变压器和电感的知识
电阻、电容、电感和变压器的识别与检测
电感的电感量与品质因数
电感量:表示电感元件储存磁场的能力,单位是亨 利(H)
品质因数:表示电感元件的效率,是电感元件在特 定频率下的无功功率与有功功率之比
电感的检测方法
外观检查:观察电感的外观,是否有损坏或异常情况。 电阻测量:使用万用表测量电感的电阻值,以判断其是否正常。 感量测试:使用专门的电感测试仪测量电感的感量、品质因数等参数。 匝间短路测试:检查电感的匝间是否短路,以确保电感正常工作。
电阻的阻值与精度
标称阻值:电阻上标注的数值,用于表示电阻的阻值 允许误差:实际阻值与标称阻值的偏差范围 精度等级:表示电阻阻值精度的等级,常见的有±5%、±10%、±20%等 温度系数:电阻值随温度变化的程度,是评估电阻性能的重要指标
电阻的检测方法
直接测量法:使用万用表直接测量电阻阻值
间接测量法:通过测量电路中电流和电压,利用欧姆定律计算电阻阻值
电容的容量与耐压
容量:表示电容器 储存电荷的能力, 通常以法拉(F)为 单位
耐压:表示电容器 能够承受的最大电 压,是电容器安全 运行的重要参数
容量与耐压的标识方 法:在电容器上通常 会标有容量和耐压值 ,这些数值对于选择 合适的电容器非常重 要
检测方法:通过使用万 用表等工具,可以测量 电容器的容量和耐压, 以确保其正常工作
漏电流过大:电容器的漏电流 超过允许值
绝缘电阻低:电容器绝缘性能 下降,导致电阻值降低
损耗过大:电容器在电路中有 较大的能量损耗
电感的识别与检 测
电感的标识与单位
标识:电感器通常用字母L表示,后面跟着数字或字母表示序号或种类。 单位:电感的国际单位是亨利(Henry),常用的单位还有毫亨(mH)和微亨(uH)。
电感的常见问题
电感和变压器的相关公式
电感和变压器的相关公式安培环路定律: 磁压: 磁动势: 电磁感应定律:带磁芯的电感公式:磁压:磁阻: 电阻:开气隙磁芯:磁通变化量:nlH i ⋅=in l H ⋅=⋅c m l H U ⋅=in F⋅=ttn tn e ΔΔ=Δ⋅Δ=ΔΔ⋅=ψφφ)(dt di L dt di l A n dt dH nA dt dB nA dtd ne u c ⋅=⋅====−=μμφ2cl A n L ⋅⋅=μ2φφμμφμ⋅=⋅=⋅=⋅==mc c ccc c c m R A l l A l BHl U c c mc A l R ⋅=μSlR ⋅=ρδδδμμA l A l nR R nR n L c c m mc m ⋅+⋅=+==02222111φφφ−=t 221111i N i N i N t ⋅−⋅=⋅1i =输入电流反射电流变压器工作原理:导线集肤深度:矩形波电流产生的集肤效应:矩形波电流的集肤深度为基波正弦波的集肤深度的70%。
当负载电流比较大时(一般大于20A),应采用铜箔,而不是用利兹线(多股细小且绝缘)或多股实心线并绕,开关频率低于50kHz 时,应尽量避免使用利兹线。
铁氧体磁芯损耗:磁芯的工作状态分为三类:Ⅰ类:有直流偏磁的单向磁化(主要关注磁芯的饱和问题) Ⅱ类:无直流偏磁的单向磁化(主要关注磁芯的复位问题) Ⅲ类:双向磁化(主要关注磁芯的高频损耗问题)γμπ⋅⋅⋅⋅⋅=Δf k 22μ导线材料的磁导率γ材料的电导率(γ=1/ρ) k材料电导率的温度系数β=2.2~2.4 α=1.2~1.7B为磁感应强度 η为材料系数 f为交变频率。
电感、线圈和变压器的实用知识
什么是电感器、变压器?电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应组件,也是电子电路中常用的元器件之一。
一、自感与互感(一)自感当线圈中有电流通过时,线圈的周围就会产生磁场。
当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源组件理想电源的端电压),这就是自感。
(二)互感两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。
互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。
二、电感器的作用与电路图形符号(一)电感器的电路图形符号电感器是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母“L”表示,图6-1是其电路图形符号。
(二)电感器的作用电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。
三、变压器的作用及电路图形符号(一)变压器的电路图形符号变压器是利用电感器的电磁感应原理制成的部件。
