4 材料的磁学
材料物理性能-_磁学性能
7
4. 磁感应强度和磁导率(P133) 材料在磁场强度为 H 的外加磁场(直流、交变或脉冲磁 场)作用下,会在材料内部产生一定的磁通量密度,称其为 磁感应强度B,即在强度为H的磁场中被磁化后,物质内磁场 强度的大小。 在真空中,磁感应强度为:
26
二、技术磁化(P154)
对未经外磁场磁化的 ( 或处于退磁状态的 ) 铁磁体,它们 在宏观上并不显示磁性,这说明物质内部各部分的自发磁化 强度的取向是杂乱的。因而物质的磁畴决不会是单畴,而是
由许多小磁畴组成的。
技术磁化:在外磁场作用下,铁磁体从完全退磁状态磁化到 饱和的内部变化过程。
27
铁磁体在外磁场中的磁化过程主要为畴壁的 移动和磁畴内磁矩的转向。
因而自发磁化强度降低,铁磁性消失。这一温度称为居里 点Tc。在居里点以上,材料表现为顺磁性。
23
4. 反铁磁性和亚铁磁性(P132、P144) 如果交换积分 A<0时,则原于磁矩取反向平行排列能量最 低。如果相邻原子磁矩相等,由于原子磁矩反平行排列,原
子磁矩相互抵消,自发磁化强度等于零。这样一种特性称为
9
磁学与电学基本物理量的比较 电学物理量 (单位) 磁学物理量 (单位)
J E P 0E
电流强度 I (A)
磁通量 Ф (Wb)
电流密度 J (A/m2)
电场强度 E (V/m)
磁通密度 B (Wb/m2)
磁场强度 H (A/m)
B H M H
r 1
电导率σ (Ω-1· m-1)
B0 0 H
式中μ0为真空磁导率
0 4 107 H / m
材料磁学性能(材料科学基础)
h
2
(3)磁感应强度
真空
B。=。H 。
B 磁感强度(Wb·m-2) (magnetic flux density)
H 磁场强度(A·m-1)(magnetic field strength)
0 真空磁导率,4×l0-7(H/m) (亨/米)
介质 B0(HM )HM: 磁化强度
h
3
(4)磁化率 χ(magnetic susceptibility)
➢ 不具“永久磁矩” :原子各层都充满电子(电子自旋磁矩相互抵消)
如锌(3d104s2),具有各层都充满电子的原子结构,其电子磁矩相互 抵消,因而不显磁性。
h
5
(2)“交换”作用
铁具有很强的磁性,这种磁性称为铁磁性。铁磁性除与电子结构有关外, 还决定于晶体结构。
处于不同原子间的、未被填满壳层上的电子发生特殊的相互作用,这种 相互作用称为“交换”作用。这是因为在晶体内,参与这种相互作用的电子 已不再局限于原来的原子,而是“公有化”了,原子间好象在交换电子,故 称为“交换”作用。
由这种“交换”作用所产生的“交换能”J与晶格的原子间距有密切关系。 当距离很大时,J接近于零,随着距离的减小,相互作用有所增加。 J为正值,就呈现出铁磁性,J为负值,就呈现出反铁磁性。
a:原子间距 D:未被填满的电子壳层直h 径
a/D >3时 交换能为正值, 为铁磁性 a/D <3时 交换能为负值, 为反铁磁性
材料的磁学性能-材料性能学-金属力学性能-课件-北京工业大学-09
§9.2材料的抗磁性与顺磁性
第二节 材料的抗磁性与顺磁性
一、材料抗磁性与顺磁性的物理本质
M 顺磁
0
抗磁
H
材料性能
第九章材料的磁学性能
§9.2材料的抗磁性与顺磁性
1.抗磁性
材料被磁化后,磁化矢量与外加磁场方向相反的称为抗磁 性,χ<0。 材料的抗磁性来源于电子循轨运动时受外加磁场作用所产生 的抗磁矩。 电子循轨运动所产生的轨道磁矩为 ml=0.5eωr2。 式中:e为电子电荷;ω为电子循轨运动的角速度;r为轨道半 径。 电子循轨运动的受力状态如图。
材料性能
第九章材料的磁学性能
§9.1材料的基本磁学性能
3.磁感应强度
任何物质被磁化时,由于内部原子磁矩的有序排列,除了外磁场外 还要产生一个附加磁场。在物质内部,外磁场H和附加磁场H’ 的和乘以
μ0 称为磁感应强度B,单位为韦伯/米2(Wb/m2)。
亦即,通过物质内部磁场中某点,垂直于磁场方向单位面积的磁力 线数。它与磁场强度H 的关系是 B=μ0(H+H’) 或 B=μ0(H+M) B=μ0(1+χ)H=μ0μrH=μH 式中μr为相对磁导率;μ为磁导率或导磁系数,它反应了磁感应强度B 随外磁场H变化的比率(或速率)。
χ=C’/(T+Δ)
式中C’是常数,Δ对某一种物质也是常数,其值可大于0和小于0。 铁磁性物质在居里点以上是顺磁性的,其磁化率大致服从居里—外斯 定律,这时的Δ为-θ,θ表示居里温度。
材料性能
第九章材料的磁学性能
§9.2材料的抗磁性与顺磁性
3.相变及组织转变的影响
