大学物理—刚体的动轴转动

合集下载

大学物理第四章刚体转动

大学物理第四章刚体转动

进动和章动在自然界中实例
陀螺仪
地球极移
陀螺仪的工作原理即为进动现象。当 陀螺仪受到外力矩作用时,其自转轴 将绕某固定点作进动,通过测量进动 的角速度可以得知外力矩的大小和方 向。
地球极移是指地球自转轴在地球表面 上的移动现象,其产生原因与章动现 象类似。地球极移的周期约为18.6年 ,且极移的幅度会受到地球内部和外 部因素的影响。
天体运动
许多天体的运动都涉及到进动和章动 现象。例如,月球绕地球运动时,其 自转轴会发生进动,导致月球表面的 某些特征(如月海)在地球上观察时 会发生周期性的变化。同时,行星绕 太阳运动时也会发生章动现象,导致 行星的自转轴在空间中的指向发生变 化。
感谢观看
THANKS
02
刚体定轴转动动力学
转动惯量定义及计算
转动惯量定义
刚体绕定轴转动时,其惯性大小的量度称为转动惯量,用字母$J$表示。它是一个与刚体质量分布和转轴位置有 关的物理量。
转动惯量计算
对于形状规则的均质刚体,可以直接套用公式计算其转动惯量;对于形状不规则的刚体,则需要采用间接方法, 如分割法、填补法等,将其转化为规则形状进行计算。
刚体性质
刚体是一个理想模型,它在力的作用 下,只会发生平动和转动,不会发生 形变。
转动运动描述方式
01
02
03
定轴转动
平面平行运动
ห้องสมุดไป่ตู้
定点转动
物体绕一固定直线(轴)作转动。
物体上各点都绕同一固定直线作 不同半径的圆周运动,同时物体 又沿该固定直线作平动。
物体绕一固定点作转动。此时物 体上各点的运动轨迹都是绕该固 定点的圆周。
非惯性系下刚体转动描述方法
欧拉角描述法

大学物理.第三章.刚体的转动

大学物理.第三章.刚体的转动
动 .试计算细杆转动到与竖直线成 角时的角加速度
和角速度 .
解 细杆受重力和
铰链对细杆的约束力
FN
作用 3g sin
2l
3g (1 cos )
l
§3-4 力矩的功 定轴转动的动能定理
一、力矩的功
z

O
d r
速度ω 绕端点转动,摩擦系数为μ 求M摩擦力。
ω
解: 质量线密度:
m L
dm
r dr
质量元:
r dm dr
所受摩擦力为:
dF gdm gdr
例3-5 现有一圆盘在平面内以角速度ω 转动,求 摩擦力产生的力矩(μ 、m、R)。
dr
ωr
解:
dm ds rdrd dF gdm grdrd dM1 rdF r2gdrd
I mi ri2 -质量不连续分布
i
r 2dm -质量连续分布
d -线分布λ=m/ι 质量元: dm ds -面分布σ=m/S
dV -体分布ρ=m/V
二、决定转动惯量的三因素
1)刚体的质量; 2)刚体的质量分布; (如圆 环与圆盘的不同);
3)刚体转轴的位置。 (如细棒绕中心、绕一端)
运动。 一、何谓刚体
在任何情况下形状和大小都不发生变化的
物体。即每个质元之间的距离无论运动或
受外力时都保持不变。
理想模型
ri j c mj
二、刚体运动的两种基本形式 mi
平动----刚体运动时,刚体内任一直线恒保 持平行的运动(即该直线方向保持不变)
刚体的平动过程
c a b
刚体的平动过程
能运用以上规律分析和解决包括 质点和刚体的简单系统的力学问题.

刚体的转动

刚体的转动
2) 任一质点运动 ,, 均相同,但 v, a 不同;
32019/12/23
§4- 1 刚体的平动、转动和定轴转动 普通物理
二 匀变速转动公式 当刚体绕定轴转动的角加速度为恒量时,刚体做
匀变速转动 .
刚体匀变速转动与质点匀变速直线运动公式对比
地减速,经t=50 s后静止。
(1)求角加速度a 和飞轮从制动开始到静止所转过
的转数N;
(2)求制动开始后t=25s 时飞
0
轮的角速度 ;
(3)设飞轮的半径r=1m,求在 t=25s 时边缘上一点的速
度和加速度。
Oa an r
v
at
解 (1)设初角度为0方向如图所示,
广东技术师范学院
2019/12/23
25rad / s 78.5rad / s
广东技术师范学院
2019/12/23
§4- 1 刚体的平动、转动和定轴转动 普通物理
的方向与0相同 ;
(3)t=25s 时飞轮边缘上一点P 的速度。
由 v r v v r sin r sin 900
r 78.5m / s v 的方向垂直于 和 r 构成的平面,如
§4- 1 刚体的平动、转动和定轴转动 普通物理
量值为0=21500/60=50 rad/s,对于匀
变速转动,可以应用以角量表示的运动方程,在
t=50S 时刻 =0 ,代入方程=0+at 得
a 0 50 rad / s2
t
50
3.14 rad / s2
从开始制动到静止,飞轮的角位移 及转 数N 分别为
子的角加速度与时间成正比 . 问在这段时间内,转子转
过多少转?

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

刚体转动的物理原理

刚体转动的物理原理

刚体转动的物理原理
刚体转动是指刚体围绕固定轴线的旋转运动。

对于一个刚体,其旋转运动的物理原理可以通过以下几个方面来解释:
1. 转动惯量:刚体的转动惯量代表了刚体围绕轴线旋转时对转动的惰性。

刚体的转动惯量与刚体的质量分布和绕轴线的位置有关。

转动惯量越大,对于同样的转动力矩,刚体转动的角加速度越小。

2. 转动力矩:刚体转动时,如果施加一个力矩以改变刚体的角动量,刚体就会产生角加速度。

转动力矩是指力在刚体上产生的旋转效果,它的大小等于力的大小乘以力臂的长度。

力臂是力相对于轴线的垂直距离。

3. 角动量守恒:在没有外力或外力作用力矩为零的情况下,刚体的角动量守恒。

刚体的角动量是指刚体沿轴线旋转时的动量,它等于刚体转动惯量乘以角速度。

角动量守恒意味着刚体在旋转过程中,如果没有外力或外力矩的作用,角动量保持不变。

4. 角动量定理:角动量定理描述了刚体转动时角动量的变化率等于作用在刚体上的外力矩。

即角动量的变化等于力矩的时间积分。

这个定理可以用来分析刚体在外力矩作用下的角加速度和角速度变化。

总之,刚体转动的物理原理主要涉及转动惯量、转动力矩、角动量守恒和角动量
定理等概念,通过这些原理可以解释和描述刚体转动的运动规律。

大学物理—刚体的动轴转动

大学物理—刚体的动轴转动

F
(3) F1 对转轴的力矩为零,
在定轴转动中不予考虑。
转动 平面
r
F2
(4)在转轴方向确定后,力对 转轴的力矩方向可用+、-号表示。
2. 刚体定轴转动定律 对刚体中任一质量元mi
O’
f i -内力
-外力
ω
Fi
ri
mi
fi
i i
Fi
应用牛顿第二定律,可得: O
v v r sin r sin 900
和 构成的平面,如 图所示相应的切向加速度和向心加速度分别为
v 的方向垂直于
2
r 78.5m / s
r
at ar 3.14m / s
3
2
2
an r 6.16 10 m / s 边缘上该点的加速度 a an al 其中 a l 的方向 与 v 的方向相反,a n 的方向指向轴心,a 的大小
1 m1 2m 2 m g M / r 2 T1 m1 g a 1 m 2 m1 m 2
22
1 m2 2m1 m g+M / r 2 T2 m1 g-a 1 m 2 m1 m 2
§4- 1 刚体的平动、转动和定轴转动
1. 刚体 刚体是一种特殊的质点系,无论它在多大外力 作用下,系统内任意两质点间的距离恒保持不变。 2.平动和转动 刚体最简单的运动形式是平动和转动。 当刚体运动时,如果刚体内任何一条给定的直 线,在运动中始终保持平行,这种运动叫平动。 刚体平动时,在任意一段时间内,刚体中各质 点的位移相同。且在任何时刻,各质点的速度和加 速度都相同。