在电路中用字母“T”(旧标准为“B”)表示,其电路图形符号如图6-12所示。
(二)变压器的作用变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。
其主要有降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等作用。
(一)电感器的结构与特点电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。
1.骨架骨架泛指绕制线圈的支架。
一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),大多数是将漆包线(或纱包线)环绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。
骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。
小型电感器(例如色码电感器)一般不使用骨架,而是直接将漆包线绕在磁心上。
空心电感器(也称脱胎线圈或空心线圈,多用于高频电路中)不用磁心、骨架和屏蔽罩等,而是先在模具上绕好后再脱去模具,并将线圈各圈之间拉开一定距离,如图6-4所示。
实训项目3 电感、变压器的认知与检测实验报告
实训项目3 电感、变压器的认知与检测一、实训概要主要介绍电感元件、变压器及压电元件的分类、结构、基本功能及检测方法。
通过学习,要求读者能正确识别这三类元件,并掌握这三类元件的基本功能、基本结构及检测方法。
学习本章时,自始至终要以元件的符号、功能及检测为重点。
二、实训目的1、了解电感器、变压器的用途分类2、了解色码电感标志的识别方法3、掌握检测电感、变压器的方法三、实训原理一)电感元件的分类及符号1.分类电感元件是由线圈绕制而成的,如图所示。
它又称电感线圈,简称电感。
2.电感的符号不同类型的电感在电路中具有不同的符号,如图所示。
二)电感的特性及主要参数直流电阻:是绕制电感的导线所呈现的电阻。
由于绕制电感的导线常用铜丝,且长度也不会很长,故电感的直流电阻往往很小,一般忽略不计。
电感量:电感量又叫电感系数或自感系数,它是反映电感具备电磁感应能力的物理量。
电感量的基本单位是亨利(H),常用单位有mH(毫亨)和μH(微亨)。
H、mH及μH之间的换算关系如下:1H=103mH ;1mH=103μH ;1H=106μH感抗:感抗是指电感元件对交流电(或突变电流)的阻碍作用。
品质因素:品质因素是衡量电感元件质量的重要参数。
品质因素常用Q表示。
分布电容:由于电感是由导线绕制而成的,这样匝与匝之间具有一定的电容,线圈与地之间也有一定的电容。
三)电感元件的识别及检测1.电感的识别电感元件一般为二端或三端元件,其外表具有如下一些特点,根据这些特点很容易识别电感元件。
可以看到线圈、或表面标有“μH”或“mH”、或带有一个可以旋转的磁芯的元件便是电感示。
2.电感的检测电感在使用过程中,常会出现断路,短路等现象,可通过测量和观察来判断。
(1)利用万用表1Ω或10Ω档很容易判断电感是否断路或短路。
(2)有些电感可通过观察其表面来判断好坏。
四)变压器1.变压器的基本结构变压器是由具有同一闭合磁路的铁心(或磁心)及绕在铁心(或磁心)上的线圈构成,如图所示。
电感线圈及变压器的基本知识
电感线圈及变压器的基本知识常见的高频阻流圈、振荡线圈、天线线圈、天线阻抗变换器、电源变压器、输出变压器等,都属于电感器件。
电感线圈与电阻器、电容器及三极管等元件恰当组合后,能构成滤波器、放大器、振荡器等电子电路。
一、电感线圈及其电路图形符号电感线圈就是用漆包线或纱包线一圈靠一圈地绕在绝缘管架、磁芯或铁芯上的一种元件。
电感线圈也可简称为线圈,通常在电路图中用字母“L”表示,常用的图形符号如图1所示。
图1 各种电感线圈的电路图形符号二、线圈的自感和互感任何线圈有电流通过时其周围会产生磁场;若通过线圈的电流变化时,线圈周围磁场也会变化,这变化的磁场又产生感应电动势。
感应电动势是由于线圈中的电流变化引起的,即自感应作用,叫做自感。
自感应电动势的方向符合楞次定律。
当线圈中电流变化时,自感应电动势总是阻碍电流的变化。
两只线圈相互靠近,一只初级线圈,另一只次级线圈,初级线圈通变化的电流,次级线圈产生感应电动势。
初、次级线圈虽无直接相连,但有磁力线耦合作用,使初级线圈的电能转移到次级线圈,这种作用称为互感,由互感作用产生的感应电动势称为互感电动势。
根据初级线圈磁力线通过次级线圈产生作用的多少,即互感量的大小,有紧耦合和松耦合。
若把初、次级线圈彼此垂直放置,则没有磁感应作用,即没有耦合。
