传导,辐射,谐波总结
电源EMI传导辐射实际整改经验总结(绝对值得)
电源EMI传导辐射实际整改经验总结(绝对值得)第一篇:电源EMI传导辐射实际整改经验总结(绝对值得)1、在反激式电源中,Y电容接初级地与次级地之间在20MHZ时,会比Y电容接在高压与次级地之间高5dB左右。
当然也要视情况而定。
2、MOS管驱动电阻最好能大于或等于47R。
降低驱动速度有利于改善MOS管与变压器的辐射。
一般采用慢速驱动和快速判断的办法。
3、若辐射在40MHZ-80MHZ之间有些余量不够,可适当地增加MOS管DS之间的电容值,以达到降低辐射量的效果。
4、若在输入AC线上套上磁环并绕2圈,有降低40-60MHZ之间辐射值的趋势,那么在输入EMI滤波部分中串入磁珠则会达到同样的效果。
如在NTC电阻上分别套上两个磁珠。
5、在变压器与MOS管D极之间最好能串入一个磁珠,以降低MOS管电流的变化速度,又能降低输出噪音。
6、电源输入AC滤波部分,X电容放在共模电厂的那个位置并不重要,注意布线时要将铜皮都集中于X电容的引脚处,以达到更好的滤波效果,但X电容最好不要与Y电容连接在同一焊点。
7、在300W左右的中功率电源中,其又是由几个不同的电源部分组成,一般采用三极共模电感。
第一级使用100UH-3MH左右的双线并绕锰锌磁环电感,其后再接Y电容,第二级与第三级可使用相同的共模电感,需要使用的电感量并不要求很大,一般10MH左右就能达到要求。
若把Y电容放在第二级与第三级之间,效果就会差一些。
如果采用两级共模滤波,秕一级电感量适当取大些,1.5-2.5MH左右。
8、如果采用三级,第一级电感量适当取小些,在200UH-1MH 之间。
测试辐射时,最好能在初次级之间的Y电容套上磁珠。
如果用三芯AC输入线,在黄绿地线上也串磁环,并绕上两到三圈。
9、在二极管上套磁珠,一般要求把磁珠套在其电压变化最剧烈的地方,在正端整流二极管中,其A端电压变化最剧烈。
10、实例分析:一台19W的二合一电源,在18MH左右处有超过QP值7dB,前级采用两级共模滤波方法和一个X电容,无论怎样更改滤波部分,此处的QP值总是难以压下来。
谐波的产生原因危害与治理
谐波的产生原因危害与治理谐波是指信号在传输过程中产生的频率是原有信号频率的整数倍的现象。
谐波一般是由于信号源产生幅度非线性特性、信号传输线路的不完美特性以及外界干扰等多种因素共同作用所导致的。
1.非线性特性:当信号源的输入电压超过其线性范围时,信号源会产生非线性失真。
这种非线性特性会使得原信号分解成包含各种谐波成分的信号,即产生谐波。
2.传输线路的不完美:在电力传输和通信线路中,由于电导率不一致、绝缘材料的不均匀性以及线路的接地等因素,会引起谐波的产生。
这些因素使得线路对于不同频率的信号具有不同的传输特性,从而造成信号的失真和谐波的产生。
3.外界干扰:外界电磁辐射的干扰也会引起谐波的产生。
当外界电磁波与系统内的信号相互作用时,可能会产生共振现象,从而导致谐波信号的产生。
谐波的存在会带来一系列的危害,包括以下几个方面:1.信号失真:谐波信号会改变原信号的波形和频谱特性,导致信号失真。
这会影响到电力传输系统和通信系统中的信号传输质量,降低系统的可靠性和稳定性。
2.设备损坏:谐波会导致电流和电压的波形变形,产生大量的电磁干扰。
这些干扰会对设备的正常工作造成影响,甚至会导致设备损坏和故障。
谐波还可能引起设备内部电子元件的过热现象,加速设备老化和损坏。
3.电力系统能源浪费:谐波会引起电力系统中电流和电压的非功率信号,造成能量损耗。
这不仅会浪费能源,还会导致电力系统的效率降低。
为了治理谐波对系统的危害,可以采取以下几种方法:1.模拟电路设计中采用线性器件:选择线性器件作为信号源和信号传输线路中的关键部件,减少非线性特性对信号的影响。
2.使用滤波器:在信号源和负载之间加入合适的滤波器,可以有效地滤除谐波成分,保证原信号的传输质量。
3.优化供电系统:针对供电系统中频繁出现谐波问题的设备,进行电源选择、接线方式和接地设计的优化,减少谐波产生。
4.电源质量改进:加强对供电设备的质量管理,采用高质量的电源设备,减少谐波对电力系统的影响。
谐波知识
谐波知识什么是谐波?供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。
电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。
谐波实际上是一种干扰量,使电网受到“污染”。
电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40。
…………谐波存在的数量以总谐波含量(Total Harmonic Distortion (THD))的百分数表示。
THD超过5%就应调查其原因。
totaln.总数, 合计adj.总的, 全部的, 整个的v.合计, 总数达, 达到harmonicadj.谐和的, 和声的, 融洽的n.谐波, 和声, 谐函数distortionn.扭曲; 歪曲, 曲解【无】(信号等的)失真;【物】(透镜成像产生的)畸变;…………电力系统中有非线性(时变或时不变)负载时,即使电源都以工频50HZ供电,当工频电压或电流作用于非线性负载时,就会产生不同于工频的其它频率的正弦电压或电流,这些不同于工频频率的正弦电压或电流,用富氏级数展开,就是人们称的电力谐波。
随着经济发展,大功率可控硅的广泛应用,大量非线性负荷增加,特别是电子技术、节能技术和控制技术的进步,在化工、冶金、钢铁、煤矿和交通等部门大量使用各种整流设备、交直流换流设备和电子电压调整设备,电熔炼设备、电化学设备、矿井起重设备、露天采掘设备、电气机车等与日俱增,同时种类繁多的照明器具、娱乐设施和家用电器等普及使用,使得电力系统波形严重畸变谐波治理----谐波与企业的切身利益A:"谐波"一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
开关电源的传导发射和辐射发射
开关电源传导发射和辐射发射的产生原因及解决对策1 概述目前,电子产品电磁兼容问题越来越受到人们的重视,尤其是世界上发达国家,已经形成了一套完整的电磁兼容体系,同时我国也正在建立电磁兼容体系,因此,实现产品的电磁兼容是进入国际市场的通行证。
