二次函数求三角形面积最大值
二次函数中三角形面积最大值问题的处理方法
![二次函数中三角形面积最大值问题的处理方法](https://img.taocdn.com/s3/m/ab382c0442323968011ca300a6c30c225801f055.png)
二次函数中三角形面积最大值问题的处理方法二次函数是高中数学中一个经常出现的重要知识点,它在数学中有着广泛的应用,其中一个重要的应用就是处理三角形面积最大值问题。
在本文中,我们将介绍二次函数在处理三角形面积最大值问题中的基本方法和应用技巧。
1. 三角形面积最大值问题的基本原理三角形面积最大值问题指的是给定三边长度为a、b、c,求出以这三条边为边长的三角形的面积最大值。
根据海伦公式,三角形面积公式为:S = √[p(p-a)(p-b)(p-c)]其中p=(a+b+c)/2,是三角形半周长。
我们可以通过求解出上式的最大值来得到三角形的最大面积。
2. 二次函数相关知识介绍二次函数是形如y=ax^2+bx+c的函数,其中a、b、c 是常数,而x是自变量。
二次函数在数学中有着广泛的应用,其标准形式为:y=ax^2+bx+c(a≠0)其中a表示二次函数的开口方向和大小,常被称为二次函数的开口因子;b表示二次函数的对称轴的位置,常被称为二次函数的对称轴;c表示二次函数在y轴上的截距,即当x=0时,二次函数的函数值。
3. 二次函数求解三角形面积最大值的应用在二次函数求解三角形面积最大值的应用中,我们可以将三角形面积公式中的p表示为:p=(a+b+c)/2 = (x+y+z)/2然后使用二次函数y=f(x)表示√[p(p-a)(p-b)(p-c)],其中x、y、z分别表示三角形的三边长度a、b、c。
由于p=(x+y+z)/2是一个常数,因此我们可以将其视为一个固定值,从而将y=f(x)表示为:y=√[(x+y+z)/2(x+y+z)/2-x(x+y+z)/2-y(x+y+z)/2+z(x+y+z)/2]化简得:y=√[xyz(x+y+z)]这就是一个二次函数的标准形式。
通过求解这个二次函数的最大值,我们就可以得到三角形的最大面积。
4. 二次函数求解三角形面积最大值的具体方法为了求解上述的二次函数的最大值,我们需要使用二次函数y=f(x)的顶点公式:x=-b/2a,y=f(-b/2a)其中x=-b/2a即为二次函数的对称轴坐标,f(-b/2a)即为二次函数的顶点坐标。
二次函数中三角形面积问题
![二次函数中三角形面积问题](https://img.taocdn.com/s3/m/fc3dca200740be1e650e9a5a.png)
二次函数中三角形面积问题【典型例题】:如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E,S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE解:令x=0, y=3 点C的坐标为(0,3);令y=0, 则-x²+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0),设AB所在直线的解析式为y=kx+b.求出直线AB所在直线的解析式为y=-x+3.设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3)CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3mS△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE=1/2×3( -m2+3m)=--3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB解:S△ABC=S△OAC+S△OBC-S△OAB=1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB=1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3=-3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。
解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x²+2x+3联立方程组得:-x+b=-x²+2x+3,整理得:x²-3x+b-3=0当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。
二次函数三角形面积最大值
![二次函数三角形面积最大值](https://img.taocdn.com/s3/m/4580eafc185f312b3169a45177232f60ddcce797.png)