三、电感线圈的种类和型号命名方法由于工作频率、绕组匝数、骨架材料等因素不同,线圈种类繁多,主要有振荡线圈、阻流线圈、电视偏转线圈和校正线圈、固定电感线圈等。
按磁体性质又分为:空芯线圈和磁芯线圈;按线圈形式又分为:固定线圈和可变线圈。
电感线圈的型号命名一般由四部分组成:第一部分:用字母表示主称,其中L代表线圈,ZL代表阻流圈;第二部分:用字母表示特征,其中G代表高频;第三部分:用字母表示型号,其中X代表小型;第四部分:用字母表示区别代号。
下来介绍几种线圈:1.单层线圈单层线圈的电感量一般在几个微亨到几十个微亨之间,适用在高频电路中,为了提高Q值,线圈骨架选用介质损耗小的陶瓷、聚苯乙烯、聚四氟乙烯等。
电感耦合和变压器部分
电感耦合和变压器部分电感耦合是指通过电感的作用,将两个或多个电路的电磁场相互连接的一种方式。
它常用于电路的耦合、滤波、谐振等。
1.耦合电感:耦合电感是指将两个电路通过电感连接在一起的一种元件。
它可以让信号从一个电路传递到另一个电路,同时也可以限制高频噪声的传播。
耦合电感通常由线圈组成,其匝数和绕制方式会影响其特性。
2.电感滤波:电感滤波是一种利用电感元件对电路进行滤波的方法。
它可以通过电感的自感效应,对电路中的高频噪声进行抑制,从而提高电路的信噪比。
电感滤波器通常由电感和负载组成,其电感值和负载值的选择会影响滤波效果。
3.电感谐振:电感谐振是指在电感元件和电容元件组成的电路中,当电感元件和电容元件的共振频率相等时,电路的阻抗达到最小值,电流达到最大值的现象。
电感谐振常用于电路的选频、放大等。
变压器是一种利用电磁感应原理,实现电压和电流的变换的装置。
它由两个或多个绕组组成,绕组之间通过铁芯连接。
1.变压器的基本原理:变压器的工作原理是利用电磁感应现象。
当交流电流通过 primary winding(一次绕组)时,会在铁芯中产生变化的磁通量,进而在 secondary winding(二次绕组)中感应出电动势,从而实现电压的变换。
2.变压器的种类:变压器可以按照其工作原理、结构、用途等方面进行分类。
例如,按照工作原理可以分为交流变压器和直流变压器;按照结构可以分为壳式变压器和芯式变压器;按照用途可以分为电力变压器和电子变压器等。
3.变压器的主要参数:变压器的主要参数包括变压比、匝数比、效率、短路阻抗等。
变压比是指变压器的输入电压和输出电压之间的比值;匝数比是指变压器的输入绕组和输出绕组之间的匝数比值;效率是指变压器输出功率与输入功率之间的比值;短路阻抗是指变压器在短路条件下的阻抗值。
4.变压器的应用:变压器在电力系统中具有重要的作用,它可以将高压电能转换为低压电能,以满足不同用电场合的需求。
此外,变压器还可以用于电子设备中,例如电源适配器、音频放大器等。
电感器和变压器的检测和识别
误差 ±20% ±1% ±2% ±3% ±4%
±5% ±10%
知识3 电感器和变压器的检测方法
电感线圈只有一部分(阻流圈、振荡线圈LC固定电感线圈)是按标准生 产出来的产品,绝大多数是非标产品,自制。铁心线圈只能用于低频, 铁氧体线圈、空心线圈可用于高频。
1、电感器线圈的测量 用万用表的欧姆档测量电感器的直流电阻,应不为0和无穷大。
(3)高频扼流圈
用在高频电路中阻碍高频电流的通过。常与电容器串联组成滤波电路, 起到分开高频和低频信号的作用改变磁芯在线圈中的位置就可以达到
改变电感量的目的。如:磁棒式天线线圈-可变电感线圈,其电感量在 一定范围内可以调节。与可变电容器组成调谐器,用于改变谐振回路的 谐振频率。 3、电感器的主要参数 (1)电感量标称值与误差 电感量表示电感线圈工作能力的大小。电感=磁通/电流 L
变压器也是一种电感器。它是利用两个电感线圈靠近时的互感应现 象工作的。在电路中可以起到电压变换和阻抗变换的作用,是电子产品中 十分常见的元件。 (1)低频变压器 (有两种) 音频变压器:实现阻抗匹配、耦合信号、将信号倒相等。(只有在阻
抗匹配的情况下,音频信号的传输损耗及其失真才能降 到最小。)(20Hz~20KHz) 电压变压器:将220V交流电压升高或降低,变成所需的各种交流电压。 (2)中频变压器(又叫中周) 中周是超外差式收音机和电视机中的重要元件。
例:4N7: 4.7 nH ; 4R7:4.7 μH; 47N:47 nH ; 6R8:6.8 μH 。 其允许偏差也用文字符号表示。
例:±1% ±2% ±5% ±10% ±20% ±30%
FG JK
M
N
(3)数码法:用三位数码表示电感量的标称值。一、二位为有效数, 第三位为倍率,即零的个数,单位为μH。 例:102J: 1000 μH,允许偏差±5%; 183K: 18000 μH,允许偏差±10%;