对于开关电源来说,由于开关管、整流管工作在大电流、高电压的条件下,对外界会产生很强的电磁干扰,因此开关电源的传导发射和电磁辐射发射相对其它产品来说更加难以实现电磁兼容,但如果我们对开关电源产生电磁干扰的原理了解清楚后,就不难找到合适的对策,将传导发射电平和辐射发射电平降到合适的水平,实现电磁兼容性设计。
2 开关电源传导骚扰2.1 传导发射的产生开关电源的传导骚扰是通过电源的输入电源线向外传播的电磁干扰。
在开关电源输入电源线中向外传播的骚扰,既有差模骚扰、又有共模骚扰,共模骚扰比差模骚扰产生更强的辐射骚扰。
传导骚扰的测试频率范围为150KHz~30MHz,限值要求如下表1 所示:表1:A 级电源端口传导骚扰限值频率范围(MHz)准峰值dB(μV)平均值Db(μV)0.15~0.5 79 660.5~30 73 60B 级电源端口传导骚扰限值0.15~0.5 66 560.5~5 56 465~30 60 50在0.15MHz~1MHz 的频率范围内,骚扰主要以共模的形式存在,在1MHz~10MHz 的频率范围内,骚扰的形式是差模和共模共存,在10MHz 以上,骚扰的形式主要以共膜为主。
传导发射的差模骚扰的产生主要是由于开关管工作在开关状态,当开关管开通时,流过电源线的电流线形上升,开关管关断时电流突变为0,因此流过电源线的电流为高频的三角脉动电流,含有丰富的高频谐波分量,随着频率的升高,该谐波分量的幅度越来越小,因此差模骚扰随频率的升高而降低,另外,如下图1 所示,由于电容C5 的存在,它与电感L3 组成低通滤波器,因此,差模传导骚扰主要存在低频率段。
图1共模骚扰的产生主要原因是电源与大地(保护地)之间存在有分布电容,电路中方波电压的高频谐波分量通过分布电容传入大地,与电源线构成回路,产生共模骚扰。
电气辐射知识点总结
电气辐射知识点总结1. 电磁辐射的基本概念电磁辐射是指由电流激发的电场和磁场在空间中传播的过程。
电磁辐射有两种基本形式:电磁波辐射和导体传导的电磁辐射。
电磁波辐射是指电磁波在真空和介质中传播的过程,包括微波、射频、红外线、可见光、紫外线、X射线和γ射线等。
导体传导的电磁辐射是指电磁场在金属导体中传播的过程,其主要表现是感应电流引起的电磁辐射。
电气设备的运行和维护都会产生不同程度的电磁辐射,其特性取决于设备的结构、工作状态和工作频率。
2. 电磁辐射的危害长期接触高强度的电磁辐射可能对人体造成多种不良影响,包括对中枢神经系统、免疫系统和生殖系统的损害,尤其是在频率较高的电磁场作用下,更容易引起这些不良影响。
电磁辐射对人体的主要危害表现为:头痛、失眠、疲劳、注意力不集中、抑郁、眩晕、耳鸣、胸闷、心悸、消化不良、视力下降、色素沉着、皮肤过敏等。
此外,还有人体组织受到电磁辐射影响,导致细胞变性,造成免疫力降低,诱发各种疾病。
3. 电气设备的电磁辐射不同类型的电气设备会产生不同程度的电磁辐射。
发电机和变压器是电气系统中产生电磁辐射的主要设备之一。
发电机产生的电磁辐射主要来自转子槽口和绕组槽口的高频交变电磁场,而变压器的电磁辐射主要来自高压绕组和低压绕组之间的感应作用。
此外,输电线路也会产生电磁场,特别是高压和超高压输电线路的电磁场辐射相对较强。
开关设备、继电器和其他电气元件在正常运行时也会产生电磁辐射。
因此,电气设备的设计、安装和维护都需要考虑电磁辐射对人体的影响。
4. 电气设备的光辐射除了电磁辐射外,电气设备还会产生光辐射。
光辐射是指能够引起人眼视觉的电磁波,主要包括可见光和紫外光。
在电气设备中,电弧、电火花和击穿放电都会产生强烈的光辐射。
例如,在高压开关设备的运行中,电弧的产生会伴随着强烈的紫外光和可见光辐射,对人眼和皮肤造成伤害。
因此,在使用和维护电气设备时,必须注意避免直接暴露在光辐射源的附近,采取有效的防护措施。
史上最全开关电源传导与辐射超标整改方案-
史上最全开关电源传导与辐射超标整改方案目前,电子产品电磁兼容问题越来越受到人们的重视,尤其是世界上发达国家,已经形成了一套完整的电磁兼容体系,同时我国也正在建立电磁兼容体系,因此,实现产品的电磁兼容是进入国际市场的通行证。
对于开关电源来说,由于开关管、整流管工作在大电流、高电压的条件下,对外界会产生很强的电磁干扰,因此开关电源的传导发射和电磁辐射发射相对其它产品来说更加难以实现电磁兼容,但如果我们对开关电源产生电磁干扰的原理了解清楚后,就不难找到合适的对策,将传导发射电平和辐射发射电平降到合适的水平,实现电磁兼容性设计。
开关电源电磁干扰的产生机理及其传播途径率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的EMI问题。
开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。
现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。
由电流波形可知,电流中含有高次谐波。
大量电流谐波分量流入电网,造成对电网的谐波污染。
另外,由于电流是脉冲波,使电源输入功率因数降低。
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
谐波源总结
谐波源及其相关知识一、谐波概述谐波是指对周期性非正弦交流量进行傅立叶级数分解所得到的大于基波频率整数倍的各次分量,通常也称为高次谐波,而基波是指其频率与工频相同的分量。
谐波源是指向公用电网注入谐波电流或在公用电网产生谐波电压的电气设备。
二、主要的谐波源电力系统中的谐波来自电气设备,也就是说来自发电设备和用电设备。
电弧加热设备:如电弧炉、电焊机等。
感应加热设备:如中频炉等。
交流整流的直流用电设备:如电力机车、电解、电镀等。
交流整流再逆变用电设备:如变频调速、变频空调等。
开关电源设备:如、彩色电视机、电脑、电子整流器等。
1、发电机、变压器等由于发电机的转子产生的磁场不可能是完善的正弦波,因此发电机发出的电压波形不可能是一点不失真的正弦波。
2、变频器(1)变频器工作原理简介变频器是工业调速传动领域中应用较为广泛的设备之一。