大学物理_第06章 刚体力学

大学物理_第06章  刚体力学

接触点相同线速度时: 1r1 2r2
联立解得:
1
J1
J1 ( r1 r2
)2
J2
0
2
r1 r2
J1
J1
(
r1 r2
)2
J
2
0
书上177页
解: dm
2 rdr
m2 rdr R2
2mrdr R2
df
2mrdr R2
g
dM
r
2mrdr R2
g et
2mr 2dr R2
g
M
R
dM
0
R 0
2mr 2 dr R2
dm dV
其中、、分别为质量线密度、面密度和体密度。
转动惯量
2). 转动惯量的计算:
质点、圆环、圆筒绕中心轴转动
z
z
Rm
oR m
R
m
o
质点的转动惯量为
Jo mR2
对于匀质圆环和薄圆筒,因各质元到轴的垂直距
离都相同,则有
Jo mR2
圆盘、圆柱绕中心轴转动
对于质量为m、半径为R、厚为l 的均匀圆盘取半径为 r宽
需要一个动力学方程 — 角动量定理
角动量定理: M dL
dt
转轴转动角动量表达式:
Mz
dLz dt
转轴分量角动量定理表达式:
n
Lz z mi (xi2 yi2 ) z J i1
转动定律:
Mz
dLz dt
d (J)
dt
J
d
dt
J
z v
r
P
当刚体绕固定轴转动时,刚体对该轴的转动惯量与角加速 度的乘积等于外力对此轴的合力距。 — 定轴转动定律

大学物理一复习第四章刚体的转动-文档资料

大学物理一复习第四章刚体的转动-文档资料

mg FT2 ma2

FT1 FT2
R
mg FT1 r
m
a1
J
a1 r
a2 R
FT1 r R
FT1'
A
mg
β
FT2
FT2'
B
mg
mg(R r)
J mR2 mr2
a1

r

J
mgr(R r) mR2 mr2
40 半径减小角速度增加。
(2)拉力作功。请考虑合外力矩为0, 为什么拉力还作功呢?
W


0
Md
在定义力矩作功 时,我们认为只 有切向力作功, 而法向力与位移 垂直不作功。
但在例题中,小 球受的拉力与位 移并不垂直,小 球的运动轨迹为 螺旋线,法向力 要作功。
o
F
r d Fn F
解得
a2

R

mgR(R r) J mR2 mr2
FT1 mg ma1
FT2 mg ma2
例2:光滑斜面倾角为 ,顶端固定一半 径为 R ,质量为 M 的定滑轮,质量为 m 的物体用一轻绳缠在定滑轮上沿斜面 下滑,求:下滑的加速度 a 。
解:物体系中先以
物体 m 研究对象,
A
分别根据牛二定律和转动定律列方程:
角量、线量关系式
解得:
a
mB g
mA mB mC 2
T1

mAmB g
mA mB mC
2
T2

(mA mC 2)mBg mA mB mC 2
如令 mC 0,可得:

大学物理 上册(第五版)大学物理 上册(第五版)刚体的转动3.3 刚体定轴转动的角动量定理 角动量守恒

大学物理 上册(第五版)大学物理 上册(第五版)刚体的转动3.3 刚体定轴转动的角动量定理  角动量守恒

dt dt dt
变形、积分
t2 Mdt
t1
L2 L1
dL
L2
L1
J2
J1
t2
t1
Mdt
J2
Hale Waihona Puke J1——定理合外力矩的冲量(冲量矩)
§3.3 刚体定轴转动的角动量定理 角动量守恒(一定理)
3.3.2 刚体的角动量守恒定律
t2
t1
Mdt
J2
J1
1.定律 当M 合外 0时
J2 J1 J 恒量
2.说明 ①实际中,即使J变——定律仍适用
Mdt ?角动量定理
——引伸出角动量守恒



力矩的空间积累 Md ? 转动动能定理
§3.3 刚体定轴转动的角动量定理 角动量守恒
3.3.1 刚体的角动量定理 Mdt ?
1.准备
质点系对轴的角动量 L (ri2mi ) (曾推)
刚 体……………… L J
J不变时
2.定理 由转动定理
M J J d d(J) dL
§3.3 刚体定轴转动的角动量定理
角动量守恒
——习题
刚体 转动
P99: 3-9
解:(1) ①选:杆、小球——系统 ②考察:碰撞过程
M ,2L
u
③分析:L C? M 合外 0 ?
O
M 合外 M 重
M 杆重 0;M 球重 0
但碰撞问题→ M外 M内 守恒 (J)前 (J)后
④应用定律
(J)前 (J)球前 (J)杆前
mL2 u 0 L
可解
(2)
( J )前 ( J )后
解:(1) ①选:A、B——系统
②分析:忽略轴摩擦 M 合外 0? 角动量守恒

《大学物理》3.4刚体定轴转动的角动量定理 角动量守恒定律

《大学物理》3.4刚体定轴转动的角动量定理  角动量守恒定律

我国第一颗人造地球卫星沿椭圆轨道绕地球运动, 例:我国第一颗人造地球卫星沿椭圆轨道绕地球运动,地心为该椭圆 的一个焦点。 的一个焦点。已知地球半径 R ,卫星的近地点到地面距离 l ,卫星的远 地点到地面距离 l 。若卫星在近地点速率为 v1 ,求它在远地点速率 v2 。
1 2
卫星在运动过程中,所受力主要是万有引力, 解:卫星在运动过程中,所受力主要是万有引力,其它力忽 略不计,故卫星在运动过程中对地心角动量守恒。 略不计,故卫星在运动过程中对地心角动量守恒。 m
0
r
A
θ = 90
0
mv
质点作圆周运动的角动量
θ
L = rmv = mr ω
2
2.2刚体的角动量 刚体的角动量 刚体对 oz轴的角动量为
z
ω
v
2
i
L = ∑ m r ω = (∑ m r )ω
2 i i i i
o
r
i
m
i
∑ m r 刚体绕 oz 轴的转动惯量
2 i i
L = Jω
L = Jω
刚体对转轴的角动量等于其转动惯量与角速度乘积。 刚体对转轴的角动量等于其转动惯量与角速度乘积。
1 m v 0 a = ( ML2 + ma 2 )ω 3
子弹射入后一起摆动的过程只有重力做功,故系统机 械能守恒。
1 1 L 2 2 2 ( ML + ma )ω = mga (1 cos60°) + Mg (1 cos60°) 2 3 2
ω=
3(2ma + ML)g 2(3ma 2 + ML2 )
二、角动量定理和角动量守恒定理
1× mv 对时间求导 = r × (mv ) + × mv dt dt dt dr d dL ∵ = v , F = (mv ) M = dt dt dt dL 质点所受合外力矩等于质 ∴ = r × F + v × mv dt 点角动量对时间的变化率

大学物理-刚体绕定轴转动的角动量

大学物理-刚体绕定轴转动的角动量

M J
p mivi
角动量
L J
角动量定理 M d(J)
dt
质点的运动规律与刚体的定轴转动规律的比较(续)
质点的运动
动量守恒 力的功 动能
Fi 0时
mivi 恒量
Aab
b
F
dr
a
Ek
1 2
mv
2
动能定理
A
1 2
mv
2 2
1 2
mv12
重力势能
Ep mgh
机械能守恒
A外 A非保内 0时
进动特性的技术应用
翻转
外力
C
外力
进动
C
炮弹飞行姿态的控制:炮弹在飞行时,空气阻力对炮弹质心 的力矩会使炮弹在空中翻转;若在炮筒内壁上刻出了螺旋线 (称之为来复线),当炮弹由于发射药的爆炸所产生的强大 推力推出炮筒时,炮弹还同时绕自己的对称轴高速旋转。由 于这种自转作用,它在飞行过程中受到的空气阻力将不能使 它翻转,而只能使它绕着质心前进的方向进动。
pA pB
pA A
Bp B
s
s
O
x
结论:静止流体中任意两等高点的压强相等,即压强差为零。 若整个流体沿水平方向加速运动? 加速运动为a,压强差为?
2. 高度相差为 h 的两点的压强差(不可压缩的流体)
选取研究对象,受力分析:(侧面?)
沿 y 方向:
p C
Y C s
pB s pC s mg may
已知:p0=1.013×105 Pa , 0 1.29kg / m3
解 由等温气压公式
p
p e(0g / p0 ) y 0
0g 1.25104 m1
p0
p1 1.0 105 e1.251043.6103 0.64 105 Pa

《大学物理》34刚体定轴转动的角动量定理角动量守恒定律.