移相全桥变压器励磁电感-概述说明以及解释
移相全桥变压器励磁电感-概述说明以及解释1.引言1.1 概述:移相全桥变压器励磁电感是目前电力系统中常用的一种变压器励磁控制技术。
它通过改变变压器励磁电感的大小,可以实现对功率系统的电压和功率因数的控制。
本文旨在深入探讨移相全桥变压器励磁电感的原理、作用、优势以及未来的发展方向,以期为相关领域的研究和实践提供一定的参考和借鉴。
通过本文的阐述,读者将能够更清晰地了解这一技术在电力系统中的重要作用,以及其在未来的应用前景。
1.2 文章结构文章结构部分的内容:本文分为引言、正文和结论三部分。
引言部分包括了概述、文章结构和目的三个小节,主要介绍了本文的主题和写作目的。
正文部分主要包括了移相全桥变压器的原理、变压器励磁电感的作用和变压器励磁电感的优势三个小节,深入探讨了变压器在励磁电感方面的应用和优势。
结论部分包括了总结移相全桥变压器励磁电感的应用、展望未来发展和结论三个小节,对文章内容进行了总结和展望未来发展方向。
整个文章结构清晰,逻辑性强,为读者提供了全面的信息和知识。
文章1.3 目的部分的内容应包括对本文的研究目的进行阐述,说明为什么要研究移相全桥变压器励磁电感的应用。
可以包括以下内容:目的:本文旨在深入探讨移相全桥变压器励磁电感的原理、作用和优势,以及其在电力领域的应用。
通过对变压器励磁电感的研究和分析,可以帮助工程师和研究人员更好地理解移相全桥变压器的工作原理,进而优化电力系统的设计和运行。
同时,也可以为相关领域的学术研究提供参考和借鉴,促进相关技术的进步和应用。
通过本文的撰写,旨在为读者提供对移相全桥变压器励磁电感应用的全面理解,为相关研究和工程实践提供理论和实践指导。
2.正文2.1 移相全桥变压器的原理:移相全桥变压器是一种新型的电力变压器,其原理基于传统变压器的原理,但在传统的变压器结构上进行了改进和优化。
传统的变压器是通过电磁感应原理来实现电压的变换,主要由铁芯和线圈组成。
而移相全桥变压器在传统变压器的基础上增加了移相互感电路,通过控制移相电感的变化来实现对电压的调节和变换。
项目3-电感器和变压器的检测与识别
电子元器件检测与识别
知识1 知识 电感器和变压器的类型与主要参数
• 1.常见电感器和变压器的外型和图形符号 常见电感器和变压器的外型和图形符号
电子元器件检测与识别
常见电感器的外型和图形符号( 图3.1 常见电感器的外型和图形符号(续)
电子元器件检测与识别
知识2 知识
色码电感
电感器和变压器的检测方法
电子元器件检测与识别
色码电感有LG1、LGX、LG400、LG402和LG404共5种 、 色码电感有 、 、 和 共 种 类型,色码电感器的型号及性能如表3.8所示 类型,色码电感器的型号及性能如
型 号 外型尺寸系列 电流组别 电感容量范围
LG1、LGX型(卧式) 、 型 卧式)
φ5,φ6,φ8,φ10,φ15
φ13 φ9 φ5,φ8,φ18
A组 组 A组 组 A组 组 D组 组
LG404型(立式) 型 立式)
电子元器件检测与识别
技能与技巧
小电感的制作方法 在电路制作中,常常买不到合适的小电感, 在电路制作中,常常买不到合适的小电感,这时可以自己制作一 个带磁芯的小电感。 个带磁芯的小电感。 电感的电感量与磁芯的导磁率及尺寸有关。根据常用的电感计算方法, 电感的电感量与磁芯的导磁率及尺寸有关。根据常用的电感计算方法, 当线圈的尺寸、长度、直径以及采用的磁芯材料选定以后, 当线圈的尺寸、长度、直径以及采用的磁芯材料选定以后,则其相应 参数就可以认为是一个确定值,可以看成是常数。 参数就可以认为是一个确定值,可以看成是常数。此时线圈的电感值 仅和其绕组匝数的平方成正比, 仅和其绕组匝数的平方成正比,由此可以得出小电感的计算公式为 L=KW2 式中, 为线圈的匝数 为线圈的匝数; 为电感系数 一般应由磁芯生产厂家提供, 为电感系数, 式中,W为线圈的匝数;K为电感系数,一般应由磁芯生产厂家提供, 其单位为纳亨( )。漆包线的电感系数也是由厂家提供的。 )。漆包线的电感系数也是由厂家提供的 其单位为纳亨(nH)。漆包线的电感系数也是由厂家提供的。如果不 了解漆包线的电感系数K的数值 则可先在磁芯上绕上W1圈 的数值, 了解漆包线的电感系数 的数值,则可先在磁芯上绕上 圈,再用万 用电桥测出其电感量L1,那么,利用K=L1/W12,即可求出该漆包线的 用电桥测出其电感量 ,那么,利用 , 电感系数K值 电感系数 值。 初步制作完毕后,可以用万能电桥边测边调, 初步制作完毕后,可以用万能电桥边测边调,即可达到满意的结 果。 目前市场上有“电感测试仪”销售,价格在200~ 元 目前市场上有“电感测试仪”销售,价格在 ~300元。