变频器是利用电力半导体器件的通断作用把工频(50Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。
现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。
整流部分为三相桥式不可控整流器,整流电路将交流电转换成直流电;逆变部分为IGBT三相桥式逆变器,逆变电路将直流电再逆变成交流电,且输出为PWM波形;中间直流环节为滤波、直流储能和缓冲无功功率直流,中间电路对整流电路的输出进行平滑滤波;控制电路完成对主电路的控制。
其中由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载。
因此,以变频器为代表的电力电子装置是供用电网中最主要的谐波源之一。
(2)变频器产生谐波的机理交直交变频器产生谐波的机理变频器输出侧产生谐波的机理是:凡是在电源侧有整流回路的都产生因其非线性引起的谐波。
在逆变电路中,对于电压型电路来说,输出电压是矩形波。
谐波的危害与对策
谐波的危害与对策谐波是指频率为基波频率整数倍的电磁波。
谐波通常是电子设备和电力系统中的一种电磁干扰源,会对设备的正常运行产生危害。
本文将分析谐波的危害,并提出相关的对策。
1.电力系统中的危害:谐波会对电力系统的稳定性和可靠性产生负面影响。
谐波会导致电磁振荡,引起额外的电流和电压谐振,进而使设备损坏或系统瘫痪。
此外,谐波还会导致电力系统中的电能损耗增加,引起线路过热和设备寿命缩短。
2.设备损坏和故障:谐波会对设备造成过电压和过电流,使设备损坏或故障。
例如,谐波电流会引起电动机的过热,降低绝缘性能,导致设备寿命缩短。
谐波还会导致变压器的热损耗增加,引起变压器过热甚至发生爆炸。
此外,谐波还会导致电子设备的干扰,干扰正常的工作。
3.对人体健康的影响:谐波对人体健康产生的危害包括电磁辐射对人体的直接伤害和电磁辐射引起的各种健康问题。
长期处于高谐波环境中,人体可能会产生头痛、眩晕、失眠等症状。
同时,谐波还可能破坏人体的生物电位平衡,产生诸如心律失常等疾病。
为了应对谐波的危害,以下是一些可能的对策:1.传统滤波器技术:在电力系统中,可以采用传统的主动或被动滤波器来抑制谐波。
主动滤波器可以通过电子器件来消除不需要的谐波,并提供对称负载,减少谐波产生。
被动滤波器则是利用电抗器等设备来阻塞谐波流过的路径,减少谐波对电力系统的影响。
2.多层次的电力系统设计:在电力系统设计中,可以采用多层次的配置来抑制谐波。
通过在系统中增加合适的变压器、电抗器和滤波器等设备,可以减少谐波的传播和影响。
3.谐波监测与控制:通过谐波监测装置对电力系统中的谐波进行实时监测,并及时采取相应的控制措施。
例如,可以在容易受到谐波干扰的设备附近安装滤波器,通过选择合适的滤波参数和工作模式,减少谐波对设备的影响。
4.加强人体防护措施:对于电磁辐射对人体健康的直接威胁,应采取一系列的防护措施。
例如,在工作场所中,可以采用屏蔽层、防辐射窗等装置来减少辐射的传播和接触。
emc测试及整改方法
emc测试及整改方法
EMC测试主要包括空间辐射、传导、功率辐射、磁场辐射、谐波、电压波动、静电、抗辐射、快速脉冲群、雷击、抗传导、工频磁场、电压跌落、低频传导骚扰等方面的测试。
EMC整改主要有以下方法:
1. 查找确认辐射源。
首先通过排除法、频谱分析仪频点搜索法、元件固有频率分析法等方法查找并确认辐射源。
排除法包括拔线法、分区工作排除法、低电压小电流的人体触摸法,区域屏蔽排除法等。
元件固有频率分析法则是通过对一些元件的固定频率及其倍频频率进行分析归类。
2. 滤波。
滤波一般分为电容滤波、RC滤波和LC滤波等,用于减少电磁干扰。
3. 吸收电磁波。
吸收电磁波方法有电路串联磁珠法、绕穿磁环法和贴吸波材料法。
需要注意的是,使用吸波材料时,要确保所吸收的电磁波频率在吸波材料的吸收范围内,否则可能无效。
4. 接地。
接地法一般分为单点接地法和多点接地法,可以有效地降低电磁干扰。
5. 屏蔽。
屏蔽法一般有加屏蔽罩屏蔽法、外壳屏蔽法和PCB走线布局屏蔽法,可以有效地阻止电磁波的传播。
请注意,不同的设备可能遇到的电磁干扰类型不同,整改方法也会有所不同,建议寻求专业人士的帮助进行整改。
电磁感应的传导干扰和辐射干扰
电磁感应的传导干扰和辐射干扰我们知道,在开关电源里面,开关电源变压器是最大的磁感应器件。
反激式开关电源变压器,就是通过把流过变压器初级线圈的电流转换成磁能,并把磁能存储在变压器铁心之中,然后,等电源开关管关断的时候,流过变压器初级线圈的电流为0的时候,开关电源变压器才把存储在变压器铁心之中磁能转换成电能,通过变压器次级线圈输出。
开关电源变压器在电磁转换过程中,工作效率不可能100%,因此,也会有一部分能量损失,其中的一部分能量损失就是因为产生漏磁,或漏磁通。
这些漏磁通穿过其它电路的时候,也会产生感应电动势。
感应电动势的大小可由(13)、(14)或(16)式求得。
图8是磁感应产生传导干扰的原理图,图8表示开关电源变压器产生的漏磁通穿过其它电路时,在其它电路中也产生感应电动势,其中漏磁通M1、M2、M3产生的感应电动势e1、e2、e3属于是差模干扰信号;M5、M6、M7、M8产生的感应电动势e5、e6、e7、e8属于是共模干扰信号。
图8图9是开关电源变压器产生的漏磁通的原理图。
开关电源变压器的漏磁通大约在5%~20%之间,反激式开关电源变压器为了防止磁饱和,在磁回路中一般都留有气隙,因此漏磁通比较大,即:漏感比较大。
因此,产生漏感干扰也特别严重,在实际应用中,一定要用铜箔片在变压器外围进行磁屏蔽。
从原理上来说,铜箔片不是导磁材料,对漏磁通是起不到直接屏蔽作用的,但铜箔片是良导体,交变漏磁通穿过铜箔片的时候会产生涡流,涡流产生的磁场方向正好与漏磁通的方向相反,是部分漏磁通被抵消,因此,铜箔片也可以起到磁屏蔽的作用。
图9检测漏磁通干扰的简便方法是,用示波器探头接成一个小短路环进行测量,最简便的方法就是把探头与地线端短路连在一起,相当于一个磁感应检测线圈。
把磁感应检测线圈靠近变压器或干扰电路,很容易看到干扰信号的存在。
