交通灯控制外文翻译
关于交通灯的英语作文
Traffic Lights: Guardians of the RoadIn the fast-paced world of modern transportation,traffic lights stand as guardians of the road, ensuring the smooth and safe flow of traffic. These towering beacons of red, yellow, and green not only guide the movement of vehicles but also play a crucial role in preventing accidents and saving lives.The traffic light system, which has been in use forover a century, is based on a simple yet effective concept. The red light signals a stop, indicating that vehicles must come to a complete halt. The yellow light warns drivers to prepare to stop, signaling the end of the green light phase. Finally, the green light indicates that it is safe to proceed, allowing vehicles to move forward.Despite its simplicity, the traffic light system is remarkably effective. It ensures that vehicles and pedestrians can share the road safely, reducing the chances of collisions and accidents. The synchronized operation of traffic lights at intersections further enhances roadsafety by allowing traffic to flow smoothly and predictably.However, the efficiency of traffic lights depends largely on the compliance of road users. Drivers must obey the signals displayed by the traffic lights, stopping when the light is red and proceeding only when the light is green. Pedestrians must also follow the traffic light signals, crossing the road only when it is safe to do so. In addition to its role in road safety, the traffic light system also plays a vital role in traffic management. By controlling the flow of vehicles, traffic lights can help to reduce congestion and traffic jams. By regulating the flow of traffic, traffic lights can ensure that roads are used efficiently, minimizing delays and maximizing travel time.The design and placement of traffic lights are also crucial to their effectiveness. Traffic lights must be positioned at strategic locations, such as intersections and junctions, where they can effectively guide the movement of vehicles. The height and visibility of traffic lights are also important factors, ensuring that they can be seen clearly by drivers and pedestrians.In conclusion, traffic lights are indispensable guardians of the road. They play a crucial role in ensuring the safety and efficiency of road traffic, protecting the lives of road users and facilitating the smooth flow of traffic. As we continue to rely on road transportation, itis important that we respect and obey the traffic light system, treating it as a vital component of our road safety infrastructure.**交通灯:道路的守护者**在现代交通的快节奏世界中,交通灯作为道路的守护者,确保着交通的顺畅和安全。
单片机交通灯中英文资料对照外文翻译文献
单片机交通灯中英文资料对照外文翻译文献原文题目:DESIGN OF TRAFFIC LIGHT BASED ON MCUBecause of the rapid development of our economy resulting in the car number of large and medium-sized cities surged and the urban traffic, is facing serious test, leading to the traffic problem increasingly serious, its basically are behaved as follows: traffic accident frequency, to the human life safety enormous threat, Traffic congestion, resulting in serious travel time increases, energy consumption increase; Air pollution and noise pollution degree of deepening, etc. Daily traffic jams become people commonplace and had to endure. In this context, in combination with the actual situation of urban road traffic, develop truly suitable for our own characteristics of intelligent signal control system has become the main task.PrefaceIn practical application at home and abroad, according to the actual traffic signal control application inspection, planar independent intersection signal control basic using set cycle, much time set cycle, half induction, whole sensor etc in several ways. The former two control mode is completely based on planar intersection always traffic flow data of statistical investigation, due to traffic flow the existence of variable sex and randomicity, the two methods have traffic efficiency is low, the scheme, the defects of aging and half inductive and all the inductive the two methods are in the former two ways based on increased vehicle detector and according to the information provided to adjust cycle is long and green letter of vehicle, it than random arrived adaptability bigger, can make vehicles in the parking cord before as few parking, achieve traffic flowing effectIn modern industrial production,current,voltage,temperature, pressure, and flow rate, velocity, and switch quantity are common mainly controlled parameter. For example: in metallurgical industry, chemical production, power engineering, the papermaking industry, machinery and food processing and so on many domains, people need to transport the orderlycontrol. By single chip microcomputer to control of traffic, not only has the convenient control, configuration simple and flexible wait for an advantage, but also can greatly improve the technical index by control quantity, thus greatly improve product quality and quantity. Therefore, the monolithic integrated circuit to the traffic light control problem is an industrial production we often encounter problems.In the course of industrial production, there are many industries have lots of traffic equipment, in the current system, most of the traffic control signal is accomplished by relays, but relays response time is long, sensitivity low, long-term after use, fault opportunity increases greatly, and adopts single-chip microcomputer control, the accuracy of far greater than relays, short response time, software reliability, not because working time reduced its performance sake, compared with, this solution has the high feasibility.About AT89C511.function characteristics description:AT89C51 is a low power consumption, high performance CMOS8 bit micro-controller, has the 8K in system programmable Flash memory. Use high-density Atmel company the beltpassword nonvolatile storage technology and manufacturing, and industrial 80S51 product instructions and pin fully compatible. Chip Flash allow program memory in system programmable, also suitable for conventional programmer. In a single chip, have dexterous 8 bits CPU and in system programmable Flash, make AT89C51 for many embedded control application system provides the high flexible, super efficient solution. AT89C51 has the following standard function: 8k bytes Flash, 256 bytes RAM, 32-bit I/O mouth line, the watchdog timer, two data pointer, three 16 timer/counter, a 6 vector level 2 interrupt structure, full-duplex serial port, piece inside crystals timely clock circuit. In addition, AT89C51 can drop to 0Hz static logic operation, support two software can choose power saving mode. Idle mode, the CPU to stop working, allowing the RAM, timer/counter, serial ports, interruption continue to work. Power lost protection mode, RAM content being saved, has been frozen, microcontroller all work stop, until the next interruption or hardware reset so far. As shown in figure 1 for the AT89C51 pins allotment.Figure 1 the AT89C51 pins allotment2.interrupt introductionAT89C51 has six interrupt sources: two external interruption, (and), three timer interrupt (timer 0, 1, 2) and a serial interrupts. Each interrupt source can be passed buy bits or remove IE the relevant special register interrupt allow control bit respectively make effective or invalid interrupt source. IE also includes an interrupt allow total control bit EA, it can be a ban all interrupts. IE. Six is not available. For AT89C51, IE. 5 bits are also not be used. User software should not give these bits write 1. They AT89 series for new product reserved. Timer 2 can be TF2 and the T2CON registers EXF2 or logical triggered. Program into an interrupt service, the sign bit can be improved by hardware qing 0. In fact, the interrupt service routine must determine whether TF2 or EXF2 activation disruption, the sign bit must also by software qing 0. Timer 0 and 1 mark a timer TF0 and TF1 has been presented in the cycle count overflow S5P2 074 bits. Their value until the next cycle was circuit capture down. However, the timer 2 marks a TF2 in count overflow of the cycle of S2P2 074 bits, in the same cycle was circuit capture down3.external clock driving characteristicsTable 14.leisure and power lost pattern external pins stateTable 2About 8255 chip1.8255 features:(1)A parallel input/output LSI chips, efficacy of I/O devices, but as CPU bus and peripheral interface.(2)It has 24 programmable Settings of I/O mouth, even three groups of 8 bits I/O mouth to mouth, PB mouth and PA PC mouth. They are divided into two groups 12 I/O mouth, A group including port A and C mouth (high four, PC4 ~ PC7), including group B and C port B mouth (low four, PC0 ~ PC3). A group can be set to give basic I/O mouth, flash control (STROBE) I/O flash controlled, two-way I/O3 modes, Group B can only set to basic I/O or flash controlled the I/O, and these two modes of operation mode entirely by controlling registers control word decision.2. 8255 pins efficacy:(1). RESET: RESET input lines, when the input outside at high levels, all internal registers (including control registers) were removed, all I/O ports are denoting input methods.(2). CS: chip choose a standard lamp line 1, when the input pins for low levels, namely/CS = 0, said chip is selected, allow 8255 and CPU for communications, / CS = 1, 8255 cannot with CPU do data transmission.(3). RD: read a standard lamp line 1, when the input pins for low levels, namely/RD = 0 and/CS = 0, allow 8255 through the data bus to the CPU to send data or state information, namely the CPU 8255 read from the information or data.(4). The WR: write a standard lights, when the input pins for low levels, namely/WR = 0 and/CS = 0, allows the CPU will data or control word write 8255.(5). D7: three states D0 ~ two-way data bus, 8255 and CPU data transmission channel, when the CPU execution input/output instruction, through its realization 8 bits of data read/write operation, control characters and status information transmitted through the data bus.(6). PA0 ~ PA7: port A input and output lines, A 8 bits of data output latches/buffers, an 8 bits of data input latches.(7). PB0 ~ PB7: port B input and output lines, a 8 bits of I/O latches, an 8 bits of input and output buffer.(8). PC0 ~ PC7: port C input and output lines, a 8 bits of data output latches/buffers, an 8 bits of data input buffer. Port C can through the way of working setting into two four ports, every 4 digit port contains A 4 digit latches, respectively with the port A and port B cooperate to use, can be used as control standard lights output or state standard lights input ports.