《大学物理》34刚体定轴转动的角动量定理角动量守恒定律.
矩为零故角动量守恒。
设子弹射入后杆起摆的角速度为ω,则有:
1 m v 0 a ( ML2 ma 2 ) 3
子弹射入后一起摆动的过程只有重力做功,故系统机 械能守恒。
1 1 L 2 2 2 ( ML ma ) mga (1 cos60 ) Mg (1 cos60 ) 2 3 2
1
2.刚体的角动量定理及守恒定律
刚体所受合外力矩与角加速度关系为
d M J J dt
利用角动量表示
dJ dL M dt dt
刚体绕定轴转动时,作用于刚体的合外力矩等于刚 体绕此轴的角动量对时间的变化率。这是刚体角动 量定理的一种形式。
当合外力矩为零时
d J dL M dt dt
如果质点所受合外力矩为零,则质点的角动量保持不变, 这就是质点的角动量守恒定律。
1. 质点角动量定理及守恒定律
例:我国第一颗人造地球卫星沿椭圆轨道绕地球运动,地心为该椭圆 的一个焦点。已知地球半径 R ,卫星的近地点到地面距离 l ,卫星的远 地点到地面距离 l 。若卫星在近地点速率为 v1 ,求它在远地点速率 v2 。
3.4刚体定轴转动的角动量定理 角动量守恒定律
一、冲量矩 角动量 1.冲量矩
定义:力矩与力矩作用时间的乘积称为冲量矩。
数学表达:
M dt
0
t
2.角动量
整个刚体的角动量就是刚体上每一个质元的角动 量——即每个质元的动量对转轴之矩的和。
2.1质点的角动量
o
r
v
o
L
m

L
r
m
J 恒量
如果物体所受合外力矩为零,或不受外力矩的作用, 物体的角动量保持不变,这就是角动量守恒定律。

大学物理第四章-刚体的转动-习题及答案

大学物理第四章-刚体的转动-习题及答案
第 4 章 刚体的定轴转动 习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩

dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I

I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24

大学物理1 刚体的转动

大学物理1 刚体的转动

刚体如果研究物体的转动就必定涉及物体的空间方位,此时,质点模型已不适用,因为一个点是无方位可言的。

若在所研究的问题中,物体的微小形变可以忽略不计时,则可以引入刚体模型。

刚体,是指在任何情况下,都没有形变的物体。

也可以把刚体看作一个各质元之间无相对位置变化且质量连续分布的特殊质点系。

(附图)刚体定轴转动的描述在物体运动过程中,如果物体上的所有质元都绕某同一直线作圆周运动,这种运动就称之为转动,这条直线称为转轴 (这根轴可以在物体之内,也可以在物体之外的某固定处)。

若转轴的方向或位置在物体运动过程中变化,这个轴在某个时刻的位置便称为该时刻的转动瞬轴。

若转动轴固定不动,即既不改变方向又不平移,则这个转轴称为固定轴,这种转动称为定轴转动。

(附图)平动和转动是刚体运动中两种基本形式.无论刚体作多么复杂的运动,总可以把它看成是平动和转动的合成运动。

例如一个车轮的滚动可以分解为车轮随着车轴的平动和整个车轮绕着车轴的转动。

定轴转动是刚体运动中最简单的运动形式之一。

为了研究刚体的定轴转动,定义:垂直于固定轴的平面为转动平面。

研究刚体的定轴转动时,可以任取一个转动平面来讨论。

以转轴与转动平面的交点为原点,则该转动平面上的所有质元都绕着这个原点作圆周运动。

在转动平面内过原点作一射线作为参考方向(或称极轴),转动平面上任一质元P 对O 点的位矢r 与极轴的夹角θ称为角位置。

引入角速度、角加速度,由于刚体是个特殊质点组,即各质元之间没有相对移动,因此,在同一转动平面上,它们的角量(即角位移、角速度、角加速度)都相同,但由于各质元到轴的距离不同,因此各质元的线量(即线位移、线速度、线加速度)不同。

dt d θω= 22dt d dt d θωβ==ωR v = βτR a = 22ωR R v a n == 刚体作定轴转动时,每个质元的转动方向只有两种可能,如果以转轴为z 轴,则质元的角速度方向要么与所选z 轴正向相同,要么与所选z 轴正向相反.因此,刚体定轴转动时所有角量的方向,都可用标量前的正负号表示。