值得一提的是,开关电源变压器初级线圈的漏感产生的反电动势et,在所有干扰信号之中是最不容忽视的,如图10所示。
谐波知识
谐波知识一、谐波的定义谐波是指电压中所含有的频率为50HZ正弦基波的整数倍的电量,50HZ称为基波频率,大于基波频率3倍=150HZ的波称之为三次谐波,基波频率5倍250HZ 的波称之为五次谐波,以此类推。
不管几次谐波,他们都是正弦波。
一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。
从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。
二、谐波的产生产生的原因:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。
主要非线性负载有UPS、开关电源、整流器、变频器、逆变器、中频炉、电焊机等。
用傅立叶分析原理,能够把非正弦曲线信号分解成基本部分和它的倍数。
在电力系统中,谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器比较大的背离正弦曲线波形。
谐波电流的产生是与功率转换器的脉冲数相关的。
6脉冲设备仅有5、7、11、13、17、19 ….n倍于电网频率。
功率变换器的脉冲数越高,最低次的谐波分量的频率的次数就越高。
其他功率消耗装置,例如荧光灯的电子控制调节器产生大强度的3 次谐波( 150 赫兹)。
在供电网络阻抗( 电阻) 下这样的非正弦曲线电流导致一个非正弦曲线的电压降。
在供电网络阻抗下产生谐波电压的振幅等于相应谐波电流和对应于该电流频率的供电网络阻抗Z的乘积。
次数越高,谐波分量的振幅越低。
只要哪里有谐波源那里就有谐波产生。
也有可能,谐波分量通过供电网络到达用户网络。
例如,供电网络中一个用户工厂的运转可能被相邻的另一个用户设备产生的谐波所干扰。
三、谐波的来源谐波问题早在20世纪20年代和30年代就引起了人们的注意。
谐波的危害与治(三篇)
谐波的危害与治引言随着现代科技的发展,谐波问题在各个领域中日益突出。
谐波是指在电力系统或电子设备中,在基频上产生的频率是基频的整数倍的特殊电压或电流成分。
尽管谐波本身并不造成太大的危害,但长期存在的谐波问题会导致设备的过载、故障、减寿等问题,甚至可能对人体健康产生负面影响。
因此,对谐波进行合理治理和控制是至关重要的。
本文将探讨谐波的危害以及治理范本。
一、谐波的危害1.设备故障和过载在电力系统中存在谐波电流时,会导致设备的过载和故障。
谐波电流会加大设备的电流负荷,使得设备运行在额定负荷以上,从而加速设备的老化过程,减少设备的使用寿命。
并且,谐波电流还会产生额外的热量,进一步加剧设备的过载,从而引发设备的故障。
2.能源浪费和降效谐波电流会导致能源的浪费。
谐波电流在电力系统中流动时,由于产生压降、损耗等现象,会导致能源的损失。
此外,谐波电流在设备内部的传导和流动过程中也会产生额外的功耗,进一步降低了设备的效率。
3.电网负面影响谐波电流会对电网产生负面影响。
大量的谐波电流会导致电网的电压和电流波形失真,进而影响电网的稳定运行。
在严重的情况下,甚至会导致电网的故障和瘫痪。
4.对人体健康的危害谐波电流还可能对人体健康产生负面影响。
长时间暴露在高谐波电压或电流环境中,可能导致头痛、失眠、神经衰弱等症状。
并且,据研究表明,长期暴露在谐波电流环境中,还可能增加患癌症、心脏病等疾病的风险。
二、谐波治理的范本1.谐波源控制谐波问题的治理首先要从源头入手,减少谐波电流的产生。
可以采取以下措施来控制谐波源:(1)对发电设备进行合理规划和设计,降低发电设备的谐波产生;(2)采用高质量的电力电子设备和组件,降低设备本身产生的谐波;(3)合理设计电力系统的连接和布线,降低谐波电流的传播和影响范围。
2.谐波抑制装置的应用谐波抑制装置是指一种专门用于抑制谐波现象的设备。
通过安装谐波抑制装置,可以有效地降低谐波电流的水平,减小谐波的影响。
谐波对电网及用户的影响,防止谐波的措施相关知识讲解
奇次谐波,故气体放电类电光源灯具属于电流源型谐波源。
2.3 其他非线性电气设备
(1)冶金、化工等企业和电气化铁路所用的换流设备利用 整流元件的导通、截止作用强行短接和断流,这将产生谐波电 流。
(2)炼钢电弧炉因电弧的负阻特性(电弧电阻随电流增大 而急剧减少)和熔化期A 相电极反复不规则地短路和断弧,故 而产生谐波电流。由于3相负荷不对称,存在较多的3 次谐波电 流。精炼期谐波电流有所减小。
n次谐波电压含有率以HRUn(Harmonic Ratio Un)表示。
HRU n
Un U1
100(%)
(10-10)
式中, Un——第n次谐波电压有效值(方均根值);
U1——基波电压有效值。
n次谐波电流含有率以HRIn表示
HRI n
In I1
100(%)
(10-11)
式中,In——第n次谐波电流有效值; I1——基波电流有效值。
(3)影响电力测量和电能计量的准确性
目前大量采用的仪表分为电磁型、电动型、磁电型和感应 型几种,其中电磁型和电动型对谐波不敏感,但磁电型和感应 型受谐波影响较大,特别是电能表,由于多采用感应型,在谐 波较大时会产生电能计量的混乱。
(4)对其他系统的干扰
民用建筑中的弱电系统较多,如计算机网络系统、电话系 统、有线电视传输系统、楼宇自动化系统、消防报警系统等。 电力线路通过电磁感应、静电感应和传导3种方式耦合到其他
三、 谐波的危害
(1)影响配电网的稳定运行
配电网的电力变压器、电力线路通常采用继电保护措施, 在故障情况下保障系统和设备的安全。其检测部分常采用电磁 式继电器、感应式继电器或晶体管继电器。其中电磁式继电器、 感应式继电器对10%含量以下的谐波并不敏感,当谐波含量达 到40% 时将导致继电保护系统误动。晶体管继电器具有很多优 点,将取代电磁式继电器和感应式继电器,成为未来的发展方 向。但晶体管继电器采用的整流取样电路,极易受谐波
谐波基本知识
一、谐波定义供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。
电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。