(9). A0, A1: address selection line, used to select the PA 8255 mouth, PB mouth, PC mouth and controlling registers.When A0=0, A1= 0, PA mouth be chosen;When A0=0, A1 = 1, PB mouth be chosen;When A0=0, A1 = 1, PC mouth be chosen;When A0=1, A1= 1, control register is selected.Concerning seven section LED display introductionThrough light emitting diode chip appropriate link (including series and parallel) andappropriate optical structure. May constitute a luminous display light-emitting segments or shine points. By these luminous segments or shine point can be composed digital tube, symbols tube, m word pipe, tube, multilevel matrix display tube etc. Usually the digital tube, symbols tube, m word tube were called stroke display, but the stroke displays and matrix tube collectively referred to as character displays.1. The LED display classification(1) by word high marks: stroke monitors word high least 1mm (monolithic integrated type more digital tube word high in commonly 2 ~ 3mm). Other types of stroke display tiptop1.27 mm (0.5 inch) even up to hundreds of mm.(2) color-coded score red, orange, yellow, green and several kinds.(3) according to the structure points, reflecting cover type, a single point-elastic and monolithic integrated type.(4) from the luminous section electrode connection mode of points of anode and cathode two kinds.2. LED display parametersDue to the LED display is LED based, so its light, and the electrical characteristics and ultimate meaning of the parameters with most of the same light emitting diode. But because the LED monitor containing multiple light emitting diode, it must has the following specific parameters:(1) the luminous intensity ratioDue to the digital tube paragraphs in the same driving voltage, each are not identical, so positive current each different. The luminous intensity All segments of the luminous intensity values the ratio of the maximum and minimum values for the luminous intensity ratio. The ratio between 2.3 in 1.5 ~, the maximum cannot exceed 2.5.(2) pulse positive currentIF each segment of typical strokes displays for positive dc working current IF, then the pulse, positive current can be far outweigh.someotherwordpeopledontthinkoffirst. Pulse 390v smaller, pulse positive current can be bigger.Traffic signal control typeThe purpose of the traffic signal control are three: first,in time and space space intersection traffic in different directions,control traffic operation order; Second, make onplanar cross the road network on the people and objects of transport at the highest efficiency, Third, as the road users to provide necessary information, and help them to effectively use the traffic facilities. Road traffic signal control of basic types have many points method.According to the control geometry characteristic is divided into: single intersection control - point control, the traffic trunk lines of coordinated control - wire, traffic network coordination control surface controlling; -- According to the control principle differentiates: timing control, induced control and adaptive control.About watch-dog circuitBy single-chip computers.the micro computer system, because of single chip work often can be affected by external electromagnetic interference, causing program run fly while into dead circulation, the program's normal operation be interrupted by single chip microcomputer control system was unable to work, can cause the whole system of come to a standstill, happen unpredictable consequences, so out of microcontroller running status real-time.according consideration, they generate a specially used for monitoring microcontroller program running state of the chip, commonly known as "watchdog" (watchdog).MAX692 was slightly system monitoring circuit chip, have back-up battery switching, power lost discriminant functions monitoring, the watchdog. The encapsulation and pin instructions as figure2shows.Figure 2 MAX692 encapsulation and pinsWatch-dog circuit application, make SCM can in no condition to achieve continuous work, its working principle is: the watchdog chip and MCU an I/O pins are linked together, the I/O pins through program control it regularly to the watchdog of the pins on into high level (or the low level), this program statement is scattered on SCM other control statements, once among single-chip due to the interference makes application run into a fly after theprocedures section into dead circulation state, write the watchdog pins program cannot be executed, this time, the watch-dog circuit will be without microcontroller sent signals, then at it and MCU reset pin connected pin reset signal give out a a, make SCM reposition occurs, namely the program from program memory splittext started, so we realized the MCU automatic reset.Infrared detection circuitThe infrared radiation photon in semiconductor materials stimutes the non-equilibrium carriers (electronic or holes), cause electrical properties change. Because carrier does not escape in vitro, so called within the photoelectric effect. Quantum photoelectric effect high sensitivity, response speed heat detectors much faster, is optional detectors. In order to achieve the best performance, generally need worked in low temperature. Photoelectric detector can be divided into:(1) optical type: also called photoconductive resistance. The incident photon stimulate the valence band uniform semiconductor electronic across forbidden band into the conduction band and left in valence band, cause cavitation increases, for electric conductance eigen light conductivity. From the band gaps of impurity level also can stimulate light into the conduction band or born carriers valence band, and for impurities light conductivity. The cutoff wavelength by impurity ionization energy (ie) decision. Quantum efficiencies below eigen optical and require lower working temperature.(2) photovoltaic type: mainly p - n knot of light born volts effect. Energy more than the width of infrared photonic band gaps in "area and its nearby of electrons cavitation. Existing "electric field make hole into p area, electronic into n area, two parts appear potentials. Deoxidization device have voltage or current signal. Compared with optical detectors, pv detector detect rate more than forty percent of figure limit, Don't require additional bias electric field and load resistance, no power consumption, having a high impedance. These characteristics of preparation and use of the focal plane array bring great benefits.(3) light emitting - Schottky potential barrier detector: metal and semiconductor contact, typically include PtSi/Si structure and form was Schott potential barrier, infrared photon through Si layer for PtSi absorption, electronic Fermi level, obtain energy leap over left cavitation potential barrier into the Si substrate, PtSi layer of electronic was collected, complete infrared detection. Make full use of Si integration technology, facilitate production,with lower cost and good uniformity wait for an advantage, but make it mass (1024 x 1024 even greater) focal plane array to make up for the defect of quantum low efficiency. Have strict low temperature requirements. With this kind of detector, both at home and abroad has already produced as qualitative good thermography. Pt Si/Si structure made of FPA is the earliest IRFPA.Timing counting and traffic calculationUsing MCS - 51 internal timer/counter for timing, cooperate software delay realizes the timer. This method hardware cost saving, cut allows the reader in timer/counter use, disruptions and programming get exercise and improve. Computation formula is as follows: TC = M - CType in, M for counter touch value, the value and the counter working way concerned.For a traffic intersection, it can in the shortest possible time to achieve maximum traffic, even reached the best performance, we call in unit of time to achieve the maximum flow multi-energy for cars.Use the equation: (traffic = traffic/time) to represent.译文题目:基于单片机的交通灯设计我国经济快速发展,汽车数量猛增,大中型城市的城市交通正面临着严峻的考验,交通问题日益严重,其主要表现如下:交通事故频发,对人类生命安全造成极大威胁;交通拥堵严重,导致出行时间增加,能源消耗加大;空气污染和噪声污染程度日益加深等。
关于交通灯的英语作文
The Importance of Traffic Lights in RoadSafetyTraffic lights are a crucial component of road safety, governing the flow of traffic and ensuring the smooth movement of vehicles. They play a pivotal role in preventing accidents and ensuring the safety of road users, including pedestrians, cyclists, and motorists. The three basic colors of traffic lights - red, yellow, and green - each have a specific meaning and purpose, which is universally understood and followed.The red light indicates a stop. When the light turns red, it means that vehicles must come to a complete stop and wait for the signal to proceed. This gives other road users, such as pedestrians and cyclists, the opportunity to cross the road safely. Failing to stop at a red light can result in serious accidents and injuries.The yellow light serves as a warning, indicating that the light will soon turn red. Drivers are advised to slow down and prepare to stop when they see the yellow light. This gives them time to safely come to a stop before the red light comes on.The green light means that vehicles can proceed. However, it is important for drivers to exercise caution even when the light is green. They should always check for pedestrians and cyclists before proceeding and ensure that they drive at a safe speed.Traffic lights are not just about controlling the flow of traffic; they are also about promoting road safety and saving lives. By following the rules and regulations set by traffic lights, we can help create a safer and more orderly road environment for everyone.The effectiveness of traffic lights lies in theirability to communicate clearly and concisely with drivers. The simple colors and universal meaning of the lights ensure that there is no confusion or ambiguity. This is crucial in a fast-paced and often chaotic environment like a busy intersection, where split-second decisions can have life-or-death consequences.Moreover, traffic lights are designed to adapt to different traffic patterns and conditions. For example, some intersections may have sensors that detect the flow of traffic and adjust the timing of the lights accordingly.This ensures that the lights are always working efficiently and effectively to maximize traffic flow while minimizing the risk of accidents.In addition to their role in road safety, trafficlights also play a significant role in city planning and infrastructure development. They are often used as a tool to manage and direct the growth of cities, ensuring that new developments and construction projects do not disrupt or impede the flow of traffic.In conclusion, traffic lights are an essential component of road safety and traffic management. They not only regulate the flow of traffic but also promote safety and orderliness on the roads. By following the rules and regulations set by traffic lights, we can all contribute to creating a safer and more enjoyable driving experience for everyone.**交通灯在道路交通安全中的重要性**交通灯是道路安全的重要组成部分,它们管理着交通流量,确保车辆顺畅行驶。
