(完整版)高中数学椭圆几何性质练习题
椭圆的定义及几何性质试题 精选精练
椭圆的定义及几何性质题型一:椭圆的定义及其应用1、判断轨迹:例:已知12,F F 是定点,动点M 满足12||||8MF MF +=,且12||8F F =则点M 的轨迹为( )A .椭圆 B.直线 C.圆 D.线段变式:1 已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于,A B 两点.若1222=+B F A F ,则AB = .2、利用定义例:已知椭圆x 26+y 22=1与双曲线x 23-y 2=1的公共焦点F 1,F 2,点P 是两曲线的一个公共点,则cos ∠F 1PF 2的值为( ).A.14 B.13 C.19 D.35变式:1、(·青岛模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.2、 已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ).A .2 3 B .6C .4 3 D .123、已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( )A .6 B .5 C .4 D .3 4、已知F 1,F 2是椭圆2212516x y +=的两焦点,过点F 2的直线交椭圆于1122(,)(,)A x y B x y 两点,△AF 1B 的内切圆的周长为π,则12||y y -为( ) 5.3A 10.3B 20.3C 5.3D 3、转化定义例:设椭圆x 22+y 2m =1和双曲线y 23-x 2=1的公共焦点分别为F 1、F 2,P 为这两条曲线的一个交点,则|PF 1|·|PF 2|的值等于________.变式练习:1.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15题型二:椭圆的标准方程和性质例:[例1] (1)(2017·广东高考)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1(2)(2016·岳阳模拟)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.变式练习1.已知椭圆的长轴是短轴的3倍,且过A (3,0),并且以坐标轴为对称轴,求椭圆的标准方程_____2.(2018·山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为 ( ) A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 题型三:椭圆的重要性质------离心率示例:如图A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点, 若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22 C.2-1 D.22变式 1.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点, 若∠ABC =90°“改为“F 1、F 2分别为椭圆22221(0)x y a b a b+=>>,的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另 一点B .若∠F 1AB =90°”求椭圆的离心率;2.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°”改为“椭圆通过A ,B 两点,它的一个焦点为点C ,且AB =AC =1,090BAC ∠=,椭圆的另一个焦点在AB 上”,求椭圆的离心率为________. 3.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°“改为“F 1、F 2分别为圆锥曲线的左、右焦点,曲线上存在点P 使|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A.12或32B.23或2C.12或2D.23或324. 椭圆2222(0)x y a b a b+>>的左、右顶点分别是A ,B 左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 。
椭圆的简单几何性质(附练习题答案及知识点回顾)
椭圆的简单几何性质基础卷1.设a , b , c 分别表示同一椭圆的长半轴长、短半轴长、半焦距,则a , b , c 的大小关系是 (A )a >b >c >0 (B )a >c >b >0 (C )a >c >0, a >b >0 (D )c >a >0, c >b >02.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为(A )221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )2211625x y += 3.已知P 为椭圆221916x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为 (A )54 (B )45 (C )417 (D )7474.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为 (A )23 (B )33 (C )316 (D )6165.在椭圆12222=+by a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点顺次与某一焦点连接的线段长是r 1, r 2, r 3,则有(A )r 1, r 2, r 3成等差数列 (B )r 1, r 2, r 3成等比数列 (C )123111,,r r r 成等差数列 (D )123111,,r r r 成等比数列 6.椭圆221925x y +=的准线方程是 (A )x =±254 (B )y =±165 (C )x =±165 (D )y =±2547.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 .8.对于椭圆C 1: 9x 2+y 2=36与椭圆C 2:2211612x y +=,更接近于圆的一个是 . 9.椭圆12222=+by a x 上的点P (x 0, y 0)到左焦点的距离是r = .10.已知定点A (-2, 3),F 是椭圆2211612x y +=的右焦点,在椭圆上求一点M ,使|AM |+2|MF |取得最小值。
椭圆的几何性质练习题
椭圆的几何性质练习题椭圆的几何性质练习题椭圆是数学中一种重要的几何形状,具有许多特殊的性质和应用。
在本文中,我们将通过一些练习题来探索椭圆的一些几何性质。
练习题一:椭圆的定义1. 如何定义一个椭圆?2. 椭圆的焦点和直径分别是什么?练习题二:椭圆的离心率1. 什么是椭圆的离心率?2. 离心率为1的椭圆是什么特殊的形状?练习题三:椭圆的焦点性质1. 椭圆的焦点位于什么位置?2. 如何通过椭圆的焦点和直径来确定椭圆的方程?练习题四:椭圆的长轴和短轴1. 如何确定椭圆的长轴和短轴?2. 长轴和短轴之间的关系是什么?练习题五:椭圆的周长和面积1. 如何计算椭圆的周长和面积?2. 椭圆的周长和面积与长轴和短轴之间有什么关系?练习题六:椭圆的焦点到点的距离1. 如何计算椭圆上任意一点到焦点的距离?2. 椭圆上任意一点到焦点的距离与椭圆的离心率之间有什么关系?练习题七:椭圆的应用1. 椭圆在日常生活中有哪些应用?2. 椭圆在科学和工程领域中有哪些应用?通过以上练习题,我们可以更好地理解和掌握椭圆的几何性质。
椭圆作为一种特殊的几何形状,具有许多独特的特点和应用,对于数学和实际问题的解决都具有重要意义。
在解答这些练习题的过程中,我们需要熟练掌握椭圆的定义、离心率、焦点性质、长轴和短轴的确定方法,以及椭圆的周长、面积和焦点到点的距离的计算方法。
同时,我们还需要了解椭圆在不同领域中的应用,以便更好地理解和应用椭圆的几何性质。
通过不断的练习和思考,我们可以逐渐提高对椭圆的理解和应用能力。
椭圆作为数学中的一种重要几何形状,不仅具有美丽的形态,还具有广泛的应用价值。
在学习和应用中,我们应该保持好奇心和求知欲,不断探索和发现椭圆的更多奥秘。
总之,椭圆的几何性质是数学中的重要内容之一,通过练习题的探索和解答,我们可以更好地理解和应用椭圆的特点和应用。
希望通过这些练习题,读者们能够对椭圆有更深入的了解,并能够在实际问题中灵活运用椭圆的几何性质。
(完整版)椭圆的简单性质练习题及答案
椭圆一、选择题(本大题共10小题,每小题5分,共50分) 1.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线ca x 2=和定点F(c ,0)的距离之比为ac 的点的轨迹是椭圆C .到定点F(-c ,0)和定直线ca x 2-=的距离之比为ac (a >c>0)的点的轨迹 是左半个椭圆D .到定直线ca x 2=和定点F (c ,0)的距离之比为ca (a >c 〉0)的点的轨迹是椭圆2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x3.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.椭圆12222=+by a x 和k b y a x =+2222()0>k 具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ( )A .41B .22 C .42 D . 217.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( )A .516B .566C .875D .8778.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .109.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是 ( )A .25B .27C .3D .410.过点M (-2,0)的直线m 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为 ( )A .2 B .-2 C .21 D .-21 二、填空题(本题共4小题,每小题6分,共24分) 11.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ 。
椭圆的几何性质练习题
椭圆的几何性质练习题1. 给定一个椭圆,其长轴长度为12cm,短轴长度为8cm。
求椭圆的离心率。
2. 已知一个椭圆的长轴AB长度为20cm,短轴CD长度为16cm。
求椭圆的焦点坐标。
3. 若一个椭圆的两个焦点之间的距离为10cm,离心率为0.6。
求椭圆的短轴长度。
4. 给定一个椭圆,其长轴AB长度为24cm,焦距为10cm。
求椭圆的离心率。
5. 椭圆的焦距为8cm,离心率为0.8。
求椭圆的长轴和短轴长度。
解答:1. 椭圆的离心率定义为焦距与长轴的比值。
已知长轴为12cm,短轴为8cm,根据椭圆的性质可知,焦距长度为c,满足c^2 = a^2 - b^2,其中a为长轴长度,b为短轴长度。
代入已知数据可得c^2 = 12^2 - 8^2 = 144 - 64 = 80,所以焦距长度为√80 = 8√5 cm。
离心率为e = c/a =(8√5)/12 = (2√5)/3 ≈ 1.13。
2. 已知长轴长度为20cm,短轴长度为16cm。
根据椭圆的性质可知,焦距长度为c,满足c^2 = a^2 - b^2,其中a为长轴长度,b为短轴长度。
代入已知数据可得c^2 = 20^2 - 16^2 = 400 - 256 = 144,所以焦距长度为√144 = 12 cm。
由于椭圆的焦点在长轴上方和下方对称,所以焦点坐标为(0, ±6)。
3. 已知焦点之间的距离为10cm,离心率为0.6。
设焦距长度为c,长轴长度为2a,短轴长度为2b。
由于离心率e = c/a,可得c = ea。
又因为c^2 = a^2 - b^2,代入已知数据可得(ea)^2 = a^2 - b^2,即e^2a^2 = a^2 - b^2。
由离心率的定义可知e < 1,所以e^2 < 1,即a^2 - b^2 > 0。
将e^2a^2 = a^2 - b^2移项整理可得a^2 - e^2a^2 = b^2,即a^2(1 - e^2) = b^2。
高二数学(人教B版)选修2-1全册同步练习:2-2-2椭圆的几何性质