谐波实际上是一种干扰量,使电网受到“污染”。
电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40。
二、谐波源向公用电网注入谐波电流或在公用电网上产生谐波电压的电气设备称为谐波源。
具有非线性特性的电气设备是主要的谐波源,例如带有功率电子器件的变流设备,交流控制器和电弧炉、感应炉、荧光灯、变压器等。
我国工业企业也越来越多的使用产生谐波的电气设备,例如晶闸管电路供电的直流提升机、交-交变频装臵、轧钢机直流传动装臵、晶闸管串级调速的风机水泵和冶炼电弧炉等。
这些设备取用的电流是非正弦波形的,其谐波分量使系统正弦电压产生畸变。
谐波电流的量取决于谐波源设备本身的特性及其工作状况,而与电网参数无关,故可视为恒流源。
各种晶闸管电路产生的谐波次数与其电路形式有关,称为该电路的特征谐波。
对称三相变流电路的网侧特征谐波次数为:…(正整数)式中p为一个电网周期内脉冲触发次数(或称脉动次数)。
除特征谐波外,在三相电压不平衡,触发脉冲不对称或非稳定工作状态下,上述电路还会产生非特征谐波。
进行谐波分析和计算最有意义的是特征谐波,如果5,7,11,13次等。
对于p脉动的变流电路,假定直流侧电流为理想平滑,其网侧n次谐波电流与基波电流之比为:式中为换流重叠角。
,估算时可取。
如直流侧电流波纹较大,则5次谐波幅值将增大,其余各次谐波幅值将减少。
当电网接有多个谐波源时,由于各谐波源的同次谐波电流分量的相位不同,其和将小于各分量的算术和。
变压器激磁电流中含有3,5,7等各次谐波分量。
由于变压器的原副边绕组中总有一组为角形接法,为3次谐波提供了通路,故3次谐波电流不流入电网。
谐波讲解
什么是谐波?谐波有什么伤害?一、谐波1.什么称为谐波:在电力系统中谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。
谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。
谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。
一般地讲,奇次谐波引起的危害比偶次谐波更多更大。
在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。
对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。
“谐波”一词起源于声学。
有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。
傅里叶等人提出的谐波分析方法至今仍被广泛应用。
电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。
当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。
1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。
到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。
70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。
世界各国都对谐波问题予以充分和关注。
国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
谐波研究的意义,道德是因为谐波的危害十分严重。
谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
谐波的分析和说明
谐波的分析和说明谐波是指在正弦周期性信号的基础上,存在着频率为基波整数倍的其他频率分量。
在物理学、音乐学、工程学等领域中,谐波都是一个重要的概念。
下面将详细阐述谐波的分析和说明。
首先,我们先了解一下基波的概念。
基波是正弦周期性信号最基本的频率成分,也是信号中最低的频率。
在物理学中,基波通常指代代表系统的基态(最低能量)的波动。
在音乐学中,基波是乐音的根音或主音,也是音乐的基础。
谐波则是基波的倍频分量,它们的频率是基波频率的整数倍。
例如,基波频率为f0的信号的谐波分量包括2倍频(2f0)、3倍频(3f0)、4倍频(4f0)等。
每个谐波成分的振幅和相位可能不同,但它们都是以基波为基础生成的。
对于一个复杂的信号,我们可以通过信号的傅里叶级数分析将其分解为多个谐波成分的叠加。
傅里叶级数的基本思想是,任何周期性信号都可以看作是多个不同频率的正弦波的叠加。
通过对信号进行傅里叶级数展开,我们可以得到信号中各个谐波成分的频率、振幅和相位信息。
另一个应用领域是电力系统中的谐波分析。
电力系统中产生的非线性负载和设备故障可能会导致电压和电流中谐波成分的存在。
对于电力系统稳定和安全运行的评估和调整,谐波分析是必不可少的工具。
通过对电力系统中的谐波进行监测和分析,可以检测到存在的谐波成分,并采取相应的措施来减少谐波对电力系统产生的不良影响。
总结起来,谐波是正弦周期性信号中频率为基波整数倍的其他频率分量。
通过谐波分析,我们可以对信号进行频谱分析,了解信号中各个谐波成分的频率、振幅和相位等特性。
谐波分析在音乐学、物理学、工程学等领域中具有重要的应用价值,可以帮助我们更好地理解和处理各种信号和波动现象。
2-谐波的概述及危害