电感是什么,和变压器有什么区别
电感是什么,和变压器有什么区别
电感和变压器是两种不同的电子元件,它们的作用和应用有所不同。
电感是一种电性元件,主要作用是产生感应电动势和储存能量。
具体来说,电感器一般由线圈构成,当有电流流过线圈时,根据楞次定律,线圈会产生一个反向的电动势来抵抗电流的变化。
因此,电感的作用是阻止电流的变化,通常用于平滑电路、滤波、储能等场合。
变压器则是一种由两个或多个线圈构成的元件,通过互相感应和变化电流大小来调整电压大小。
变压器通常由铁芯和线圈组成,通过改变线圈的匝数或铁芯的位置来调整输出电压的高低。
变压器在电力系统、通信、电子等领域中广泛应用,用于实现电压变换、电流变换、阻抗变换等功能。
总的来说,电感和变压器都是电子设备中重要的元件,但它们的作用和应用有所不同。
电感主要用于平滑电路、滤波、储能等场合,而变压器则用于实现电压、电流、阻抗的变换和传输等功能。
电感、磁珠、变压器
第三章电感、磁珠、变压器1、电感和变压器定义:电感是衡量线圈产生电磁感应能力的物理量,导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与产生此磁通的电流之比。
电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。
两个彼此不连接但又靠近,相互间存在电磁感应的线圈叫变压器。
变压器是一种用于电能转换的电器设备,它可以把一种电压、电流的交流电能转换成相同频率的另一种电压、电流的交流电能;2、电感和变压器用途:由感抗XL=2πfL 知,电感L越大,频率f越高,感抗就越大。
该电感器两端电压的大小与电感L成正比,还与电流变化速度△i/△t 成正比,这关系也可用下式表示:电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示:WL=1/2 Li^2 ,可见,线圈电感量越大,电流越大,储存的电能也就越多。
主要用途如下:(差/共模)滤波、谐振、隔交通直、选频、阻抗变换、陷波、延迟、阻流(阻高频或低频)、变压(升压/降压)、开关(继电器)等;3、色环电感识别: 色环电感分为四色环和五色环,先说四色环,顾名思义,就是用四条有颜色的环代表感值大小:棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9黑0精度:J=±5% K=±10% M=±20%, 表示误差电感各色环表示意义如下:第一条色环:感值的第一位数字;第二条色环:感值的第二位数字;第三条色环:10的幂数;第四条色环:误差表示。
插件的色环电感读法:同色环电阻的标示;电感量:0.1uH~22MH, 尺寸:0204、0307、0410、0512, 豆形电感:0.1uH~22MH, 尺寸:0405、0606、0607、0909、0910 ;电感单位:亨(H)、毫亨(mH)、微亨(uH)、纳亨(nH),1H=10^3mH=10^6uH=10^9nH;4、常用电感种类汇总:(一)按结构分类电感器按其结构的不同可分为线绕式电感器和非线绕式电感器(单层、多层、蜂窝式、多层片状、印刷电感等),还可分为固定式电感器和可调式电感器。
变压器和电感基础知识
培训教材文件编码:
版本:A.0
页数:13 OF 69
标题第一章基础培训教材
第二节电子元件基础知识
制订日期:
二、变压器(Transformer)和电感器(Inductor)
变压器和电感器是很容易混乱的,因为它们有同样的物理形状。
它们之间只有一个规律可分别出来,变压器用“QTK”标明,电感器用“QHP”标明。
(一)变压器
下面是一些我们常用的变压器的类型:
变压器的电路符号是:T。
变压器常用“QTK”标在元件体上加以识别。
变压器是有极性的,它的第一个管脚通常用一白色标志、一个孔或一个尖角表示。
(二)电感器
电感器的元件符号是:L。
电感器和元件体上常用“QHP”标示。
电感的单位是亨利(H),毫亨(MH),
微亨(UH)。
电感器是有极性的,电感器的一号管
脚用一尖角表示,插时应对准板上的
白点插入。
轴向引线电感器和电阻的外形是非常相似的,可区别它们的标志是电感器的一头有一条宽的
银色色环。
轴向引线由电感器用五个色环表示,第一环银色环比其它的色环大两倍,以下的
三环标示电感的毫亨值,第五环表示电感的误差值。
其后四环的标识方法和四环电阻的相同。
例:某电感器的后四环颜色依次为:红、红、黑、银,
则其电感值为:22微亨,±10%。
如果第二环或第三环的颜色是金色,则此金色环表示电感值的小数点.