大学物理教程第五章刚体的转动

大学物理教程第五章刚体的转动

⼤学物理教程第五章刚体的转动第五章刚体的转动§5-1 刚体的平动、转动和定轴转动⼀、刚体在外⼒作⽤下形状和⼤⼩都不变化的物体称为刚体.和这定义等价的另⼀定义是:如果物体在外⼒作⽤下它的任意两点之间的距离保持不变,则这物体称为刚体.刚体是⼀种理想模型,在⾃然界中是找不到的.实际上任何物体在外⼒作⽤下,它的形状和⼤⼩都或多或少要发⽣变化.但有许多物体,如果外⼒不甚⼤的话,它的形状和⼤⼩的改变不显著,这样的物体和刚体很接近,刚体⼒学中的结论对于这样的物体⼤致与经验符合.因此在实际问题中这样的物体可以当刚体来处理.⼆、平动和转动刚体的最简单的运动是平动和转动.在§1-3中关于参考系的平动的定义对刚体也适⽤.即如果刚体运动时,它⾥⾯任⼀直线的⽅位始终保持不变,则其运动称为平动.平动的特点是,任⼀时刻刚体中各点的速度和加速度都相等,任⼀点的运动都可以代表整个刚体的运动.刚体运动时,如果刚体中所有质点都绕着⼀条直线作圆周运动(如图5-1),则这刚体的运动称为转动,这条直线称为转轴.座钟的指针、CD 光碟、涡轮发电机的叶⽚和车辆的轮⼦的运动都是转动.转动刚体的转轴可以是固定的(例如涡轮叶⽚的转轴),也可以是运动的(例如车轮的转轴).转轴固定的转动称为定轴转动.可以证明,刚体的⼀般运动可以当作是由⼀平动和⼀绕瞬时轴的转动组合⽽成.例如车轮在地⾯上滚动(图5-2a),可以看成是由车轮随轮轴的平动以及车轮绕轮轴的转动组合⽽成.车轮上任⼀点P 的瞬时速度v ,等于轮轴的瞬时速度v 0与由于该点随车轮绕轮轴转动所具有的速度v r 的⽮量和,如图5-2(b)所⽰.三、定轴转动如图5-1,P 为刚体中⼀质点,当刚体绕定轴转动时,P 作圆周运动,圆⼼O 为转轴与圆平⾯的交点.由于刚体中任意两点之间的距离是固定不变的,刚体中各质点在同⼀时间Δt 内具有相同的⾓位移Δθ,因此在任⼀时刻各质点具有相同的⾓速度ω和⾓加速度α.所以我们可以⽤Δθ、ω和α作为描写刚体绕定轴转动的物理量,称为刚体的⾓位移、⾓速度和⾓加速度.我们在§1-4中讲过的⾓位移、⾓速度和⾓加速度等概念都适⽤于刚体的定轴转动.如果将⾓位移Δθ图5-1图5-2改为θ,则§1-4中公式θ = ωt ,ω = ω0 + αt 及θ = ω0t +21αt 2对刚体的定轴转动亦适⽤.⾄于刚体内各质点的速度和加速度则由于各质点到转轴的距离不同⽽各不相同,但这些线量与⾓量之间的关系仍然由(1-49)式、(1-51)式及(1-52)式表⽰.例题5-1 ⼀转速为1.80×103 r/min 的飞轮,因受制动⽽均匀地减速,经20.0s 停⽌转动.(1) 求⾓加速度和从制动开始到停⽌转动飞轮转过的转数;(2) 求制动开始后t = 10.0s 时飞轮的⾓速度;(3) 设飞轮半径为0.500m ,求在t = 10.0s 时飞轮边缘上⼀点的线速度和切向与法向加速度.解 (1) 设ω0为初⾓速度,由题意得rad/s π60rad/s 60101.80π2π230=??==n ω s 0.20 ,0==t ω因飞轮均匀减速,其转动为匀变速转动,由§1-4公式,⾓加速度为220rad/s π3rad/s 20.0π60-=-=-=t ωωα从开始制动到停⽌转动飞轮的⾓位移θ及转过的转数N 依次为rad π600rad 20.03π2120.0π6021220=??-=+=t t αωθ 300 2ππ600π2===θN (2) t = 10.0s 时飞轮的⾓速度为()rad/s π30rad/s 10.03ππ600=?-=+=t αωω(3) t = 10.0s 时,飞轮边缘上⼀点的线速度为m/s 1.47m/s 30π.5000=?==ωr v相应的切向加速度及法向加速度为22t m/s 71.4m/s 3π.5000-=?-==αr a()23222n m/s 1044.4m/s 30π.5000?=?==ωr a §5-2 ⼒矩转动定律转动惯量⼀、⼒对转轴的⼒矩根据经验,⼒可以使物体转动.但使物体转动的作⽤,不仅与⼒的⼤⼩有关,⽽且与⼒的⽅向以及⼒的作⽤线和转轴的距离有关.例如当我们⽤⼿关门时,⼒的作⽤线和门的转轴的距离越⼤,越容易把门关上.如果⼒的作⽤线通过门的转轴,或⼒的⽅向与转轴平⾏,则不论⽤多⼤的⼒也不能把门关上.⾸先讨论⼒在垂直于转轴的平⾯内的情形.图5-3为与转轴垂直的刚体的截⾯图,⼒F 在此平⾯内,⼒的作⽤线与转轴的距离为d ,d 称为⼒臂,⼒的⼤⼩F 与⼒臂d 的乘积称为⼒F 对转轴的⼒矩,⽤M 表⽰,则M = Fd (5-1)设r 为从转轴到⼒的作⽤点P 的径⽮,φ为r 与F 之间的夹⾓,由图5-3看出,d = r sin φ,故(5-1)式可写为r F Fr M ⊥==?sin (5—2)其中⊥F 为⼒F 在垂直于r ⽅向的分量.上式表⽰,只有⼒F 在垂直于r ⽅向的分量才对⼒矩有贡献.当φ = 0或φ =180°时M = 0,此时⼒的作⽤线通过转轴,0=⊥F ,d = 0.如果⼒F 不在垂直于转轴的平⾯内,则将F 分解为⼆分⼒F l 、F 2.F l 在垂直于转轴的平⾯内,F 2与转轴平⾏(图5-4).由于平⾏分⼒F 2对物体转动不起作⽤,可以不考虑,因此在⼒矩定义式(5-1)或式(5-2)中,F 应理解为外⼒在垂直于转轴的平⾯内的分⼒.⼒对定轴的⼒矩不但有⼤⼩,⽽且有转向.⼀般规定,如果⼒矩使刚体沿反时针⽅向转动,⼒矩为正;如果⼒矩使刚体沿顺时针⽅向转动,⼒矩为负.如果同时有⼏个⼒作⽤于刚体,则刚体所受的合⼒矩等于各个⼒对转轴的⼒矩的代数和.⼒对转轴的⼒矩与⼒对⼀点的⼒矩之间的关系如上所述,如果⼒F 与转轴不垂直,可将它分解为垂直于转轴的分⼒F l 和平⾏于转轴的分⼒F 2.设O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.r 为从O 点到P 点的径⽮(图5-4).则由(4-37)式得⼒F 对O 点的⼒矩为M = r × F = r × (F l + F 2) = r × F l + r × F 2将上式两边投影在转轴上.现在来看左右两边投影的意义.左边为⼒F 对O 点的⼒矩在转轴上的投影,右边r × F 2与转轴垂直,它在转轴上的投影为零.r × F l 与转轴平⾏,它在转轴上的投影等于F l r sin φ(图5-4).⽽后者等于⼒F 对转轴的⼒矩.故得结论:⼒F 对转轴的⼒矩等于⼒F 对O 点的⼒矩M 在转轴上的投影,其中O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.应当注意,⼒对⼀点的⼒矩是⽮量,⼒对转轴的⼒矩是标量.这是因为后者是前者的投影之故.⼆、转动定律刚体可看成是由⽆数质点组成,当刚体绕定轴转动时,各个质点都绕定轴作圆周运动,取质点P i 来考虑,设其质量为Δm i ,与转轴的距离为r i ,图5-5为经过P i ⽽垂直于转轴的刚体的截⾯图,作⽤于P i 的⼒有外⼒F i 及内⼒F ’i ,令F i t 及F ’i t 分别表⽰F i 及F ’i 沿切线⽅向的分量,则由切向运动⽅程得F i t + F ’i t = Δm i · r i α两边乘以r i :F i t r i + F ’i t r i = (Δm i r i 2)α将此式对刚体中⼀切质点求和得图5-3 图5-4∑∑∑='+ii i i ii i i i r m r F r F α)Δ(2t t (5-3) ∑'i ii r F t 为所有内⼒对转轴的⼒矩的代数和,即合内⼒矩.下⾯证明此合内⼒矩等于零.取刚体中两质点P i 及P j 来考虑.根据⽜顿第三定律,这两质点相互作⽤的⼒⼤⼩相等⽅向相反,且在同⼀直线上(图5-6),此⼆⼒有相同的⼒臂d ,但因⼆⼒⽅向相反,故其对转轴的合⼒矩为零.⼜因内⼒总是成对的,每⼀对内⼒的合⼒矩既然等于零,所以所有内⼒的合⼒矩亦必等于零,即0t ='∑iii r F 因此,(5-3)式化为∑∑=ii i i i i r m r F α)Δ(2t (5-4)∑iii r F t 为所有外⼒对转轴的⼒矩的代数和,即合外⼒矩,⽤M 表⽰,则上式化为∑=ii i r m M α)Δ(2 (5-5)对于⼀定刚体及⼀定转轴来说,上式中∑ii i r m 2Δ为⼀恒量,称为刚体对该转轴的转动惯量,⽤J 表⽰,即∑=ii i r m J 2Δ (5-6)这样(5-5)式便化为αJ M = (5-7)此式表⽰,刚体的⾓加速度与它所受的合外⼒矩成正⽐,与刚体的转动惯量成反⽐,这⼀关系称为转动定律.这是刚体绕定轴转动的基本定律.刚体绕定轴转动的其他定律都可以由这条定律导出.值得注意,这条定律是从⽜顿第⼆、第三定律推出的.三、转动惯量把转动定律αJ M =与⽜顿第⼆定律F = ma ⽐较,可以看出,这两个式⼦⼗分相似,M 对应于F ,α对应于a ,J 对应于m .我们知道,物体的质量m 是物体的平动惯性⼤⼩的量度,与此类似,物体的转动惯量J 是物体的转动惯性⼤⼩的量度.这可以从转动定律αJ M =看出.转动惯量不同的两个刚体,在相同的图5-5 图5-6外⼒矩作⽤下,转动惯量⼤的刚体⾓加速度⼩,就是它的⾓速度难于改变,也就是转动惯性⼤;反之,转动惯量⼩的刚体,它的转动惯性⼩.根据转动惯量定义:∑=ii i r m J 2Δ如果刚体是由若⼲个质量为m 1,m 2,m 3,…的质点组成,在(5-6)式中Δm i 应代以m i ,得+++=233222211r m r m r m J (5-8)如果刚体的质量连续分布在⼀体积内,(5-6)式中总和式应代以积分式,Δm 应代以d m (刚体中的质量元),得==VV V r m r J d d 22ρ(5-9)其中d V 为刚体的体积元,ρ为体积元d V 处的质量体密度,此积分遍及于刚体的整个体积V .(5-9)式可推求如下:将刚体划分为许许多多⼩部分,每⼀部分的线度极⼩,使它可以看成⼀质点.