KurKoulu/17.3.00/ALe1芬兰诺基亚电容器有限公司 中国代表处谐 波 的 危 害谐波的概述及危害报告人 报告人: :赵卢宁赵卢宁谐波是什么l谐波的定义l什么负荷会产生谐波 Ø谐波的阶次Ø谐波的量Ø谐波的方向谐波的定义何谓谐波 何谓谐波((HARMONIC) 电力系统中除基本 电力系统中除基本(50/60 (50/60Hz) Hz) 外,任一 外,任一周期性 周期性之 之讯号 讯号, ,皆称为 谐波谐波整数谐波 整数谐波 : 2: 2nd, 3rd, 4th, 偶次谐波 偶次谐波 : 2 : 2nd, 4th, 6th, 奇次谐波 奇次谐波 : 3: 3rd, 5th, 7th, 非整数谐波 非整数谐波 : 2.3: 2.3th, 5.6 th 次级谐波次级谐波 : <1 之谐波 总谐波电压失真率 总谐波电压失真率: V(THD) 总谐波电流失真率总谐波电流失真率: I(THD) 谐波种类谐波种类总谐波电压畸变率总谐波电流畸变率%100 ... (%) 1221 2322´ + + + + =-V VVV V V nn THD %100 ... (%) 1221 2322´ + + + + =-I III I I nn THD 畸变率谐波的分类正序 正序谐波 谐波 :(3 :(3n+1) 1st ,4th, 7th, 10th …… 负序谐波 负序谐波 :(3 :(3n n 1) 2nd, 5th, 8th …… 零序谐波 零序谐波 :(3 :(3n) 3rd, 6th, 9th … …....谐波的分类正序谐波: 正序谐波:(3 (3n+1) n+1) 1st 1st ,4th, 7th, 10th,4th, 7th, 10th…… 造成 造成正序谐波正序谐波转矩 不均匀 !! ABC谐波的分类:负序谐波: 负序谐波:(3 (3n n 1) 2nd, 5th, 8th1) 2nd, 5th, 8th…… 造成 负序谐波 负序谐波 转矩转矩 不均匀 !! ABC谐波的分类:零序谐波 : :(3 (3n) 3rd, 6th, 9th …….. 没有相角差谐波电流 将会 将会 累积到 累积到 N 相相 AB C谐波产生源线性负荷: 非线性负荷:VIVI电阻性元件 频率比例性元件铁磁性设备电弧性设备电力电子转换器不产生谐波谐波产生源–铁磁性设备发电机、电动机、变压器等–电弧性设备电弧炉、点焊机等–电子式电力转换器等 整流器、变频器、 UPS等谐波产生源有以下三种情形 激磁电流谐波含量将升高轻载电压升高谐振交流电弧炉移动杆 人造石墨电极棒水冷式电缆炉变压器电极操作机构熔铁液直流电弧炉移动杆人造石墨电极棒水冷式电缆整流器电极操作机构熔铁液谐波产生源(电弧性设备)主要谐波电流 I2 I3 I4 I5 I7精练期熔解期 7.7% 5.8% 2.5% 4.2% 3.1% 2.0% 2.1% (IEEE Std 5191992)A B C N计算机 显示屏UPS照明装置点焊机单相设备1± ´ = p k n n: n:谐波次数谐波次数 k: k:常数 常数 1,2,3, 1,2,3,… p:pulsep:pulse 数 例例: n=1*2 n=1*2± ±1 n=2*2 n=2*2±±1 : :1 3 5 7谐波的阶次谐波的阶次 j1j2幻灯片 18j1除了剛才舉例的兩種諧波負荷之外,還有哪些是諧波負荷呢?事實上是有很多種類的,不勝玫舉,但現今大部分的諧波負荷,主要是因為使 用了電力電子元件,將交流電源轉換成直流電源就會產生諧波.我們知道哪些負荷會產生諧波之後,接下就可以探討其產生的諧波階次.負荷所產生的諧波階次,可以使用公式n=kxp+-1計算出來.n:就是我們要計算出的諧波次數,k:是代入常數,p:是代入諧波負荷的整流模 塊的晶閘管或二極管的數量.jimmy_huang, 2005-2-4j2例如:晶閘管的數量是兩個時,一般是單相的諧波負荷,則將p帶入2,由公式可計算出其諧波的次數為3,5,7次及更高的諧波次數 jimmy_huang, 2005-2-41± ´ = p k n n: n:谐波次数谐波次数 k: k:常数 常数 1,2,3, 1,2,3,… p:pulsep:pulse 数 例例: n=1*6 n=1*6± ±1 n=2*6 n=2*6±±1 : :5 7 11 1113谐波的阶次谐波的阶次 j3幻灯片 19j3如果晶閘管的數量是六個時,則將p帶入6,由公式可計算出其諧波的次數為5,7,11,13次及更高的諧波次數 jimmy_huang, 2005-2-3In: In:谐波电流值 谐波电流值 I1: I1:基本波电流 基本波电流 n : n :谐波次数谐波次数 nI I n 1=谐波的量谐波的量 1 1 11 117 115 % 9 7% 14 7 % 20 5 I I I I I I I I I = = = = = = 例例: 11 113 % 33 3 I I = = I j4j5幻灯片 20j4我們知道諧波負荷所產生的諧波階次之後,接著就可以計算出該諧波負荷的諧波含量的理論值.我們可以根據這個公式In=I1/n計算出諧波電流In是我們要計算出的諧波電流值I1是負荷的基波電流n是諧波的次數jimmy_huang, 2005-2-4j5因此3次諧波就三分之一的基波電流含量,也就是33%的基波含量5次諧波就五分之一的基波電流含量,也就是20%的基波含量以此類推..我們也可以由此發覺越高階次的諧波,其諧波含量是越低的jimmy_huang, 2005-2-3谐波电流谐波的方向谐波的方向j6幻灯片 21j6諧波的方向是如何呢???根據其特性,諧波是往低阻抗地方流的特性,通常諧波負荷產生的諧波電流流向是往電網方向,因為電網的短路容量較大,所以其阻抗就 較小.jimmy_huang, 2005-2-4传导电流:LOAD谐波电磁波都是高频率的信号辐射50Hz1st 2500Hz50th15000Hz300th30MHz电力谐波传导电磁波辐射电磁波Hz变频器内部已装置滤波器 抑制电磁波的“滤波器”(此类设备需符合EMC) 辐射电磁波可使用金属外壳阻断与电力谐波无关总 结非线性设备的应用已越来越广泛:变频器 整流器 UPS 电弧炉 电动机 发电机 电焊机谐波的影响越来越受重视:谐波造成的危害日异突出能源紧缺,降谐波损耗已成为趋势谐波危害l l 谐波电流 l l 谐波电压谐波电压谐波电流l电流增加l载流量降低 l损耗增加l设备温度升高 l绝缘破坏谐波电压 l电压畸变l非正玄波l控制干扰l设备停产l影响整个电网ll 谐波将增加变压器 ØØ 器铜损 ØØ 漏磁损 ØØ 铁损 ØØ 噪音 ØØ 温升 谐波影响…变压器ll 谐波将增加 ØØ 导体集肤效应 ØØ 过载过热烧毁绝缘体 ØØ 减少额定载流量 谐波影响…电力电缆谐波影响…转动电机 l l 谐波将增加Ø Ø 铜损、铁损Ø Ø 机械效率Ø Ø 稳定转矩稳定转矩谐波影响…通讯l谐波将增加lØ产生感应电磁场、影响电话品质 ØØ干扰通讯网络频率、造成误动作 Øl IEEE/Std 5191992提供建议Ø适当屏蔽Ø避开地线与三相不平衡Ø加装(有源)滤波器谐波影响…电容器 ll 谐波电压、电流将增加 ØØ 串联谐振 ØØ 并联谐振 ØØ 过电流、过电压现象 Ø Ø 电容器和系统故障电容器和系统故障用户 A 供电网用户 C负载用户 A 用户 B 负载谐波电流: I LOAD 谐波电压 V = I * Z阻抗 : Z PCMUPS etc.