例:某电感值的后四环颜色依次为:黄,金,紫,银,则其电感值为4.7UH±10%.。
变压器基础知识
2020/7/7
电力工程技术:china-dianli
15
变压器或者电感根据在拓扑结构中的工作方式分为三大类:1、 直流滤波电感工作状态,电感磁芯只工作在一个象限。属于这 类工作状态的电感有Boost电感、Buck电感、Buck/boost电感、 正激以及所有推挽拓扑变换器输出滤波电感、单端反激变换器 变压器;
3. 计算原副边电感量及匝数; 4. 计算空气隙的长度; 5. 根据电流密度和原副边有效值电流求线径; 6. 求铜损和铁损是否满足要求(比如:允许 损耗和温升)
2020/7/7
电力工程技术:china-dianli
20
电源的基本参数如右: 选择反激拓扑。
1. 选择磁芯材料,确定变压器的视在功率PT; 考虑成本因数在此选择PC40材质,查PC40资料得 Bs=0.39T Br=0.06T Bmax Bs Br 0.39T 0.06T 0.33T
3
2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感,
增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。
漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。
2020/7/7
电力工程技术:china-dianli
4
2020/7/7
电力工程技术:china-dianli
2020/7/7
电力工程技术:china-dianli
14
开关电源用铁氧体磁性材应满足以下要求: (1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br 磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从 理论上讲,Bs高,变压器绕组匝数可以减小,铜损也随之减小 在实际应用中,开关电源高频变换器的电路形式很多,对于变 压器而言,其工作形式可分为两大类:
电子变压器.电感器生产制造基本知识及工艺规范
电子变压器、电感器生产制造基本知识及工艺规范1.目的:为使我公司电子变压器,电感器(统称变压器)生产的管理者,作业者对变压器的生产有个全面了解和统一认识。
以期在生产中采用合理的工艺要求和操作手法,提高产品质量、提高工效、节省材料,特制定编写本文。
2.适用范围:本规范只适用于我公司电子变压器的生产中,一般性的工艺要求,对于特殊要求,依图纸规定执行,本文内容只作为参考.生产过程中,如遇有与产品规格书要求不一致处,应以产品规格书为准。
3.变压器的基本工作原理:变压器是一种变换电压的电子原件,故称之为“变压器"。
它是由铜线绕制的线包和磁性材料构成的铁芯组合而成,是各种电子设备中不可缺少的重要部件之一。
变压器的工作原理:当初级线圈加上交复信号后,初级线圈将产生交变磁场.交变磁场通过磁芯(铁芯)感应到次级线圈上,于是在次级线圈中产生感应电压。
该感应电压的频率与初级外加信号相同,而电压值则取决于次级线圈的匝数多少。
输出功率则决定于外接负载和初级输入信号的功率.因此,正确的设计初、次级线圈的圈数比即可得到需要的次级输出电压值。
工作原理如右图所示:Uin:输入电压Uout:次级输出电压N1:初级匝数N2:次级匝数Uout=Vin*N2/N1*(1+K)(K:损耗系数约为5%-10%)4.变压器生产中使用的主要材料:变压器生产中使用的材料主要为三类:导电材料、磁性材料和绝缘材料.现分述如下:4.1导电材料主要用于绕制线包绕组和隔离,屏蔽,导电材料种类繁多,使用时要注意区分。
4.1.1常用的铜漆包线:铜线表面包裹绝缘漆面称为铜漆包线,简称为铜线或漆包线,使用中除注意其外径外,还要注意区分绝缘层的特性。
漆包线分为:A.可焊型:即以锡温可以熔化掉漆包层,常用的有:0UEW1UEW2UEW—使用最多的一种3UEW从0-3型,其漆包层由厚到薄。
B。
不可焊型:即以锡温不能熔化漆层,需以特殊方法,去漆层后焊锡.常用的有:PEW “F"PEW “H”多用于工作在高温条件下,一般使用较少。
电感和变压器的基础介绍
电感和变压器的基础介绍.txt一个人一盒烟一台电脑过一天一个人一瓶酒一盘蚕豆过一宿。
永远扛不住女人的小脾气,女人永远抵不住男人的花言巧语。
本文由wc5631231wc贡献doc文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
电路基础————电感电感电路基础 #1 电路基础电感计算机板卡电路中常见的电感器通常称为电感或线圈,在电源电路中常称为扼流圈。
它的外形有圆形、环形、E 型,是用绝缘漆包线在各种骨架(包括空心骨架、磁芯骨架和铁芯骨架)上按照一定的绕制方法绕制而成。