交通灯用英语怎么说
交通灯用英语怎么说交通灯是维持马路秩序的重要角色之一,有了它才能使交通变得有序。
那么你知道交通灯用英语怎么说吗?下面跟店铺一起学习一下交通灯的英语知识吧。
交通灯的英语说法traffic lighttrafficlight交通灯的相关短语在交通灯处 at the traffic lights智能交通灯 intelligen traffic light交通灯助手 Traffic Light Assist交通灯系列 Traffic Light Series交通灯是红色 Traffic lights are red订明交通灯 prescribed light signal行人触发交通灯 actuated signal黄色交通灯号 amber traffic signal light交通灯的英语例句1. More regard must be paid to safety on the roads.必须更加注意公路上的交通安全.2. These traffic regulations are decreed by governments for national traffic safety.这些交通规则是为国民交通安全着想而由各国政府颁布的.3. Measures must be taken to insure traffic safety.必须采取措施保证交通安全.4. Therefore, road safety evaluation of safety workers become the primary task.因此, 道路交通安全评价成为交通安全工作者的首要任务.5. To increase public knowledge of railway safety, railway track safety awareness specificity.提高公众铁路安全常识、铁路轨道交通安全特殊性的认识.6. Fifth, the management of industrial and traffic safety needs to be strengthened.五是加强生产、交通安全管理,健全安全责任制.7. This evidence shows that the importance of traffic safety cannot be overemphasized.例:这证据显示交通安全的重要性在怎么强调都不为过.8. The National Highway Traffic Safety Administration ( NHTSA ) ordered the Volvo recall.美国国家公路交通安全管理局要求沃尔沃强制性召回这些车辆.9. Now she is reminding her younger brother about road safety.她正在提醒她的弟弟交通安全.10. Which well - known saying, advertising verbals or slogan do have about traffic safety?关于交通安全有哪些名言, 广告词或标语?11. It's very important to teach the children about road safety.把交通安全常识教给孩子们是非常重要的.12. Finally, using MORT to improve the air - traffic management safety.最后, 引入MORT方法以提高空中交通安全管理的安全性.13. Reducing driving speed has an essential role to play in traffic safety.降低车速在交通安全议题上扮演了一个很重要的角色.14. All countries should enforce communications and improve handing in road traffic safety.各国应加强信息交流,相互学习与借鉴,共同提高道路交通安全水平.15. Is safety facilities product manufacturing, installation of comprehensive enterprise.是交通安全设施产品生产制造、安装的综合性企业.关于交通灯英文阅读:人工智能遇上交通灯交通堵塞或成历史Groundbreaking new traffic lights fitted with artificial intelligence could create safer roads and bring an end to rush hour gridlock.开创性的人工智能交通灯将为行人创造更为安全的道路环境,使路况高峰期的交通拥堵不再发生。
交通灯控制系统外文翻译--
本科毕业设计(外文翻译)题目小型交通灯控制系统的设计与制作姓名韦强专业电子科学与技术学号 201031090指导老师洪新华郑州科技学院电气工程学院二0一四年五月二日THE DESIGN AND MANUFACTURE OF SMALL TRAFFICLIGHT CONTROL SYSTEM8-bit Microcontroller With 8K Bytes Flash AT89C52 DescriptionThe AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer with 8K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 and 80C52 instruction set and pin out. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C52 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.Pin Configurations1Pin DescriptionVCCSupply voltage.GNDGround.Port 0Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs. Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups. Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pull-ups are required during program verification.Port 1Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I IL) because of the internal pull-ups. In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table. Port 1 also receives the low-order address bytes during Flash programming and verification.2Port 2Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I IL) because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memories that use 16-bit addresses (MOVX @DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memories that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I IL) because of the pull-ups.Port 3 also serves the functions of various special features of the AT89C51, as shown in the following table. Port 3 also receives some control signals for Flash programming and verification.3RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device.PSENProgram Store Enable is the read strobe to external program memory. When the AT89C52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Timer 2 RegistersControl and status bits are contained in registers T2CON and T2MOD for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.Interrupt Registers4The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.5小型交通灯控制系统的设计与制作8位8字节闪存单片机AT89C52功能特性描述AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K内置可编程闪存。
人行过马路交通灯控制系统、 LED红绿灯和闪亮控制
毕业设计题目人行过马路交通灯控制系统LED红绿灯和闪亮控制学生所在学院专业学号学生姓名指导教师起止日期XXXXXXXXXX本科学生毕业设计(论文)人行过马路交通灯控制系统——LED红绿灯和闪亮控制学生:学号:指导教师:专业:XXXXXXXX大学电气信息学院XXXX年X月XXXXXXXXXXPedestrian Crossing Traffic Lights FlashControl——LED Traffic Lights and Flash ControlUndergraduate:Supervisor: Prof.Major:XXXXXXXXXXChongqing UniversityJune 2011摘要纵观单片机的发展和应用, 51 单片机越来越无法满足用户的需求, ARM 高速32位单片机的出现,缔造了嵌入式系统的新纪元.嵌入式系统是指以应用为中心,以计算机技术为基础,软件,硬件可裁减,适应应用系统对功能、可靠性、成本、体积、和功耗严格要求的专用计算机系统。
嵌入式系统已广泛地渗透到科学研究、工程设计、军事等各种领域、甚至商业、文化、艺术、及人们日常生活的方方面面。
随着国内外各种嵌入式产品的进一步开发和推广,嵌入式技术的重要性日益凸显,使得我们不得不将注意力转移到它身上。
ARM的应用已遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统等各类产品市场。
本文设计了一款基于ARM7的带闪烁人行过马路交通灯控制系统,系统中采用单片机控制各十字路口的信号灯,利用ARM7控制板完成对单片机的控制。
主控计算机通过互联网完成对ARM7系统板控制,在主控计算机上可实现任意相位的设置,同时,可完成城市所有路口信号灯的监视和在线调整。
GPIO端口0管脚值寄存器IOPIN,它的配置方式仅用于数字方式。
不管它配置成输入或输出,或作为GPIO,或可选的数字功能,该寄存器引脚总是给出逻辑值。
关键词:ARM7 单片机先进的精简指令微处理器通用输入输出接口发光二极管AbstractLooks over monolithic integrated circuit's development and the application, 51 monolithic integrated circuits are unable to satisfy the user more and more demand, the ARM high speed 32 monolithic integrated circuit's appearance, has created embedded system's epoch.The embedded system is refers to take the application as a center, take the computer technology as the foundation, the software, the hardware may reduce, adaptation application system to function, reliability, cost, volume, and power loss strict request special purpose computer system.Embedded system has been widely infiltrated into science, engineering, military and other areas, or even commercial, cultural, art, and all aspects of daily life.With a variety of embedded products at home and abroad to further the development and promotion, highlighting the growing importance of embedded technology, allows us to have to turn our attention to its body.ARM applications are all over the industrial control, consumer electronics, communications systems, network systems, wireless systems and other markets.This ARM7-based design of a pedestrian crossing the road with a flashing traffic light control system, the system used in MCU control signals of the intersection, using ARM7 MCU to complete the control panel. Host computer via the Internet to complete the ARM7 system board control, the host computer can be any phase setting, the same time, to be completed by the city lights at all junctions and on-line monitoring of adjustments.GPIO port 0 Pin value register IOPIN, it is configured for digital mode only. Whether it is configured as input or output, or as GPIO, or the optional digital function, the register always gives the pin logic values. Keywords:ARM7,microcontrollers,advanced RISC microprocessors,general-purpose input and output interfaces,LED摘要 (6)Abstract (66)1.绪论 (1)目录1.1背景及意义 (1)1.2课题来源及研究目的 (2)1.2.1课题来源 (2)1.2.2课题目的 (2)2.硬件概述 (3)2.1 LPC2103 (3)2.1.1 LPC2103概述 (3)2.1.2 LPC2103特性 (3)2.2 Easy ARM2103硬件说明 (4)2.2.1 Easy ARM2103概述 (4)2.2.2 Easy ARM2103功能特点 (4)3. LPC2103功能部件说明 (6)3.1引脚连接模块 (6)3.1.1概述 (6)3.1.2寄存器描述 (6)3.2 GPIO (7)3.2.1概述 (7)4.中断控制 (9)4.1向量中断控制器 (9)4.1.1概述 (9)4.1.2特性 (10)4.1.3寄存器详解 (10)4.1.4向量IRQ中断 (10)5.定时器 (12)5.1定时器0和定时器1 (12)5.1.1概述 (12)5.1.2特性 (12)5.1.3引脚描述 (13)5.1.4定时器映射寄存器 (13)6.设计分析与程序 (15)6.1逻辑分析 (15)6.1.1状态图 (15)6.2交通灯连接控制原理图 (18)6.3程序设计 (19)6.4程序流程图 (22)6.4.1主程序流程图 (22)6.4.2定时器流程图 (22)6.4.3中断程序流程图 (23)7.总结与展望 (24)7.1全文总结 (24)7.2展望 (24)致谢 (26)参考文献 (27)1.绪论早在1850年,城市交叉口处不断增长的交通就引发了人们对安全和拥堵的关注。
单片机交通灯控制器论文中英文对照资料外文翻译文献
中英文对照资料外文翻译文献附件1:外文资料翻译译文基于单片机的十字路口交通灯控制器的设计由于我国经济的快速发展从而导致了汽车数量的猛增,大中型城市的城市交通,正面临着严峻的考验,从而导致交通问题日益严重,其主要表现如下:交通事故频发,对人类生命安全造成极大威胁;交通拥堵严重,导致出行时间增加,能源消耗加大;空气污染和噪声污染程度日益加深等。
日常的交通堵塞成为人们司空见惯而又不得不忍受的问题。
在这种背景下,结合我国城市道路交通的实际情况,开发出真正适合我们自身特点的智能信号灯控制系统已经成为当前的主要任务。
前言在实际应用上,根据对国内外实际交通信号控制应用的考察,平面独立交叉口信号控制基本采用定周期、多时段定周期、半感应、全感应等几种方式。
前两种控制方式完全是基于对平面交叉口既往交通流数据的统计调查,由于交通流存在的变化性和随机性,这两种方式都具有通行效率低、方案易老化的缺陷,而半感应式和全感应式这两种方式是在前两种方式的基础上增加了车辆检测器并根据其提供的信息来调整周期长和绿信比,它对车辆随机到达的适应性较大,可使车辆在停车线前尽可能少停车,达到交通流畅的效果。
在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对交通进行有序的控制。
采用单片机来对交通进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控制量的技术指标,从而能够大大提高产品的质量和数量。
因此,单片机对交通灯的控制问题是一个工业生产中经常会遇到的问题。
在工业生产中,有很多行业有大量的交通灯设备,在现行系统中,大多数的交通控制信号都是用继电器来完成的,但继电器响应时间长,灵敏度低,长期使用之后,故障机会大大增加,而采用单片机控制,其精度远远大于继电器,响应时间短,软件可靠性高,不会因为工作时间缘故而降低其性能,相比而言,本方案具有很高的可行性。
交通行业术语中英文对照