2.2.2椭圆的几何性质一、选择题1.(2010·广东文,7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.15[答案] B[解析] 本题考查了离心率的求法,这种题目主要是设法把条件转化为含a ,b ,c 的方程式,消去b 得到关于e 的方程,由题意得:4b =2(a +c )⇒4b 2=(a +c )2⇒3a 2-2ac -5c 2=0⇒5e 2+2e -3=0(两边都除以a 2)⇒e =35或e =-1(舍),故选B. 2.已知椭圆C :x 2a 2y 2b 2=1与椭圆x 24+y 28=1有相同的离心率,则椭圆C 的方程可能是( )A.x 28+y 24=m 2(m ≠0) B.x 216+y 264=1 C.x 28+y 22=1 D .以上都不可能[答案] A[解析] 椭圆x 24+y 28=1中,a 2=8,b 2=4,所以c 2=a 2-b 2=4,即a =22,c =2,离心率e =c a =22.容易求出B ,C 项中的离心率均不为此值,A 项中,m ≠0,所以m 2>0,有x 28m 2+y 24m 2=1,所以a 2=8m 2,b 2=4m 2.所以a =22|m |,c =2|m |,即e =c a =22. 3.将椭圆C 1∶2x 2+y 2=4上的每一点的纵坐标变为原来的一半,而横坐标不变,得一新椭圆C 2,则C 2与C 1有( )A .相等的短轴长B .相等的焦距C .相等的离心率D .相同的长轴长[答案] C[解析] 把C 1的方程化为标准方程,即C 1:x 22+y 24=1,从而得C 2:x 22+y 2=1. 因此C 1的长轴在y 轴上,C 2的长轴在x 轴上.e 1=22,e 2=12=e 1=22, 故离心率相等,选C.4.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率是( )A.14B.12C.22D.32 [答案] D[解析] 由△ABF 1为等边三角形,∴2b =a ,∴c 2=a 2-b 2=3b 2,∴e =c a =c 2a 2=3b 24b 2=32. 5.我们把离心率等于黄金比5-12的椭圆称为“优美椭圆”.设x 2a 2+y 2b2=1(a >b >0)是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则∠ABF 等于( )A .60°B .75°C .90°D .120°[答案] C[解析] cos ∠ABF =|AB |2+|BF |2-|AF |22·|AB |·|BF |=a 2+b 2-(a +c )22·|AB |·|BF |=(2+5-12)a 2-(1+5-12)2a 22·|AB |·|BF | =(5+32-5+32)a 22·|AB |·|BF |0, ∴∠ABF =90°,选C. 6.椭圆x 2-m +y 2-n=1(m <n <0)的焦点坐标分别是( ) A .(0,-m +n ),(0-m +n )B .(n -m ,0),(-n -m ,0)C .(0,m -n ),(0,-m -n )D .(m -n ,0),(-m -n ,0)[答案] B[解析] 因为m <n <0,所以-m >-m >0,故焦点在x 轴上,所以c =(-m )-(-n )=n -m ,故焦点坐标为(n -m ,0),(-n -m ,0),故选B.7.(2010·福建文,11)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8[答案] C[解析] 本题主要考查椭圆和向量等知识.由题易知F (-1,0),设P (x ,y ),其-2≤x ≤2,则OP →·FP →=(x ,y )·(x +1,y )=x (x +1)+y 2=x 2+x +3-34x 2=14x 2+x +3=14(x +2)2+2 当x =2时,(OP →·FP →)max =6.8.椭圆的一个顶点与两个焦点组成等边三角形,则它的离心率e 为( )A.12B.13C.14D.22 [答案] A[解析] 由题意知a =2c ,所以e =c a =12. 9.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)的位置( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能[答案] A[解析] 由e =12知c a =12,a =2c .由a 2=b 2+c 2得b =3c ,代入ax 2+bx -c =0,得2cx 2+3cx -c =0,即2x 2+3x -1=0,则x 1+x 2=-32,x 1x 2=-12,x 21+x 22=(x 1+x 2)2-2x 1x 2=74<2. 10.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( ) A.33 B.23 C.22 D.32[答案] A[解析] 如图,△ABF 2为正三角形,∴|AF 2|=2|AF 1|,|AF 2|+|AF 1|=2a ,3|AF 1|=|F 1F 2|.∴|AF 1|=23,又|F 1F 2|=2c , ∴23a 2c =13. ∴c a =33.故选A. 二、填空题11.在平面直角坐标系xOy 中,设椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2c ,以点O 为圆心,a 为半径的圆过点P ⎝⎛⎭⎫a 2c ,0过P 作圆的两切线又互相垂直,则离心率e =________. [答案] 22 [解析] 如图,切线P A 、PB 互相垂直,又半径OA 垂直于P A ,所以△OAP 是等腰直角三角形,故a 2c =2a ,解得e =c a=22.12.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为__________.[答案] 53[解析] 易知直线AB 的方程为y =2(x -1),与椭圆方程联立解得A (0,-2),B ⎝⎛53,43,故S △ABC =S △AOF +S △BOF =12×1×2+12×1×43=53. 13.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点,若|F 2A |+|F 2B |=12,则|AB |=________.[答案] 8[解析] 由椭圆的第一定义得|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,两式相加,得|AB |+|BF 2|+|AF 2|=4a =20⇒|AB |=20-12=8.14.在△ABC 中,∠A =90°,tan B =34.若以A 、B 为焦点的椭圆经过点C ,则该椭圆的离心率e =________.[答案] 12[解析] 设|AC |=3x ,|AB |=4x ,又∵∠A =90°,∴|BC |=5x ,由椭圆定义:|AC |+|BC |=2a =8x ,那么2c =|AB |=4x ,∴e =c a =4x 8x =12. 三、解答题15.已知点P 在以坐标轴为对称轴,长轴在x 轴的椭圆上,点P 到两焦点的距离分别为43和23,且点P 与两焦点连线所张角的平分线交x 轴于点Q (1,0),求椭圆的方程.[解析] 根据题意,设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0), ∵|PF 1|=43,|PF 2|=23,∴2a =63,即a =33,又根据三角形内角平分线的性质,得|PF 1| |P F 2|=|F 1Q | |Q F 2|=2 1,即c +1=2(c -1),∴c =3,∴b 2=a 2-c 2=18,故所求椭圆方程为x 227+y 218=1. 16. 设P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1、F 2是椭圆的焦点,且∠F 1PF 2=90°,求证:椭圆的圆心率e ≥22. [证明] 证法一:∵P 是椭圆上的点,F 1、F 2是焦点,由椭圆的定义,得|PF 1|+|PF 2|=2a ,①在Rt △F 1PF 2中,|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,由①2,得|PF 1|2+2|PF 1||PF 2|+|PF 2|2=4a 2,∴|PF 1|·|PF 2|=2(a 2-c 2),②由①和②,知|PF 1|,|PF 2|是方程z 2-2az +2(a 2-c 2)=0的两根,且两根均在(a -c ,a +c )之间. 令f (z )=z 2-2az +2(a 2-c 2)则⎩⎪⎨⎪⎧ Δ≥0f (a -c )>0f (a +c )>0可得(c a )2≥12,即e ≥22. 证法二:由题意知c ≥b ,∴c 2≥b 2=a 2-c 2∴c 2a 2≥12,故e ≥22. 17.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32椭圆与直线x +2y +8=0相交于P 、Q ,且|PQ |=10,求椭圆方程.[解析] ∵e =32,∴b 2=14a 2. ∴椭圆方程为x 2+4y 2=a 2.与x +2y +8=0联立消去y 得2x 2+16x +64-a 2=0,由Δ>0得a 2>32,由弦长公式得10=54[64-2(64-a 2)]. ∴a 2=36,b 2=9.∴椭圆方程为x 236+y 29=1. 18.过椭圆x 216+y 24=1内一点M (2,1)的一条直线与椭圆交于A ,B 两点,如果弦AB 被M 点平分,那么这样的直线是否存在?若存在,求其方程;若不存在,说明理由.[解析] 设所求直线存在,方程y -1=k (x -2),代入椭圆方程并整理,得(4k 2+1)x 2-8(2k 2-k )x +4(2k 2-1)2-16=0①.设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程①的两根,所以x 1+x 2=8(2k 2-k )4k 2+1.又M 为AB 的中点,所以x 1+x 22=4(2k 2-k )4k 2+1=2,解得k =-12.又k =-12时,使得①式Δ>0,故这样的直线存在,直线方程为x +2y -4=0.。
高中 平面解析几何 椭圆的几何性质 练习 含答案
训练目标熟练掌握椭圆的几何性质并会应用. 训练题型 (1)求离心率的值或范围;(2)应用几何性质求参数值或范围;(3)椭圆方程与几何性质综合应用.解题策略(1)利用定义PF 1+PF 2=2a 找等量关系;(2)利用a 2=b 2+c 2及离心率e =c a找等量关系;(3)利用焦点三角形的特殊性找等量关系.1.已知焦点在x 轴上的椭圆C :x 2a2+y 2=1(a >0),过右焦点作垂直于x 轴的直线交椭圆于A 、B 两点,且AB =1,则该椭圆的离心率为________.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是________.3.在椭圆x 236+y 29=1上有两个动点P ,Q ,E (3,0)为定点,EP ⊥EQ ,则E P →·Q P →的最小值为________.4.已知焦点在x 轴上的椭圆的方程为x 24a +y 2a 2-1=1,随着a 的增大,该椭圆形状的变化是越________圆(填“接近于”或“远离”).5.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是________.6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连结AF ,BF ,若AB =10,AF =6,cos ∠ABF =45,则椭圆C 的离心率为________. 7.椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Г的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.8.已知椭圆x 2a 2+y 2b2=1(a >b >0)上一点A 关于原点的对称点为点B ,F 为右焦点,若AF ⊥BF ,设∠ABF =α,且α∈[π6,π4],则该椭圆离心率e 的取值范围为________.9.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.10.椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,直线y =-3x 与椭圆C 交于A ,B 两点,且AF ⊥BF ,则椭圆C 的离心率为________.11.已知A 为椭圆x 29+y 25=1上的动点,MN 为圆(x -1)2+y 2=1的一条直径,则AM →·A N →的最大值为________.12.已知点F 为椭圆C :x 22+y 2=1的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标为(4,3),则PQ +PF 取最大值时,点P 的坐标为________.13.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P 使a sin ∠PF 1F 2=c sin ∠PF 2F 1,则该椭圆的离心率的取值范围为____________. 14.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是________.答案解析 1.32 2.(13,12)∪(12,1) 3.6解析 设P (x 0,y 0),则有x 2036+y 209=1, 因为EP ⊥EQ ,所以E P →·Q P →=E P →·(E P →-E Q →)=(EP →)2-EP →·EQ →=(E P →)2=(x 0-3)2+y 20=(x 0-3)2+9×(1-x 2036), 即E P →·Q P →=34x 20-6x 0+18. 因为-6≤x 0≤6,所以当x 0=4时,E P →·Q P →取得最小值6.4.接近于解析 由题意知e 2=1-a 2-14a =1-(a 4-14a ), 而a 4-14a随着a 的增大而增大, 所以e 随着a 的增大而减小,即随着a 的增大,该椭圆的形状越接近于圆. 5.14解析 由题意可得21m =2×2,解得m =14. 6.57 解析 在△ABF 中,由36=100+BF 2-20BF ×45,解得BF =8. 又在△BOF 中,由OF 2=64+25-80×45=25,得c =5, 设椭圆右焦点是F ′,则由椭圆对称性可得BF =AF ′,所以2a =AF +AF ′=14,a =7,则离心率e =c a =57. 7.3-1解析 由直线方程为y =3(x +c ),知∠MF 1F 2=60°,又∠MF 1F 2=2∠MF 2F 1,所以∠MF 2F 1=30°,MF 1⊥MF 2,所以MF 1=c ,MF 2=3c ,所以MF 1+MF 2=c +3c =2a .即e =c a=3-1. 8.[ 22,3-1] 解析 ∵B 和A 关于原点对称,∴B 也在椭圆上,设左焦点为F ′,根据椭圆定义AF +AF ′=2a ,∵AF ′=BF ,∴AF +BF =2a .①∵O 是Rt △ABF 的斜边AB 的中点,∴AB =2c ,又AF =2c sin α②BF =2c cos α,③②③代入①,得2c sin α+2c cos α=2a ,∴c a =1sin α+cos α=12sin (α+π4), 即e =12sin (α+π4). ∵α∈[π6,π4], ∴5π12≤α+π4≤π2, 6+24≤sin(α+π4)≤1, ∴22≤e ≤3-1. 9.62解析 F 1F 2=2 3.设双曲线的方程为x 2a 2-y 2b2=1. ∵AF 2+AF 1=4,AF 2-AF 1=2a ,∴AF 2=2+a ,AF 1=2-a .在Rt △F 1AF 2中,∠F 1AF 2=90°,∴AF 21+AF 22=F 1F 22, 即(2-a )2+(2+a )2=(23)2,∴a =2,∴e =c a =32=62. 10.3-1解析 由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =-3x ,得x 2=a 2b 23a 2+b 2. 设A (x ,y ),则B (-x ,-y ),A F →=(c -x ,-y ),B F →=(c +x ,y ).由AF ⊥BF ,得A F →·B F →=c 2-x 2-y 2=c 2-4x 2=0,∴c 2=4a 2b 23a 2+b 2. 