设各⼩部分的质量为Δm 1,Δm 2,…,Δm i ,…,与转轴的距离依次为r 1,r 2,…,r i ,…,按照(5-6)式,刚体的转动惯量J 近似地等于∑i i m r Δ2,即∑≈ii i m r J Δ2设λ为各⼩部分的线度的最⼤值,λ越⼩,每⼀⼩部分越接近于⼀质点,因此和数∑i i m r Δ2越接近于J ,所以当0→λ时,和数∑i i m r Δ2的极限值便完全等于J 了,即∑→=ii i m r J Δlim 20λ按照⾼等数学,上式中右式就是定积分?Vm r d 2,于是得 ??==VV V r m r J d d 22ρ这就是(5-9)式如果刚体的质量连续分布在⼀⾯上或⼀细线上,则需引⽤质量⾯密度或线密度概念,计算转动惯量公式与上式相同,只需将体密度换为⾯密度或线密度,将体积元换为⾯积元或线元即可.参看例题5-2及5-3.在国际单位制中转动惯量单位为千克平⽅⽶,符号为kg·m 2,转动惯量的量纲为ML 2.⼏何形状简单的刚体,其转动惯量可⽤积分法算出,见表5-1.表5-1 质量分布均匀的⼏种刚体的转动惯量a) 细棒(转轴通过中⼼与棒垂直) b) 细棒(转轴过棒的⼀端与棒垂直) 2121ml J = 231ml J =c) 圆柱体(转轴沿⼏何轴) d) 球体(转轴沿球的任⼀直径)221mR J = 252mR J =e) 薄圆筒(转轴沿⼏何轴) f ) 圆筒(转轴沿⼏何轴)2mR J = )(212221R R m J +=例题5-2 求质量为m 、板长为l 的均匀细棒对于通过棒的中点⽽与棒垂直的轴的转动惯量.解在棒上取与轴OO ’距离为x 、长为d x 的⼀⼩段来考虑(图5-7),这⼀⼩段的质量为d m = λd x .其中λ为棒的质量线密度.根据转动惯量定义,棒对轴OO ’的转动惯量为32222121d d l x x m x J l l -λλ===?? 棒的质量线密度lm =λ,代⼊上式得 2121ml J = 例题5-3 求质量为m 、半径为r 的匀质圆盘对于通过圆⼼⽽垂直于圆平⾯的轴的转动惯量.解在圆盘上取⼀半径为x ,宽为d x 的圆环来考虑(图5-8),这圆环的⾯积为2πx d x ,质量为d m = 2πσx d x ,其中σ为圆盘的质量⾯密度.根据转动惯量定义,圆盘对通过圆⼼O ⽽垂直圆平⾯的轴的转动惯量为4032π21d π2d r x x m x J r σσ===?? 圆盘的质量⾯密度2πrm =σ,代⼊上式得 221mr J = 上式对匀质圆柱体对于它的⼏何轴的转动惯量亦适⽤.决定刚体的转动惯量J 的⼤⼩因素有三:①刚体的质量;②刚体质量分布情况;③刚体的转轴的位置.例如质量均匀、⼤⼩相同的铅球和铜球,由于铅球质量较⼤,所以对于位置相同的轴来说,铅球的J 较⼤.⼜如有两个圆柱体,外径相等,质量也相等,但其中⼀个为实⼼,另⼀个为空⼼(质量分布不同),则对于它们的⼏何轴来说空⼼的圆柱体的J 较⼤.⼜如同⼀根棒对于通过棒的中⼼与棒垂直的轴与对于通过棒的⼀端与棒垂直的轴的J 不相同.例题 5-4 在半径分别为R 1、R 2的阶梯形滑轮上反向绕有两根轻绳,各悬挂质量为m 1、m 2的物体,如图5-9所⽰.若滑轮与轴间的摩擦忽略不计,滑轮的转动惯量为J ,求滑轮的⾓加速度α及各绳中张⼒F T1、F T2.解分析各物体的受⼒情况,如图5-9右图,对于滑轮,重⼒和轴的⽀承⼒通过轴⼼,其⼒矩为零.由于是轻绳,应有F T1 = F’T1,F T2 = F ’T2.先假设物体运动⽅向为:m 1的加速度a 1向下,m 2的加速度a 2向上,滑轮沿顺时针⽅向转动.选取物体运动⽅向为坐标轴正向,根据⽜顿第⼆定律和转动定律可得111T 1a m F g m =- 2222T a m g m F =- αJ R F R F =-22T 11T 滑轮边缘的切向加速度等于物体的加速度:αα2211 ,R a R a == 解以上各式得 g R m R m J R m R m 2222112211++-=α g m R m R m J R R m R m J R g m F 1222211212222111T )(???? ?++++=-=α图5-7 图5-8图5-9gm R m R m J R R m R m J R g m F 2222211211211222T )(???? ?++++=+=α讨论:1) 当m 1gR 1 > m 2gR 2 时,物体运动⽅向与原假定⽅向相同.2) 当m 1gR 1 = m 2gR 2 时,α = 0,滑轮作匀速转动或静⽌,运动状态或⽅向由初时刻条件决定.3) 当m 1gR 1 < m 2gR 2时,物体运动⽅向与原假定⽅向相反,即m 1向上,m 2向下,滑轮沿反时针⽅向转动.§5-3 转动动能⼒矩的功⼀、转动动能如图5-10,设刚体绕通过O 点⽽垂直于图平⾯的定轴转动,⾓速度为ω.当刚体转动时,刚体中各质点都绕定轴作圆周运动,因⽽都有动能.刚体的转动动能等于刚体中所有质点的动能之和.设各质点的质量为Δm 1,Δm 2,Δm 3,…,与转轴的距离为r 1,r 2,r 3,…,线速度为v 1 = r 1ω,v 2 = r 2ω,v 3 = r 3ω,…,则刚体的转动动能为22223322222211k Δ21 Δ21Δ21Δ21ωωωω??=+++=∑i i i r m r m r m r m E 但J r m ii i =∑2Δ为刚体的转动惯量,故E k ⼜可写为2k 21ωJ E =(5-10)即刚体的转动动能等于刚体的转动惯量与⾓速度的平⽅的乘积的⼀半,(5-10)式与平动动能公式2k 21v m E =形式相似,⽽且量纲也相同.⼆、⼒矩的功如图5-11,设绕定轴转动的刚体在外⼒F 作⽤下有⼀⾓位移d θ,⼒F 在垂直于转轴的平⾯上,从转轴到⼒的作⽤点的径⽮为r ,则⼒的作⽤点的位移d r 的⼤⼩为d s = r d θ.根据定义,⼒F 在位移d r 中的功为d W = F · d r = F cos α d s因α与φ互为余⾓,cos α = sin φ,故上式可写为d W = Fr sin φd θ⼜由(5-2)式Fr sin φ = M 为⼒F 对转轴的⼒矩,故⼜可写为图5-10 图5-11d W = M d θ(5-11)这就是⼒矩M 在微⼩⾓位移d θ中的功的公式.当刚体在⼒矩M 作⽤下产⽣⼀有限⾓位移θ时,⼒矩的功等于(5-11)式的积分:=θθ0d M W (5-12)如果⼒矩M 为常量,则θθθθθM M M W ===??00d d (5-13)如果刚体同时受到⼏个⼒作⽤,则(5-11)及(5-12)式中M 应理解为这⼏个⼒的合⼒矩.当外⼒矩对刚体作功时,刚体的转动动能就要变化,下⾯我们来求⼒矩的功与刚体转动动能的变化之间的关系.由转动定律tJ J M d d ωα== 其中M 为作⽤于刚体的合外⼒矩,在d t 时间内刚体的⾓位移为d θ = ωd t ,合外⼒矩的功为ωωωωθd d d d d d J t t J M W =??== 当刚体的⾓速度由ω1变为ω2时,合外⼒矩对刚体所作的功等于上式的积分,即21222121d 21ωωωωωωJ J J W -==? (5-14)上式指出,合外⼒矩对刚体所作的功等于刚体的转动动能的增量.例题5-5 ⼀长为l 质量为m 的均匀细长杆OA ,绕通过其⼀端点O 的⽔平轴在铅垂⾯内⾃由摆动.已知另⼀端点A 过最低点时的速率为v 0,杆对通过端点O ⽽垂直于杆长的轴的转动惯量231ml J =,若空⽓阻⼒及轴上的摩擦⼒都可以忽略不计,求杆摆动时A 点升⾼的最⼤⾼度h .解作⽤于杆的⼒有重⼒m g 及轴对杆的⽀承⼒F N ,⽀承⼒F N 通过O 点,其⼒矩为零.重⼒m g 作⽤于杆的质⼼C ,⼒矩为θsin 2l mg ,当杆沿升⾼⽅向有⾓位移d θ时,由于重⼒矩与⾓位移转向相反.其元功为θθd sin 2d l mg W -= 设θm 为杆的最⼤⾓位移,当杆从平衡位置转到最⼤⾓位移θm 位置时,重⼒矩所作的总功为)cos 1(2d sin 2d m 0m θθθθ--=-==??l mg l mg W W 由图5-12看出,h = l (1-cos θm ),代⼊上式得图5-12mgh W 21-= 杆在平衡位置时的⾓速度l00v =ω,在⾓位移最⼤时的⾓速度0m =ω.由于合外⼒矩的功等于转动动能的增量,故得 20220220613121 21021v v m l m l J m gh W -=??-=-=-=ω由此得 gh 320v = §5-4 绕定轴转动的刚体的⾓动量和⾓动量守恒定律当刚体以⾓速度ω绕定轴转动时,刚体中各质点都绕定轴作圆周运动.设质点P i 的质量为Δm i ,与轴的距离为r i ,线速度的⼤⼩为v i ,则质点P i 的动量的⼤⼩为Δm i v i (图5-13),P i 对转轴的⾓动量为Δm i v i r i .刚体中所有质点的⾓动量之和称为刚体对转轴的⾓动量,⽤L 表⽰,则ωωωJ r m r m r m L i i i i i i i i i i =??===∑∑∑22ΔΔΔv这样,刚体的转动定律可写为tL t J t JM d d d )d(d d ===ωω即 tJ t L M d )d(d d ω== (5-15)可以证明:(5-15)式不但适⽤于绕定轴转动的刚体,⽽且适⽤于绕定轴转动的任意物体或物体系.所不同的是,对于绕定轴转动的刚体来说,转动惯量J 是不变的,但对于绕定轴转动的任意物体或物体系来说,J 是可以变化的.在特殊情形下,如果作⽤于转动物体的合外⼒矩M = 0,则由(5-15)式,我们有L = J ω = 常量(5-16)即当物体所受的合外⼒矩等于零时,物体的⾓动量J ω保持不变,这⼀结论称为⾓动量守恒定律.⾓动量守恒有两种情形:① J 不变的情形,由(5-16)式得知ω亦不变,地球的⾃转差不多是这种情形;② J 是变化的情形,由(5-16)式得知,当J 减⼩时,ω增⼤;当J 增⼤时,ω减⼩.例如⼀⼈坐在可以绕铅直轴⾃由转动的凳⼦上,⼿中握着两个很重的哑铃.当他两臂伸开时,使凳⼦和⼈⼀起转动起来,假设轴承处的摩擦很⼩可以忽略不计,则凳⼦和⼈没有受到外⼒矩作⽤,其⾓动量J ω保持不变(图5-14a).当⼈把两臂收缩时,转动惯量J 减⼩,⾓速度ω就增⼤,即是说⽐两臂伸开时要转得快些(图5-14b).