交通行业术语(中英文对照)Stop-line——停车线A congested link——阻塞路段Weighting factor——权重因子Controller——控制器Emissions Model——排气仿真the traffic pattern——交通方式Controller——信号机Amber——黄灯Start-up delay——启动延误Lost time——损失时间Off-peak——非高峰期The morning peak——早高峰Pedestrian crossing——人行横道Coordinated control systems——协调控制系统On-line——实时Two-way——双向交通Absolute Offset——绝对相位差Overlapping Phase——搭接相位Critical Phase——关键相位Change Interval——绿灯间隔时间Flow Ratio——流量比Arterial Intersection Control 干线信号协调控制Fixed-time Control——固定式信号控制Real-time Adaptive Traffic Control——实时自适应信号控制Green Ratio——绿信比Through movement——直行车流Congestion——阻塞,拥挤The percentage congestion——阻塞率The degree of saturation——饱和度The effective green time——有效绿灯时间The maximum queue value——最大排队长度Flow Profiles——车流图示Double cycling——双周期Single cycling——单周期Peak——高峰期The evening peak periods——晚高峰Siemens——西门子Pelican——人行横道Fixed time plans——固定配时方案One-way traffic——单向交通Green Ratio——绿信比Relative Offset——相对相位差Non-overlapping Phase——非搭接相位Critical Movement——关键车流Saturation Flow Rate——饱和流率Isolated Intersection Control——单点信号控制(点控)Area-wide Control——区域信号协调控制Vehicle Actuated (V A)——感应式信号控制The Minimum Green Time——最小绿灯时间Unit Extension Time——单位绿灯延长时间The Maximum Green Time——最大绿灯时间Opposing traffic——对向交通(车流)Actuation——Control——感应控制方式Pre-timed Control——定周期控制方式Remote Control——有缆线控方式Self-Inductfanse——环形线圈检测器Signal—— spacing——信号间距Though-traffic lane——直行车道Inbound——正向Outbound——反向第一章交通工程—— Traffic Engineering运输工程—— Transportation Engineering铁路交通—— Rail Transportation航空交通—— Air Transportation水上交通—— Water Transportation管道交通—— Pipeline Transportation交通系统—— Traffic System交通特性—— Traffic Characteristics人的特性—— Human Characteristics车辆特性—— Vehicular Characteristics交通流特性—— Traffic Flow Characteristics道路特性—— Roadway Characteristics交通调查—— Traffic Survey交通流理论—— Traffic Flow Theory交通管理—— Traffic Management交通环境保护——Traffic Environment Protection 交通设计—— Traffic Design交通统计学—— Traffic Statistics交通心理学—— Traffic Psychology汽车力学—— Automobile Mechanics交通经济学—— Traffic Economics汽车工程—— Automobile Engineering人类工程—— Human Engineering环境工程—— Environment Engineering自动控制—— Automatic Control应用数学—— Applied Mathematics电子计算机—— Electric Computer第二章公共汽车—— Bus无轨电车—— Trolley Bus有轨电车—— Tram Car大客车—— Coach小轿车—— Sedan载货卡车—— Truck拖挂车—— Trailer平板车—— Flat-bed Truck动力特性—— Driving Force Characteristics牵引力—— Tractive Force空气阻力—— Air Resistance滚动阻力—— Rolling Resistance坡度阻力—— Grade Resistance加速阻力—— Acceleration Resistance附着力—— Adhesive Force汽车的制动力—— Braking of Motor Vehicle 自行车流特性—— Bicycle flow Characteristics 驾驶员特性—— Driver Characteristics刺激—— Stimulation感觉—— Sense判断—— Judgment行动—— Action视觉—— Visual Sense听觉—— Hearing Sense嗅觉—— Sense of Smell味觉—— Sense of Touch视觉特性—— Visual Characteristics视力—— Vision视野—— Field of Vision色彩感觉—— Color Sense眩目时的视力—— Glare Vision视力恢复—— Return Time of Vision动视力—— Visual in Motion亮度—— Luminance照度—— Luminance反应特性—— Reactive Characteristics刺激信息—— Stimulant Information驾驶员疲劳与兴奋—— Driving Fating and Excitability 交通量—— Traffic V olume交通密度—— Traffic Density地点车速—— Spot Speed瞬时车速—— Instantaneous Speed时间平均车速—— Time mean Speed空间平均车速—— Space mean speed车头时距—— Time headway车头间距—— Space headway0交通流模型—— Traffic flow model自由行驶车速—— Free flow speed阻塞密度—— Jam density速度-密度曲线—— Speed-density curve流量-密度曲线—— Flow-density curve最佳密度—— Optimum concentration流量——速度曲线—— Flow-speed curve最佳速度—— Optimum speed连续流—— Uninterrupted traffic间断流—— Interrupted traffic第三章交通调查分析—— Traffic survey and analysis 交通流调查—— Traffic volume survey车速调查—— Speed survey通行能力调查—— Capacity survey车辆耗油调查—— Energy Consumption Survey居民出行调查—— Trip Survey车辆出行调查—— Vehicle Trip Survey停车场调查—— Parking Area Survey交通事故调查—— Traffic Accident Survey交通噪声调查—— Traffic Noise Survey车辆废气调查—— Vehicle Emission Survey平均日交通量—— Average Daily Traffic(ADT)周平均日交通量—— Week Average Daily Traffic月平均日交通量—— Month Average Daily Traffic年平均日交通量—— Annual Average Daily Traffic高峰小时交通量—— Peak hour V olume年最大小时交通量——Highest Annual Hourly V olume年第30位最高小时交通量——Thirtieth Highest Annual Hourly V olume 高峰小时比率—— Peak Ratio时间变化—— Time Variation空间变化—— Spatial Variation样本选择—— Selection Sample样本大小—— Size of Sample自由度—— Freedom车速分布—— Speed Distribution组中值—— Mid-Class Mark累计频率—— Cumulative Frequency频率分布直方图——Frequency Distribution Histogram85%位车速—— 85% Percentile Speed限制车速—— Regulation Speed服务水平—— Level of Service牌照对号法—— License Number Matching Method跟车测速—— Car Following Method浮动车测速法——Moving Observer Speed Method通行能力调查—— Capacity Studies饱和流量—— Saturation Flow第四章泊松分布—— Poisson Distribution交通特性的统计分布——Statistical Distribution of Traffic Characteristics驾驶员处理信息的特性Driver Information Processing Characteristics 跟车理论—— Car Following Theory交通流模拟—— Simulation of Traffic Flow间隔分布—— Interval Distribution二项分布—— Binomial Distribution拟合—— Fitting移位负指数分布—— Shifted Exponential Distribution排队论—— Queuing Theory运筹学—— Operations Research加速骚扰—— Acceleration Noise停车波—— Stopping Wave起动波—— Starting Wave第五章城市交通规划—— Urban Traffic Planning土地利用—— Land-Use可达性—— Accessibility起讫点调查—— Origin –Destination Survey出行端点—— Trip End期望线—— Desire Line主流倾向线—— Major Directional Desire Line 调查区境界线—— Cordon Line分隔查核线—— Screen Line样本量—— Sample Size出行发生—— Trip Generation出行产生—— Trip Production出行吸引—— Trip Attraction发生率法—— Generation Rate Method回归发生模型—— Regression Generation Model 类型发生模型—— Category Generation Model 出行分布—— Trip Distribution现在型式法—— Present Pattern Method重力模型法—— Gravity Model Method行程时间模型—— Travel Time Model相互影响模型—— Interactive Model分布系数模型—— Distribution Factor Model交通方式划分—— Model Split , Mode Choice转移曲线—— Diversion Curve交通量分配—— Traffic Assignment最短路径分配(全有全无)Shortest Path Assignment(All-or-Nothing) 多路线概率分配Probabilistic Multi-Route Assignment线权—— Link Weight点权—— Point Weight费用——效益分析—— Cost –benefit Analysis现值法—— Present Value Method第六章交通安全—— Traffic Safety交通事故—— Traffic Accident交通死亡事故率—— Traffic Fatal-Accident Rate交通法规—— Traffic Law多发事故地点—— High accident Location交通条例—— Traffic Regulation交通监视—— Traffic Surveillance事故报告—— Accident Report冲撞形式—— Collision Manner财产损失—— Property Damage事故档案—— Accident File事故报表—— Accident Inventory固定目标—— Fixed Object事故率—— Accident Ratelxy事故数法——Accident Number Method质量控制法——Quality Control Method人行横道——Pedestrian Crosswalk行人过街道信号——Pedestrian Crossing Beacon人行天桥——Passenger Foot-Bridge人行地道——Passenger Subway栅栏——Gate立体交叉——Underpass(Overpass)标线——Marking无信号控制交叉口——Uncontrolled Intersection让路标志——Yield Sign停车标志——Stop Sign渠化交通——Channelization traffic 单向交通——One-Way 禁止转弯——No Turn Regulation 禁止进入——No-Entry 禁止超车——Prohibitory Overtaking 禁止停车——Prohibitory Parking 禁止通行——Road Closed 安全带——Life Belt第七章交通控制与管理——Traffic Control and Management 交通信号——Traffic Signal 单点定时信号——Isolated Pre-timed Signal 信号相位——Signal Phase 周期长度——Cycle Length 绿信比——Split 优先控制——Priority Control 延误——Delay 流量比——Flow Ratio 有效绿灯时间——Effective Green Time 损失时间——Loss Time 绿灯间隔时间——Intergreen Interval 信号配时——Signal Timing (or Signal Setting) 交通感应信号——Traffic Actuated Signal 城市交通控制系统——Urban Traffic Control System 联动控制——Coordinated Control 区域控制——Area Control 时差—— Offset同时联动控制——Simultaneous Coordinated Control交变联动控制—— Alternate Coordinated Control绿波带——Green Wave连续通行联动控制—— Progressive Coordinated Control中心控制器—— Master Controller局部控制器—— Local——Controller实时—— Real Time联机—— On-line脱机—— Off-line爬山法——Hill-Climbing“小型高效”区域控制系统——Compact Urban Traffic Control System 道路控制系统—— Corridor Control System交通仿真—— Traffic Simulation时间扫描法—— Time Scanning事件扫描法—— Event Scanning。
交通信号智能控制系统外文文献及翻译
Agent controlled traffic lightsAuthor:Danko A. Roozemond,Jan L.H. RogierProvenance:Delft University of Technology IntroductionThe quality of (urban) traffic control systems is determined by the match between the control schema and the actual traffic patterns. If traffic patterns change, what they usually do, the effectiveness is determined by the way in which the system adapts to these changes. When this ability to adapt becomes an integral part of the traffic control unit it can react better to changes in traffic conditions. Adjusting a traffic control unit is a costly and timely affair if it involves human attention. The hypothesis is that it might offer additional benefit using self-evaluating and self-adjusting traffic control systems. There is already a market for an urban traffic control system that is able to react if the environment changes;the so called adaptive systems. "Real" adaptive systems will need pro-active calculated traffic information and cycle plans- based on these calculated traffic conditions- to be updated frequently.Our research of the usability of agent technology within traffic control can be split into two parts. First there is a theoretical part integrating agent technology and traffic control. The final stage of this research focuses on practical issues like implementation and performance. Here we present the concepts of agent technology applied to dynamic traffic control. Currently we are designing a layered model of an agent based urban traffic control system. We will elaborate on that in the last chapters.Adaptive urban traffic controlAdaptive signal control systems must have a capability to optimise the traffic flow by adjusting the traffic signals based on current traffic. All used traffic signal control methods are based on feed-back algorithms using traffic demand data -varying from years to a couple of minutes - in the past. Current adaptive systems often operate on the basis of adaptive green phases and flexible co-ordination in (sub)networks based on measured traffic conditions (e.g., UTOPIA-spot,SCOOT). These methods are still not optimal where traffic demand changes rapidly within a short time interval. The basic premise is that existing signal plan generation tools make rational decisions about signal plans under varying conditions; but almost none of the current available tools behave pro-actively or have meta-rules that may change behaviour of the controller incorporated into the system. The next logical step for traffic control is the inclusion of these meta-rules and pro active and goal-oriented behaviour. The key aspects of improved control, for which contributions from artificial intelligence and artificial intelligent agents can be expected, include the capability of dealing with conflicting objectives; the capability of making pro-active decisions on the basis of temporal analysis; the ability of managing, learning, self adjusting and responding to non-recurrent and unexpected events (Ambrosino et al.., 1994).What are intelligent agentsAgent technology is a new concept within the artificial intelligence (AI). The agent paradigm in AI is based upon the notion of reactive, autonomous, internally-motivated entities that inhabit dynamic, not necessarily fully predictable environments (Weiss, 1999). Autonomy is the ability to function as an independent unit over an extended period of time, performing a variety of actions necessary to achieve pre-designated objectives while responding to stimuli produced by integrally contained sensors (Ziegler, 1990). Multi-Agent Systems can be characterised by the interaction of many agents trying to solve a variety of problems in a co-operative fashion. Besides AI, intelligent agents should have some additional attributes to solve problems by itself in real-time; understand information; have goals and intentions; draw distinctions between situations; generalise; synthesise new concepts and / or ideas; model the world they operate in and plan and predict consequences of actions and evaluate alternatives. The problem solving component of an intelligent agent can be a rule-based system but can also be a neural network or a fuzzy expert system. It may be obvious that finding a feasible solution is a necessity for an agent. Often local optima in decentralised systems, are not the global optimum. This problem is not easily solved. The solution has to be found by tailoring the interaction mechanism or to have a supervising agent co-ordinating the optimisation process of the other agents. Intelligent agents in UTC,a helpful paradigmAgent technology is applicable in different fields within UTC. The ones most important mentioning are: information agents, agents for traffic simulation and traffic control. Currently, most applications of intelligent agents are information agents. They collect information