按照骨架的材料,我们可以将电感分为空气芯电感、磁心电感、铁心电感等。
它们在电路中的图示符号如图 1,文字符号为 Lx,其中 x 是电感在这个电路之中的编号。
电感具有与电容完全相反的特性:阻交流,通直流。
当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。
根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。
当形成闭合回路时,此感应电势就要产生感应电流。
由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。
由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。
电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。
总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。
这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。
由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。
L 最基本的单位是“亨利”,常用英文字母“H”表示,比亨利小的单位有毫亨(1mH=0.001H)和微亨(1 μH=0.000001H),其相互换算关系是:1 亨(H)=1000 毫亨(mH)=1000000 微亨(1μH)。
变压器励磁电感和原边电感
变压器励磁电感和原边电感变压器是一种将高压电流转换为低于或高于原电流电压的电气设备。
在变压器中,励磁电感和原边电感起到了至关重要的作用。
本文将对变压器励磁电感和原边电感进行详细介绍。
1. 励磁电感励磁电感是指变压器中用于产生磁通的线圈的电感。
该线圈通常被称为励磁线圈,其主要作用是在电路中产生磁通,使得变压器能够进行能量传输。
在变压器中,励磁电感是一个重要的参数,它对变压器的工作效率和性能有着重要的影响。
励磁电感的大小取决于许多因素,如线圈的长度、直径、匝数、线径、磁心的长度和截面积等。
通常,励磁电感是变压器的双层线圈,其中一个线圈位于磁心的外部,称为外励磁线圈,另一个线圈则位于内部,称为内励磁线圈。
在变压器的运行中,励磁电感会产生一定的损耗,这种损耗通常称为励磁损耗。
励磁损耗主要来自于励磁线圈的电阻和交变磁场的涡流损耗。
励磁损耗可以通过增加励磁电感或减小励磁电流来减少。
2. 原边电感原边电感是指变压器中原边线圈的电感。
原边线圈通常为输入电路提供电源,并将电流传递到变压器中。
因此,原边电感对于变压器的能量转换效率和性能起着至关重要的作用。
原边电感的大小取决于线圈的长度、直径、匝数、线径和截面积等因素。
原边电感大小可以通过减少线径、增加匝数或增加线圈长度来增加。
此外,原边电感还受到变压器磁芯的影响,因为磁芯的材料和尺寸会影响磁通的传递和分布。
原边电感还有一个重要的特性,它与原边电流之间存在一定的线性关系。
这意味着,原边电感会随着原边电流的变化而发生变化。
例如,当原边电流增加时,原边电感也会随之增加。
这种特性对于变压器的保护和控制非常重要。
总之,励磁电感和原边电感是变压器中非常重要的参数,它们对于变压器的工作效率和性能有着决定性的影响。
在设计和选用变压器时,必须考虑它们的大小和特性。
变压器电感基础知识介绍
短路测试
Measuring short-circuit current and voltage to assess the transformer's capacity and power rating.
电感是变压器的重要参数之一,它决定了变压器的工作频率、效率、温升以及电 磁干扰等性能指标。
变压器电感的工作原理
当电流通过变压器线圈时,线圈 周围会产生磁场,这个磁场会对 线圈中的电流产生反作用力,这
个反作用力就是电感。
电感的大小与线圈的匝数、线圈 的面积、线圈的长度、线圈的半 径以及电流的频率等因素有关。
变压器电感基础知识介绍
• 变压器电感的基本概念 • 变压器电感的参数与性能 • 变压器电感的设计与制造 • 变压器电感的测试与评估 • 变压器电感的发展趋势与展望
01
变压器电感的基本概念
变压器电感的定义
变压器电感(Transformer Inductance):在变压器中,电感是指由于磁场的作用, 在导线或线圈中产生的感应电动势或感生电流所需要的时间和能量。
电气测试
Conducting electrical tests such as insulation resistance, partial discharge, and DC leakage tests to identify faults.