⼜如跳⽔运动员在空中翻筋⽃图5-13时,先把两臂伸直,当他从跳板跳起时使他⾃⼰以某⼀⾓速度绕通过腰部的⼀⽔平轴线转动,在空中时使臂和腿尽量蜷缩起来,以减⼩转动惯量,因⽽⾓速度增⼤,在空中迅速翻转,当他快要接近⽔⾯时,再伸直两臂和腿以增⼤转动惯量,减⼩⾓速度,以便竖直地进⼊⽔中.⾓动量守恒定律,与前⾯介绍过的动量守恒定律和能量守恒定律⼀样,是⾃然界中的普遍规律之⼀,不但适⽤于宏观物体的机械运动,也适⽤于原⼦、原⼦核和基本粒⼦等微观粒⼦的运动.例题5-6 ⼀⽔平放置的圆盘形转台.质量为m ’,半径为R ,可绕通过中⼼的竖直轴转动,摩擦阻⼒可以忽略不计.有⼀质量为m 的⼈站在台上距转轴为2R 处.起初⼈和转台⼀起以⾓速度ω1转动,当这⼈⾛到台边后,求⼈和转台⼀起转动的⾓速度ω2.解以⼈和转台为⼀系统,该系统没有受到外⼒矩作⽤,因此⾓动量守恒:J 1ω1 = J 2ω2 =常量即 22212221421ωω??? ??+'=???? ?+'mR R m R m R m 由此得 12422ωωmm m m +'+'= 思考题5-1 对于定轴转动刚体上的不同点来说,下⾯的物理量中哪些具有相同的值,哪些具有不同的值?线速度、法向加速度、切向加速度、⾓位移、⾓速度、⾓加速度.5-2 飞轮转动时,在任意选取的⾓位移间隔Δθ内,⾓速度的增量Δω相等,此飞轮是在作匀加速转动吗?5-3 作⽤在刚体上的合外⼒为F ,合外⼒矩为M ,举例说明在什么情况下(1) F ≠ 0⽽M = 0;(2) F = 0⽽M ≠ 0;(3) F = 0且M = 0.5-4 当刚体受到若⼲外⼒作⽤时,能否⽤平⾏四边形法先求它们的合⼒,再求合⼒的⼒矩?其结果是否等于各外⼒的⼒矩之和?5-5 在磁带录⾳机中,驱动装置将磁带匀速拉过读写磁头,于是磁带被拉出的⼀端卷带轴上剩余的磁带半径逐渐减⼩,作⽤在该卷带轴上的⼒矩随时间如何变化?该卷带轴的⾓速度随时间如何变化?5-6 如果要设计⼀个存储能量的飞盘,在质量和半径相同的情况下,应该选取质量均匀分布的圆盘形的还是质量集中在边缘的圆环形的呢?当⾓速度相同时,⼆者的转动动能之⽐为多少?图5-145-7 ⼏何形状完全相同的铁圆盘与铝圆盘,哪⼀个绕中⼼对称轴的转动惯量⼤?要使它们由静⽌开始绕轴转动并获得相同的⾓速度,对哪⼀个圆盘外⼒矩要作更多的功?5-8 恒星起源于缓慢旋转的⽓团,在重⼒作⽤下,这些⽓团的体积逐渐减⼩,在恒星尺度收缩的过程中,它的⾓速度如何变化?习题5-1 ⼀个螺丝每厘⽶长度上有20条螺纹,⽤电动螺丝起⼦驱动,在12.8s 内推进了1.37cm ,求螺丝的平均⾓速度.5-2 转盘半径为10.0cm ,以⾓加速度10.0 rad/s 2由静⽌开始转动,当t = 5.00s 时,求(1) 转盘的⾓速度;(2) 转盘边缘的切向加速度和法向加速度.5-3 ⼀个匀质圆盘由静⽌开始以恒定⾓加速度绕过中⼼⽽垂直于盘⾯的定轴转动.在某⼀时刻,转速为10.0 r/s ,再转60转后,转速变为15.0 r/s ,试计算:(1)⾓加速度;(2)由静⽌达到10.0 r/s 所需时间;(3)由静⽌到10.0 r/s 时圆盘所转的圈数.5-4 如图所⽰,半径r 1 = 30.0 cm 的A 轮通过⽪带被半径为r 2 = 75.0 cm 的B 轮带动,B 轮以π rad/s 的匀⾓加速度由静⽌起动,轮与⽪带间⽆滑动发⽣,试求A 轮⾓速度达到3.00×103 r/min 所需要的时间.5-5 在边长为b 的正⽅形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中⼀质点A ,平⾏于对⾓线BD 的转轴,如图所⽰.(2)通过A 垂直于质点所在平⾯的转轴.5-6 求半径为R ,质量为m 的均匀半圆环相对于图中所⽰轴线的转动惯量.5-7 代换汽车引擎盖密封垫时要求对螺栓的扭矩达到90.0N·m(扭矩过⼤会使密封垫失效),如果使⽤长度为45.0 cm 的扳⼿,如图所⽰,在垂直于扳⼿⼿柄⽅向⽤多⼤的作⽤⼒可以完成这⼀⼯作?5-8 ⽔井上提⽔的辘轳为圆柱形,半径为0.200m ,质量为5.00kg ,辘轳缠绕的轻绳上悬挂的⽔桶质量为3.00kg ,如图所⽰.辘轳失去控制使⽔桶⽆初速地下落,在2.00s 后达到井下⽔⾯,忽略辘轳轴上的摩擦阻⼒,求(1) ⽔桶下落的加速度;(2) 井⼝到⽔⾯的深度;(3) 辘轳的⾓加速度.题5-4图题5-5图题5-6图题5-7图5-9 圆盘形飞轮直径为1.25m ,质量为80.0kg ,飞轮上附着的滑轮半径为0.230m ,质量可以忽略,电动机通过环绕滑轮的⽪带驱动飞轮顺时针旋转,如图所⽰.当飞轮的⾓加速度为1.67rad/s 2时,上段⽪带中的张⼒为135N ,忽略轴上的摩擦阻⼒,求下段⽪带中的张⼒.5-10 制陶旋盘半径为0.500m ,转动惯量为12.0kg·m 2,以转速50.0r/min 旋转.陶⼯⽤湿抹布沿径向施加70.0N 的⼒按住旋盘的边缘,使之在6.00s 内制动,求旋盘的边缘和湿抹布之间的有效滑动摩擦系数.5-11 ⼀轻绳跨过滑轮悬有质量不等的⼆物体A 、B ,如图所⽰,滑轮半径为20.0 cm ,转动惯量等于50.0 kg·m 2,滑轮与轴间的摩擦⼒矩为98.1N·m ,绳与滑轮间⽆相对滑动,若滑轮的⾓加速度为2.36 rad/s 2,求滑轮两边绳中张⼒之差.5-12 如图所⽰的系统中,m 1 = 50.0 kg ,m 2 = 40.0 kg ,圆盘形滑轮质量m = 16.0 kg ,半径R = 0.100 m ,若斜⾯是光滑的,倾⾓为30°,绳与滑轮间⽆相对滑动,不计滑轮轴上的摩擦,(1)求绳中张⼒;(2)运动开始时,m 1距地⾯⾼度为1.00 m ,需多少时间m 1到达地⾯?5-13 飞轮质量为60.0 kg ,半径为0.250 m ,当转速为1.00×103 r/min 时,要在5.00 s 内令其制动,求制动⼒F ,设闸⽡与飞轮间摩擦系数µ = 0.400,飞轮的转动惯量可按匀质圆题5-8图题5-9图题5-11图题5-12图题5-13图题5-15图盘计算,闸杆尺⼨如图所⽰.5-14 ⼀个风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,⽌动前它转过了75转,在此过程中制动⼒作的功为44.4 J ,求风扇的转动惯量和摩擦⼒矩.5-15 如图所⽰,质量为24.0 kg 的⿎形轮,可绕⽔平轴转动,⼀绳缠绕于轮上,另⼀端通过质量为5.00 kg 的圆盘形滑轮悬有10.0 kg 的物体,当重物由静⽌开始下降了0.500 m 时,求:(1)物体的速度;(2)绳中张⼒.设绳与滑轮间⽆相对滑动.5-16 蒸汽机的圆盘形飞轮质量为200 kg ,半径为1.00 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5.00 min 内停下来,求在此期间飞轮轴上的平均摩擦⼒矩及此⼒矩所作的功.5-17 长为85.0 cm 的均匀细杆,放在倾⾓为45°的光滑斜⾯上,可以绕过上端点的轴在斜⾯上转动,如图所⽰,要使此杆实现绕轴转动⼀周,⾄少应给予它的下端多⼤的初速度? 5-18 如图所⽰,滑轮转动惯量为0.0100 kg·m 2,半径为7.00 cm ,物体质量为5.00 kg ,由⼀绳与劲度系数k = 200 N/m 的弹簧相连,若绳与滑轮间⽆相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧⽆伸长时,使物体由静⽌⽽下落的最⼤距离;(2)物体速度达最⼤值的位置及最⼤速率. 5-19 圆盘形飞轮A 质量为m ,半径为r ,最初以⾓速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静⽌,如图所⽰,两飞轮啮合后,以同⼀⾓速度ω转动,求ω及啮合过程中机械能的损失. 5-20 ⼀⼈站在⼀匀质圆板状⽔平转台的边缘,转台的轴承处的摩擦可忽略不计,⼈的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静⽌的,这⼈把⼀质量为m 的⽯⼦⽔平地沿转台的边缘的切线⽅向投出,⽯⼦的速率为v (相对于地⾯).求⽯⼦投出后转台的⾓速度与⼈的线速度.5-21 ⼀⼈站⽴在转台上,两臂平举,两⼿各握⼀个m = 4.00 kg 的哑铃,哑铃距转台轴r 0 = 0.800 m ,起初,转台以ω0 = 2π rad/s 的⾓速度转动,然后此⼈放下两臂,使哑铃与轴相距r = 0.200 m ,设⼈与转台的转动惯量不变,且J = 5.00 kg·m 2,转台与轴间摩擦忽略不计,求转台⾓速度变为多⼤?整个系统的动能改变了多少?5-22 证明刚体中任意两质点相互作⽤⼒所作之功的和为零.如果绕定轴转动的刚体除受到轴的⽀承⼒外仅受重⼒作⽤,试证明它的机械能守恒.5-23 ⼀块长L = 0.500 m ,质量为m =3.00 kg 的均匀薄⽊板竖直悬挂,可绕通过其上端的⽔平轴⽆摩擦地⾃由转动,质量m = 0.100 kg 的球以⽔平速度v 0 = 50.0 m/s 击中⽊板中题5-17图题5-18图题5-19图⼼后⼜以速度v = 10.0 m/s 反弹回去,求⽊板摆动可达到的最⼤⾓度.⽊板对于通过其上端轴的转动惯量为231L m J '= . 5-24 半径为R 质量为m '的匀质圆盘⽔平放置,可绕通过圆盘中⼼的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具⼩车分别沿⼆轨道反向运⾏,相对于圆盘的线速度值同为v .若圆盘最初静⽌,求⼆⼩车开始转动后圆盘的⾓速度.5-25 花样滑冰运动员起初伸展⼿臂以转速1.50r/s 旋转,然后他收拢⼿臂紧靠⾝体,使他的转动惯量减少到原来的3/4,求该运动员此时的转速.5-26 旋转⽊马转盘半径为2.00m ,质量为25.0kg ,假设可视为圆盘形刚体,转速为0.200r/ s ,⼀个质量为80.0kg 的⼈站在转盘边缘.当此⼈⾛到距转轴1.00m 处时,求转盘的⾓速度和⼈和转盘组成的系统转动动能的改变量.。