材料发生同素异构转变,由于晶格类型及原子间距发 生了变化,会影响电子运动状态而导致磁化率的变化。例 如, 正方晶格的白锡转变为金刚石结构的灰锡时,磁化率 明显变化。但影响的规律比较复杂。 加工硬化使金属的原子间距增大而密度减小,从而使 材料的抗磁性减弱。例如,当高度加工硬化时,铜可以由 抗磁变为顺磁。退火与加工硬化的作用相反,能使铜的抗 磁性重新得到恢复。 材料性能 第九章材料的磁学性能
材料物理导论
《材料物理导论》习题解答第一章材料的力学1. 一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:根据题意可得下表2. 一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其杨氏模量为3.5×109 N/m2,能伸长多少厘米?3. 一材料在室温时的杨氏模量为3.5×108 N/m2,泊松比为0.35,计算其剪切模量和体积模量。
5. 一陶瓷含体积百分比为95%的Al2O3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
8. 一试样受到拉应力为1.0×103 N/m2,10秒种后试样长度为原始长度的1.15倍,移去外力后试样的长度为原始长度的1.10倍,若可用单一Maxwell模型来描述,求其松弛时间τ值。
第二章材料的热学9.一硅酸铝玻璃的性能为=2.1J/(㎡▪s▪K),α=4.6×/K,σf=N/㎡,E=N/㎡,μ=0.25.求第一和第二抗热冲击断裂因子和。
10.一热机部件由氮化硅制成,导热率为1.84J/(㎡▪s▪K),最大厚度=0.12m,表面热传导系数为500J/(㎡▪s▪K),请估算能承受热冲击的最大允许温差。
第三章材料的电学20.如果A原子的原子半径为B原子的两倍,那么在其他条件都相同的情况下,A原子的电子极化率大约是B原子的多少倍?25、画出典型铁电体的电滞回线示意图,并用有关机制解释引起非线性关系的原因。
解:铁电体晶体在整体上呈现自发极化,这意味着在正负端分别有一层正的和负的束缚电荷。
束缚电荷产生的电场在晶体内部与极化反向(称为退极化场),使静电能升高。
在受机械约束时,伴随着自发极化的应变还能使应变能增加。
第四章材料结构与磁学性能
第4章 材料的结构与磁学性能4.1 固体物质的磁性来源4.2 固体物质的磁性分类4.3磁畴与磁化曲线4.4 铁氧体的结构与性能4.5磁性材料的结构与性能4.6 磁性材料的物理效应第4章 材料的结构与磁学性能进入21世纪以来,新材料的重要性逐步被人们认知,磁性材料的理论、生产及其应用也得到了快速发展,已经成为信息、航空航天、通信、人体健康等领域的重要材料基础。
本章主要介绍固体物质磁性的基本知识,包括磁性来源、磁性分类、磁畴与磁化曲线、铁氧体的结构与性能、磁性材料的物理效应及磁性材料的主要应用等,重点阐述铁氧体磁性材料的结构与性能。
4.1 固体物质的磁性来源物质在不均匀磁场中受到磁力作用的性质,称为磁性,是物质的基本物理属性。
最直观的表现是两个磁体之间的吸引力和排斥力。
物质的磁性来源于原子,原子的磁性来源于核外电子和原子核。
原子结合起来产生宏观物质的磁性,因此任何物质均具有磁性,磁性强的一般称为磁性材料,习惯上的非磁性或者无磁性只是弱磁性不易被人们觉察而已。
具有广泛应用的磁性材料的性能则受到晶体结构和显微结构的显著影响,是理论研究和生产控制的重要内容。
4.1.1磁矩(magnetic moment )磁体上磁性最强的部分称为磁极,磁极有N 、S 极,以正负对的形式存在,磁极的周围存在磁场。
磁极上带有的磁量叫磁荷或磁极强度,两个磁荷(磁极强度)q 1、q 2之间的相互作用力F 的大小为:221r q q k F = 4.1 式中r 为磁极间距,k 为常数。
紧密结合在一起的正负磁极称为元磁偶极子,尚没有观察到磁单极子的存在。
定义偶极子的磁偶极矩p:qr p = 4.2又称为磁偶极子的力矩,方向由S 极指向N 极。
任何一个封闭的电流都具有磁矩,其方向与环形电流法线的方向一致,其大小为电流与封闭环形的面积的乘积:S I m ∆= 4.3磁矩m 的单位为安培平方米A ·m 2,磁矩是表示磁体本质的一个物理量,与磁偶极矩的关系为:m p 0μ= 4.4μ0是真空的磁导率,μ0=4π×10-7(H/m )。
材料磁学性能实验报告
材料磁学性能实验报告【材料磁学性能实验报告】实验目的:1.了解材料的磁学性能,并掌握测量方法。
2.熟悉磁化曲线的特征,以及磁滞回线的形态。