油样分析
Analyzing the transformer's oil for impurities, moisture, and gas content to detect internal faults.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
够产生自感、互感作用的器件均称为电感器件。
电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当的配合,可构成各种功能的电子线路。
由于电感器一般由线圈构成,所以又称为电感线圈。
为了增加Q值、缩小体积,线圈中常用软磁性材料做成磁芯。
电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等。
在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关的变压器、延迟线、滤波器等,在本节中将作必要说明。
1.电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过的作用,而对稳定的直流电压却不起作用(线罪状本身直流电阻例外)。
所以线圈可以在交流电路中作阻流、变压、交连、负载等。
当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等。
电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。
它们之间的关系为:1H=103mH=106uH.(1)自感与互感。
当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。
自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感系数来表示。
电感受。
电感受量是表示电感数值大小的量,一般称之为电感。
电感线圈的自感工作原理:线圈(电感)中的自感电动势的方向将要阻碍原磁场的变化,这是因为原有的磁场是线圈中的电流产生的,自感受电动热阻碍通过线圈的电流发生变化,这种阻碍作用就是电感的感抗,其单位欧姆()。
感抗的大小与线圈的电流感量的大小和通过电感线圈的交流频率有关,电感量越大,他所形成的感抗也就越大。
同一电感量下,交流电流的频率越高,感抗也就越大。
它们的关系可下列公式说明:XL=2fL式中XL——感抗;f——电流的频率;L ——电感量。
电感线圈的互感工作原理:在通过交流的电感线圈的交变磁场中,放置另一个电感线圈,交变磁场中的磁力线将穿过这个线圈,并且在该线圈中产生感应电动势,我们将这种现象称之为互感。
一般将原电线称为初级圈的互感量有关,初、次级线圈之间的相互作用称为耦合(系数)。
耦合系数与两线圈的位置、方式、有无磁芯等因素有关。
两线圈的是感量与两线圈之间的耦合系数有关,电感线圈的互感原理也就是常见的变压器原理。
(2)电感线圈的作用。
电感的作用如下两点:1)阻流作用:线圈中的自感电动势总是与线圈中的电流变化相对抗。
主要可分为高频阻流线圈及低频阻流线圈。
2)调谐与选频作用:电感线圈与电容器并联可组成LC调谐电路。
即电路的固有振荡频率f0与非交流信号的频率f相等,则回路的感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是LC回路的谐振现象。
谐振时由于电路的感抗与容抗等值又反向,因此回路总电流的感抗最小,电流量最大(指f="f0"的交流信号),所以LC谐振电路具有选择频
率的作用,能将某一频率f的交流信号选择出来。
(3)电感线圈的检测。
电感线圈的检测一般要借助于专用的电子仪器,在不具备专用仪器时,可用万用表对电感受线圈进行检测(只能在致上判断其好坏)。
电感线圈的直流电阻值一般很小,大约为零点几欧到几欧左右,低频线圈的直流电阻最多也只有几百欧至几千欧。
当被测线圈电阻为无穷大时,说明线圈内部或引出端已开路。
测量过程中还应注意线圈与外电路断开,以避免外电路对线圈的并联形成错误判断。
更换新电感线圈时,应注意更换的电感数值相接近。
至于局部短路,往往是不能检测出来的,在检修的过程中,只能用代换法。
在使用线圈时应注意不要随意改变线圈的形状、大小、方向及线圈间的距离,否则会影响线圈原有的电感量,特别是更换高频线圈时更应注意。
2.变压器变压器是电子线路中广泛应用的一种无源器件,利用线圈之间的互感作用,可以对交流(或信号)进行电压变换、电流变换、阻抗变换,可以传递信号,阻隔直流等。
变压器一般由线圈、铁(磁)芯和骨架等几部分组成,在电子线路中常用英文字母“T”或“B”表示。
变压器在电路中的主要作用是进行输入与输出之间的电压和阻抗的变换,其基本工作原理是:当给变压器初级线圈加上一个交变压U1时,在线圈中则产生交变电流I1.由于交变电流I1的作用,在初级线圈中则产生变磁场。
于是,在磁芯中产生交变的磁感受应强度和交变的磙。
由于磁芯的作用,磁通必须经过变压器的次级线圈,结果在次级线圈中产生互感电动势U2。
若初级线圈的匝数为N1,次级线圈的匝数为N2,则有U1/U2=N1/N2=n.当N1大于N2时,n 大于1,则U1大于U2,输出电压小于输入电压。
当N1大于N2时,n小于1时,则U1小于U2,输出电压大于输入电压。
变压器的种类繁多,根据其用途可分为低频变压器、中频变压器、高频变压器等多种。
按其磁芯又可分为铁芯变压器、磁芯(铁氧体)变压器与空心变压器等几种。
变压器的主要技术参数有:额定功率:指的是在额定的频率的电压下,变压器能长期工作而不超过额定的温升的输出功率。
额定功率中会有部分无功功率(因变压器自身损耗电量为铜损),所以其单位用伏安(VA)表示,而不用瓦(W)表示。
匝数比:变压器初级绕组的匝数(N1)与次级绕组的匝数(N2)之比称为匝数比(n),即
n=N1/N2.在一般情况下,它就是输入电压与输出电压之比,所以匝数比又可称为变压比。
工作效率:是指变压器次级输出的电功率与功放输入电功率比值的百分数,即:工作效率=输出功率/输入功率*100%工作效率一般是指开磁稳压电源等大功率的工作部分,而中频、高频变压器一般是不考虑工作效率的。
频带宽度:当输入电压不稳定时,其输出电压会随着频率变化而变化。
在中间频带处,输出电压与输入电压基本上相符合,即符合变压器的初、次级匝数比的关系。
当频率的输出电压
为U0,所对应的高、低两频率之差,称为该变压器的频带宽度。
温升:变压器的温升主要是对电源并联变压器而言,它是指变压器在通电源后,其温度上升到稳定值进,这时变压器温度高出周围环境温度的数值,因此要求变压器的温升越小越好。