化简,得c 4+4a 4-8a 2c 2=0,即e 4-8e 2+4=0,∴e 2=4-23,又∵0<e <1,∴e =3-1.11.15解析 记圆(x -1)2+y 2=1的圆心为C (1,0),设A (x ,y ),x ∈[-3,3],则AC 2=(x -1)2+y 2=(x -1)2+5-59x 2=49x 2-2x +6, 当x =-3时,(AC 2)max =16,AM →·A N →=(A C →+CM →)·(A C →-CM →)=|AC →|2-|CM →|2=|AC →|2-1≤15,故AM →·A N →的最大值为15.12.(0,-1)解析 设椭圆的右焦点为E ,PQ +PF =PQ +2a -PE =PQ -PE +2 2. 当P 为线段QE 的延长线与椭圆的交点时,PQ +PF 取最大值,此时,直线PQ 的方程为y =x -1,QE 的延长线与椭圆交于点(0,-1),即点P 的坐标为(0,-1).13.(2-1,1)解析 由a sin ∠PF 1F 2=c sin ∠PF 2F 1, 得c a =sin ∠PF 2F 1sin ∠PF 1F 2. 又由正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=PF 1PF 2, 所以PF 1PF 2=c a, 即PF 1=c aPF 2. 又由椭圆定义得PF 1+PF 2=2a ,所以PF 2=2a 2a +c ,PF 1=2ac a +c, 因为PF 2是△PF 1F 2的一边,所以有2c -2ac a +c <2a 2a +c <2c +2ac a +c, 即c 2+2ac -a 2>0,所以e 2+2e -1>0(0<e <1),解得椭圆离心率的取值范围为(2-1,1).14.[38,34] 解析 由题意可得,A 1(-2,0),A 2(2,0), 当P A 2的斜率为-2时,直线P A 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619. 由P A 2的斜率存在可得点P ⎝⎛⎭⎫2619,2419,此时直线P A 1的斜率k =38. 同理,当直线P A 2的斜率为-1时,直线P A 2的方程为y =-(x -2),代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27. 由P A 2的斜率存在可得点P ⎝⎛⎭⎫27,127,此时直线P A 1的斜率k =34. 数形结合可知,直线P A 1斜率的取值范围是⎣⎡⎦⎤38,34.。
高中数学第二章平面解析几何椭圆的几何性质课后习题新人教B版选择性必修第一册
2.5.2 椭圆的几何性质A级必备知识基础练1.过椭圆x 24+y23=1的焦点的最长弦和最短弦的长分别为()A.8,6B.4,3C.2,√3D.4,2√32.曲线x 225+y29=1与x29-k+y225-k=1(0<k<9)的关系是()A.有相等的焦距,相同的焦点B.有相等的焦距,不同的焦点C.有不等的焦距,不同的焦点D.以上都不对3.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为()A.12B.√32C.√34D.√644.已知椭圆x 2a2+y2b2=1(a>b>0),F1,F2分别是椭圆的左、右焦点,椭圆上总存在点P使得PF1⊥PF2,则椭圆的离心率的取值范围为.5.已知F1,F2是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,点P为C上一点,O为坐标原点,△POF2为正三角形,则C的离心率为.6.若椭圆x 2k+8+y29=1的离心率e=12,则k的值为.7.阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的半长轴长与半短轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为45,面积为20π,则椭圆C的标准方程为.8.已知椭圆C:4x2+9y2=36.求椭圆的长轴长,焦点坐标和离心率.9.(1)求与椭圆x 29+y24=1有相同的焦点,且离心率为√55的椭圆的标准方程;(2)已知椭圆的两个焦点间的距离为8,两个顶点坐标分别是(-6,0),(6,0),求焦点在x轴上的椭圆的标准方程.B级关键能力提升练10.已知椭圆x 24+y2=1,F1,F2分别是椭圆的左、右焦点,点P为椭圆上的任意一点,则1|PF1|+1|PF2|的取值范围为()A.[1,2]B.[√2,√3]C.[√2,4]D.[1,4]11.(2021全国乙,理11)设B是椭圆C:x 2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A.[√22,1) B.[12,1)C.(0,√22] D.(0,12]12.(多选题)椭圆面积等于圆周率、椭圆的长半轴长、短半轴长三者的乘积.据此得某椭圆面积为6√2π,且两焦点恰好将长轴三等分,则此椭圆的标准方程可以为()A.x 28+y29=1 B.x218+y216=1C.x 212+y26=1 D.x29+y28=113.若椭圆x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,线段F1F2被点(b2,0)分成5∶3的两段,则此椭圆的离心率为()A.1617B.4√1717C.45D.2√5514.已知F是椭圆C:x 2a2+y2b2=1(a>b>0)的一个焦点,P是C上的任意一点,则|FP|称为椭圆C的焦半径.设C的左顶点与上顶点分别为A,B,若存在以A为圆心,|FP|为半径的圆经过点B,则椭圆C的离心率的最小值为.15.(1)计算:①若A1,A2是椭圆x 29+y24=1长轴的两个端点,P(0,2),则k PA1·k PA2= ;②若A1,A2是椭圆x 29+y24=1长轴的两个端点,P(-√5,43),则k PA1·k PA2= ;③若A1,A2是椭圆x 29+y24=1长轴的两个端点,P(1,-4√23),则k PA1·k PA2= .(2)观察①②③,由此可得到:若A1,A2是椭圆x 2a2+y2b2=1(a>b>0)长轴的两个端点,P为椭圆上任意一点,则k PA1·k PA2=?并证明你的结论.16.如图,已知椭圆x 2a2+y 2b 2=1(a>b>0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B.(1)若∠F 1AB=90°,求椭圆的离心率;(2)若椭圆的焦距为2,且AF 2⃗⃗⃗⃗⃗⃗⃗ =2F 2B ⃗⃗⃗⃗⃗⃗⃗ ,求椭圆的方程.17.已知F1,F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆的离心率的取值范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.C级学科素养创新练18.已知椭圆x 2a2+y2b2=1的坐标原点为点O,有长轴的一端点坐标为(2,0),离心率e=√32,过椭圆右焦点倾斜角为30°的直线交椭圆于A,B两点.(1)求椭圆的方程;(2)求三角形OAB的面积.2.5.2椭圆的几何性质1.B由题意知a=2,b=√3,c=1,最长弦过两个焦点,长为2a=4,最短弦垂直于x轴,长度为当x=c=1时,纵坐标的绝对值的2倍为3.2.B曲线x 225+y29=1的焦距为2c=8,而曲线x29-k+y225-k=1(0<k<9)表示的椭圆的焦距也是8,但焦点所在的坐标轴不同.3.A不妨设椭圆的左、右焦点分别为F1,F2,B为椭圆的上顶点.依题意可知,△BF1F2是正三角形.∵在Rt△OBF2中,|OF2|=c,|BF2|=a,∠OF2B=60°,∴cos60°=ca =12,即椭圆的离心率e=12.4.[√22,1)由PF1⊥PF2,知△F1PF2是直角三角形, 所以|OP|=c≥b,即c2≥a2-c2,所以a≤√2c.因为e=ca ,0<e<1,所以√22≤e<1.5.√3-1如图,因为△POF2为正三角形, 所以|OF1|=|OP|=|OF2|,所以△F1PF2是直角三角形.因为∠PF2F1=60°,|F2F1|=2c,所以|PF2|=c.所以|PF1|2=|F1F2|2-|PF2|2=4c2-c2=3c2,所以|PF1|=√3c.因为|PF2|+|PF1|=2a,所以c+√3c=2a,即ca =√3+1=√3-1,所以e=√3-1.6.4或-54(1)若焦点在x轴上,即k+8>9时,a2=k+8,b2=9,e2=c2a2=a2-b2a2=k-1k+8=14,解得k=4.(2)若焦点在y轴上,即0<k+8<9时,a2=9,b2=k+8,e2=c2a2=a2-b2a2=1-k9=14,解得k=-54.综上所述,k=4或k=-54.7.y 2100 3+x212=1设椭圆C的方程为y2a2+x2b2=1(a>b>0),椭圆C的面积为S=πab=20π,又e=√1-b2a2=45,解得a2=1003,b2=12,所以椭圆C的方程为y 2100 3+x212=1.8.解椭圆C:4x2+9y2=36的标准方程为x 29+y24=1,所以a=3,b=2,c=√a2-b2=√9-4=√5,所以椭圆的长轴长2a=6,焦点坐标(-√5,0),(√5,0),离心率e=ca =√53.9.解(1)∵c=√9-4=√5,∴所求椭圆的焦点为(-√5,0),(√5,0).设所求椭圆的方程为x 2a2+y2b2=1(a>b>0).∵e=ca =√55,c=√5,∴a=5,b2=a2-c2=20,∴所求椭圆的方程为x 225+y220=1.(2)∵椭圆的焦点在x轴上,∴设它的标准方程为x 2a2+y2b2=1(a>b>0),∵2c=8,∴c=4,又a=6,∴b2=a2-c2=20.∴椭圆的方程为x 236+y220=1.10.D 根据椭圆的定义|PF 1|+|PF 2|=2a=4,设m=|PF 1|,n=|PF 2|,则m+n=4,m ,n ∈[a-c ,a+c ], 即m ,n ∈[2-√3,2+√3],则1|PF 1|+1|PF 2|=1m+1n=4m(4-m)=4-(m -2)2+4∈[1,4].11.C 由题意,点B (0,b ). 设P (x 0,y 0),则x 02a 2+y 02b 2=1,得x 02=a 2(1-y 02b 2), ∴|PB|2=x 02+(y 0-b )2=a 2(1-y 02b 2)+y 02-2by 0+b 2=-c 2b 2y 02-2by 0+a 2+b 2,y 0∈[-b ,b ]. 由题意知当--2b2(-c 2b2)≥-b ,即b ≤c ,y 0=-b 3c 2时|PB|2最大,得(2e 2-1)2≤0,e=√22,当--2b2(-c 2b2)<-b ,y 0=-b 时|PB|2最大,∴-b 3c 2≤-b ,得b 2≥c 2,即a 2-c 2≥c 2, ∴离心率e=ca ≤√22,即e ∈(0,√22].12.AD 由题意可知,{πab =6√2π,2c =13×2a.又a 2=b 2+c 2,解得a=3,b=2√2,c=1, 所以椭圆的标准方程为x 29+y 28=1或y 29+x 28=1.13.D 依题意得c+b 2c -b 2=53,即c=2b.∵a 2-b 2=c 2,∴a=√b 2+c 2=√5b.∴e=ca =2√55.14.√3-12如图,|AB|=√a 2+b 2,a-c ≤|PF|≤a+c ,由题意可得,a-c ≤√a 2+b 2≤a+c ,不等式左边恒成立,则√a 2+b 2≤a+c ,两边平方整理得2e 2+2e-1≥0, 解得e ≤-1-√32(舍)或e ≥√3-12. ∴椭圆C 的离心率的最小值为√3-12.15.解(1)①由椭圆方程可得A 1(-3,0),A 2(3,0), 又P (0,2),∴k PA 1·k PA 2=2-00+3×2-00-3=-49. ②由椭圆方程可得A 1(-3,0),A 2(3,0),又P (-√5,43), ∴k PA 1·k PA 2=43-03-√543-0-3-√5=-49. ③由椭圆方程可得A 1(-3,0),A 2(3,0), 又P (1,-4√23), ∴k PA 1·k PA 2=-4√23-01+3×-4√231-3=-49. (2)若A 1,A 2是椭圆x 2a 2+y 2b 2=1(a>b>0)长轴的两个端点,P 为椭圆上任意一点,则k PA 1·k PA 2=-b 2a 2. 证明如下:设P (x 0,y 0). 由题意k PA 1=y 0-0x 0+a,k PA 2=y 0-0x 0-a,则k PA 1·k PA 2=y 0-0x 0+a·y 0-0x 0-a=y 02x 02-a 2.又P 为椭圆上任意一点,满足x 02a 2+y 02b 2=1,得y 02=b 2(1-x 02a 2), 代入可得k PA 1·k PA 2=b 2(1-x 02a 2)x 02-a 2=-b 2a 2,得证.16.解(1)由∠F 1AB=90°及椭圆的对称性知b=c , 则e=c a =√c 2a 2=√c 2b 2+c 2=√22. (2)由已知a 2-b 2=1,F 2(1,0),A (0,b ),设B (x ,y ), 则AF 2⃗⃗⃗⃗⃗⃗⃗ =(1,-b ),F 2B ⃗⃗⃗⃗⃗⃗⃗ =(x-1,y ), 由AF 2⃗⃗⃗⃗⃗⃗⃗ =2F 2B ⃗⃗⃗⃗⃗⃗⃗ ,即(1,-b )=2(x-1,y ), 解得x=32,y=-b 2,则94a 2+b 24b 2=1,得a 2=3,因此b 2=2,椭圆的方程为x 23+y 22=1.17.(1)解不妨设椭圆方程为x 2a 2+y 2b 2=1(a>b>0), 由余弦定理得cos60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=4a 2-2|PF 1|·|PF 2|-4c 2, 所以3|PF 1|·|PF 2|=4b 2, 所以|PF 1|·|PF 2|=4b 23.又因为|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=a 2,当且仅当|PF 1|=|PF 2|时,等号成立. 所以3a 2≥4(a 2-c 2),所以c a ≥12,所以e ≥12. 又因为椭圆中0<e<1,所以所求椭圆的离心率的取值范围是[12,1). (2)证明由(1)可知|PF 1|·|PF 2|=43b 2,S △F 1PF 2=12|PF 1|·|PF 2|sin 60°=12×43b 2×√32=√33b 2.所以△F 1PF 2的面积只与椭圆的短轴长有关. 18.解(1)由题意可知焦点在x 轴上,则a=2,e=ca =√32,c=√3,由a 2=b 2+c 2,解得b 2=1,∴椭圆方程为x 24+y 2=1.(2)由题意可知右焦点(√3,0),则直线方程为y=√33(x-√3),即y=√33x-1,设A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程整理得7x 2-8√3x=0, 由根与系数的关系x 1+x 2=8√37,x 1·x 2=0, 由弦长公式|AB|=√1+13×√(8√37)2=167,原点O 到直线的距离为d=√1+(√33)=√32, ∴△OAB 的面积S=12×d ×|AB|=12×√32×167=4√37.∴△OAB 的面积S=4√37.。