二次函数三角形面积最大值
二次函数三角形面积的最大值是数学界的一个重要课题,许多算法是建立在此之上的。
该课题涉及多个数学领域,如研究函数最值、极大极小值、极值点、微分及导数的概念等。
有许多方法可用于求解二次函数三角形面积的最大值,包括数学方程法和几何图形法,其中数学方程法比较常用,可将三角形面积公式简化为一个二次函数,并求解函数最值,得出二次函数三角形面积的最大值。
而几何图形法可以通过在二次函数曲线下的三角形的几何关系来证明三角形面积的最大值。
以下是求解二次函数三角形面积最大值的具体步骤:首先令被三角形抹平的坐标轴长度为2a,抹除一条斜边之后,因此确定顶点坐标矩阵A(a, 0),B(-a, 0),C(x, y)。
继而,通过直角三角形斜边两点坐标,可将三角形面积表达式化简为二元二次方程,以此为基础,求出原三角形的最大面积并得到其最大值。
此外,还可以通过比较几何图形下的三角形面积,发现其最大值。
综上所述,求解二次函数三角形面积最大值是一项重要数学课题,有数学方程法与几何图形法可供选择,这需要对数学最值、极大极小值、极值点与微分及导数等概念有所了解,并结合被三角形抹平的坐标轴长度、直角三角形斜边两点坐标与比较几何图形下的三角形面积等内容,从而求出二次函数三角形面积最大值。
二次函数求三角形面积最大值的典型题目
![二次函数求三角形面积最大值的典型题目](https://img.taocdn.com/s3/m/2cd7fb7cabea998fcc22bcd126fff705cc175c38.png)
二次函数求三角形面积最大值的典型题目篇一:哎呀呀,说到二次函数求三角形面积最大值的题目,这可真是让我头疼了好一阵子呢!就比如说有这么一道题:在平面直角坐标系中,有一个二次函数图像,然后给了一堆点的坐标,让咱们求由这些点构成的三角形面积的最大值。
这可咋整?我一开始看到这题,那真是脑袋都大了!心里就想:“这啥呀?怎么这么难!”我瞪大眼睛,死死地盯着题目,手里的笔都快被我捏出汗来了。
我同桌小明呢,他倒是挺自信,还跟我说:“这有啥难的,看我的!”我心里暗暗不服气,哼,你就吹吧!然后老师开始讲题啦,老师说:“同学们,咱们得先找到这个二次函数的顶点坐标,这就好比是找到宝藏的钥匙!”我一听,宝藏?这比喻还挺有意思的。
老师接着说:“然后再看看那些给定的点,能不能通过一些巧妙的方法把三角形的面积表示出来。
”我就在那拼命点头,好像听懂了,其实心里还是有点迷糊。
我扭头看看后面的学霸小红,她一脸轻松,好像这题对她来说就是小菜一碟。
我忍不住问她:“小红,你咋这么厉害,这题你都懂啦?”小红笑了笑说:“多做几道类似的题,你也能懂!”我又埋头苦想,想着要是能像玩游戏一样,一下子就找到解题的秘诀该多好啊!经过一番折腾,我终于有点明白了。
原来求这个三角形面积最大值,就像是爬山,得找到那个最高的山峰,而我们要找的就是能让面积最大的那个点或者那条线。
你说,数学咋就这么难呢?但我就不信我搞不定它!我一定要把这些难题都攻克下来,让数学成为我的强项!总之,我觉得做这种二次函数求三角形面积最大值的题目,虽然过程很艰难,但只要我们不放弃,多思考,多练习,就一定能找到解题的窍门,取得胜利!篇二:哎呀!说起二次函数求三角形面积最大值的题目,这可真是让我又爱又恨呀!有一次上课,数学老师在黑板上出了一道这样的题:已知一个二次函数图像,还有三角形的三个顶点坐标都在这个函数图像上,让我们求三角形面积的最大值。
当时我一看,脑袋就嗡嗡响,这啥呀?我就开始在草稿纸上乱画,心里想着:“这咋这么难呢?”同桌小明凑过来,瞅了瞅我的草稿纸,说:“你这算的啥呀,思路都不对!”我瞪了他一眼,回道:“那你行你上啊!”然后我俩就你一句我一句地争论起来。
二次函数图象中三角形面积计算问题_陆文娟
![二次函数图象中三角形面积计算问题_陆文娟](https://img.taocdn.com/s3/m/a8fac3751711cc7931b716fd.png)
2012 年ຫໍສະໝຸດ 二次函数图象中三角形面积计算问题陆文娟
( 江苏省江阴市新桥中学, 214426 )
二次函数图象中的三角形面积计算及其 最值问题是初中数学中的重要题型之一 . 笔 者对如何熟练且准确地求解二次函数图象中 的三角形面积, 进行了初步整理, 现供同学们 参考. 一、 三角形的一边在坐标轴上 例1 抛物线 y = 1 ( x - 4) 2 顶点为 C, 与 2
B, 求 ABC 的面积. 直线 y = x 分别交于点 A、
% y B A O C x
4) , C( 2 , 0 ) 三点 . ( 1 ) 求抛物线的解析式; ( 2 ) 若点 M 为第三象限内抛物线上一动 点, 点 M 的横坐标为 m, AMB 的面积为 S. 求