实验步骤:1.实验前准备:将实验用的磁体与其他金属物品隔离,以免互相干扰;调整仪器以确保测量准确性。
2.准备实验材料:选择不同材料的样品,如铁、钢、铝等,确保样品表面清洁。
3.确定样品尺寸:测量样品的长度、宽度和厚度,并计算出样品的体积。
4.测定饱和磁感应强度:将样品放置在恒定的外磁场中,逐渐增加磁感应强度,当磁感应强度不再引起样品磁化时,记录此时的磁感应强度,即为样品的饱和磁感应强度Bs。
5.绘制磁化曲线:以饱和磁感应强度Bs为起点,逐渐减小磁感应强度,记录不同磁感应强度下的磁感应强度B和磁场强度H的数值,并绘制磁化曲线。
6.测定剩磁和矫顽力:根据绘制的磁化曲线,找到磁滞回线的闭合部分,确定剩磁Br和矫顽力Hc的数值。
实验结果:1.通过测定不同材料的磁化曲线,我们可以得到各材料的饱和磁感应强度Bs、剩磁Br和矫顽力Hc的数值。
2.在磁化曲线中,随着磁场强度的增加,磁感应强度也会增加,但增幅逐渐减小,直至达到饱和磁感应强度。
3.在形成磁滞回线闭合部分的磁化曲线段中,磁感应强度在减小的过程中依然存在一定的数值,即剩磁Br。
4.磁滞回线闭合部分的起始点磁场强度即为矫顽力Hc的数值,它表示了材料在自由磁化状态和无磁场状态之间的磁场强度差。
实验分析及讨论:通过本次实验,我们对材料的磁学性能有了更深入的了解。
饱和磁感应强度Bs 是材料磁化过程中所能达到的最大磁感应强度,取决于磁性材料的种类和结构。
对于铁、钢等磁性材料来说,其饱和磁感应强度较高,而铝等非磁性材料的饱和磁感应强度很小。
磁化曲线的形态是描述材料磁性的重要特征之一。
在磁化过程中,当磁场强度逐渐减小时,材料磁化状态会存在一定的滞后效应,即剩磁Br。
这是由于材料磁化的微观结构特点所导致的,与磁颗粒的排列和磁矩的旋转有关。
材料物理导论课后答案(熊兆贤)第六章习题参考解答
材料物理导论课后答案(熊兆贤)第六章习题参考解答第六章材料的声学1、声振动作为一个宏观的物理现象,满足三个基本物理定律:牛顿第二定律、质量守恒定律和绝热压缩定律,由此分别可以推导出介质运动方程(p-V关系)、连续性方程(V-)和物态方程(p-关系),并由此导出声波方程――p,V和等对空间、时间坐标的微分方程。
2、若声波沿x方向传播,而在yz平面上各质点的振幅和相位均相同,则为平面波3、4、(略)5、主要措施:a)生产噪音小的车辆;b)铺设摩擦噪音小的路面(诸如:使用改性沥青材料、形成合适路面纹路);c)在城市交通干道两旁设置吸音档墙(选用吸音材料、采用吸音结构);d)最好把城市交通干道修建在地下(实例:法国巴黎和美国波士顿的部分交通干道)。
6、声信号在海洋中传播时,会发生延迟、失真和减弱,可用传播损失来表示声波由于扩展和衰减引起的损失之和。
其中,扩展损失时表示声信号从声源向外扩展时有规律地减弱的几何效应,它随着距离的对数而变化;而衰减损失包括吸收、散射和声能漏出声道的效应,它随距离的对数而变化。
柱面扩展引起的损失随距离一次方而增加,声波在海水中长距离传播时对应于柱面扩展。
海水中的声吸收比纯水中大得多,在海水中声吸收由三种效应引起:一是切变黏滞性效应,另一是体积黏滞性效应,以及在100kHz下,海水中MgSO4分子的离子驰豫引起的吸收。
7、水声材料主要用于制作各种声源发射器和水听器,曾用过水溶性单晶、磁致伸缩材料和压电陶瓷材料,随着水声换能器技术的发展,要求具有功率大、频率常数低、时间和温度稳定性好、强电场下性能好以及能承受动态张应力大的材料。
8、产生超声波的材料主要有两大类:a)压电晶体和陶瓷是产生超声波的一类重要的材料;b)磁致伸缩材料为另一类超声波发生材料。
9、次声的特点为:1)频率低于25Hz,人耳听不到2)次声在大气中因气体的黏滞性和导热性引起的声能吸收比一般声波小得多3)吸收系数与周期T和大气压力的关系:4)次声受水汽以及障碍物的散射影响更小,可忽略不计5)次声是一种平面波,沿着地球表面平行的方向传播,次声对人体有影响,会使人产生不舒服的感觉6)频率小于7Hz的次声与大脑的节律频率相同,因此对大脑的影响特别大,功率强大的次声还可能严重损坏人体的内部器官。
第三章;磁学性能(材料的磁化特征及其基本参数)
四、磁化曲线和磁滞回线
磁导率和磁场的关系
磁滞:指铁磁材料的磁性状态变化时,磁化 强度滞后于磁场强度,它的磁通密度B与磁场 强度 H之间呈现磁滞回线关系 剩磁Br:磁滞回线中,外磁场 减小为零时, 铁磁质所具有的磁感应强度 矫顽力Hc:为使剩磁降低为零而施加的反向 外磁场强度 磁致损耗:铁磁材料在磁化过程中由磁滞现 象引起的能量损耗。经一次循环,磁滞损耗 等于磁滞回线的面积