大学物理力学第五章1刚体、转动定律

大学物理力学第五章1刚体、转动定律
3. 同一方程式中所有量都必须相对同一转轴。
(12)
例1、如图所示,A、B为两个相同的绕着轻绳的定滑
轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且
F=Mg.设A、B两滑轮的角加速度分别为βA和β B,
不计滑轮轴的摩擦,则有
(A) β A= β B. (B) β A> β B. (C) β A< β B. (D) 开始时β A= β B,以后β A< β B.
转动惯量的计算
1)定义 J miri2
J r 2dm
i
m
2) 对称的 简单的 查表
3) 平行轴定理
典型的几种刚体的转动惯量
m
m
l
细棒转轴通过中 心与棒垂直
J ml 2 12
l
细棒转轴通过端 点与棒垂直
J ml 2 3
M,R
M,R
o
圆环转轴通过环心与环面垂直
J MR2
薄圆盘转轴通过 中心与盘面垂直
以 m1 为研究对象 m1g T1 m1a 以 m 2 为研究对象 T2 m2a 以 M 为研究对象
(T1 T2 )R J J 1 MR 2 2
m 2 T2 M , R
(1) T1
T1
(2)
m1
m1
M ,R
m1g (3)
T2
m2
T2
T1
补充方程:
a R
(4)
联立方程(1)---(4)求解得
J 1 MR 2 2
m 2r
r l
球体转轴沿直径
J 2mr 2 5
圆柱体转轴沿几何轴
J 1 mr 2 2
转动定律应用举例 解题步骤: 1. 认刚体;
3. 分析力和力矩;

大学物理学-刚体的转动定律

大学物理学-刚体的转动定律
1 1 ∆mi vi 2 = ∆mi (riω ) 2 则i质元的动能为 质元的动能为 2 2 则整个刚体的转动动能
ω
v ri
vi
∆mi
v
Ek =

i =1
n
1 1 n 1 2 2 2 2 ∆ m i ri ω = ( ∑ ∆ m i ri )ω = J ω 2 2 2 i =1 2
刚体绕定轴转动时的转动动能等于刚体的转动惯量 与角速度平方乘积的一半. 与角速度平方乘积的一半.
第2章 运动定律与力学中的守恒定律
支架S 支架S
外环 陀螺G 陀螺G 内环
2–6 刚体的定轴转动 6 直升机螺旋桨的设置
尾桨的设置: 尾桨的设置:直升机发动后机身要在旋翼旋转相反方向旋 产生一个向下的角动量。 转,产生一个向下的角动量。为了不让机身作这样的反向 旋转,在机身尾部安装一个尾桨, 旋转,在机身尾部安装一个尾桨,尾桨的旋转在水平面内 产生了一个推力,以平衡单旋翼所产生的机身扭转作用。 产生了一个推力,以平衡单旋翼所产生的机身扭转作用。 对转螺旋桨的设置:双旋翼直升机则无需尾桨, 对转螺旋桨的设置:双旋翼直升机则无需尾桨,它在直立 轴上安装了一对对转螺旋桨, 轴上安装了一对对转螺旋桨,即在同轴心的内外两轴上安 装了一对转向相反的螺旋桨。工作时它们转向相反, 装了一对转向相反的螺旋桨。工作时它们转向相反,保持 系统的总角动量仍然为零。 系统的总角动量仍然为零。
力矩的功
A=
∫θ
θ2
1
M dθ
力矩的功率 力矩的功率
dA dθ P= =M = Mω dt dt
第2章 运动定律与力学中的守恒定律
2–6 刚体的定轴转动 6
9
3、刚体定轴转动的动能定理 、

大学物理 刚体力学

大学物理 刚体力学

试计算飞轮的角加速
rO
F
mg
解 (1)
Fr J
Fr 98 0.2 39.2 rad s -2 J 0.5
(2) mg T ma
Tr J a r
两者区别
rO
mgr 98 0.2 -2 21 . 8 rad s J mr 2 0.5 10 0.22
3、转动惯量
(1)定义
J mi ri2
在(SI)中,J 的单位:kgm2
物理意义:转动惯量是对刚体转动惯性大小的量度,其大小 反映了改变刚体转动状态的难易程度。 (2) 与转动惯量有关的因素 ①刚体的质量及其分布 ②转轴的位置 (3) 转动惯量的计算
m1
①质量离散分布的刚体
J mi ri2
二、刚体定轴转动的转动定律
1.力矩

改变质点的运动状态
改变刚体的转动状态
质点获得加速度 刚体获得角加速度
力矩
(1) 力矩的定义式
M
M r F
大小:M Fr sin Fd M rF (2) 物理意义
是决定刚体转动的物理量,表明力的大 小、方向和作用点对物体转动的影响。
z
M

PP

x
参考 方向
x x
转动平面 转轴
(2)角速度

d dt
角速度方向用右手螺旋法则确定。
定轴转动的角速度仅有沿转轴的两个方向。


用正负号表示方向


d
(3) 角加速度
角加速度方向与 加速转动 相同。 方向相反
方向一致; 减速转动
(4) 角量与线量的关系

大学物理——第3章-角动量定理和刚体的转动

大学物理——第3章-角动量定理和刚体的转动

M
α
I
有何联系?
13
实验指出,定轴转动的刚体的角加速度 α与刚体所受的合外 力矩 M 成正比,与刚体的转动惯量 I 成反比.
v dω v M = Iα = I dt
v
定轴转动定理
v v F = ma
定轴转动定律在转动问题中的地 位相当于平动时的牛顿第二定律
应用转动定理解题步骤与牛顿第二定律时完全相同.
1 1 2 2 2 Eki = miυi = mi ri ω 2 2
质点质量 整个刚体的动能:
N
圆周运动的速率和半径
1 N 2 2 Ek = ∑Eki = (∑mi ri )ω 2 i=1 i=1
刚体对转轴的转动惯量:I
7
刚体定轴转动动能公式
物体的平动动能(质点动能)
1 2 Ek = Iω 2
角速度 ω 转动惯量 I 物体绕轴的转动惯性
λ :质量线密度 σ :质量面密度 ρ :质量体密度
10
I = ∫ r 2dm
单位: kg m2
转动惯量的大小取决于刚体的质量,质量分布及转轴的位置.
O
O l/2 O′
1 I= ml2 12
O
O O′
1 2 I = ml 3
r
O′
1 I = mr2 4
O′
1 I = mr2 2
11
平行轴
垂直轴
平行轴定理 质量为 m 的刚体,如果对其质心轴的转动惯量为 IC,则对任 一与该轴平行,相距为 d 的转轴的转动惯量:
2 θ 3Rω0 n= = 2π 16π g
26
讨论
用定轴转动的动能定理较之用转动定律求解, 省去了求角加速度,而直接求得,更为简捷.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25
麦克斯韦分布
2 1 2 d mgR J mR 3 2 dt
设圆盘经过时间t停止转动,则有
t 0 2 1 g dt R d 0 0 3 2
F1
转动 平面
F
F2
r F1 只能引起轴的
变形, 对转动无贡献。 注 (1)在定轴动问题 中,如不加说明,所指的 力矩是指力在转动平面内 的分力对转轴的力矩。
r
(2) M Z rF2 sin F2d
d r sin 是转轴到力作
用线的距离,称为力臂。
F123麦克来自韦分布例 2: 一半径为 R ,质量为 m 匀质圆盘,平放 在粗糙的水平桌面上。设盘与桌面间摩擦系数为 ,令圆盘最初以角速度 0 绕通过中心且垂直盘 面的轴旋转,问它经过多少时间才停止转动?