图1
解析
0) , A( 2 , 2) , B( 8 , 8) . 易得 C( 4 ,
D A M O B C x
m (1 2
2
+m -4
)
=-
1 2 m - 2 m. 2 1 1 MD( x M - x A ) + MD( x B - x M ) 2 2 1 MD( x B - x A ) = - m2 - 4 m. 2 通过添加辅助线, 转化成有一边
则 S = S ADM + S BDM = 1 2 x 2 =
櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷
{
(
P3 (
x1 = y1 =
3 + 槡 17 , 2
-7 + 槡 17 -7 - 槡 17 ; y2 = . 2 2
17 - 7 + 槡 17 , ∴ P2 3 + 槡 , 2 2 17 - 7 - 槡 17 . P3 3 - 槡 , 2 2 综上所述, 点 P 的坐标为: P1 ( 2 , 1) , P2 ( 3 + 槡 17 - 7 + 槡 17 , ), 2 2
二次函数中三角形面积问题的三种求解方法
![二次函数中三角形面积问题的三种求解方法](https://img.taocdn.com/s3/m/8c2507ef6037ee06eff9aef8941ea76e58fa4a02.png)
二次函数中三角形面积问题的三种求解方法二次函数是一种广泛应用于数学解题中的重要运算工具,有时需要根据给定的几何图形求解相关表达式,比如求出三角形的面积。
三角形面积问题在很多学科中都有着广泛的应用,下面将介绍三种求解三角形面积的方法,这三种方法均基于二次函数的概念。
第一种求解三角形面积的方法是通过使用二次函数的半径求解。
首先,根据给定的三角形边长,使用勾股定理求出该三角形的半径,然后用半径公式计算出三角形的面积,半径公式为πr/2,其中π是常数3.14159。
这种方法的优点是简单易行,只需要掌握勾股定理和半径公式即可求解三角形的面积。
第二种求解三角形面积的方法是使用三角函数求解。
有些三角形的边长有着特殊的关系,可以使用三角函数求出三角形的面积。
举例来说,如果某三角形的三条边长分别为a,b,c,那么可以使用以下公式求出此三角形的面积:S= a*b*sin(c)/2。
这种方法的优点是可以准确求出三角形的面积,但是要掌握的知识比较多,需要熟练掌握三角函数的概念。
第三种求解三角形面积的方法是使用二次函数求解。
如果给定三角形的三条边长都可以用二次函数表示,那么可以使用椭圆公式求解三角形的面积。
椭圆公式为S=∫ab√(f(x))dx,其中f(x)表示三角形边长可以表示为二次函数的表达式,a,b表示积分下限和上限。
这种方法的优点是准确度高,但使用难度也比较大,需要掌握椭圆公式和二次函数的概念。
以上就是介绍了三种求解三角形面积的方法。
不同的求解方法都有各自的优势和局限性,在不同场景下要根据实际情况选择合适的求解方法,使用二次函数可以有效地求出三角形的面积。
二次函数之三角形面积最大-教师版
![二次函数之三角形面积最大-教师版](https://img.taocdn.com/s3/m/6c8c01d45727a5e9846a61ae.png)
突破中考压轴类型二:二次函数之三角形面积最大例3.(12分)(2014•达州)如图,在平面直角坐标系中,己知点O (0,0),A (5,0),B (4,4). (1)求过O 、B 、A 三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M ,使以O 、A 、B 、M 为顶点的四边形面积最大,求点M 的坐标. (3)作直线x=m 交抛物线于点P ,交线段OB 于点Q ,当△PQB 为等腰三角形时,求m 的值.解答: 解:(1)∵该抛物线经过点A (5,0),O (0,0), ∴该抛物线的解析式可设为y=a (x ﹣0)(x ﹣5)=ax (x ﹣5).∵点B (4,4)在该抛物线上, ∴a×4×(4﹣5)=4. ∴a=﹣1.∴该抛物线的解析式为y=﹣x (x ﹣5)=﹣x 2+5x .(2)以O 、A 、B 、M 为顶点的四边形中,△OAB 的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大.①当0<x≤4时,点M 在抛物线OB 段上时,如答图1所示.∵B (4,4),∴易知直线OB 的解析式为:y=x .设M (x ,﹣x 2+5x ),过点M 作ME ∥y 轴,交OB 于点E ,则E (x ,x ),∴ME=(﹣x 2+5x )﹣x=﹣x 2+4x . S △OBM =S △MEO +S △MEB =ME (x E ﹣0)+ME (x B ﹣x E )=ME •x B =ME×4=2ME,∴S △OBM =﹣2x 2+8x=﹣2(x ﹣2)2+8∴当x=2时,S △OBM 最大值为8,即四边形的面积最大. ②当4<x≤5时,点M 在抛物线AB 段上时,图略.