椭圆的几何性质(含答案)
椭圆的几何性质一、选择题1.已知点(3,2)在椭圆x 2a 2+y 2b2=1上,则( )A .点(-3,-2)不在椭圆上B .点(3,-2)不在椭圆上C .点(-3,2)在椭圆上D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上 2.椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b 2=k (k >0)具有( )A .相同的长轴B .相同的焦点C .相同的顶点D .相同的离心率3.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆离心率为( ) A.22B.32 C.53D.634.椭圆x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的关系为( )A .有相等的长、短轴B .有相等的焦距C .有相同的焦点D .x ,y 有相同的取值范围5.以椭圆两焦点F 1、F 2所连线段为直径的圆,恰好过短轴两端点,则此椭圆的离心率e 等于( )A.12B.22C.32D.2556.中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ) A.x 281+y 272=1 B.x 281+y 29=1C.x 281+y 245=1 D.x 281+y 236=17.焦点在x 轴上,长、短半轴之和为10,焦距为45,则椭圆的方程为( ) A.x 236+y 216=1 B.x 216+y 236=1C.x 26+y 24=1 D.y 26+x 24=18.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率是( ) A.14 B.12 C.22D.329.若椭圆两焦点为F 1(-4,0)、F 2(4,0),P 在椭圆上,且△PF 1F 2的最大面积是12,则椭圆方程是( ) A.x 236+y 220=1 B.x 228+y 212=1C.x 225+y 29=1 D.x 220+y 24=1二、填空题10.如图,在椭圆中,若AB ⊥BF ,其中F 为焦点,A 、B 分别为长轴与短轴的一个端点,则椭圆的离心率e =________.11.椭圆x 2a 2+y 2b 2=1上一点到两焦点的距离分别为d 1、d 2,焦距为2c ,若d 1、2c 、d 2成等差数列,则椭圆的离心率为________.12.经过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点且垂直于椭圆长轴的弦长为________.三、解答题13.已知F 1、F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆的离心率e =32,求椭圆的方程.14.已知椭圆mx 2+5y 2=5m 的离心率为e =105,求m 的值.椭圆的几何性质(答案)1、[答案] C [解析] ∵点(3,2)在椭圆x 2a 2+y 2b2=1上,∴由椭圆的对称性知,点(-3,2)、(3,-2)、(-3,-2)都在椭圆上,故选C. 2、[答案] D [解析] 椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b2=k (k >0)中,不妨设a >b ,椭圆x 2a 2+y 2b 2=1的离心率e 1=a 2-b 2a,椭圆x 2a 2k +y 2b 2k =1(k >0)的离心率e 2=k a 2-b 2ka=a 2-b 2a .3、[答案] A [解析] 由题意得b =c ,∴a 2=b 2+c 2=2c 2,e =c a =22.4、[答案] B [解析] ∵0<k <9,∴0<9-k <9,16<25-k <25,∴25-k -9+k =16,故两椭圆有相等的焦距.5、[答案] B [解析] 由题意得b =c ,∴a 2=b 2+c 2=2c 2,∴e =c a =22.6、[答案] A [解析] ∵2a =18,∴a =9,由题意得2c =13×2a =13×18=6,∴c =3,∴a 2=81,b 2=a 2-c 2=81-9=72,故椭圆方程为x 281+y 272=1.7、[答案] A [解析] 由题意得c =25,a +b =10,∴b 2=(10-a )2=a 2-c 2=a 2-20, 解得a 2=36,b 2=16,故椭圆方程为x 236+y 216=1.8、[答案] D [解析] 由题意得a =2b ,a 2=4b 2=4(a 2-c 2),∴c a =32.9、[答案] C [解析] 由题意得c =4,∵P 在椭圆上,且△PF 1F 2的最大面积为12,∴12×2c ×b =12,即bc =12,∴b =3,a =5,故椭圆方程为x 225+y 29=1. 10、[答案]5-12 [解析] 设椭圆方程为x 2a 2+y 2b2=1,则有A (a,0),B (0,b ),F (c,0),由AB ⊥BF ,得k AB ·k BF =-1,而k AB =b a ,k BF =-b c 代入上式得b a ⎝⎛⎭⎫-b c =-1,利用b 2=a 2-c 2消去b 2,得a c -c a =1,即1e -e =1,解得e =-1±52,∵e >0,∴e =5-12.11、[答案] 12 [解析] 由题意得4c =d 1+d 2=2a ,∴e =c a =12.12、[答案] 2b 2a[解析] ∵垂直于椭圆长轴的弦所在直线为x =±c ,由⎩⎪⎨⎪⎧x =±c x 2a 2+y 2b 2=1,得y 2=b 4a 2,∴|y |=b 2a ,故弦长为2b 2a .13、[解析] 由题意,得⎩⎪⎨⎪⎧4a =16c a =32,∴a =4,c =2 3.∴b 2=a 2-c 2=4,所求椭圆方程为x 216+y 24=1.14、[解析] 由已知可得椭圆方程为x 25+y 2m=1(m >0且m ≠5). 当焦点在x 轴上,即0<m <5时,有a =5,b =m ,则c =5-m , 依题意得5-m 5=105,解得m =3.当焦点在y 轴上,即m >5时,有a =m ,b = 5. 则c =m -5,依题意有m -5m=105.解得m =253.即m 的值为3或253.。
(完整版)高二数学椭圆试题(有答案)
dAllthingstheirbeingaregoodforso高二数学椭圆试题一:选择题1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是( ) A.m>2或m<﹣1B.m>﹣2C.﹣1<m<2D.m>2或﹣2<m<﹣1解:椭圆的焦点在x轴上∴m2>2+m,即m2﹣2﹣m>0解得m>2或m<﹣1又∵2+m>0∴m>﹣2∴m的取值范围:m>2或﹣2<m<﹣1故选D2.已知椭圆,长轴在y轴上、若焦距为4,则m等于( ) A.4B.5C.7D.8解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D3.椭圆(1﹣m)x2﹣my2=1的长轴长是( ) A.B.C.D.解:由椭圆(1﹣m)x2﹣my2=1,化成标准方程:由于an dAl l th i n gn th e i r be i ng a r e g o o d f o r ,∴椭圆(1﹣m )x 2﹣my 2=1的长轴长是2a=2=.故选B .4.已知点F 1、F 2分别是椭圆+=1(k >﹣1)的左、右焦点,弦AB 过点F 1,若△ABF 2的周长为8,则椭圆的离心率为( ) A .B .C .D.解:由椭圆定义有4a=8∴a=2,所以k+2=a 2=4∴k=2.从而b 2=k+1=3,c 2=a 2﹣b 2=1,所以,故选A5.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( ) A .(x ≠0)B .(x ≠0) C .(x ≠0)D .(x ≠0)解:∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵a=6,c=4∴b 2=20,∴椭圆的方程是故选B .6.方程=10,化简的结果是( )andAllthinintheirbeingaegoodforso A.B.C.D.解:根据两点间的距离公式可得:表示点P(x,y)与点F1(2,0)的距离,表示点P(x,y)与点F2(﹣2,0)的距离,所以原等式化简为|PF1|+|PF2|=10,因为|F1F2|=2<10,所以由椭圆的定义可得:点P的轨迹是椭圆,并且a=5,c=2,所以b2=21.所以椭圆的方程为:.故选D.7.设θ是三角形的一个内角,且,则方程x2sinθ﹣y2cosθ=1表示的曲线是( ) A.焦点在x轴上的双曲线B.焦点在x轴上的椭圆 C.焦点在y轴上的双曲线D.焦点在y轴上的椭圆解:因为θ∈(0,π),且sinθ+cosθ=,所以,θ∈(,π),且|sinθ|>|cosθ|,所以θ∈(,),从而cosθ<0,从而x2sinθ﹣y2cosθ=1表示焦点在y轴上的椭圆.故选D.8.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ) A.B.C.D.解:设点P在x轴上方,坐标为,∵△F1PF2为等腰直角三角形∴|PF2|=|F1F2|,即,即故椭圆的离心率e=an dAl l th i n gs i n th ei r be i n r ego o d f o r s o 故选D 9.从椭圆上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( ) A .B .C .D .解:依题意,设P (﹣c ,y 0)(y 0>0),则+=1,∴y 0=,∴P (﹣c ,),又A (a ,0),B (0,b ),AB ∥OP ,∴k AB =k OP ,即==,∴b=c .设该椭圆的离心率为e ,则e 2====,∴椭圆的离心率e=.故选C .10.若点O 和点F 分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为( ) A .2B .3C .6D .8解:由题意,F (﹣1,0),设点P (x 0,y 0),则有,解得,因为,,andtheirbeingaregors 所以==,此二次函数对应的抛物线的对称轴为x0=﹣2,因为﹣2≤x0≤2,所以当x0=2时,取得最大值,故选C.11.如图,点F为椭圆=1(a>b>0)的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为( ) A.B.C.D.解:设线段PF的中点为M,另一个焦点F′,由题意知,OM=b,又OM是△FPF′的中位线,∴OM=PF′=b,PF′=2b,由椭圆的定义知PF=2a﹣PF′=2a﹣2b,又MF=PF=(2a﹣2b)=a﹣b,又OF=c,直角三角形OMF中,由勾股定理得:(a﹣b)2+b2=c2,又a2﹣b2=c2,可求得离心率e==,故答案选B.12.椭圆顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于,则椭圆的离心率e=( ) A.B.C.D.n dAl l th i n g s i n t h ei r br eg o o d f o r 解:由题意可得直线AB 的方程为即bx+ay ﹣ab=0,F (c ,0)∴F (c ,0)到直线AB 的距离d==,|AF|=a ﹣c则∴a 2=3b 2∴a 2=3a 2﹣3c 2即3c 2=2a 2∴=故选B13.已知椭圆+=1(a >b >0)的左、右焦点为F 1,F 2,P 为椭圆上的一点,且|PF 1||PF 2|的最大值的取值范围是[2c 2,3c 2],其中c=.则椭圆的离心率的取值范围为( ) A.[,]B .[,1)C .[,1)D.[,]解:∵|PF 1|•|PF 2|的最大值=a 2,∴由题意知2c 2≤a 2≤3c 2,∴,∴.故椭圆m 的离心率e 的取值范围.故选A .an dAl l th i n h ei r ba r e g o o d o 14.在椭圆中,F 1,F 2分别是其左右焦点,若|PF 1|=2|PF 2|,则该椭圆离心率的取值范围是( ) A .B .C .D .解:根据椭圆定义|PF 1|+|PF 2|=2a ,将设|PF 1|=2|PF 2|代入得,根据椭圆的几何性质,|PF 2|≥a ﹣c ,故,即a ≤3c,故,即,又e <1,故该椭圆离心率的取值范围是.故选B .二:填空题15.已知F 1、F 2是椭圆C :(a >b >0)的两个焦点,P 为椭圆C 上一点,且.若△PF 1F 2的面积为9,则b= 3 .解:由题意知△PF 1F 2的面积=,∴b=3,故答案为3.16.若方程表示焦点在y 轴上的椭圆,则k 的取值范围是 4<k <7 .解:∵+=1表示焦点在y 轴上的椭圆,∴k ﹣1>7﹣k >0.∴4<k <7.故k 的取值范围是4<k <7.故答案为:4<k <7.17.已知椭圆的焦距为2,则实数t= 2,3,6 .解:当t 2>5t >0即t >5时,a 2=t 2,b 2=5th i n gs ing o o d f o r s o 此时c 2=t 2﹣5t=6解可得,t=6或t=﹣1(舍)当0<t 2<5t 即0<t <5时,a 2=5t ,b 2=t 2此时c 2=a 2﹣b 2=5t ﹣t 2=6解可得,t=2或t=3综上可得,t=2或t=3或t=6故答案为:2,3,618.在平面直角坐标系xOy 中,已知△ABC 顶点A (﹣4,0)和C (4,0),顶点B 在椭圆上,则= .解:利用椭圆定义得a+c=2×5=10b=2×4=8由正弦定理得=故答案为19.在平面直角坐标系xOy 中,椭圆的焦距为2c ,以O 为圆心,a为半径作圆M ,若过作圆M 的两条切线相互垂直,则椭圆的离心率为 .解:设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP 是等腰直角三角形,故,解得,故答案为.th i n g s i n t h e i r be i n g a r e r s 20.若椭圆的焦点在x 轴上,过点(1,)做圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆的方程是 .