via a network. With special designed agents user specific information can be provided. In urban traffic these intelligent agents are useable in delivering information about weather, traffic jams, public transport, route closures, best routes, etc. to the user via a Personal Travel Assistant. Agent technology can also be used for aggregating data for further distribution. Agents and multi agent systems are capable of simulating complex systems for traffic simulation. These systems often use one agent for every traffic participant (in a similar way as object oriented programs often use objects). The application of agents in (Urban) Traffic Control is the one that has our prime interest. Here we ultimately want to use agents for pro-active traffic light control with on-line optimisation. Signal plans then will be determined based on predicted and measured detector data and will be tuned with adjoining agents. The most promising aspects of agent technology, the flexibility and pro-active behaviour, give UTC the possibility of better anticipation of traffic. Current UTC is not that flexible, it is unable to adjust itself if situations change and can't handle un-programmed situations. Agent technology can also be implemented on several different control layers. This gives the advantage of being close to current UTC while leaving considerable freedom at the lower (intersection) level. Designing agent based urban traffic control systemsThe ideal system that we strive for is a traffic control system that is based on actuated traffic controllers and is able to pro actively handle traffic situations and handling the different, sometimes conflicting, aims of traffic controllers. The proposed use of the concept of agents in this research is experimental.Assumptions and considerations on agent based urban traffic controlThere are three aspects where agent based traffic control and -management can improve current state of the art UTC systems:- Adaptability. Intelligent agents are able to adapt its behaviour and can learn from earlier situations.- Communication. Communication makes it possible for agents to co-operate and tune signal plans.- Pro-active behaviour. Due to the pro active behaviour traffic control systems are able to plan ahead.To be acceptable as replacement unit for current traffic control units, the system should perform the same or better than current systems. The agent based UTC will require on-line and pro-active reaction on changing traffic patterns. An agent based UTC should be demand responsive as well as adaptive during all stages and times. New methods for traffic control and traffic prediction should be developed as current ones do not suffice and cannot be used in agent technology. The adaptability can also be divided in several different time scales where the system may need to handle in a different way (Rogier, 1999):- gradual changes due to changing traffic volumes over a longer period of time,- abrupt changes due to changing traffic volumes over a longer period of time,- abrupt, temporal, changes due to changing traffic volumes over a short period of time,- abrupt, temporal, changes due to prioritised traffic over a short period of time One way of handling the balance between performance and complexity is the use of a hierarchical system layout. We propose a hierarchy of agents where every agent is responsible for its own optimal solution, but may not only be influenced by adjoining agents but also via higher level agents. These agents have the task of solving conflicts between lower level agents that they can't solve. This represents current traffic control implementations and idea's. One final aspect to be mentioned is the robustness of agent based systems (if all communication fails the agent runs on, if the agent fails a fixed program can be executed.To be able to keep our first urban traffic control model as simple as possible we have made the following assumptions: we limit ourselves to inner city traffic control (road segments, intersections, corridors), we handle only controlled intersections with detectors (intensity and speed) at all road segments, we only handle cars and we use simple rule bases for knowledge representation.Types of agents in urban intersection controlAs we divide the system in several, recognisable, parts we define the following 4 types of agents:- Roads are represented by special road segment agents (RSA),- Controlled intersections are represented by intersection agents (ITSA),- For specific, defined, areas there is an area agent (higher level),- For specific routes there can be route agents, that spans several adjoining road segments (higher level).We have not chosen for one agent per signal. This may result in a more simple solution but available traffic control programs do not fit in that kind of agent. We deliberately choose a more complex agent to be able to use standard traffic control design algorithms and programs. The idea still is the optimisation on a local level (intersection), but with local and global control. Therefor we use area agents and route agents. All communication takes place between neighbouring agents and upper and lower level ones.Design of our agent based systemThe essence of a, demand responsive and pro-active agent based UTC consists of several ITSA's (InTerSection Agent).,some authority agents (area and route agents) and optional Road Segment Agents (RSA). The ITSA makes decisions on how to control its intersection based on its goals, capability, knowledge, perception and data. When necessary an agent can request for additional information or receive other goals or orders from its authority agent(s).For a specific ITSA, implemented to serve as an urban traffic control agent, the following actions are incorporated (Roozemond, 1998):- data collection / distribution (via RSA - information on the current state of traffic; from / to other ITSA's - on other adjoining signalised intersections);- analysis (with an accurate model of the surrounds and knowing the traffic and traffic control rules define current trend; detect current traffic problems);- calculation (calculate the next, optimal, cycle mathematically correct);- decision making (with other agent deciding what to use for next cycle; handle current traffic problems);- control (operate the signals according to cycle plan).In figure 1 a more specific example of a simplified, agent based, UTC system is given. Here we have a route agent controlling several intersection agents, which in turn manage their intersection controls helped by RSA's. The ITSA is the agent that controls and operates one specific intersection of which it is completely informed. All ITSA's have direct communication with neighbouring ITSA's, RSA's and all its traffic lights. Here we use the agent technology to implement a distributed planning algorit hm. The route agents’ tasks are controlling, co-ordinating and leading the ITSA’s towards a more global optimum. Using all available information the ITSA (re)calculates the next, most optimal, states and control strategy and operates the traffic signals accordingly. The ITSA can directly influence the control strategy of their intersection(s) and is able to get insight into on-coming trafficThe internals of the ITSA modelTraffic dependent intersection control normally works in a fast loop. The detectordata is fed into the control algorithm. Based upon predetermined rules a control strategy is chosen and the signals are operated accordingly. In this research we suggest the introduction of an extra, slow, loop where rules and parameters of a prediction- model can be changed by a higher order meta-model.ITSA modelThe internals of an ITSA consists of several agents. For a better overview of the internal ITSA model-agents and agent based functions see figure 2. Data collection is partly placed at the RSA's and partly placed in the ITSA's. The needed data is collected from different sources, but mainly via detectors. The data is stored locally and may be transmitted to other agents. The actual operation of the traffic signals is left to an ITSA-controller agent. The central part of the ITSA, acts as a control strategy agent. That agent can operate several control strategies, such as anti-blocking and public transport priority strategies. The control strategy agent uses the estimates of the prediction model agent which estimates the states in the near future. The ITSA-prediction model agent estimates the states in the near future. The prediction model agent gets its data related to intersection and road segments - as an agent that ‘knows’ the forecasting equations, actual traffic conditions and constraints - and future traffic situations can be calculated by way of an inference engine and it’s knowledge and data base. On-line optimisation only works if there is sufficient quality in traffic predictions, a good choice is made regarding the performance indicators and an effective way is found to handle one-time occurrences (Rogier, 1999).Prediction modelWe hope to include pro-activeness via specific prediction model agents with a task of predicting future traffic conditions. The prediction models are extremely important for the development of pro active traffic control. The proposed ITSA-prediction model agent estimates the states of the traffic in the near future via its own prediction model. The prediction meta-model compares the accuracy of the predictions with current traffic and will adjust the prediction parameters if the predictions were insufficient or not accurate. The prediction model agent is fed by several inputs: vehicle detection system, relevant road conditions, control strategies, important data on this intersection and its traffic condition, communication with ITSA’s of nearby intersections and higher level agents. The agent itself has a rule-base, forecasting equations, knows constraints regarding specific intersections and gets insight into current (traffic) conditions. With these data future traffic situations should be calculated by its internal traffic forecasting model. The predicted forecast is valid for a limited time. Research has shown that models using historic, up-stream and current link traffic give the best results (Hobeika & Kim, 1994).Control strategy modelThe prediction of the prediction model is used in the control strategy planning phase. We have also included a performance indicating agent, necessary to update thecontrol parameters in the slower loop. The control strategy agent uses the estimates of the