可求得直线AB 解析式为:y=﹣4x+20.设M (x ,﹣x 2+5x ), 过点M 作ME ∥y 轴,交AB 于点E ,则E (x ,﹣4x+20),∴ME=(﹣x2+5x)﹣(﹣4x+20)=﹣x2+9x﹣20.S△ABM=S△MEB+S△MEA=ME(x E﹣x B)+ME(x A﹣x E)=ME•(x A﹣x B)=ME×1=ME,∴S△ABM=﹣x2+x﹣10=﹣(x﹣)2+∴当x=时,S△ABM最大值为,即四边形的面积最大.比较①②可知,当x=2时,四边形面积最大.当x=2时,y=﹣x2+5x=6,∴M(2,6).(3)由题意可知,点P在线段OB上方的抛物线上.设P(m,﹣m2+5m),则Q(m,m)当△PQB为等腰三角形时,①若点B为顶点,即BP=BQ,如答图2﹣1所示.过点B作BE⊥PQ于点E,则点E为线段PQ中点,∴E(m,).∵BE∥x轴,B(4,4),∴=4,解得:m=2或m=4(与点B重合,舍去)∴m=2;②若点P为顶点,即PQ=PB,如答图2﹣2所示.易知∠BOA=45°,∴∠PQB=45°,则△PQB为等腰直角三角形.∴PB∥x轴,∴﹣m2+5m=4,解得:m=1或m=4(与点B重合,舍去)∴m=1;③若点P为顶点,即PQ=QB,如答图2﹣3所示.∵P(m,﹣m2+5m),Q(m,m),∴PQ=﹣m2+4m.又∵QB=(x B﹣x Q)=(4﹣m),∴﹣m2+4m=(4﹣m),解得:m=或m=4(与点B重合,舍去),∴m=.综上所述,当△PQB为等腰三角形时,m的值为1,2或.例4.(12分)(2013•雅安)如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.解答:解:(1)由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3,BC=;(3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6 ∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2).1.(12分)(2013•攀枝花)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.解答:解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a,解得,∴直线AC的解析式为:y=﹣x﹣3.设P点坐标为(x,x2+2x﹣3),则点N的坐标为(x,﹣x﹣3),∴PN=PE﹣NE=﹣(x2+2x﹣3)+(﹣x﹣3)=﹣x2﹣3x.∵S△PAC=S△PAN+S△PCN,∴S=PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+,∴当x=﹣时,S有最大值,此时点P的坐标为(﹣,﹣);(3)在y轴上是否存在点M,能够使得△ADE是直角三角形.理由如下:∵y=x2+2x﹣3=y=(x+1)2﹣4,∴顶点D的坐标为(﹣1,﹣4),∵A(﹣3,0),∴AD2=(﹣1+3)2+(﹣4﹣0)2=20.设点M的坐标为(0,t),分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=,所以点M的坐标为(0,);②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=﹣,所以点M的坐标为(0,﹣);③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3,所以点M的坐标为(0,﹣1)或(0,﹣3);综上可知,在y轴上存在点M,能够使得△ADE是直角三角形,此时点M的坐标为(0,)或(0,﹣)或(0,﹣1)或(0,﹣3).2.(12分)(2013•泸州)如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,﹣),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB 的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)解:(1)将A(﹣2,0),B(1,﹣),O(0,0)三点的坐标代入y=ax2+bx+c(a≠0),可得:,解得:,故所求抛物线解析式为y=﹣x2﹣x;(2)存在.理由如下:如答图①所示,∵y=﹣x2﹣x=﹣(x+1)2+,∴抛物线的对称轴为x=﹣1.