解:设切点坐标为(m ,n )则即∵m 2+n 2=1∴m 即AB 的直线方程为2x+y ﹣2=0∵线AB 恰好经过椭圆的右焦点和上顶点∴2c ﹣2=0;b ﹣2=0解得c=1,b=2所以a 2=5故椭圆方程为故答案为三:解答题21.已知F 1,F 2为椭圆的左、右焦点,P 是椭圆上一点.(1)求|PF 1|•|PF 2|的最大值;(2)若∠F 1PF 2=60°且△F 1PF 2的面积为,求b 的值.解:(1)∵P 点在椭圆上,∴|PF 1|+|PF 2|=|2a=20,llthinaregoodforso ∵|PF1|>0,|PF2|>0,∴|PF1|•|PF2|≤=100,∴|PF1|•|PF2|有最大值100.(2)∵a=10,|F1F2|=2c.设|PF1|=t1,|PF2|=t2,则根据椭圆的定义可得:t1+t2=20①,在△F1PF2中,∠F1PF2=60°,所以根据余弦定理可得:t12+t22﹣2t1t2•cos60°=4c2②,由①2﹣②得3t1•t2=400﹣4c2,所以由正弦定理可得:=.所以c=6,∴b=8.22.如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.解:(Ⅰ)∠F1AF2=60°⇔a=2c⇔e==.(Ⅱ)设|BF2|=m,则|BF1|=2a﹣m,在三角形BF1F2中,|BF1|2=|BF2|2+|F1F2|2﹣2|BF2||F1F2|cos120°⇔(2a﹣m)2=m2+a2+am.⇔m=.△AF1B面积S=|BA||F1F2|sin60°⇔=40n th i n gs i n th ei r be i ng ar e g o⇔a=10,∴c=5,b=5.23.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)依题意,可设椭圆C 的方程为(a >0,b >0),且可知左焦点为F (﹣2,0),从而有,解得c=2,a=4,又a 2=b 2+c 2,所以b 2=12,故椭圆C 的方程为.(2)假设存在符合题意的直线l ,其方程为y=x+t ,由得3x 2+3tx+t 2﹣12=0,因为直线l 与椭圆有公共点,所以有△=(3t )2﹣4×3(t 2﹣12)≥0,解得﹣4≤t ≤4,另一方面,由直线OA 与l 的距离4=,从而t=±2,由于±2∉[﹣4,4],所以符合题意的直线l 不存在.24.设F 1,F 2分别是椭圆的左、右焦点,过F 1斜率为1的直线ℓ与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,﹣1)满足|PA|=|PB|,求E 的方程n d Al l th i n gs in t h e i r b e i ng ar s o 解:(I )由椭圆定义知|AF 2|+|BF 2|+|AB|=4a ,又2|AB|=|AF 2|+|BF 2|,得l 的方程为y=x+c ,其中.设A (x 1,y 1),B (x 2,y 2),则A 、B 两点坐标满足方程组化简的(a 2+b 2)x 2+2a 2cx+a 2(c 2﹣b 2)=0则因为直线AB 斜率为1,得,故a 2=2b 2所以E 的离心率(II )设AB 的中点为N (x 0,y 0),由(I )知,.由|PA|=|PB|,得k PN =﹣1,即得c=3,从而故椭圆E 的方程为.25.设椭圆的左焦点为F ,离心率为,过点F 且与x 轴垂直的直线被椭圆截得的线段长为.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A ,B 分别为椭圆的左,右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若,求k 的值.解:(I )根据椭圆方程为.l l th i n gs i n th e i r b eg o o d f o rs o ∵过焦点且垂直于长轴的直线被椭圆截得的线段长为,∴=,∵离心率为,∴=,解得b=,c=1,a=.∴椭圆的方程为;(II )直线CD :y=k (x+1),设C (x 1,y 1),D (x 2,y 2),由消去y 得,(2+3k 2)x 2+6kx+3k 2﹣6=0,∴x 1+x 2=﹣,x 1x 2=,又A (﹣,0),B (,0),∴=(x 1﹣,y 1)•(﹣x 2.﹣y 2)+(x 2+,y 2)•(﹣x 1.﹣y 1)=6﹣(2+2k 2)x 1x 2﹣2k 2(x 1+x 2)﹣2k 2,=6+=8,解得k=.26.设椭圆E :,O 为坐标原点(Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒在两个交点A ,B且?若存在,写出该圆的方程,关求|AB|的取值范围;若不存在,说明理由.解:(1)因为椭圆E :(a ,b >0)过M (2,),N (,1)两点,所以解得l l th i n gs in t h ei r be i n g a r e g o o df o r s o所以椭圆E 的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且,设该圆的切线方程为y=kx+m 解方程组得x 2+2(kx+m )2=8,即(1+2k 2)x 2+4kmx+2m 2﹣8=0,则△=16k 2m 2﹣4(1+2k 2)(2m 2﹣8)=8(8k 2﹣m 2+4)>0,即8k 2﹣m 2+4>0,要使,需使x 1x 2+y 1y 2=0,即,所以3m 2﹣8k 2﹣8=0,所以又8k 2﹣m 2+4>0,所以,所以,即或,因为直线y=kx+m 为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线y=kx+m 都满足或,dA l l t h i n g s i n th e i r be i n g 而当切线的斜率不存在时切线为与椭圆的两个交点为或存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且.因为,所以,①当k ≠0时因为所以,所以,所以当且仅当时取”=”.2当k=0时,27.已知直线x ﹣2y+2=0经过椭圆的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线分别交于M ,N 两点.(1)求椭圆C 的方程;(2)求线段MN 的长度的最小值;(3)当线段MN 的长度最小时,在椭圆C 上是否存在这样的点T ,使得△TSB 的面积为?若存在,确定点T 的个数,若不存在,说明理由.e an dAl l t h i n gs in t h ei r be i n g a r eg oo d f o rs 解:(1)由已知得,椭圆C 的左顶点为A (﹣2,0),上顶点为D (0,1),∴a=2,b=1故椭圆C 的方程为(4分)(2)依题意,直线AS 的斜率k 存在,且k >0,故可设直线AS 的方程为y=k (x+2),从而,由得(1+4k 2)x 2+16k 2x+16k 2﹣4=0设S (x 1,y 1),则得,从而即,(6分)又B (2,0)由得,∴,(8分)故又k >0,∴当且仅当,即时等号成立.∴时,线段MN 的长度取最小值(10分)(2)另解:设S (x s ,y S ),依题意,A ,S ,M 三点共线,且所在直线斜率存在,n d A l l th i n gs in th ei r b 由k AM =k AS ,可得同理可得:又所以,=不仿设y M >0,y N <0当且仅当y M =﹣y N 时取等号,即时,线段MN 的长度取最小值.(3)由(2)可知,当MN 取最小值时,此时BS 的方程为,∴(11分)要使椭圆C 上存在点T ,使得△TSB 的面积等于,只须T 到直线BS 的距离等于,所以T 在平行于BS 且与BS 距离等于的直线l'上.设直线l':x+y+t=0,则由,解得或.又因为T 为直线l'与椭圆C 的交点,所以经检验得,此时点T 有两个满足条件.(14分)。
高中数学-椭圆常考题型汇总及练习
高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。
两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。
椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。
这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。
该性质主要用于求最值、轨迹检验等问题。
椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。
长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。
椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。
当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。
椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。
二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。
1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。
(完整版)椭圆练习题(含答案)
解析几何——椭圆精炼专题一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A . 22B . 2C . 2D . 16.已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( ) A .112814422=+y x 或114412822=+y x B . 14622=+y x C .1323622=+y x 或1363222=+y x D . 16422=+y x 或14622=+y x 7. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴8.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .89.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍B .5倍C .7倍D .3倍10.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.过点M (-2,0)的直线M 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2C .21 D .-21 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m +=的离心率为12,则m = . 14.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 . 15.直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .16.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 .三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.) 17.已知三角形ABC 的两顶点为(2,0),(2,0)B C ,它的周长为10,求顶点A 轨迹方程.18.椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.19.点P 到定点F (2,0)的距离和它到定直线x =8的距离的比为1:2,求点P 的轨迹方程,并指出轨迹是什么图形.20.中心在原点,一焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点横坐标是21,求此椭圆的方程.21.已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程22.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.(1)求2211b a +的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.椭圆练习题参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDDABD13、3或316 14、 4 , 1 15、5382 16、121425422=+yx17、3)(x 15922±≠=+y x 18、解:(1)当A (2,0)为长轴端点时,a =2 , b =1,椭圆的标准方程为: ;(2)当为短轴端点时,,,椭圆的标准方程为: ;19.解:设P (x ,y ),根据题意,|PF|=(x-2)2-y 2,d=|x-8|,因为|PF|d =12 ,所以 (x-2)2-y 2 |x-8| = 12 .化简,得3x 2+4y 2=48,整理,得x 216 +y 212=1,所以,点P 的轨迹是椭圆。
高中椭圆测试题及答案
高中椭圆测试题及答案一、选择题(每题3分,共15分)1. 椭圆的离心率e满足()A. 0 < e < 1B. 0 ≤ e < 1C. 0 ≤ e ≤ 1D. 0 < e ≤ 12. 若椭圆的长轴为2a,短轴为2b,焦距为2c,则下列关系式正确的是()A. a^2 = b^2 + c^2B. a^2 = b^2 - c^2C. b^2 = a^2 - c^2D. c^2 = a^2 - b^23. 已知椭圆的方程为 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,其中a > b > 0,下列说法正确的是()A. 椭圆的焦点在x轴上B. 椭圆的焦点在y轴上C. 椭圆的焦点在直线y = \frac{b}{a}x上D. 椭圆的焦点在直线y = -\frac{b}{a}x上4. 椭圆 \frac{x^2}{4} + \frac{y^2}{3} = 1 的离心率为()A. \frac{1}{2}B. \frac{\sqrt{3}}{2}C. \frac{\sqrt{5}}{4}D. \frac{1}{\sqrt{3}}5. 若椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的离心率为\frac{\sqrt{2}}{2},则a和b的关系为()A. a = \sqrt{2}bB. a = 2bC. b = \sqrt{2}aD. b = 2a二、填空题(每题4分,共20分)6. 椭圆 \frac{x^2}{9} + \frac{y^2}{4} = 1 的离心率为 ________。