prediction model agent to calculate the most optimal control strategy to pro-act on the forecasts of the prediction model agent, checks with other adjoining agents its proposed traffic control schema and then plans the signal control strategy The communication schema is based on direct agent to agent communication via a network link. The needed negotiation finds place via a direct link and should take the global perspective into consideration. Specific negotiation rules still have to be developed. Some traffic regulation rules and data has to be fed into the system initially. Data on average flow on the links is gained by the system during run-time. In the near future computer based programs will be able to do, parts of, these kind of calculus automatically. For real-time control the same basic computer programs, with some artificial knowledge, will be used. Detectors are needed to give information about queues and number of vehicles. The arrival times can also be given by the RSA so that green on demand is automatically covered.Conclusions and future workAdaptive signal control systems that are able to optimise and adjust the signal settings are able to improve the vehicular throughput and minimise delay through appropriate response to changes in the measured demand patterns. With the introduction of two un-coupled feed back loops, whether agent technology is used or not, a pro-active theory of traffic control can be met. There are several aspects still unresearched. The first thing we are going to do is to build a prototype system of a single intersection to see if the given claims of adaptability and pro activeness can be realised. A working prototype of such system should give appropriate evidence on the usability of agent based control systems. There are three other major subjects to be researched in depth; namely self adjustable control schema's, on-line optimisation of complex systems and getting good prediction models. For urban traffic control we need to develop self adjustable control schemes that can deal with dynamic and actuated data. For the optimisation we need mathematical programming methodologies capable of real-time on-line operation. In arterial and agent based systems this subject becomes complex due to several different, continuously changing, weights and different goals of the different ITSA's and due to the need for co-ordination and synchronisation. The research towards realising real-time on-line prediction models needs to be developed in compliance with agent based technology. The pro-active and re-active nature of agents and the double loop control schema seems to be a helpful paradigm in intelligent traffic management and control. Further research and simulated tests on a control strategy, based on intelligent autonomous agents, is necessary to provide appropriate evidence on the usability of agent-based control systems.代理控制交通灯作者:Danko A. Roozemond,Jan L.H. Rogier出处:Delft University of Technology前言(城市)交通控制系统的好坏决定于系统控制模式和实际交通流量模式是否相符。
交通规则词汇中英对照
交通规则词汇中英对照引导语:交通规则通常特指我国正在施行的交通管理法律、规章。
以下是店铺分享给大家的交通规则词汇中英对照,欢迎阅读!1. 交通规则 traffic regulation2. 路标 guide post3. 里程碑 milestone4. 停车标志 mark car stop5. 红绿灯 traffic light6. 自动红绿灯 automatic traffic signal light7. 红灯 red light8. 绿灯 green light9. 黄灯 amber light10. 交通岗 traffic post11. 岗亭 police box12. 交通警 traffic police13. 打手势 pantomime14. 单行线 single line15. 双白线 double white lines16. 双程线dual carriage-way17. 斑马线 zebra stripes18. 划路线机 traffic line marker19. 交通干线 artery traffic20. 车行道 carriage-way21. 辅助车道 lane auxiliary22. 双车道 two-way traffic23. 自行车通行 cyclists only24. 单行道 one way only25. 窄路 narrow road26. 潮湿路滑 slippery when wet27. 陡坡 steep hill28. 不平整路 rough road29. 弯路 curve road ; bend road30. 连续弯路 winding road31. 之字路 double bend road32. 之字公路 switch back road33. 下坡危险 dangerous down grade34. 道路交叉点 road junction35. 十字路 cross road36. 左转 turn left37. 右转 turn right38. 靠左 keep left39. 靠右 keep right40. 慢驶 slow41. 速度 speed42. 超速 excessive speed43. 速度限制 speed limit44. 恢复速度 resume speed45. 禁止通行 no through traffic46. 此路不通 blocked47. 不准驶入 no entry48. 不准超越 keep in line ; no overhead49. 不准掉头 no turns。
交通灯单词
交通灯单词1. 定义与释义- 单词:traffic light- 1.1词性:名词- 1.2中文释义:交通灯,用于指挥交通的信号灯,通常有红、黄、绿三种颜色。
- 1.3英文释义:A set of coloured lights, usually red, yellow and green, used to control the flow of traffic.- 1.4相关词汇:同义词:traffic signal;派生词:traffic - lighted(有交通灯指示的)。
2. 起源与背景- 2.1词源:“traffic light”这个词来源于英语,由“traffic”(交通)和“light”(灯)组合而成。
最初交通灯的出现是为了规范日益繁忙的道路交通。
- 2.2趣闻:世界上第一个交通灯是1868年在英国伦敦安装的。
它是一个煤气灯,通过手动来控制红和绿两种颜色的显示,不过后来因为爆炸危险而被停用。
3. 常用搭配与短语- 3.1短语:- traffic light control:交通灯控制例句:The traffic light control system in this city is very advanced.翻译:这个城市的交通灯控制系统非常先进。
- traffic light intersection:有交通灯的十字路口例句:Be careful when you drive through the traffic light intersection.翻译:开车经过有交通灯的十字路口时要小心。
- red traffic light:红灯例句:You must stop when you see a red traffic light.翻译:看到红灯时你必须停车。
- green traffic light:绿灯例句:When the green traffic light is on, you can go.翻译:绿灯亮的时候,你可以走了。
毕业设计论文外文文献翻译智能交通信号灯控制中英文对照
英语原文Intelligent Traffic Light Controlby Marco Wiering The topic I picked for our community project was traffic lights. In a community, people need stop signs and traffic lights to slow down drivers from going too fast. If there were no traffic lights or stop signs, people’s lives would be in danger from drivers going too fast.The urban traffic trends towards the saturation, the rate of increase of the road of big city far lags behind rate of increase of the car.The urban passenger traffic has already become the main part of city traffic day by day and it has used about 80% of the area of road of center district. With the increase of population and industry activity, people's traffic is more and more frequent, which is unavoidable. What means of transportation people adopt produces pressure completely different to city traffic. According to calculating, if it is 1 to adopt the area of road that the public transport needs, bike needs 5-7, car needs 15-25, even to walk is 3 times more than to take public transits. So only by building road can't solve the city traffic problem finally yet. Every large city of the world increases the traffic policy to the first place of the question.For example,according to calculating, when the automobile owning amount of Shanghai reaches 800,000 (outside cars count separately ), if it distributes still as now for example: center district accounts for great proportion, even when several loop-lines and arterial highways have been built up , the traffic cannot be improved more than before and the situation might be even worse. So the traffic policy Shanghai must adopt , or called traffic strategy is that have priority to develop public passenger traffic of city, narrow the scope of using of the bicycle progressively , control the scale of growth of the car traffic in the center district, limit the development of the motorcycle strictly.There are more municipals project under construction in big city. the influence on the traffic is greater.Municipal infrastructure construction is originally a good thing of alleviating the traffic, but in the course of constructing, it unavoidably influence the local traffic. Some road sections are blocked, some change into an one-way lane, thus the vehicle can only take a devious route . The construction makes the road very narrow, forming the bottleneck, which seriously influence the car flow.When having stop signs and traffic lights, people have a tendency to drive slower andlook out for people walking in the middle of streets. To put a traffic light or a stop sign in a community, it takes a lot of work and planning from the community and the city to put one in. It is not cheap to do it either. The community first needs to take a petition around to everyone in the community and have them sign so they can take it to the board when the next city council meeting is. A couple residents will present it to the board, and they will decide weather or not to put it in or not. If not put in a lot of residents might be mad and bad things could happened to that part of the city.When the planning of putting traffic lights and stop signs, you should look at the subdivision plan and figure out where all the buildings and schools are for the protection of students walking and riding home from school. In our plan that we have made, we will need traffic lights next to the school, so people will look out for the students going home. We will need a stop sign next to the park incase kids run out in the street. This will help the protection of the kids having fun. Will need a traffic light separating the mall and the store. This will be the busiest part of the town with people going to the mall and the store. And finally there will need to be a stop sign at the end of the streets so people don’t drive too fast and get in a big accident. If this is down everyone will be safe driving, walking, or riding their bikes.In putting in a traffic light, it takes a lot of planning and money to complete it. A traffic light cost around $40,000 to $125,000 and sometimes more depending on the location. If a business goes in and a traffic light needs to go in, the business or businesses will have to pay some money to pay for it to make sure everyone is safe going from and to that business. Also if there is too many accidents in one particular place in a city, a traffic light will go in to safe people from getting a severe accident and ending their life and maybe someone else’s.The reason I picked this part of our community development report was that traffic is a very important part of a city. If not for traffic lights and stop signs, people’s lives would be in danger every time they walked out their doors. People will be driving extremely fast and people will be hit just trying to have fun with their friends. So having traffic lights and stop signs this will prevent all this from happening.Traffic in a city is very much affected by traffic light controllers. When waiting for a traffic light, the driver looses time and the car uses fuel. Hence, reducing waiting times before traffic lights can save our European society billions of Euros annually. To make traffic light controllers more intelligent, we exploit the emergence of novel technologies such as communication networks and sensor networks, as well as the use of more sophisticated algorithms for setting traffic lights. Intelligent traffic light control does not only mean thattraffic lights are set in order to minimize waiting times of road users, but also that road users receive