
⎝
⎛
--
2213
3332*316
20
316
121316121
四、(8分)设⎪⎪⎭⎫
⎝⎛--=0111021i
i A ,求矩阵范数1A ,∞A ,2A ,F A .(这里12
-=i ).
解:{}1max 2,3,1,13A ==,(2分)
{}max 3,44A ∞== ,
(2分)
1
2
42
211F
A ij j i a ===⎛⎫∑∑ ⎪⎝⎭
()12
1141113=+++++= (2分)
1120110H
i i A ⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭
, 6113H AA -⎛⎫= ⎪-⎝⎭ (2分)
2
6
1
9171
3
H
E AA λλλλλ-=
=-+--
1,2λ=
=
2
A
⇒
=
(2分)
五、(共24分,每小题8分)证明题:
(1)设A 是正定矩阵,B 是反矩阵,证明B A +是可逆矩阵. (2)设A 是n 阶正规矩阵,证明A 是矩阵的充要条件是A 的特征
值为实数.
(3)若1A <,证明A E +为非奇异矩阵,且
A
A E -≤
+-11
)(1,这
里A 是诱导范数.
六、(共20分,每小题5
分)设⎪⎪⎪
⎭
⎫
⎝⎛---=213111213A ,
(1) 求A E -λ的标准形(写出具体步骤); (2) 求A 的初等因子、最小多项式及标准形J ; (3) 求相似变换矩阵P 及其逆矩阵阵1-P ; (4) 求)sin(At .
解
A E -λ()⎪⎪⎪
⎭
⎫ ⎝⎛-→2111λλ,
初等因子λ,()21-λ;最小多项式
()2
1-λλ; 标准⎪⎪⎪⎭
⎫
⎝⎛1110
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112101111P ,⎥⎥
⎥⎦⎤⎢⎢⎢⎣⎡---=-11101110
11P )sin(At ⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡--+---+=t t t t
t t t t t t t t t t t
t t t t cos sin cos cos sin 2sin sin sin cos sin cos cos sin 2。