7. 椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的焦点坐标为(±c,0),其中c = ________。
8. 椭圆 \frac{x^2}{16} + \frac{y^2}{9} = 1 的长轴长度为________。
高中数学 椭圆专题(经典例题 考题 练习)附答案
高中数学椭圆专题一.相关知识点1.椭圆的概念平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆。
这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
集合P={M||MF1|+|MF2|=2a,|F1F2|=2c,其中a>0,c>0,且a,c为常数}。
(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。
2.椭圆的标准方程和几何性质3.椭圆中常用的4个结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时P在短轴端点处;当x=±a时,|OP|有最大值a,这时P在长轴端点处。
(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2。
(3)已知过焦点F1的弦AB,则△ABF2的周长为4a。
(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c。
一、细品教材1.(选修1-1P34例1改编)若F1(3,0),F2(-3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A.x225+y216=1 B.x2100+y29=1 C.y225+x216=1 D.x225+y216=1或y225+x216=12.(选修1-1P42A组T6改编)设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.22 B.2-12C.2- 2 D.2-1走进教材答案1.A; 2.D 二、双基查验1.设P是椭圆x24+y29=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.8 C.6 D.182.方程x25-m+y2m+3=1表示椭圆,则m的范围是()A.(-3,5) B.(-5,3) C.(-3,1)∪(1,5) D.(-5,1)∪(1,3)3.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或214.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________。
高二数学椭圆试题(有答案)
高二数学椭圆试题(有答案)一:选择题1.已知方程 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 表示焦点在x轴上的椭圆,则m的取值范围是()A.m>2或m<﹣1B.m>﹣2C.﹣1<m<2D.m>2或﹣2<m<﹣1解:椭圆的焦点在x轴上,所以 $a^2>b^2$,即$\frac{b^2}{a^2}<1$。
根据焦点公式可得 $c=\sqrt{a^2-b^2}$,又因为焦点在x 轴上,所以 $c=a$。
所以 $a=b$,代入椭圆方程可得$\frac{x^2}{a^2}+\frac{y^2}{a^2}=1$。
解得 $m^2-2m>0$,即 $m2$。
所以 m 的取值范围为 $m>2$ 或 $-2<m<-1$,故选D。
2.已知椭圆 $\frac{x^2}{4}+\frac{y^2}{m-2}=1$,长轴在y 轴上、若焦距为4,则m等于()A.4B.5C.7D.8解:因为椭圆的长轴在y轴上,所以 $a^2=4$。
又因为焦距为4,所以 $c=2$。
根据焦点公式可得 $b^2=a^2(c^2-a^2)=12$。
代入椭圆方程可得 $\frac{x^2}{4}+\frac{y^2}{2}=1$,解得 $m=8$,故选D。
3.椭圆 $(1-m)x^2-my^2=1$ 的长轴长是()A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$解:将椭圆的方程化为标准形式 $\frac{x^2}{\frac{1}{1-m}}+\frac{y^2}{\frac{1}{m}}=1$。
因为长轴长为 $2a$,所以 $2a=2$,解得长轴长为$\sqrt{2}$,故选A。
4.已知点 $F_1$、$F_2$ 分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($k>﹣1$)的左、右焦点,弦AB过点 $F_1$,若△ABF2的周长为8,则椭圆的离心率为()A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$解:因为弦AB过点 $F_1$,所以 $AB=2a$。
(完整word)2.1.2椭圆的简单几何性质练习题及答案
(完整word)2.1.2椭圆的简单几何性质练习题及答案1一、课前练习:1.椭圆x 2+ 8y 2=1的短轴的端点坐标是 ( )A 。
(0,-42)、(0,42) B 。
(-1,0)、(1,0) C 。
(22,0)、(-22,0) D 。
(0,22)、(0,-22) 2.椭圆14922=+y x 的焦点到准线的距离是 ( ) A 。
559554和 B.5514559和 C.5514554和 D.5514 3。
离心率为23,且过点(2,0)的椭圆的标准方程是 ( )A 。
1422=+y xB 。
1422=+y x 或1422=+y xC 。
1422=+y x D.1422=+y x 或116422=+y x二、典例:例1。
求椭圆16x 2+25y 2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.变式练习1:求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:(1)25x 2+4y 2—100=0, (2)x 2+4y 2—1=0.例2.(1)求椭圆2244x y +=和2244x y +=的准线方程;(2)已知椭圆22925900x y +=上的点P 到它 的右准线的距离为8.5,则P 到左焦点的距离为 ; (3)椭圆的中心在坐标原点,焦点在坐标轴上,准线方程为18y =±,椭圆上一点到两焦点的距离分别为10和14,则椭圆的方程是 .三、巩固练习: 1.已知F 1、F 2为椭圆(a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率23=e ,则椭圆的方程是 ( ) A 。
13422=+y x B 。
1342=+y x C 。
1342=+y x D.1342=+y x 2。
椭圆12222=+a y b x (a >b 〉0)的准线方程是 ( )A.222b a a y +±= B 。
椭圆的性质及常考题含答案
椭圆的性质2.椭圆的离心率:ce a=,焦距与长轴长之比,01e <<,e 越趋近于1,椭圆越扁;反之,e 越趋近于0,椭圆越趋近于圆. 题型一:椭圆的定义例1 到两定点F 1(-4,0),F 2(4,0)的距离之和等于8的点的轨迹是( ) A .椭圆 B .圆 C .线段 D .射线 答案:C例2平面内一动点M到两定点F 1、F2距离之和为常数2a,则点M的轨迹为( )A.椭圆B.圆 C.无轨迹D.椭圆或线段或无轨迹解析:当2a>|F1F2|时,轨迹为椭圆;当2a=|F1F2|时,轨迹为线段;当2a<|F1F2|时,轨迹不存在.答案:D巩固已知F 1,F2是椭圆x225+y29=1的左、右两个焦点.(1)求F1,F2的坐标;(2)若AB为过椭圆的焦点F1的一条弦,求△ABF2的周长.解析:(1)由椭圆的方程x225+y29=1可知,a2=25,b2=9,∴c2=a2-b2=25-9=16,∴c=4.∴F1(-4,0),F2(4,0).(2)由椭圆的定义可知|AF 1|+|AF 2|=2a =10,|BF 1|+|BF 2|=2a =10.∴△ABF 2的周长为|AB |+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=2a +2a =4a =20.题型二 焦点三角形问题1.对焦点三角形12F PF △的处理方法,通常是运用⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin 2.若P 是椭圆:12222=+by ax 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb(用余弦定理与a PF PF 221=+可得).例3 如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.解析:由已知a =2,b =3,得c =a 2-b 2=4-3=1,即|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|·cos 120°,即|PF 2|2=|PF 1|2+4+2|PF 1|.①由椭圆定义,得|PF 1|+|PF 2|=4,即|PF 2|=4-|PF 1|.②②代入①解得|PF 1|=65.∴S △PF 1F 2=12|PF 1|·|F 1F2|·sin 120°=12×65×2×32=335,即△PF 1F 2的面积是335.巩 固 已知椭圆y 2a 2+x 2b2=1 (a >b >0)的焦点分别是F 1(0,-1),F 2(0,1),且3a 2=4b 2.(1)求椭圆的方程;(2)设点P 在这个椭圆上,且|PF 1|-|PF 2|=1,求∠F 1PF 2的余弦值.解析:(1)依题意知c =1,又c 2=a 2-b 2,且3a 2=4b 2,所以a 2-34a 2=1,即14a 2=1.a 2=4.因此b 2=3.从而椭圆方程为y 24+x 23=1.(2)由于点P 在椭圆上,所以|PF 1|+|PF 2|=2a =2×2=4,又|PF 1|-|PF 2|=1,所以|PF 1|=52,|PF 2|=32,又|F 1F 2|=2c =2,所以由余弦定理得cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|2,2·|PF 1|·|PF 2|=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫322-222×52×32=35.即∠F 1PF 2的余弦值等于35. 题型三 求椭圆的离心率例4 已知椭圆的两个焦点为F 1、F 2,A 为椭圆上一点,且AF 1⊥AF 2,∠AF 2F 1=60°,求该椭圆的离心率.解析:不妨设椭圆的焦点在x 轴上,画出草图如右图所示.由AF 1⊥AF 2知△AF 1F 2为直角三角形,且∠AF 2F 1=60°.由椭圆定义知|AF 1|+|AF 2|=2a ,|F 1F 2|=2c ,则在Rt△AF 1F 2中, 由∠AF 2F 1=60°得|AF 2|=c ,|AF 1|=3c ,所以|AF 1|+|AF 2|=2a =(3+1)c ,所以离心率e =c a=3-1.点评:求离心率的值或取值范围是一类重要问题,解决这类问题通常有两种办法: ①直接求出a 和c 的值,套用公式e =c a求得离心率;②根据题目条件提供的几何关系,建立参数a ,b ,c 之间的关系式,结合椭圆定义以及a 2=b 2+c 2等,消去b ,得到a 和c 之间的关系,从而求得离心率的值或范围.巩 固设椭圆的两个焦点分别为F 1,F 2。
3.1.2 椭圆的简单几何性质-【新教材】人教A版(2019)高中数学选择性必修第一册同步练习
椭圆的简单几何性质同步练习一、选择题1.已知有相同两焦点F1、F2的椭圆x2m +y2=1(m>1)和双曲线x2n−y2=1(n>0),P是它们的一个交点,则△F1PF2的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 随m,n变化而变化2.已知椭圆:x24+y22=1,过点M(1,1)的直线与椭圆相交于A,B两点,且弦AB被点M平分,则直线AB的方程为()A. x+2y−3=0B. 2x+y−3=0C. x+y−2=0D. 2x−y+1=03.若过椭圆x216+y24=1内一点P(3,1)的弦被该点平分,则该弦所在的直线方程为()A. 3x+4y−13=0B. 3x−4y−5=0C. 4x+3y−15=0D. 4x−3y−9=04.已知椭圆x2a2+y2b2=1(a>b>0)的一个焦点是圆x2+y2−6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为()A. (−3,0)B. (−4,0)C. (−10,0)D. (−5,0)5.我们把由半椭圆x2a2+y2b2=1(x≥0)与半椭圆y2b2+x2c2=1(x<0)合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F0,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是边长为1的等边三角形,则a,b的值分别为()A. 5,4B. √3,1C. 5,3D. √72,16. 如图,F 1F 2分别为椭圆x 2a 2+y 2b 2=1的左右焦点,点P 在椭圆上,△POF 2的面积为√3的正三角形,则b 2的值为( )A. √3B. 2√3C. 3√3D. 4√37. 已知F 1,F 2分别是椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅(OF 1⃗⃗⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ )=0(O为坐标原点),若|PF 1⃗⃗⃗⃗⃗⃗⃗ |=√2|PF 2⃗⃗⃗⃗⃗⃗⃗ |,则椭圆的离心率为( )A. √6−√3B. √6−√32C. √6−√5D. √6−√528. 已知F 1,F 2是椭圆的两个焦点,满足MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A. (0,1)B. (0,12]C. (0,√22) D. [√22,1)9. 