一个环形电流的磁矩:Pm=ΙS Ι环形电流的强度, S是环形所包围的面积。
当有外加磁场后,环形电流的磁矩沿磁场规律排 列,在宏观上显示磁性。用磁化强度衡量物质磁 性强弱及磁化状态
磁化强度
磁化强度:单位体积的总磁矩
磁极化强度
材料受磁化后呈规律排列,宏观上显示磁极 (南北极),把微观的磁分子称为磁偶极 子,宏观所表示出的磁矩称为磁偶极矩jm
第三章 材料的磁学性能
材料的磁化特征及其基本参数
一、磁化现象及磁化强度 磁性与物质的微观结构相关,决定于原子
结构、原子间的相互作用,例如:键结合和 晶体结构等。 磁性是微观结构表现出来的一种宏观现象。 研究磁性也是研究材料物质内部微观结构 的方法。
磁化现象及磁化强度
一切物质都具有磁性,任何空间都存在磁场,只是强弱不同而已。 根本原因:
• 磁----电 • 磁现象的本质是由于带电物体运动的结果。 • 原子中电子的绕核运动、电子本身的自旋,都会产生磁场。 • 一个分子内部全部电子运动产生的磁场的总和叫做分子磁
场。 • 物质在磁场中,由于受到磁作用而呈现一定磁性称为磁化 • 凡是能被磁场磁化的物质称为磁介质(磁质)。
当物质处于磁场中时,会使磁场发生变化,不 同的物质所引起的磁场变化不一样。
磁学量常用单位换算
磁概念永磁材料:永磁材料被外加磁场磁化后磁性不消失,可对外部空间提供稳定磁场。
钕铁硼永磁体常用的衡量指标有以下四种:剩磁(Br)单位为特斯拉(T)和高斯(Gs) 1Gs =0.0001T将一个磁体在闭路环境下被外磁场充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。
它表示磁体所能提供的最大的磁通值。
从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中磁体的磁感应强度都小于剩磁。
钕铁硼是现今发现的Br最高的实用永磁材料。
磁感矫顽力(Hcb)单位是安/米(A/m)和奥斯特(Oe)或1 Oe≈79.6A/m处于技术饱和磁化后的磁体在被反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。
但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。
(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。
钕铁硼的矫顽力一般是11000Oe以上。
内禀矫顽力(Hcj)单位是安/米(A/m)和奥斯特(Oe)1 Oe≈79.6A/m使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。
内禀矫顽力是衡量磁体抗退磁能力的一个物理量,如果外加的磁场等于磁体的内禀矫顽力,磁体的磁性将会基本消除。
钕铁硼的Hcj会随着温度的升高而降低所以需要工作在高温环境下时应该选择高Hcj的牌号。
磁能积(BH)单位为焦/米3(J/m3)或高•奥(GOe) 1 MGOe≈7. 96k J/m3退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的最大值称之为最大磁能积(BH)max。
磁能积是恒量磁体所储存能量大小的重要参数之一,(BH)max越大说明磁体蕴含的磁能量越大。
设计磁路时要尽可能使磁体的工作点处在最大磁能积所对应的B和H附近。
各向同性磁体:任何方向磁性能都相同的磁体。
各向异性磁体:不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能最高的磁体。
材料的磁学性能
材料的磁学性能
材料的磁学性能是指材料在外加磁场下的磁化特性,包括磁化强度、磁导率、磁化曲线等。
磁学性能对于材料的应用具有重要的意义,尤其是在电子、通信、医疗等领域。
本文将从磁性材料的基本概念、磁性材料的分类、磁性材料的应用等方面进行介绍和分析。
磁性材料是指在外加磁场下会产生磁化现象的材料。
根据材料在外加磁场下的磁化特性,可以将磁性材料分为铁磁性材料、铁素磁性材料、铁氧体材料和软磁性材料等几类。
铁磁性材料在外加磁场下会产生明显的磁化现象,具有较高的磁导率和磁化强度,主要用于制造电机、变压器等电器设备。
铁素磁性材料具有较高的电阻率和磁导率,主要用于制造电感元件、磁芯等。
铁氧体材料具有较高的磁导率和磁化强度,主要用于制造微波器件、磁记录材料等。
软磁性材料具有较低的矫顽力和磁导率,主要用于制造变压器、电感器等。
磁性材料在电子、通信、医疗等领域具有广泛的应用。