information about how to drive through a city in order to minimize their waiting times. This means that we are coping with a complex multi-agent system, where communication and coordination play essential roles. Our research has led to a novel system in which traffic light controllers and the behaviour of car drivers are optimized using machine-learning methods.Our idea of setting a traffic light is as follows. Suppose there are a number of cars with their destination address standing before a crossing. All cars communicate to the traffic light their specific place in the queue and their destination address. Now the traffic light has to decide which option (ie, which lanes are to be put on green) is optimal to minimize the long-term average waiting time until all cars have arrived at their destination address. The learning traffic light controllers solve this problem by estimating how long it would take for a car to arrive at its destination address (for which the car may need to pass many different traffic lights) when currently the light would be put on green, and how long it would take if the light would be put on red. The difference between the waiting time for red and the waiting time for green is the gain for the car. Now the traffic light controllers set the lights in such a way to maximize the average gain of all cars standing before the crossing. To estimate the waiting times, we use 'reinforcement learning' which keeps track of the waiting times of individual cars and uses a smart way to compute the long term average waiting times using dynamic programming algorithms. One nice feature is that the system is very fair; it never lets one car wait for a very long time, since then its gain of setting its own light to green becomes very large, and the optimal decision of the traffic light will set his light to green. Furthermore, since we estimate waiting times before traffic lights until the destination of the road user has been reached, the road user can use this information to choose to which next traffic light to go, thereby improving its driving behaviour through a city. Note that we solve the traffic light control problem by using a distributed multi-agent system, where cooperation and coordination are done by communication, learning, and voting mechanisms. To allow for green waves during extremely busy situations, we combine our algorithm with a special bucket algorithm which propagates gains from one traffic light to the next one, inducing stronger voting on the next traffic controller option.We have implemented the 'Green Light District', a traffic simulator in Java in which infrastructures can be edited easily by using the mouse, and different levels of road usage can be simulated. A large number of fixed and learning traffic light controllers have already been tested in the simulator and the resulting average waiting times of cars have been plotted and compared. The results indicate that the learning controllers can reduce average waiting timeswith at least 10% in semi-busy traffic situations, and even much more when high congestion of the traffic occurs.We are currently studying the behaviour of the learning traffic light controllers on many different infrastructures in our simulator. We are also planning to cooperate with other institutes and companies in the Netherlands to apply our system to real world traffic situations. For this, modern technologies such as communicating networks can be brought to use on a very large scale, making the necessary communication between road users and traffic lights possible.中文翻译:智能交通信号灯控制马克·威宁我所选择的社区项目主题是交通灯。
电气工程与自动化专业基于PLC的交通灯控制系统设计大学毕业论文外文文献翻译及原文
毕业设计(论文)外文文献翻译文献、资料中文题目:基于PLC的交通灯控制系统设计文献、资料英文题目:PLC-based design of traffic lights 文献、资料来源:文献、资料发表(出版)日期:院(部):专业:电气工程与自动化班级:姓名:学号:指导教师:翻译日期: 2017.02.14毕业设计(外文翻译)英文题目 PLC-based design of traffic lights中文题目基于PLC的交通灯设计PLC-based design of traffic lights Abstract: One kind of traffic light control system using programmable logic controller (PLC), via software control traffic lights run automatically. In the system, the original line is the program instead of the relay, programmable logic controller (PLC) system hardware and software resources to be fair use. Normal operation and emergency transport for a detailed description and from the East and West emergencies can be mutually linked. Traffic signal systems and two seven-segment digital display in the countdown order; also discussed in detail the wiring of the hardware and PLC ladder. Traffic lights at the crossroads of the remote monitoring system design configuration software MCGS, real-time monitoring of traffic lights, greatly improving the reliability of data transmission. At the same time, we can configure the traffic lights to change the status of photographs.Keywords: switching power,supply protection, circuit system design1. IntroductionWith the social development and progress, traffic flow becomes increasingly important. On the one hand, too many crossroads, more and more vehicles, which are causing serious traffic congestion. On the other hand, in the limited time it is necessary to maintain the vehicle and pedestrian fast and safe. Therefore, one kind of traffic light control system design, can be used to display time countdown, with computer controlled real-time data. In addition, the configuration technology for real-time images that reflect the traffic lights, understand the historical crossroads of work to get traffic lights visualization. The system consists of host computer and a low computer. MCGS configuration is installed in the host computer is lower by the PLC control system.Normal traffic signal timing diagram shown in Figure 1. But there are some urgent matters, for example. There are a number of ambulances to transport patients to the hospital or to deal with a number of fire engines and fire. Fire engines and ambulances rushed to take precedence over other traffic scene. According to urban traffic control system, under normal circumstances, two control methods and urgency traffic control factors into account. This process can show 14 segment encoder. U.S. traffic lights instant record of the monitoring process.Emergency control signals to control traffic emergency switch. If there is no emergency lights all work, but when an emergency open. In this case, the car is urgent priority pass. Once the emergency vehicle passes, emergency switch off immediately. The green light in the same direction of the vehicle quickly flashes three times, followed by the normal operation. If you were from the north-south and east-west two emergency vehicles, traffic control systems can respond quickly came early, and then another.2. Traffic Control System DesignA. Hardware designCP1H series PLC as controller, display the procedure should stop when the time series of abnormal system operation, the time will not be displayed. When the emergency procedures are completed time series, countdown display program should be reset. At 220 V AC system is used to control traffic lights, 24 V DC control segment encoder, Figure 2 shows the scheme Eastern time display. CP1H series programmable logic controller (PLC) is a simple controller, which consists of 24 inputs and sixteen outputs. Because the output to twenty In this system, an I / Omodule must be extended. Circuit is shown in Figure 2.B. Control Program DesignSix timers and two special normal open pulse is used in this system, the green light flashes for all north-south and east-timer and a special pulse; eight kinds ofinterlocking internal relay is used to implement the urgency and transmit pulse two directions to PLC, shown in the figure. Two SDEC instructions are used to display the countdown display the corresponding light. As an important part of the countdown display program, east and west of the green light reflected in the view 4 in these programs downloaded to the programmable logic controller (PLC), all the traffic lights running accuracy, urgency, and things can be interlocked from north to south strictly, all the lights can be set back to the urgency of passing state. Therefore, these control program is correct, simple.C. Monitoring SystemComputer system has two main functions: an output signal acquisition and display real-time status of the programmable logic controller (PLC) to control traffic lights, traffic lights. Another notification robot status and history of the state real-time curve by examining the history and alarm window.This monitoring system design and configuration software MCGS configuration is easy. The serial communication is implemented as follows.Data inspection methods: double endedSerial Communications Number: COM0 endedThe minimum sampling period: 200 msProgrammable Logic Controller (PLC) The parameters are defined as follows: The minimum sampling period of the basic properties: 200 msThree read / write channel: X0, X1, X2Six read-only access (read U.S. traffic lights): Q0-Q5All channels must be connected to a variable defined in a real-time database access visits and other parameters to their default values. After a successful relationship, PLC and computer control system is able to change the color of the analog signal lights in the picture on the PC being collected data through the serial port.. In contrast, by changing the parameters of the host, the corresponding value is written to the PLC internal relay control, intersection traffic lights can be implemented. Experimental results show that the system is usually good enough and animation. Online monitoring system of traffic lights in Figure 5:3. ConclusionExperimental results show that the system is usually configured with enough good photos. This system simplifies the programmable logic controller (PLC) and the communication between the host computer using industrial configuration software development time is greatly reduced. In particular, more suitable for complex controlsystems. We can control the traffic lights by the PLC and MCGS configuration, replace the original relay control, improve the system's lifetime. At the same time, this method can be applied to control the motor and fluid levels. Remote control and configuration combined with the simulation, can be applied to similar control zone. 4. References[1] Whitworth, Duller, Jones D I. Aerial video inspection of overhead power lines [J].PowerEngineering Journal,2001,15:25-32.[2] Jan Axelson, Lakeview Research-Serial port complete [D]. USA:1999:91-135.基于PLC的交通灯控制系统设计摘要一种交通灯控制系统采用可编程序控制器(PLC), 通过软件控制交通灯自动运行。
100个交通规则专用英语单词!