∵点C在对称轴x=﹣1上,△BOC的周长=OB+BC+CO;∵OB=2,要使△BOC的周长最小,必须BC+CO最小,∵点O与点A关于直线x=﹣1对称,有CO=CA,△BOC的周长=OB+BC+CO=OB+BC+CA,∴当A、C、B三点共线,即点C为直线AB与抛物线对称轴的交点时,BC+CA最小,此时△BOC的周长最小.设直线AB的解析式为y=kx+t,则有:,解得:,∴直线AB的解析式为y=﹣x﹣,当x=﹣1时,y=﹣,∴所求点C的坐标为(﹣1,﹣);(3)设P(x,y)(﹣2<x<0,y<0),则y=﹣x2﹣x ①如答图②所示,过点P作PQ⊥y轴于点Q,PG⊥x轴于点G,过点A作AF⊥PQ轴于点F,过点B作BE⊥PQ 轴于点E,则PQ=﹣x,PG=﹣y,由题意可得:S△PAB=S梯形AFEB﹣S△AFP﹣S△BEP=(AF+BE)•FE﹣AF•FP﹣PE•BE=(y++y)(1+2)﹣y•(2+x)﹣(1﹣x)(+y)=y+x+②将①代入②得:S△PAB=(﹣x2﹣x)+x+=﹣x2﹣x+=﹣(x+)2+∴当x=﹣时,△PAB的面积最大,最大值为,此时y=﹣×+×=,∴点P的坐标为(﹣,).3.(2012眉山)已知:如图,直线与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.(1)求过A.B.C三点的抛物线的解析式;(2)若直线CD∥AB交抛物线于D点,求D点的坐标;(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB 的最大面积;若没有,请说明理由.解答:解:(1)令y=3x+3=0得:x=﹣1,故点C的坐标为(﹣1,0);令x=0得:y=3x+3=3×0+3=3故点A的坐标为(0,3);∵△OAB是等腰直角三角形.∴OB=OA=3,∴点B的坐标为(3,0),设过A.B.C三点的抛物线的解析式y=ax2+bx+c,解得:∴解析式为:y=﹣x2+2x+3;(2)设直线AB的解析式为y=kx+b,∴解得:∴直线AB的解析式为:y=﹣x+3∵线CD∥AB∴设直线CD的解析式为y=﹣x+b∵经过点C(﹣1,0),∴﹣(﹣1)+b=0解得:b=﹣1,∴直线CD的解析式为:y=﹣x﹣1,令﹣x+1=﹣x2+2x+3,解得:x=﹣1,或x=4,将x=4代人y=﹣x2+2x+3=﹣16+2×4+3=﹣5,∴点D的坐标为:(4,﹣5);(3)存在.如图1所示,设P(x,y)是第一象限的抛物线上一点,过点P作PN⊥x轴于点N,则ON=x,PN=y,BN=OB﹣ON=3﹣x.S△ABP=S梯形PNOA+S△PNB﹣S△AOB=(OA+PN)•ON+PN•BN﹣OA•OB=(3+y)•x+y•(3﹣x)﹣×3×3=(x+y)﹣,∵P(x,y)在抛物线上,∴y=﹣x2+2x+3,代入上式得:S△ABP=(x+y)﹣=﹣(x2﹣3x)=﹣(x﹣)2+,∴当x=时,S△ABP取得最大值.当x=时,y=﹣x2+2x+3=,∴P(,).所以,在第一象限的抛物线上,存在一点P,使得△ABP的面积最大;P点的坐标为(,).4.(2012•乐山)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.解答:解(1)解方程x2﹣2x﹣3=0,得 x=3,x2=﹣1.∵m<n,∴m=﹣1,n=3…(1分)1∴A(﹣1,﹣1),B(3,﹣3).∵抛物线过原点,设抛物线的解析式为y=ax2+bx.∴解得:,∴抛物线的解析式为.…(4分)(2)①设直线AB的解析式为y=kx+b.∴解得:,∴直线AB的解析式为.∴C点坐标为(0,).…(6分)∵直线OB过点O(0,0),B(3,﹣3),∴直线OB的解析式为y=﹣x.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设P(x,﹣x),(i)当OC=OP时,.解得,(舍去).∴P1(,).(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2(,﹣).(iii)当OC=PC时,由,解得,x2=0(舍去).∴P3(,﹣).∴P点坐标为P1(,)或P2(,﹣)或P3(,﹣).…(9分)②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH,=DQ(OG+GH),=,=,∵0<x<3,∴当时,S取得最大值为,此时D(,﹣).…(13分)5.(2012攀枝花)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=.(1)求过A.C.D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.