在电子领域,磁性材料主要用于制造电感元件、变压器、磁芯等,用于电源、通信、计算机等设备中。
在通信领域,磁性材料主要用于制造微波器件、天线等,用于无线通信、卫星通信等设备中。
在医疗领域,磁性材料主要用于制造医疗设备、磁共振成像设备等,用于诊断、治疗等用途。
总之,磁性材料的磁学性能对于材料的应用具有重要的意义。
通过对磁性材料的基本概念、分类和应用的介绍和分析,可以更好地了解磁性材料的特性和用途,为相关领域的科研和生产提供参考和指导。
希望本文能够对读者有所帮助,谢谢阅读。
第三章 磁学性能(磁性及其物理本质)
五、影响金属抗磁性及顺磁性的因素
;六、 磁化率的测量
磁秤 利用试样在非 均匀磁场中的受力情 况来确定它的磁化率。
利用与标准试样对比来确定它的磁化率。
但还有相当多的固溶体顺磁物质,特别是过渡族金属元 素是不符合居里定律的。它们的原子磁化率和温度的关系需 用居里-外斯定律来表达 。
居里-外斯定律
为居里温度 。 2. 磁化率与温度无关的顺磁质 碱金属Li、Na、K、Rb属于此类。
3.存在反铁磁体转变的顺磁体 过渡族金属及其合金或它们的化合物属于这类 顺磁体。它们都有一定的转变温度,称为反铁磁居 里点或尼尔点,以TN表示。当温度高于TN时,它们 和正常顺磁体一样服从居里-外斯定律,且△>0; 当温度低于TN时,它们的χ随T的下降而下降,当 T→OK时,χ→常数;在TN处χ有一极大值,MnO、 MnS、NiCr、CrS-Cr2S、Cr2O3、FeS2、FeS等都属这 类。
顺磁体的χ-T 关系曲线示意图
四、金属的抗磁性与顺磁性 金属是由点阵离子和自由电子构成的,故金属的 磁性要考虑到点阵结点上正离子的抗磁性和顺磁性, 以及自由电子的抗磁性与顺磁性。 正离子的抗磁性源于其电子的轨道运动,正离子 的顺磁性源于原子的固有磁矩。 而自由电子的磁性的顺磁性源于电子的自旋磁矩, 自由电子的抗磁性源于共在外磁场中受洛仑兹力而 作的圆周运动,这种圆周运动产生的磁矩同外磁场 反向。 四种因素竞争的结果决定物质是否是抗磁体或 顺磁体。
电子循轨磁矩
电子的自旋磁矩
原子核的自旋磁矩
3.ቤተ መጻሕፍቲ ባይዱ 物质的磁性及其物理本质
3.2.1 原子磁性
原子由原子核和核外电子构成,核外电子在各自 的轨道上绕核运动的同时还进行自转运动。因此,分 别具有轨道磁矩和自旋磁矩。
材料的磁学
在MnO晶体结构中,相邻Mn2+离子的磁矩都成反向平行排列, 结果磁矩相互对消,整个固体材料的总磁矩为零
对于反铁磁性与亚铁磁性的晶体(如:NiO、 FeF2、Fe3O4),其晶格结构是磁性离子与 非磁性离子相互交叉排列。两个磁性离子被 非磁性离子隔开,磁性离子间距很大,故自 发磁化难以用d-d交换作用模型解释,此 时磁性离子间的交换作用是以隔在中间的非 磁性离子为媒介来实现的。 ——超交换作用
交换能与铁磁性的关系 居里点:铁磁体的铁磁性只在某一温度以下才表现出来,超 过这一温度,由于物质内部热骚动破坏电子自旋磁矩的平行 取向,因而自发磁化强度变为0,铁磁性消失。这一温度称为 居里点TC。在居里点以上,材料表现为强顺磁性,其磁化率 与温度的关系服从居里-外斯定律,
=C/(T-Tc)
式中C为居里常数
在真空中,磁感应强度为
B0 0 H
式中μ0为真空磁导率,其值: 4π×10-7 H/m
三、磁导率
1.磁导率的物理意义:
表示材料在单位磁场强度的外磁场作用下,材料内部的磁通量 密度。是材料的特征常数。 2. 有两种表示方法:
① 绝对磁导率µ
② 相对磁导率µ = µ /µ r 0
3.相对磁导率μr 定义: 材料的磁导率μ与真空磁导率μ0之比。
二、特征: 所感应的磁矩很小,方向与外磁场相反,即磁化强度M为很小 的负值。
相对磁导率μ
r
<1,磁化率χ <0(为负值)。
在抗磁体内部的磁感应强度B比真空中的小。抗磁体的磁化率 χ 约为-10-5数量级。 所有材料都有抗磁性。因为它很弱,只有当其它类型的磁性 完全消失时才能被观察。 如Bi,Cu,Ag,Au
例如:反铁磁性MnO
Mn 2+ :3s 2 3d 5 , L 0, S 5 / 2, 2 S B 5 B
材料的电学性质
放电击穿(化学击穿):聚合物表面和内部气泡的介电强度远低于材料本身,在高电压电场作用下,首先电离放电,产生的热量、气氛如臭氧O3使聚合物降解、氧化、老化,反复放电使材料侵蚀加深,最终导致击穿。击穿通道往往呈树枝状。
银 铜,工业纯 金 铝, 工业纯 Al-1.2%,Mn 合金 钠 钨, 工业纯 黄铜(70%Cu-30%Zn 镍,工业纯 纯铁,工业纯 钛,工业纯 不锈钢,301型 镍铬合金 (80%Ni-20%Cr)