已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则1e1e 2的最大值为( )A. 3B. 2C. 4√33D. 2√3310. 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为√32,短轴长为2,过右焦点F 且斜率为k(k >0)的直线与椭圆C 相交于A 、B 两点.若AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则k=( )A. 1B. √2C. √3D. 211. 已知F 1(−1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB|=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=112. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F(3,0),过点F 的直线交椭圆E 于A ,B 两点,若AB 的中点坐标为(1,−1),则弦长|AB|=( )A. 5√2B. 2√5C. 5√22D. √1013. 若椭圆C :x 28+y 24=1的右焦点为F ,且与直线l :x −√3y +2=0交于P ,Q 两点,则△PQF 的周长为( )A. 6√2B. 8√2C. 6D. 814. 椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆上的点M满足:∠F 1MF 2=60°,且MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =2,则b =( )A. 1B. √2C. √3D. 2二、填空题15. 已知抛物线C :x 2=−2py(p >0)的焦点F 与y 28+x 24=1的一个焦点重合,过焦点F 的直线与C 交于A ,B 两不同点,抛物线C 在A ,B 两点处的切线相交于点M ,且M 的横坐标为2,则弦长|AB|=________. 16. 设M 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,以M 为圆心的圆与x 轴相切,切点为椭圆的焦点F ,圆M 与y 轴相交于不同的两点P ,Q ,若△PMQ 为等边三角形,则椭圆C 的离心率为________. 17. 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⃗⃗⃗⃗⃗ ⋅FP⃗⃗⃗⃗⃗ 的最大值为_________. 18. 设F 1,F 2分别为椭圆x 23+y 2=1的左、右焦点,点A ,B 在椭圆上,若F 1A ⃗⃗⃗⃗⃗⃗⃗ =5F 2B ⃗⃗⃗⃗⃗⃗⃗ ,则点A 的坐标是_________.三、解答题(本大题共4小题,共48.0分)19. 已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)四个顶点中的三个是边长为2√3的等边三角形的顶点.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线y =kx +m 与圆O:x 2+y 2=2b 23相切且交椭圆E 于两点M,N ,求线段|MN|的最大值.20.已知椭圆C:x 2a2+y2b2=1(a>b>0)的两个顶点分别为A(−a,0),B(a,0),点P为椭圆上异于A,B的点,设直线PA的斜率为k1,直线PB的斜率为k2,且.(1)求椭圆C的离心率;(2)若b=1,设直线l与x轴交于点D(−1,0),与椭圆交于M,N两点,求△OMN面积的最大值.21.已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),且椭圆上的点到点F的最大距离为3,O为坐标原点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过右焦点F倾斜角为60°的直线与椭圆C交于M、N两点,求△OMN的面积.22.已知椭圆C:x2a2+y23=1(a>√3)的焦距为2,A,B分别为椭圆C的左、右顶点,M,N为椭圆C上的两点(异于A,B),连结AM,BN,MN,且BN斜率是AM斜率的3倍.(1)求椭圆C的方程;(2)证明:直线MN恒过定点.答案和解析1.【答案】B【解答】解:由题意,不妨设P 是双曲线右支上的一点,|PF 1|=x ,|PF 2|=y ,则x +y =2√m ,x −y =2√n , ∴x 2+y 2=2(m +n), ∵两曲线有相同的焦点, ∴m −1=n +1, ∴m =n +2, ∴x 2+y 2=4(n +1), 即|PF 1|2+|PF 2|2=|F 1F 2|2, ∴△F 1PF 2是直角三角形, 故选B .2.【答案】A【解答】解:设A(x 1,y 1)、B(x 2,y 2), 则x 124+y 122=1,①,x 224+y 222=1,②①−②,得(x 1−x 2)(x 1+x 2)4+(y 1−y 2)(y 1+y 2)2=0.∴y 1−y2x 1−x 2=−12⋅x 1+x2y 1+y 2.又∵M 为AB 中点,∴x 1+x 2=2,y 1+y 2=2. ∴直线AB 的斜率为y 1−y 2x1−x 2=−12.∴直线AB 的方程为y −1=−12(x −1),即2y +x −3=0. 故选:A .3.【答案】A【解答】解:设弦的两端点为A(x 1,y 1), B(x 2,y 2), P 为AB 中点得{x 1+x 2=6y 1+y 2=2,由A , B 在椭圆上有{x 1216+y 124=1x 2216+y 224=1,两式相减得x12−x2216+y12−y224=0,即(x1+x2)(x1−x2)16+(y1+y2)(y1−y2)4=0,即3(x1−x2)8+y1−y22=0,即y1−y2x1−x2=−34,则斜率k=−34,且过点P(3,1),有y−1=−34(x−3),整理得3x+4y−13=0.故选A.4.【答案】D【解答】解:∵圆的标准方程为(x−3)2+y2=1,∴圆心坐标是(3,0),∴c=3.又b=4,∴a=√b2+c2=5.∵椭圆的焦点在x轴上,椭圆的左顶点为(−5,0).故选D.5.【答案】D【解析】解:由题意可得|OF2|=√b2−c2=12,|OF0|=c=√3|OF2|=√32,解得b=1,又a2=b2+c2=1+34=74,得a=√72,即a=√72,b=1.6.【答案】B 【解答】解:∵△POF2的面积为√3的正三角形,S=12×c×√32c=√34c2∴√34c2=√3,解得c=2.∴P(1,√3)代入椭圆方程可得:1a2+3b2=1,与a2=b2+4联立解得:b2=2√3.故选B.7.【答案】A【解答】解:设焦点坐标F 1(−c,0),F 2(c,0),|F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ |=2c , |PF 1⃗⃗⃗⃗⃗⃗⃗ |=√2|PF 2⃗⃗⃗⃗⃗⃗⃗ |,|PF 1⃗⃗⃗⃗⃗⃗⃗ |+|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2a , 所以|PF 1⃗⃗⃗⃗⃗⃗⃗ |=2√2a(√2−1),|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2a(√2−1),由PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅(OF 1⃗⃗⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ )=0,设线段PF 1的中点为M ,则OM ⊥PF 1, 则|PO ⃗⃗⃗⃗⃗ |=|OF 1⃗⃗⃗⃗⃗⃗⃗ |=|OF 2⃗⃗⃗⃗⃗⃗⃗ |, ∴PF 1⊥PF 2,则|PF 1⃗⃗⃗⃗⃗⃗⃗ |2+|PF 2⃗⃗⃗⃗⃗⃗⃗ |2=|F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ |2,∴(2√2a(√2−1))2+(2a(√2−1))2=4c 2, 可得c 2=(9−6√2)a 2,解得e 2=9−6√2, 则椭圆的离心率为√6−√3. 故选A .8.【答案】C【解答】 解:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,椭圆上任一点P(x,y),由MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0的点M 总在椭圆内,则PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ >0,得x 2+y 2>c 2恒成立,代入椭圆方程化简得y 2<b 4a 2−b 2,又−b <y <b ,所以b 2<b 4a 2−b 2,化简得a 2<2b 2=2a 2−2c 2,得a 2>2c 2,可得e =ca<√22, 又0<e <1,∴0<e <√22, 故选C .9.【答案】D【解答】解:不妨设F 1,F 2分别为左、右焦点,P 为第一象限的点,如图: 设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义知|PF 1|+|PF 2|=2a 1,|PF 1|−|PF 2|=2a 2, ∴|PF 1|=a 1+a 2,|PF 2|=a 1−a 2. 设|F 1F 2|=2c ,在△PF 1F 2中,∠F 1PF 2=π3,由余弦定理得,4c 2=(a 1+a 2)2+(a 1−a 2)2−2(a 1+a 2)(a 1−a 2)cos π3,化简得a 12+3a 22=4c 2,即1e 12+3e 22=4,∴1e 12+3e 22=4≥2√3e 12e 22,∴1e1e 2≤2√33, 当且仅当e 1=√22,e 2=√62时,等号成立,则1e1e 2的最大值为2√33, 故选D .10.【答案】B【解答】 解:椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,短轴长为2, 可得:b =1,ca =√32,解得:a =2,c =√3,b =1, 椭圆方程为x 24+y 2=1,过右焦点F 且斜率为k(k >0)的直线与椭圆C 相交于A ,B 两点, 设A(x 1,y 1),B(x 2,y 2), ∵AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,∴y 1=−3y 2, 设直线AB 方程为y =k(x −√3), 代入x 24+y 2=1,消去x ,可得(14k 2+1)y 2+√32k y −14=0, ∴y 1+y 2=−√32k 1+14k2=−2√3k1+4k 2,y 1y 2=−141+14k2=−k 24k 2+1,−2y 2=−2√3k 1+4k2,−3y 22=−k 24k 2+1,解得:k =√2. 故选:B .11.【答案】C【解答】解:F 1(−1,0),F 2(1,0)是椭圆C 的两个焦点,可得c =1, 过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB|=3, 令椭圆方程x 2a 2+y 2b 2=1中x =1,得y =±√b 2−b 2a 2,可得2√b 2−b 2a2=3, 化简得4a 4−17a 2+4=0, 解得a =2,则b =√3, 所求的椭圆方程为:x 24+y 23=1.故选:C .12.【答案】A【解答】解:设A(x 1,y 1),B(x 2,y 2), 代入椭圆方程得x 12a 2+y 12b 2=1①,x 22a 2+y 22b 2=1②,相减得x 12−x 22a 2+y 12−y 22b 2=0, ∴x 1+x 2a 2+y 1−y2x 1−x 2⋅y 1+y 2b 2=0.∵x 1+x 2=2,y 1+y 2=−2,k AB =−1−01−3=12.∴2a 2+12×−2b 2=0,化为a 2=2b 2,又c =3=√a 2−b 2,解得a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.AB 的斜率为12,且过(1,−1),∴直线AB 的方程为y +1=12(x −1),即y =12x −32,代入椭圆方程,得3x 2−6x −27=0. ∴x 1+x 2=2.x 1x 2=−9.∴|AB|=√1+14⋅√(x 1+x 2)2−4x 1x 2=5√2. 故选:A .13.【答案】B【解析】解:∵直线l 过椭圆C 的左焦点F′(−2,0), 直线l :x −√3y +2=0经过左焦点F′, ∴△PQF 的周长|PQ|+|PF|+|QF|=|PF′|+|PF|+|QF′|+|QF|=4a =8√2,14.【答案】C【解析】解:设|MF 1⃗⃗⃗⃗⃗⃗⃗⃗ |=m ,|MF 2⃗⃗⃗⃗⃗⃗⃗⃗ |=n ,因为MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =2,则mncos60°=2,⇒mn =4, 又m +n =2a ,(1),在△MF 1F 2中,由余弦定理可得:|F 1F 2|2=m 2+n 2−2mncos60°=4(a 2−b 2)(2), (1)式平方减去(2)式得:b 2=3,得:b =√3. 故选:C .设|MF 1|=m ,|MF 2|=n ,由数量积及∠F 1MF 2的大小可得mn =4,再由椭圆的定义可得m +n =2a ,在△MF 1F 2中,由余弦定理可得b 的值.本题考查椭圆的性质及数量积的运算性质,属于中档题.15.【答案】10【解答】解:由题意可得F(0,−2),则p =4,抛物线方程为x 2=−8y . 设直线AB 方程为y =kx −2,A(x 1,y 1),B(x 2,y 2),其中y 1=−x 128,y 2=−x 228.由y =−x28得y′=−x4,所以在点A处的切线方程为y−y1=−x14(x−x1),化简得y=−x14x+x128,①同理可得在点B处的切线方程为y=−x24x+x228.②联立①②得x M=x1+x22,又∵M的横坐标为2,∴x1+x2=4.将AB方程代入抛物线得x2+8kx−16=0,∴x1+x2=−8k=4,∴k=−12,∴y1+y2=k(x1+x2)−4=−12×4−4=−6,∴|AB|=p−y1−y2=10.故答案为10.16.【答案】√33【解答】解:如图,过M作MN⊥y轴于N,由△PMQ为等边三角形,可得|PQ|=2√33c,再由题意可得M(c,b2a ),则圆M为(x−c)2+(y−b2a)2=b4a2,取x=0,可得y1=b2a −√b4−a2c2a,y2=b2a+√b4−a2c2a,∴2√b4−a2c2a =2√33c,即3(e2)2−10e2+3=0,解得:e=√33.