供电来源G 谐波的污染对发电机的影响供电来源供电网 发电机组G谐波电压 V = I * Z比较两者的阻抗 LOADLOAD供电网发电机组G供电网谐波电压 小阻抗小供电来源 短路容量大 阻抗小LOAD供电网 发电机组G发电机组 谐波电压大阻抗大供电来源短路容量小 阻抗大LOAD供电网发电机组 G谐波电压大阻抗大供电来源PC M UPSetc.G显示屏跳动 PC M UPSetc.G 谐波电压大,将会造成数据失真PC 计算器振动 发热M:电机工作不正常UPS烧毁故障 谐振放大谐波电容器停机 无法供电G:发电机etc 其它哪些行业设备容易产生谐波一、电线电缆制造业绝缘挤出机(直流电机)二、薄膜制造业直流电机、交流变频三、通信广电的机房、电视台整流设备、变频器四、化纤纺织业变频器、整流式电加热五、铝加工业多级传动的直流电机六、汽车行业焊接车间、单相快速变化负荷七、轮胎、三角带行业密练机(大功率直流负载)八、水泥行业变频器九、印刷行业变频器十、电池行业交直流充电机十一、钢铁行业电弧炉十二、民建、市政等等行业总 结l设备越来越先进,谐波污染越严重 l谐波在电力系统已无所不再l谐波管制标准已势在必行l电能质量提升是目前重要课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传导、辐射和谐波总结第一篇:传导发射(Conducted Emission)传导发射(Conducted Emission)测试,通常也会被成为骚扰电压测试,只要有电源线的产品都会涉及到,包括许多直流供电产品,另外,信号/控制线在不少标准中也有传导发射的要求,通常用骚扰电压或骚扰电流的限值(两者有相互转换关系)来表示,灯具中的插入损耗测试(直接用dB表示)也属于传导测试范畴。
1. 测试标准:有CISPR22(ITE),CISPR14-1(家电和工具),CISPR13(AV),CISPR15(灯具),CISPR11(ISM),其他产品及产品类标准都是引用以上标准的测试方法,以引用CISPR22居多。
2. 测试方法:1) 仪器和设备:接收机、LISN(线路阻抗稳定网络,或叫AMN人工电源网络)、模拟手、被动电压探头、电流探头(与电流探头配合使用的CDN,容性电压探头)、DIA(断续干扰分析仪,用于测试CISPR14-1中的断续干扰)、测插入损耗的一整套设备等,当然,PC也不可少,听说老外的资深工程师是直接手动用接收机测,汗一个。
接收机、DIA需要遵循CISPR16-1-1的要求,其他辅助设备需要遵循CISPR16-1-2的要求。
2) 测试布置:分台式与落地式,台式设备离LISN 80cm,离接地平板40cm(这里的接地平板可以是水平接地板,也可以是屏蔽室的垂直接地内墙),落地式设备离接地平板距离随不同标准有不同的偏差允许,CISPR14-1,15里面是10cm +/- 25%,13里面是up to 12mm,22里面是up to 15cm, 11里没有明确距离,只说了需要与接地板用绝缘材料隔开。
辅助设备的布置也随测试标准的不同有出入,CISPR22中辅助设备离主设备10cm,相互之间的互联线至少离接地平板40cm。
手持II类设备需要包模拟手。
CISPR15中自镇流荧光灯需要罩在一个辅助锥形金属罩里。
测试布置在不同的标准里面都有很直观的布置图给出,一目了然,描述起来反而说不清楚,呵呵。
3) 测试频段:大多是150kHz-30MHz,CISPR15是例外(骚扰电压9kHz-30MHz,插入损耗150kHz-1,605kHz)。
4) 测试限值:随不同标准,不同的产品分类(Group 1/2, Class A/B)而限值不同。
5) 测试过程:a) 交/直流电源端骚扰电压:这个最常见,将电源插头连到LISN上,接收机RF输入连到LISN的RF输出(可能中间会插入RF衰减器或脉冲限幅器),切换LISN的L/N开关来选择测试电源线的对地共模骚扰电压。
b) 断续干扰:CISPR14-1及一些引用CISPR14-1的标准有要求。
通常使用断续干扰分析仪,配合LISN测量。
标准也允许用示波器与接收机的组合来替代。
示波器观察骚扰持续时间,接收机观察骚扰电平幅度。
c) 负载端骚扰电压:CISPR14-1、CISPR15和CISPR11中有要求。
使用被动电压探头,将需要测试的负载线绝缘剥开,直接用探头连接收机测量负载线导线端子对地的骚扰电压。
补充一句,如果设备额定电流过大,没有合适的LISN可用,也可以直接用电压探头来测量电源端的骚扰电压。
d) 通讯线骚扰电压/骚扰电流:CISPR22中提及。
针对不同类型的通讯线有不同的测试方法。
Annex C有详细描述,Annex F有各种方法的优缺点分析。
主要是依靠电流探头与CDN、150欧姆接地电阻、容性电压探头的不同组合来测试不同类型的通讯线缆,需要保证的前提是测试线缆的对地阻抗是150欧姆。
结果可以直接用骚扰电流dBuA表示,也可以换算成骚扰电压dBuV表示,换算阻抗是150欧姆,也就是两者量值相差44dB。
e) 插入损耗:CISPR15提到。
使用RF正弦波发生器经过平衡/不平衡转换器、模拟灯、LISN,最后用接收机测量比较电压来得出插入损耗的数值。
3. 结果判定:这个简单,接收机检波器的测量值(QP/AV)分别与限值线比较,低于限制线PASS,高出FAIL。
4. 注意事项:传导测试因为是对地的共模骚扰测量,因此关键在测试布置上,布置没问题了用接收机测就行了,而布置上的差异会导致结果的出入。
悬而未决的问题:接收机RF输入端脉冲限幅器的使用:有些测试机构使用,保护接收机;有些抵制,认为限幅器中包含非线性元件对脉冲进行限幅,导致互调失真及产生谐波形式的骚扰而影响测试结果。