100个交通规则专用英语单词!转载自:每日学英语 daily-english如有版权问题,请联系我们!特此感谢!•o 1. 交通规则 traffic regulationo 2. 路标 guide posto 3. 里程碑 milestoneo 4. 停车标志 mark car stopo 5. 红绿灯 traffic lighto 6. 自动红绿灯 automatic traffic signal light o7. 红灯 red lighto8. 绿灯 green lighto9. 黄灯 amber lighto10. 交通岗traffic posto11. 岗亭police boxo12. 交通警traffic policeo13. 打手势pantomimeo14. 单行线single lineo15. 双白线double white lineso16. 双程线dual carriage-wayo17. 斑马线zebra stripeso18. 划路线机traffic line markero19. 交通干线artery traffico20. 车行道carriage-wayo21. 辅助车道lane auxiliaryo22. 双车道two-way traffico23. 自行车通行cyclists onlyo24. 单行道one way onlyo25. 窄路narrow roado26. 潮湿路滑slippery when weto27. 陡坡steep hillo28. 不平整路rough roado29. 弯路curve road ; bend road o30. 连续弯路winding roado31. 之字路double bend roado32. 之字公路switch back roado33. 下坡危险dangerous down grade o34. 道路交叉点road junctiono35. 十字路cross roado36. 左转 turn lefto37. 右转 turn righto38. 靠左 keep lefto39. 靠右 keep righto40. 慢驶 slowo41. 速度 speedo42. 超速 excessive speedo43. 速度限制 speed limito44. 恢复速度 resume speedo45. 禁止通行 no through traffico46. 此路不通 blockedo47. 不准驶入 no entryo48. 不准超越 keep in line ; no overhead o49. 不准掉头 no turnso50. 让车道 passing bayooo51. 回路 loopo52. 安全岛 safety islando53. 停车处 parking placeo54. 停私人车 private car parko55. 只停公用车 public car onlyo56. 不准停车 restricted stopo57. 不准滞留 restricted waitingo58. 临街停车 parking on-streeto59. 街外停车 parking off-streeto60. 街外卸车 loading off-streeto61. 当心行人 caution pedestrian crossing o62. 当心牲畜 caution animalso63. 前面狭桥 narrow bridge aheado64. 拱桥 hump bridgeo65. 火车栅 level crossingo66. 修路 road workso67. 医院 hospitalo68. 儿童 childreno69. 学校 schoolo70. 寂静地带 silent zoneo71. 非寂静地带 silent zone endso72. 交通管理 traffic controlo73. 人山人海 crowded conditionso74. 拥挤的人 jam-packed with peopleo75. 交通拥挤 traffic jamo76. 水泄不通 overwhelmo77. 顺挤 extrusion directo78. 冲挤 extrusion impacto79. 推挤 shovedo80. 挨身轻推 nudgingo81. 让路 give wayo82. 粗心行人 careless pedestriano83. 犯交通罪 committing traffic offenceso84. 执照被记违章 endorsed on driving license o85. 危险驾驶 dangerous drivingo86. 粗心驾车 careless drivingo87. 无教员而驾驶 driving without an instructor o88. 无证驾驶 driving without licenseo89. 未经车主同意 without the owner's consent o90. 无第三方保险 without third-party insurance o91. 未挂学字牌 driving without a 'L' plateo92. 安全第一 safety firsto93. 轻微碰撞 slight impacto94. 迎面相撞 head-on collisiono95. 相撞 collidedo96. 连环撞 a chain collisiono97. 撞车 crasho98. 辗过 run overo99. 肇事逃跑司机 hit-run drivero100. 冲上人行道drive onto the pavement。
Traffic Lights 交通信号灯
文化长廊张宁选译Some things are so fluidly 1embedded 2in our daily lives that we forget how important they can be for smooth operation of our lives.Let us get rid of 3those traffic lights for one day and see what happens!有些东西如此流畅地融入我们的日常生活中,以至于我们忘记了它们对我们生活的顺利运行有多么重要。
让我们把那些交通信号灯关掉一天,看看会发生什么!When was the first traffic light installed 6?1.On 9December 1868,first non -electric,gas lit traffic lights were installed in London outside the house of parliament 7to control the traffic.2.First traffic signal was installed in Cleveland,Ohio on August 5,1914.3.In 1935,a uniform standard for the traffic signals and road safety was set in America.第一个交通信号灯是何时安装的?1.1868年12月9日,在英国伦敦议会大厦外,人们安装了第一个非电力的燃气交通灯,以控制交通。
2.1914年8月5日,在美国俄亥俄州克利夫兰市,人们安装了第一个交通信号灯。
3.1935年,美国为交通信号和道路安全制定了统一标准。
What would happen if there were no traffic lights?1.For starters,no one would know when to stop and when not to.2.The number of accidents would increase because of this chaos te comers would increase in number,and mind you,it would not be because you got up late for school!4.It would be all together more difficult for kids to cross the roads because zebra crossing would become non -functional 5without traffic lights.Such a madness at road is not only annoying,but can be dangerous too!The traffic lights are not only important for roads,but also make our lives simpler.如果没有交通信号灯会发生什么?1.首先,没有人知道什么时候该停,什么时候不该停。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文翻译当今时代是一个自动化时代,交通灯控制等很多行业的设备都与计算机密切相关。
因此,一个好的交通灯控制系统,将给道路拥挤,违章控制等方面给予技术革新。
随着大规模集成电路及计算机技术的迅速发展,以及人工智能在控制技术方面的广泛运用,智能设备有了很大的发展,是现代科技发展的主流方向。
本文介绍了一个智能交通的系统的设计。
该智能交通灯控制系统可以实现的功能有:对某市区的四个主要交通路口进行控制:个路口有固定的工作周期,并且在道路拥挤时中控制中心能改变其周期:对路口违章的机动车能够即时拍照,并提取车牌号。
在世界范围内,一个以微电子技术,计算机和通信技术为先导的,一信息技术和信息产业为中心的信息革命方兴未艾。
而计算机技术怎样与实际应用更有效的结合并有效的发挥其作用是科学界最热门的话题,也是当今计算机应用中空前活跃的领域。
本文主要从单片机的应用上来实现十字路口交通灯智能化的管理,用以控制过往车辆的正常运作。
研究交通的目的是为了优化运输,人流以及货流。
由于道路使用者的不断增加,现有资源和基础设施有限,智能交通控制将成为一个非常重要的课题。
但是,智能交通控制的应用还存在局限性。
例如避免交通拥堵被认为是对环境和经济都有利的,但改善交通流也可能导致需求增加。
交通仿真有几个不同的模型。
在研究中,我们着重于微观模型,该模型能模仿单独车辆的行为,从而模仿动态的车辆组。
由于低效率的交通控制,汽车在城市交通中都经历过长时间的行进。
采用先进的传感器和智能优化算法来优化交通灯控制系统,将会是非常有益的。
优化交通灯开关,增加道路容量和流量,可以防止交通堵塞,交通信号灯控制是一个复杂的优化问题和几种智能算法的融合,如模糊逻辑,进化算法,和聚类算法已经在使用,试图解决这一问题,本文提出一种基于多代理聚类算法控制交通信号灯。
在我们的方法中,聚类算法与道路使用者的价值函数是用来确定每个交通灯的最优决策的,这项决定是基于所有道路使用者站在交通路口累积投票,通过估计每辆车的好处(或收益)来确定绿灯时间增益值与总时间是有差异的,它希望在它往返的时候等待,如果灯是红色,或者灯是绿色。
等待,直到车辆到达目的地,通过有聚类算法的基础设施,最后经过监测车的监测。
我们对自己的聚类算法模型和其它使用绿灯模拟器的系统做了比较。
绿灯模拟器是一个交通模拟器,监控交通流量统计,如平均等待时间,并测试不同的交通灯控制器。
结果表明,在拥挤的交通条件下,聚类控制器性能优于其它所有测试的非自适应控制器,我们也测试理论上的平均等待时间,用以选择车辆通过市区的道路,并表明,道路使用者采用合作学习的方法可避免交通瓶颈。
DescriptionThe times is a automation times nowadays,traffic light waits for much the industey equipment to go hand in hand with the computer under the control of.Therefore,a good traffic light controls system,will give road aspect such as being crowded,controlling against rules to give a technical improvement.With the fact that the large-scale integrated circuit and the computer art promptness develop,as well as artificial intelligence broad in the field of control technique applies,intelligence equipment has had very big development,the main current being that modern science and technology develops direction.The main body of a book is designed having introduccd a intelligence traffic light systematically.The function being intelligence traffic light navar’s turn to be able to come true has:The crossing carries out supervisory control on four main traffic of some downtown area;Every crossing has the fixed duty period,charges centrefor being able to change it’s period and in depending on a road when being crowded;The motro vehicle breaking rules and regulations to the crossing is able to take a photo immediately,abstracts and the vehicle shop sign.Within world range ,one uses the microelectronics technology,the computer and the technology communicating by letter are a guide’s,centering on IT and IT industry information revolution is in the ascendant.But,how,computer art applies more effective union and there is an effec t’s brought it’s effect into play with reality is the most popular topic of scientific community,is also that computer applications is hit by the unparalleled active field nowadays.The main body of a book is applied up mainly from slicing machine’s only re alizing intellectualized administration of crossroads traffic light,use operation in controlling the vehicular traffic regularity.Transportation research has the goal to optimize transportation flow of people and goods.As the number of road users constantly increases, and resources provided by current infras-tructures are limited, intelligent control of traffic will become a very important issue in thefuture. However, some limitations to the usage of intelligenttra?c control exist. Avoidingtraffic jams for example is thought to be beneficial to both environment and economy, butimproved traffic-flow may also lead to an increase in demand [Levinson, 2003].There are several models for traffic simulation. In our research we focus on microscopicmodels that model the behavior of individual vehicles, and thereby can simulate dynam-ics of groups of vehicles. Research has shown that such models yield realistic behavior[Nagel and Schreckenberg, 1992, Wahle and Schreckenberg, 2001].Cars in urban traffic can experience long travel times due to inefficient traffic light con-trol. Optimal control of traffic lights using sophisticated sensors and intelligent optimizationalgorithms might therefore bevery beneficial. Optimization of traffic light switching increasesroad capacity and traffic flow, and can prevent tra?c congestions. Traffic light control is acomplex optimization problem and several intelligent algorithms, such as fuzzy logic, evo-lutionary, and reinforcement learning (RL) have already been used in attemptsto solve it. In this paper we describe a model-based, multi-agent reinforcement learningalgorithm for controlling traffic lights.In our approach, reinforcement learning [Sutton and Barto, 1998, Kaelbling et al., 1996]with road-user-based value functions [Wiering, 2000] is used to determine optimal decisionsfor each traffic light. The decision is based on a cumulative vote of all road users standingfor a traffic junction, where each car votes using its estimated advantage (or gain) of settingits light to green. The gain-value is the difference between the total time it expects to waitduring the rest of its trip if the light for which it is currently standing is red, and if it is green.The waiting time until cars arrive at their destination is estimated by monitoring cars flowingthrough the infrastructure and using reinforcement learning (RL) algorithms.We compare the performance of our model-based RL method to that of other controllersusing the Green Light District simulator (GLD). GLD is a traffic simulator that allows usto design arbitrary infrastructures and traffic patterns, monitor traffic flow statistics such asaverage waiting times, and test different traffic light controllers. The experimental resultsshow that in crowded traffic, the RL controllers outperformall other tested non-adaptivecontrollers. We also test the use of the learned average waiting times for choosing routes ofcars through the city (co-learning), and show that by using co-learning road users can avoidbottlenecks.。