6.3*107 5.85*107 4.25*107 3.45*107 2.96*107 2.1*107 1.77*107 1.66*107 1.46*107 1.03*107 0.24*107 0.14*107 0.093*107
聚合物的导电性与分子结构
电荷转移络合物和自由基-离子化合物具有高电导性:聚2-乙烯基吡啶-碘的电导率约0.1W-1·m-1;
有机金属聚合物金属离子引入聚合物主链,具有更高的电导率,聚酞菁铜电导率约5W-1·m-1。
壹
贰
聚合物的导电性与分子结构
在外场(电场、力、温度)作用下,电介质分子或其中某些基团中电荷分布发生的变化称极化。
发现并发展了导电聚合物 2000年诺贝尔化学奖获得者
白川英树
Hideki Shirakawa 1/3 of the prize Japan University of Tsukuba Tokyo, Japan b. 1936
Alan G. MacDiarmid 1/3 of the prize USA University of Pennsylvania Philadelphia, PA, USA b. 1927
磁学性能
3. 物质的顺磁性
来源:原子(离子)的固有磁矩。 无外H时:由于热运动的影响,固有磁矩取向无序,宏观上无磁性。 外H作用下:固有磁矩与H作用,有较高的静磁能,为降低静磁能,固 有磁矩改变与H的夹角,趋于排向外H方向,表现为正向磁化。在常温和 H不是很高的情况下,M与H成正比,磁化要克服热运动的干扰,磁矩难 以有序排列,故顺磁化进行十分困难,磁化率较小。 常温下顺磁体达到饱和磁化所需的H非常大,技术上难以达到,但温度 降至接近0K时,就容易了。 根据顺磁磁化率与温度的关系,可把顺磁体分为三类: 正常顺磁体:磁化率随温度升高而降低的顺磁体。 符合居里定律: 或居里-外斯定律:
根据磁化率符号和大小,可把磁介质分为五类。
亚铁磁性材料
顺磁性材料 反铁磁性材料
0
抗磁性材料
H
2. 磁化率与物质磁性的分类
1)抗磁体 χ为甚小负常数,约在10-6数量级,即M与H方向相反,在磁场中使磁场稍减弱, 受微弱斥力,约有一半的简单金属是抗磁体。分为: (1)“经典”抗磁体,χ 不随T变化,如铜、银、金、汞、锌等。 (2)反常抗磁体,χ 随T变化,为前者10~100倍,如铋、镓、锑、锡等。 2)顺磁体 χ为正常数,约为10-3~10-6数量级,即M与H方向相同,在磁场中使磁场稍增 强,受微弱引力,分为: (l)正常顺磁体,χ 随T变化,且符合与T反比关系,如铂、钯、奥氏体不锈钢、 稀土金属等。 (2)χ 与T无关的顺磁体,如锂、钠、钾、铷等。 3)反铁磁体 χ是甚小的正常数,当T高于某个温度时(尼尔温度TN),转换为顺磁体,T- χ曲线?如α-Mn、铬、氧化镍、氧化锰等。 4)铁磁体 χ为很大的正变数,约在10~106数量级,且不大的H就能产生很大的M,在磁场 中被强烈磁化,受强大的吸力,如铁、钴、镍等。其M-H 、 χ-H曲线? 5)亚铁磁体 类似铁磁体,但χ值没有铁磁体大,如磁铁矿(Fe3O4)等。
材料性能学 第二章 材料的磁学性能
B : 为玻尔磁子,是磁矩的最小单位。=9.27×10-24Am2
②电子自旋磁矩
由电子自旋运动产生的磁矩称为自旋磁矩。用 ms 表示。
ms 2 Si (Si 1)B 为矢量,其方向平行于自旋轴。
式中: Si—为自旋量子数,其值为1/2。
第一节 基本磁学性能
1、 材料的磁性 早在公元前600年人们就发现天然磁石吸引铁的现象,现在的磁 铁多是人工制成的。以上物质具有吸引铁、钴、镍等物质的特性, 这种特性称之为磁性。 材料的磁性来源:电子(电荷)的循规和自旋运动以及原子核的 磁矩。但原子核的磁矩仅有电子磁矩的1/2000,一般可忽略。 注意:一切物质都具有磁性,任何空间都存在磁场。 1.1 磁矩 “磁”来源于“电”,任何一个封闭的电流都具有磁矩,其方 向与环形电流法线方向一致,大小为电流与封闭环形面积乘积。
第二节 抗磁性与顺磁性
原子的固有磁矩与磁场发生相互作用, 具有较高的静磁能。
EH ml • H ml H cos
为降低静磁能,外场须使磁矩发生转动, 改变二者之间夹角。
H
(a)无磁场
(a)无磁场
(b)弱磁场
(c)强磁场
第二节 抗磁性与顺磁性