d r dr
R
e
解 : 因摩擦力不是集中作用于一点,而是分布 在整个圆盘与桌子的接触面上,力矩的计算要用积 分法。在图中,把圆盘分成许多环形质元,每个质 元的质量dm=rddre,所受到的阻力矩是rdmg 。
a m2 G2
a
21
式中是滑轮的角加速度,a是物体的加速度。滑轮 边缘上的切向加速度和物体的加速度相等,即
麦克斯韦分布
a r
从以上各式即可解得
m 2 m1 g M r / r m 2 m1 g M / r a
J m 2 m1 2 r 1 m 2 m1 m 2
1. 刚体的角动量
图为以角速度绕定轴oz 转动的一根均匀细棒。
L
z

ri
O
Li
把细棒分成许多质点,其中第 i 个质点的质量为 mi 当细棒以转动时,该 质点绕轴的半径为 ri
Liz
Ri mi
它相对于o点的位矢为 Ri则 mi
9
对o点的角动量为:
因 vi Ri
,所以 Li 的大小为 Li mi Ri v i
1
麦克斯韦分布
所以刚体内任何一个质点的运动,都可代表整个 刚体的运动。 刚体运动时,如果刚体的各个质点在运动中 都绕同一直线圆周运动,这种运动就叫做转动, 这一直线就叫做转轴。 3. 刚体的定轴转动 定轴转动: 刚体上各点都绕同一转轴作不同半径的圆周运 动,且在相同时间内转过相同的角度。 特点: (1) 角位移,角速度和角加速度均相同;
1 m1 2m 2 m g M / r 2 T1 m1 g a 1 m 2 m1 m 2
22
1 m2 2m1 m g+M / r 2 T2 m1 g-a 1 m 2 m1 m 2
Lz Li cos mi Ri v i cos mi ri v i
m r
2 i i
10
式中 mi ri2 叫做刚体对 Oz 轴的转动惯量, 用J表示。
麦克斯韦分布
刚体转动惯量:
J mi ri2
刚体绕定轴的角动量表达式:
Lz J
0
0=21500/60=50 rad/s,
在t=50S 时刻 =0 ,代入
方程=0+αt 得
4
O a
an
v
r
at
0 50 rad/s 2 3.14 rad/s 2 t 50 麦克斯韦分布
从开始制动到静止,飞轮的角位移 及转 数N 分别为
1 2 1 2 0 0 t at 50 50 50 2 2 1250 rad
F r sin f r sin (m r
i 1 i i i i 1 i i i i 1
N
N
N
N
2
i i
)
根据内力性质(每一对内力等值、反向、共 线,对同一轴力矩之代数和为零),得:
f r sin
i 1 i i
i
0
得到:
F r sin (m r
按转动惯量的定义有
J ri2 mi
刚体的质量可认为是连续分布的,所以上式可 写成积分形式
J r 2dm
dm —质元的质量
区别: 平动: 平动动能
13
r—质元到转轴的距离
1 2 mv 2 1 2 J 2
线动量
mv
J
转动: 转动动能
角动量
麦克斯韦分布
§4-3
1.力矩
力矩
刚体定轴转动定律
v v r sin r sin 900
和 构成的平面,如 图所示相应的切向加速度和向心加速度分别为
v 的方向垂直于
2
r 78.5m / s
r
at ar 3.14m / s
3
2
2
an r 6.16 10 m / s 边缘上该点的加速度 a an al 其中 a l 的方向 与 v 的方向相反,a n 的方向指向轴心,a 的大小
i 1 i i i i 1
N
N
2
i i
)
上式左端为刚体所受外力的合外力矩,以M 表 示;右端求和符号内的量与转动状态无关,称为刚 体转动惯量,以J 表示。于是得到
d M J J dt
讨论: (1) M 一定,J 惯性大小的量度;
刚体定轴 转动定律
转动惯量是转动
β
(2)M 的符号:使刚体向规定的转动正方向加速 的力矩为正;
麦克斯韦分布
a m2 m1 g M / r 1 r m2 m1 m r 2 当不计滑轮质量及摩擦阻力矩即令 m=0 、 M=0 时,有
2m1m2 T1 T2 g m2 m1
m2 m1 a g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测 量重力加速度g的简单装置。因为在已知m1、 m2 、 r和J的情况下,能通过实验测出物体1和2的加速度 a,再通过加速度把g算出来。在实验中可使两物体 的 m1 和 m2 相近,从而使它们的加速度 a 和速度 v 都 较小,这样就能角精确地测出a来。
F 对O 点的力矩: M r F
Z
M rF sin
M
转 动 平 面
F
MZ
M

r
F
O r
A
M 沿Z 轴分量为 F 对Z 轴力矩 M Z
力不在转动平面内
M r F r ( F1 F2 ) r F1 r F2
Fi f i mi ai
采用自然坐标系,上式切向分量式为:
Fi sin i f i sin i mi ai mi ri
用 ri 乘以上式左右两端:
Fi ri sin i f i ri sin i mi ri
2
设刚体由N 个点构成,对每个质点可写出上 述类似方程,将N 个方程左右相加,得:
(3)J 和质量分布有关; (4)J 和转轴有关,同一个物体对不同转轴的转 动惯量不同。 例 1: 一轻绳跨过一定滑轮,滑轮视为圆盘,绳 的两端分别悬有质量为m1和m2的物体1和2,m1< m2 如图所示。设滑轮的质量为 m ,半径为 r ,所受的 摩擦阻力矩为 m 。绳与滑轮之间无相对滑动。试求 物体的加速度和绳的张力。 解:滑轮具有一定的转动惯量。在转动中受到 阻力矩的作用,两边的张力不再相等,设物体1这 边绳的张力为T1、 T1’(T1’= T1) ,
2. 刚体的转动动能
刚体的转动动能应该是组成刚体的各个质点 的动能之和。设刚体中第i个质点的质量为 mi , 速度为 vi ,则该质点的动能为: 1 m i v i2 2 刚体做定轴转动时,各质点的角速度相同。 设质点 mi 离轴的垂直距离为 ri ,则它的线速度
麦克斯韦分布
11
vi ri
6

麦克斯韦分布
2 a a t2 a n (6.16 10 3 ) 2 3.14 2 m / s 2
a的方向几乎和 an 相同。
6.16 10 3 m / s 2
例2:一飞轮在时间t内转过角度=at+bt3-ct4 ,式中a、 b、c 都是常量。求它的角加速度。 解:飞轮上某点角位置可用表示为 =at+bt3-ct4 将此式对t求导数,即得飞轮角速度的表达式为
24
麦克斯韦分布
此处e是盘的厚度。圆盘所受阻力矩就是
M
rdmg g rreddr ge d r dr
2 R 2 0 0
2 geR 3 3
因m=eR2,代入得
2 M mgR 3
根据定轴转动定律,阻力矩使圆盘减速,即 获得负的角加速度.
§4- 1 刚体的平动、转动和定轴转动
1. 刚体 刚体是一种特殊的质点系,无论它在多大外力 作用下,系统内任意两质点间的距离恒保持不变。 2.平动和转动 刚体最简单的运动形式是平动和转动。 当刚体运动时,如果刚体内任何一条给定的直 线,在运动中始终保持平行,这种运动叫平动。 刚体平动时,在任意一段时间内,刚体中各质 点的位移相同。且在任何时刻,各质点的速度和加 速度都相同。
1250 N = 625转 2 2
(2)t=25s 时飞轮的角速度为
0 t 50 25rad/s 25rad/s 78.5rad/s
的方向与0相同 ;
5
麦克斯韦分布
(3)t=25s 时飞轮边缘上一点P 的速度。 由 v r
d (at bt 3 ct 4 ) a 3bt 2 4ct 3 dt
角加速度是角速度对t的导数,因此得
相关文档
最新文档