个人意见尽量不要使用,虽然没有进行过实际比对。
第二篇:辐射发射(Radiated Emission)辐射发射挺难总结的,涉及东西太多,先写了下面这点,仍然希望大家指正,我好修改与补充。
辐射发射(Radiated Emission)测试,是测量EUT通过空间传播的辐射骚扰场强。
可以分为磁场辐射、电场辐射,前者针对灯具和电磁炉,后者则应用普遍。
另外,家电和电动工具、AV产品的辅助设备有功率辐射的要求(称为骚扰功率)。
1. 测试标准a) 电场辐射:CISPR22,CISPR13,CISPR11,CISPR14-1(特定类别的玩具);b) 磁场辐射:CISPR15(工作电流频率超过100Hz的灯具),CISPR11(电磁炉);c) 骚扰功率:CISPR14-1(工作频率不超过9kHz的一部分设备除外),CISPR13(只对辅助设备)。
2.测试方法1)仪器和设备:a) 电场辐射:接收机(1G以下)、频谱仪(1G以上)、电波暗室、天线(1G 以下一般用双锥和对数周期的组合或用宽带复合天线,1G以上喇叭天线);b) 磁场辐射:接收机、三环天线或单小环远天线;c) 骚扰功率:接收机、功率吸收钳。
接收机遵循CISPR16-1-1的要求,天线、场地遵循CISPR16-1-4的要求,吸收钳遵循CISPR16-1-3的要求。
2)测试布置:a)电场辐射:也是分台式与落地式,与传导发射相同(因为辐射发射结果与产品布置的关系尤为密切,因此需要严格按照标准布置包括产品、辅助设备、所有电缆在内的受试样品);b)磁场辐射:不同尺寸的三环天线对能够测试的EUT最大尺寸是有限制的,以2m直径的环形三环天线为例,长度小于1.6m的EUT能够放在三环天线中心测试;在CISPR11中,超过1.6m的电磁炉用0.6m直径的单环远天线在3m外测量,最低高度1m;c)骚扰功率:分台式与落地式,台式设备放在0.8m的非金属桌子上,离其他金属物体至少0.8m(通常是屏蔽室的金属内墙,这个距离要求在CISPR14-1中是至少0.4m);落地式设备放在0.1m的非金属支撑上;被测线缆(LUT)布置在高0.8m、长6m的功率吸收钳导轨上,吸收钳套在线缆上,电流互感器端朝向被测设备。
如果被测设备有其他线缆,在不影响功能的情况下能断开的断开,不能断开的用铁氧体吸收钳隔离。
3)测试频段:电场辐射一般是30MHz-1GHz(有些产品需要测超过1G,根据具体标准的规定),磁场9kHz-30MHz,骚扰功率30-300MHz。
4)测试限值:随不同标准,场地是3m、10m或其他尺寸,不同的产品分类(Group 1/2, Class A/B)而限值不同。
5)测试过程:a)30MHz-1GHz电场辐射:在半电波暗室中进行,EUT随转台360度转动,天线在1-4m高度上下升降,寻找辐射最大值。
结果用QP值表示。
垂直、水平两种天线极化方向都测;b)大于1G的电场辐射:工作频率超过108MHz的ITE设备、超过400MHz的ISM 设备需要测试,是在3m场地,使用频谱仪测。
ITE设备测试方法基本同30MHz-1GHz,结果用Peak与AV值表示。
ISM的产品有点不同,需要在全电波暗室中测,天线同产品同高度,不升降,转台仍然转动以寻找辐射最大值;c)替代法:采用ERP(有效发射功率)来代替,再换算成场强数值。
这个在RF 测试中经常用到,常规EMC很少使用。
替代法测试的目的是测试EUT的壳体辐射,需要拆除所有可拆卸电缆,不可拆卸的电缆上套铁氧体磁环。
首先用天线A和接收机测量出EUT的最大骚扰值,然后用天线B替代EUT,调节信号发生器输出功率,直至测量接收机达到同样的值。
记录替代天线B的输入端功率,即为EUT的壳体辐射功率。
天线的选则根据测试频率来定;d)磁场辐射:采用三环天线的磁场辐射测试没啥好说的,样品放置在天线中心,X/Y/Z三个方向各测一组磁场辐射的结果。
采用单小环天线时,天线垂直地面放置,最低部分高于地面1m,因为是近场测量,又考虑到了地面的反射,测量所得的值反映了EUT的水平和垂直的磁场分量;e)骚扰功率:对设备的所有长度超过25cm的电缆(也包括辅助设备的线缆)都需进行。
因为在30-300MHz内不同频点的骚扰在被测线缆中呈驻波形式分布。
因此在测量中需要沿导轨拉功率吸收钳以寻找每个终测频点骚扰功率最大的位置(大致在离设备半波长的距离处)。
3.结果判定:仍然是与限值线比较。
低于PASS,高出FAIL。
4.注意事项:测试布置仍然是测试最需要的环节。
另外,因为是高频测试,场地、设备等都是很重要的会影响最终结果的因素。
第三篇:谐波电流(Harmonic Current)本帖被 barry 执行加亮操作(2007-06-19)谐波电流(Harmonic Current)测试主要测量EUT工作时注入到电网中的谐波。
1.测试标准:在低压供电设备范畴内,涉及到的产品标准有IEC 61000-3-2(额定电流小于16A);IEC 61000-3-4(额定电流大于16A);IEC 61000-3-12(额定电流大于16A小于75A)。
对应的EN标准中只有EN 61000-3-2和EN 61000-3-12列在了欧盟EMC协调标准的官方公报(EU OJ)中。
因此对于大于75A的设备没有相应的协调标准。
以下的讨论基于61000-3-2和61000-3-12(简称-3-2和-3-12)。
而涉及到测试方法的基础标准为IEC 61000-4-7,目前为止有两个版本,1991版和2002版2.测试方法:1)仪器和设备:谐波分析仪,纯净AC电源2)测试布置:没什么讲究3)测试频段:2次至40次谐波,即100Hz-2kHz4)测试限值:-3-2中根据产品的分类Class A/B/C/D有不同限值;-3-12中基于不同的短路比(Rsce)有不同限值。
5)控制方法:谐波标准不同与其他标准,它对产品控制方法的设计有所要求。
在-3-2中,对供电电源进行非对称控制及半波整流是不允许的,除非满足下列条件之一:是检测不安全状况唯一可用方法、被控制部分功率小于等于100W、被控制设备是两芯软线供电并且短时使用;在-3-12中,只允许使用对称控制方法,针对发热元件的对称控制方法只能用于专业设备中,并且前提是该专业设备的主要目的不是用于加热。