注意:①常温下,使原子磁矩转向磁场方向,要克服磁矩间相互 作用所产生的无序倾向,克服原子热运动所造成的严重干扰,故 顺磁磁化十分困难。室温磁化率约为10-6。 ②将温度降低到0K,磁化率便可提高到10-4; ③顺磁金属只有当温度接近0K或外加磁场极强时才有可能达到磁 饱和,即所有原子磁矩都排向磁场方向。 2、影响抗磁性与顺磁性的因素 ①原子结构 规律:电子循规运动产生抗磁矩;离子固有磁矩则产生顺磁矩; 自有电子主要产生顺磁矩;磁性取决于哪种因素占主导地位。
材料的磁学性能
Ed
M
0 Hd dM
M NMdM 1 NM 2
0
2
2、铁磁质自发磁化的机理(铁磁质的自发磁化理论)
1)Wiss 铁磁性假说 分子场假说:铁磁质内部存在很强的分子场,在该分子场的作用下,原子磁
矩趋向于同方向平行排列 磁畴假说:铁磁质内分布有若干原子磁矩同向平行排列的小区域(磁畴),
各磁畴的磁化方向随机分布,彼此抵消,整体对外不显磁性
(l s j )i J 或
ji ( li si ) J
i
i
③原子序数在32~82之间,为两种混合耦合方式
3d 过渡族金属、 4f 稀土金属及其合金主要为 L-S 耦合
二、物质的磁化特性及磁介质分类
1、抗磁性(diamagnetic) 0 ,10-6~10-4数量级,与H、T无关的常数
亚铁磁Fe3O4中,Fe2+和 Fe3+的自旋磁矩的排列
1、铁磁质的磁化特性
1)磁化曲线和磁位能
第一阶段:磁化强度随外磁场缓慢增 加;撤除外磁场,磁化强度恢复为原 始值(可逆磁化) 第二阶段:磁化强度随外磁场快速增 加;去除外磁场,磁化强度不能完全 恢复至原始状态(不可逆磁化或有剩 磁) 第三阶段:磁化强度又随外磁场缓慢 增加并趋于饱和状态
顺磁 铁磁 亚铁磁 反铁磁
三、顺磁性及其物理本质 主要由各原子或离子实的磁矩 J 和各自由电子的自旋磁矩 s 在外磁场中的
取向过程造成
原子或离子实磁矩的顺磁性:
磁场H中的磁位能: EH J 0H J 0H cos
T 温度下磁矩数量: n exp( EH kBT ) +d之间的磁矩数量: n 2 sind
特点是:凡电学量如q、I、E、P、D等都采用CGSE制单位,凡磁学量如B、M、H等都采用 CGSM 制单位;电容率ε和磁导率μ都是无量纲的纯数
材料磁学性质实验报告
一、实验目的1. 了解材料的磁学性质及其影响因素;2. 学习测量材料磁化率的方法;3. 掌握磁滞回线、居里温度等磁学参数的测量;4. 分析不同材料的磁学性质差异。
二、实验原理材料的磁学性质主要包括磁化率、磁滞回线、居里温度等。
磁化率是衡量材料在外磁场作用下磁化程度的一个物理量,它与材料内部的磁矩分布有关。
磁滞回线反映了材料在外磁场作用下磁化过程的特点,可以用来分析材料的磁滞损耗。
居里温度是铁磁性材料失去铁磁性的临界温度,反映了材料磁性的稳定性。
三、实验仪器与材料1. 实验仪器:磁化率测量仪、磁滞回线测量仪、温度计、样品夹具等;2. 实验材料:Fe3O4、Fe、Ni、Co等铁磁性材料,顺磁性材料,抗磁性材料。
四、实验步骤1. 样品准备:将不同材料样品加工成适当尺寸,并用样品夹具固定;2. 测量磁化率:将样品放置在磁化率测量仪中,调整外磁场强度,记录不同磁场强度下的磁化率;3. 测量磁滞回线:将样品放置在磁滞回线测量仪中,调整外磁场强度,记录不同磁场强度下的磁化强度;4. 测量居里温度:将样品放置在磁滞回线测量仪中,逐渐升高温度,记录样品失去铁磁性的临界温度。
五、实验结果与分析1. 磁化率测量结果:Fe3O4、Fe、Ni、Co等铁磁性材料的磁化率较大,顺磁性材料的磁化率较小,抗磁性材料的磁化率为负值;2. 磁滞回线测量结果:Fe3O4、Fe、Ni、Co等铁磁性材料的磁滞回线较宽,顺磁性材料的磁滞回线较窄;3. 居里温度测量结果:Fe3O4、Fe、Ni、Co等铁磁性材料的居里温度较高,顺磁性材料的居里温度较低。
六、实验结论1. 铁磁性材料的磁化率较大,顺磁性材料的磁化率较小,抗磁性材料的磁化率为负值;2. 铁磁性材料的磁滞回线较宽,顺磁性材料的磁滞回线较窄;3. 铁磁性材料的居里温度较高,顺磁性材料的居里温度较低。
七、实验讨论1. 磁性材料的磁学性质与其内部结构有关,不同材料的磁学性质存在差异;2. 磁性材料在应用中具有重要的地位,如永磁材料、磁性存储器等;3. 通过实验研究材料的磁学性质,可以为材料的设计和制备提供理论依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1材料物理
储成林
东南大学材料科学与工程学院办公室:材料大楼416室电话:52090683
Email: clchu@
2
第四章材料的磁学
概述
物质磁性早在3000年以前就被人们所认识和应用,例如指南针。
现在如马达、变压器铁心材料、磁盘等。
物质为什么会有磁性呢?