故答案为:√33.17.【答案】6【解答】解:由题意,F(−1,0),设点P(x0,y0),则有x024+y023=1,解得y02=3(1−x024),因为FP ⃗⃗⃗⃗⃗ =(x 0+1,y 0),OP ⃗⃗⃗⃗⃗ =(x 0,y 0),所以OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ =x 0(x 0+1)+3(1−x 024)=x 024+x 0+3=14(x 0+2)2+2, 此二次函数对应的抛物线的对称轴为x 0=−2,因为−2≤x 0≤2,所以当x 0=2时,OP ⃗⃗⃗⃗⃗ ⋅FP ⃗⃗⃗⃗⃗ 取得最大值224+2+3=6, 故答案为6. 18.【答案】(0,1)或(0,−1)【解答】解:设A(m,n).由F 1A ⃗⃗⃗⃗⃗⃗⃗ =5F 2B ⃗⃗⃗⃗⃗⃗⃗ ,得B (m+6√25,n 5). 又A ,B 均在椭圆上,所以有{m 23+n 2=1,(m+6√25)23+(n 5)2=1,解得{m =0,n =1或{m =0,n =−1, 所以点A 的坐标为(0,1)或(0,−1).19.【答案】解:(Ⅰ)由题意,椭圆上下顶点与左右顶点其中的一个构成等边三角形, 所以a =√3b,b =√3,即a =3,所以椭圆E 的方程为x 29+y 23=1,(Ⅱ)圆O:x 2+y 2=2,因为直线y =kx +m 与圆O:x 2+y 2=2相切, 所以√1+k 2=√2,即m 2=2(1+k 2); 联立{x 29+y 23=1y =kx +m得(1+3k 2)x 2+6kmx +3(m 2−3)=0,Δ>0, 设M (x 1,y 1),N (x 2,y 2),所以x 1+x 2=−6km 1+3k 2,x 1·x 2=3(m 2−3)1+3k 2,由弦长公式得|MN|=√1+k 2·|x 1−x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=√1+k 2·√12(9k 2+3−m 2)1+3k 2, 将m 2=2(1+k 2)代入:|MN|=√6·√(2+2k 2)(7k 2+1)1+3k 2≤√6·(2+2k 2)+(7k 2+1)21+3k 2=3√62, 当且仅当2+2k 2=7k 2+1,即k 2=15时等号成立,故弦长|MN|最大值为3√62. 20.【答案】解:(1)设P(x 0,y 0)为椭圆上的点,则x 02a 2+y 02b 2=1,整理得:y 02=−b 2a 2(x 02−a 2), 又k 1=y 0x 0+a ,k 2=y 0x 0−a ,∴k 1k 2=y 02x 02−a 2=−12, 联立两个方程则k 1k 2=−b 2a 2=−12, 解得e =c a =√1−b2a 2=√22. (2)由(1)知a 2=2b 2,又b =1,∴椭圆C 的方程为x 22+y 2=1.由题意,设直线l 的方程为:x =my −1,代入椭圆的方程有:(m 2+2)y 2−2my −1=0,则Δ=(−2m )2+4(m 2+2)=8(m 2+1)>0,设M(x 1,y 1),N(x 2,y 2),则y 1+y 2=2m m 2+2,y 1y 2=−1m 2+2,则△OMN 的面积S =12|OD |·|y 1−y 2| =12√(y 1+y 2)2−4y 1y 2 =12×√8m 2+8m 2+2=√2·√m 2+1m 2+2, 令√m 2+1=t ,(t ≥1),则有m 2=t 2−1,代入上式有S =√2·√m 2+1m 2+2=√2t t 2+1=√2t+1t ≤√22, 当且仅当t =1,即m =0时等号成立,所以△OMN 面积的最大值为√22. 21.【答案】解:(Ⅰ)椭圆焦点坐标为(1,0),则c =1,由椭圆C 上的点到F 的最大距离为a +c =3,则a =2, b 2=a 2−c 2=3,∴椭圆的标准方程为x 24+y 23=1.(Ⅱ)设M(x 1,y 1),N(x 2,y 2),由已知可设直线MN 的方程为:y =√3(x −1),联立方程组{y =√3(x −1)3x 2+4y 2=12消去x 得:5y 2+2√3y −9=0. y 1+y 2=−2√35,y 1⋅y 2=−95,⇒(y 1−y 2)2=(−2√35)2−4×(−95)=19225. ∴△OMN 的面积S =12×OF ×|y 1−y 2|=12×1×8√35=4√35 22.【答案】解:(1)∵{2c =2a 2=c 2+3, ∴{a =2c =1, 所以b 2=a 2−c 2=3∴椭圆C 的方程为x 24+y 23=1;(2)连结BM ,设M(x 1,y 1),N(x 2,y 2),则k AM ⋅k BM =y 1x 1+2⋅y 1x 1−2=y 12x 12−4,∵点M(x 1,y 1)在椭圆上,∴k AM ⋅k BM =y 12x 12−4=3−34x 12x 12−4=−34,∵k BN =3k AM ,∴k BN ⋅k BM =−94,①当MN 斜率不存在时,设MN:x =m ,不妨设M 在x 轴上方, ∴M(m,√12−3m 24),N(m,−√12−3m 24), ∵k BN ⋅k BM =−94, ∴m =1;②当MN 斜率存在时,设MN:y =kx +t ,由{y =kx +t 3x 2+4y 2−12=0,整理,得(3+4k 2)x 2+8ktx +4t 2−12=0, ∴x 1+x 2=−8kt 3+4k 2,x 1⋅x 2=4t 2−123+4k 2, ∵k BN ⋅k BM =y 1x 1−2⋅y 2x 2−2=(kx 1+t)⋅(kx 1+t)x 1x 2−2(x 1+x 2)+4=−94,∴化简可得2k2+3kt+t2=0,即t=−k或t=−2k,当t=−k时,y=kx−k,恒过定点(1,0),当斜率不存在亦符合;当t=−2k,y=kx−2k,过点(2,0)与点B重合,舍去,∴直线恒过定点(1,0).。
高二椭圆练习题及答案
高二椭圆练习题及答案椭圆是高中数学中的一个重要的几何概念,它在解析几何和微积分等数学分支中有着广泛的应用。
为了帮助高二学生巩固和提高对椭圆的理解和应用能力,以下提供一些高二椭圆练习题及其答案。
练习题一:1. 椭圆的离心率等于0的特殊情况是什么?该椭圆的形状如何?2. 某椭圆的焦点坐标为(2,0)和(-2,0),长轴长度为8. 求该椭圆的方程。
3. 某椭圆的长轴长度为10,短轴长度为8. 如果该椭圆的焦点到椭圆上任意点的距离之和为15,求该椭圆的方程。
4. 某椭圆的方程为(x-1)²/25 + y²/16 = 1,求该椭圆的焦点坐标及离心率。
5. 某椭圆的离心率为1/2,焦点为(0,-4)和(0,4)。
求该椭圆的方程。
答案一:1. 当椭圆的离心率等于0时,它的焦点和中心重合,长轴和短轴相等,椭圆变为一个圆。
2. 根据焦点坐标和长轴的长度,我们可以确定椭圆的中心坐标和短轴的长度。
所以该椭圆的方程为(x-2)²/16 + y²/4 = 1。
3. 根据题目信息,我们可以利用椭圆的定义来求解。
假设该椭圆的焦点为(c, 0),根据定义可得2a = 10,2ae = 15。
解方程组得a = 5/2,c = 3/2。
所以该椭圆的方程为(x-3/2)²/25 + y²/16 = 1。
4. 根据方程的形式,我们可以直接确定椭圆的中心坐标和长短轴长度。
所以该椭圆的焦点坐标为(1±√9, 0),离心率为√(1-16/25) = 3/5。
5. 根据焦点坐标和离心率的信息,我们可以利用椭圆的定义来求解。
假设该椭圆的焦点为(c, 0),根据定义可得2a = 2e,a = 4,c = 2。
所以该椭圆的方程为(x-2)²/16 + y²/9 = 1。
练习题二:1. 已知椭圆的离心率为2/3,焦点坐标为(±4,0),求该椭圆的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 椭圆的简单几何性质
第1课时 椭圆的简单几何性质
双基达标 (限时20分钟)
1.已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( ). A .(±13,0) B .(0,±10) C .(0,±13)
D .(0,±69)
解析 由题意知,椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,
故焦点坐标为(0,±69). 答案 D
2.椭圆x 2+4y 2=1的离心率为( ).
A.32
B.34
C.22
D.23
解析 将椭圆方程x 2+4y 2=1化为标准方程x 2+y 214
=1,则a 2=1,b 2=1
4,c
=
a 2-
b 2=32,故离心率e =
c a =3
2.
答案 A
3.已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是6
3,则椭圆C 的方程为( ). A.x 23+y 2
=1 B .x 2
+y 2
3=1
C.x 23+y 2
2=1
D.x 22+y 2
3=1
解析 因为c a =6
3,且c =2,所以a =3,b =
a 2-c 2=1.所以椭圆C 的
方程为x 23+y 2
=1. 答案 A
4.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________.
解析 设椭圆的长半轴长为a ,短半轴长为b ,焦距为2c ,则b =1,a 2+b 2=(5)2,即a 2=4.
所以椭圆的标准方程是x 24+y 2=1或y 24+x 2
=1.
答案 x 24+y 2=1或y 24+x 2
=1
5.已知椭圆x 2k +8
+y 29=1的离心率为1
2,则k 的值为________.
解析 当k +8>9时,e 2
=c 2a 2=k +8-9k +8
=14,k =4;
当k +8<9时,e 2
=c 2a 2=9-k -89=14,k =-5
4.
答案 4或-5
4
6.求椭圆x 24+y 2
=1的长轴和短轴的长、离心率、焦点和顶点的坐标. 解 已知方程为x 24+y 2
1=1,所以,a =2,b =1,c =4-1=3,因此,椭圆的长轴的长和短轴的长分别为2a =4,2b =2,离心率e =c a =3
2,两个焦点分别为F 1(-3,0),F 2(3,0),椭圆的四个顶点是A 1(-2,0),A 2(2,0),B 1(0,-1),B 2(0,1).
综合提高 (限时25分钟)
7.已知椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则m =( ). A.14 B.1
2 C .2 D .4
解析将椭圆方程化为标准方程为x2+y2
1
m
=1,
∵焦点在y轴上,∴1
m>1,∴0<m<1.由方程得a=1
m
,b=1.∵a=2b,∴m
=1
4.
答案 A
8.过椭圆x2
a2+
y2
b2=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦
点,若∠F1PF2=60°,则椭圆的离心率为().
A.
5
2 B.
3
3 C.
1
2 D.
1
3
解析记|F1F2|=2c,则由题设条件,知|PF1|=2c
3
,|PF2|=4c
3
,则椭圆的离心
率e=2c
2a =|F1F2|
|PF1|+|PF2|
=2c
2c
3
+4c
3
=3
3
,故选B.
答案 B
9.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2,且G上一点
到G的两个焦点的距离之和为12,则椭圆G的方程为________.
解析依题意,设椭圆G的方程为x2
a2
+y2
b2
=1(a>b>0),
∵椭圆上一点到其两个焦点的距离之和为12.
∴2a=12,即a=6.∵椭圆的离心率为3
2
,
∴e=c
a =
a2-b2
a
=3
2
,∴
36-b2
6
=3
2
,
∴b2=9.∴椭圆G的方程为x2
36+y2
9
=1.
答案x2
36+
y2
9=1
10.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心
率为3
5的椭圆的标准方程为________.
解析 由题意知⎩⎪⎨⎪⎧a +b =92,
c a =35,a 2
=b 2
+c 2
,
解得⎩⎪⎨
⎪⎧a =5
2,b =4
2.
但焦点位置不确定.
答案 x 250+y 232=1或x 232+y 2
50=1
11.已知椭圆长轴长是短轴长的2倍,且过点A (2,-6).求椭圆的标准方程. 解 法一 依题意a =2b .
(1)当椭圆焦点在x 轴上时,设椭圆方程为x 24b 2+y 2
b 2=1. 代入点A (2,-6)坐标,得44b 2+36
b 2=1,解得b 2=37, ∴a 2=4b 2=4×37=148, ∴椭圆的标准方程为x 2148+y 2
37=1.
(2)当焦点在y 轴上时,设椭圆方程为y 24b 2+x 2
b 2=1. 代入点A (2,-6)坐标得364b 2+4
b 2=1, ∴b 2=13,∴a 2=52.
∴椭圆的标准方程为y 252+x 2
13=1.综上所述, 所求椭圆的标准方程为x 2148+y 237=1或y 252+x 2
13=1. 法二 设椭圆方程为x 2m +y 2
n =1(m >0,n >0,m ≠n ), 由已知椭圆过点A (2,-6),所以有4m +36
n =1.① 由题设知a =2b ,∴m =2n ,② 或n =2m ,③
由①②可解得n =37,∴m =148.
由①③可解得 m =13,∴n =52.
所以所求椭圆的标准方程为 x 2148+y 237=1或x 213+y 2
52=1.
12.(创新拓展)已知椭圆E 的中心在坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0). (1)求椭圆E 的标准方程;
(2)对于x 轴上的点P (t ,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围.
解 (1)由题意可得,c =1,a =2,∴b = 3. ∴所求椭圆E 的标准方程为x 24+y 2
3=1. (2)设M (x 0,y 0)(x 0≠±2),则x 204+y 20
3=1.
①
MP →=(t -x 0,-y 0),MH →=(2-x 0,-y 0), 由MP ⊥MH 可得MP
→·MH →=0, 即(t -x 0)(2-x 0)+y 2
0=0.
②
由①②消去y 0,整理得t (2-x 0)=-14x 20+2x 0-3. ∵x 0≠2,∴t =14x 0-3
2.∵-2<x 0<2,∴-2<t <-1. ∴实数t 的取值范围为(-2,-1).。