物质的磁性来源于材料的电子结构。
电子磁矩的相互作用决定了磁性材料的类型和磁性能,磁性能可以用成分、微结构和制备工艺来控制。
3
第四章材料的磁学
概述
一个宏观磁体由许多有固有原子磁矩μ的原子组成。
宏观
磁体单位体积内原子磁矩矢量总和称为磁化强度:
当原子磁矩同向平行排列时,宏观磁体对外显示的磁性最强。
当原子磁矩紊乱排列时,宏观磁体对外不显示磁性。
M 的单位是A /m 。
4第四章材料的磁学
根据电磁理论,通有电流的导体可以产生磁场。
如图,一个通有电流的无限长螺旋管线圈,在螺旋管中心处的磁场强度为:
这里n 是线圈匝数,在SI 制
中,L 是线圈长度(m),I 是
电流强度(A)
5第四章材料的磁学
真空中产生磁场H 时,在磁场空间就会有磁力线。
单位面积上通过的磁力线被称为磁感应强度B ,
B 和H 的关系是:这里μ0是真空磁导率,为4π×10-7H /m.将磁性材料放入磁场空间,B
取决于材料磁化强度M
和H :
这里μ为磁导率
表示材料有大的磁场增强作用
4.1 原子和离子的固有磁矩
4.1.1 自由原子的磁矩
原子的磁矩来源于电子和原子核,但原子核磁矩只有电子磁矩的1/1836.5,所以原子磁矩主要来源于电子磁矩。
1. 电子轨道磁矩
根据波尔原子结构模型,原子核外
电子以角速度ω绕原子核作半径为r的
圆周轨道运动。
设电子的电荷为e,质量为m,电荷流
动产生电流
9
10第四章材料的磁学
4.1.1 自由原子的磁矩
1. 电子轨道磁矩iA
=l μ2
2r e l ωμ−=根据电磁理论电流为i ,面积为A 的闭合回路中产生的磁矩为得电子轨道磁矩为该电子运动角动量ωm r P 2l =得l
l l P γμ−=轨道旋磁比m e l 2=γ
上述推导是根据波尔的经典原子结构模型进行的,利用量子
2.
1.
21
1.
3.
3.
物质受外磁场H作用,感生出和H相同的磁化强度,χ>0,称顺磁性。
磁化率小,约
外斯定律:
29
磁滞回线
—H是非线性函数,反复磁化时出现磁滞现象
4.3.2 外斯分子场理论
设分子场
=λM s(λ为分子场系数)。
成正比,即
m
4.3.2 外斯分子场理论
4.3.2 外斯分子场理论
交换积分A不仅与电子运动状态的波函数有关,而且强烈地依赖于原子核之间的距离R
ab
(点阵常数) 。
只有当原子核之间的距
离R
ab
与参加交换作用的电子距核的距离(电子壳层半径)r之比大于3,交换积分才有可能为正。
铁、钴、镍以及某些稀土元素满足自发磁化的条件。
铬、锰的A是负值,不是铁磁性金属,但通过合金化作用,改变其点阵
常数,使得R
ab /r之比大于3,便可得到铁磁性合金。
交换积分A与
R ab/r关系
39
铁磁性反铁磁性亚铁磁性三种磁化状态示意图
4.3.3 直接交换作用
铁磁性反铁磁性亚铁磁性
三种磁化状态示意图
亚铁磁性物质由磁矩大小不同的两种离子(或原子)组成,
相同磁性的离子磁矩同向平行排列,而不同磁性的离子磁矩是反向平行排列。
由于两种离子的磁矩不相等,反向平行的磁矩就不能恰好抵消,二者之差表现为宏观磁矩,这就是亚铁磁性。
具有亚铁磁性的物质绝大部分是金属的氧化物,是非金属
磁性材料,一般称为铁氧体。
41
4.4.2 尖晶石型铁氧体的晶体结构
4.4.2 尖晶石型铁氧体的晶体结构正尖晶石和反尖晶石结构
铁氧体与金属磁性材料磁滞回线的比较。