解答:解:(1)∵四边形ABCD是菱形,∴AB=AD=CD=BC=5,sinB=sinD=;Rt△OCD中,OC=CD•sinD=4,OD=3;OA=AD﹣OD=2,即:A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0);设抛物线的解析式为:y=a(x+2)(x﹣3),得:2×(﹣3)a=4,a=﹣;∴抛物线:y=﹣x2+x+4.(2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣;由(1)得:y2=﹣x2+x+4,则:,解得:,;由图可知:当y1<y2时,﹣2<x<5.(3)∵S△APE=AE•h,∴当P到直线AB的距离最远时,S△ABC最大;若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时,﹣x+b=﹣x2+x+4,且△=0;求得:b=,即直线L:y=﹣x+;可得点P(,).由(2)得:E(5,﹣),则直线PE:y=﹣x+9;新课标第一网则点F (,0),AF=OA+OF=;∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=.综上所述,当P(,)时,△PAE的面积最大,为.。
二次函数三角形面积最大值公式
![二次函数三角形面积最大值公式](https://img.taocdn.com/s3/m/8338a929a88271fe910ef12d2af90242a895ab25.png)
二次函数三角形面积最大值公式二次函数三角形面积最大值公式是指在已知三角形两边和夹角的情况下,求出三角形面积最大值的公式。
这个公式在数学中有着广泛的应用,特别是在优化问题中经常出现。
首先,我们来看一下二次函数的基本形式:y=ax^2+bx+c。
其中,a、b、c都是常数,x是自变量,y是因变量。
二次函数的图像是一个开口向上或向下的抛物线。
接下来,我们来考虑如何利用二次函数求解三角形面积最大值。
假设已知三角形两边的长度分别为a和b,夹角为θ。
我们可以将三角形分成两个直角三角形,其中一个直角三角形的底边长度为x,高为h1;另一个直角三角形的底边长度为a-x,高为h2。
由于两个直角三角形的高相等,所以h1=h2=h。
根据正弦定理,我们可以得到:a/sinθ=b/sin(π-θ)=(a-x)/sinθ化简后得到:x=a/2(1-cosθ)将x代入三角形面积公式S=1/2ab*sinθ中,得到:S=a^2sinθ/4(1-cosθ)将二次函数的基本形式代入上式中,得到:S=a^2/4(1-cosθ)×sinθ将sinθ和cosθ表示为自变量x的函数,得到:sinθ=2t/(1+t^2),cosθ=(1-t^2)/(1+t^2)其中,t=tan(θ/2)。
将sinθ和cosθ代入S的公式中,得到:S=a^2/4(1-t^2)/(1+t^2)×2t/(1+t^2)化简后得到:S=a^2t/(2(1+t^2))由于t=tan(θ/2),所以t的取值范围是(-∞,+∞)。
因此,S的最大值可以通过求解二次函数y=ax^2+bx+c的顶点坐标来得到。
其中,a=a^2/2,b=0,c=0。
因此,顶点坐标为(x,y)=(0,a^2/4)。
将x=tan(θ/2)代入上式中,得到:S=a^2/8sin(θ/2)这就是二次函数三角形面积最大值公式。
通过这个公式,我们可以在已知三角形两边和夹角的情况下求出三角形面积的最大值。
二次函数中求直角三角形的方法
![二次函数中求直角三角形的方法](https://img.taocdn.com/s3/m/af8dde82f021dd36a32d7375a417866fb84ac0b7.png)
二次函数中求直角三角形的方法以二次函数中求直角三角形的方法为标题,我们将介绍如何利用二次函数来求解直角三角形的相关问题。
在二次函数中,我们常常会遇到求解直角三角形的问题。
直角三角形是指其中一个角为90度的三角形。
对于直角三角形,我们可以利用二次函数的性质来解决一些与其相关的问题。
我们来讨论直角三角形的三边关系。
根据勾股定理,直角三角形的两直角边的平方和等于斜边的平方。
假设直角三角形的两直角边分别为a和b,斜边为c,则有a^2 + b^2 = c^2。
这个关系式在解决直角三角形问题时非常重要。
在二次函数中,我们经常会遇到求解两点之间的距离的问题。
对于直角三角形,我们可以利用二次函数的距离公式来求解两点之间的距离。
假设直角三角形的两个顶点坐标分别为(x1, y1)和(x2, y2),则两点之间的距离可以通过以下公式来计算:d = sqrt((x2 - x1)^2 + (y2 - y1)^2)接下来,我们将介绍如何利用二次函数来解决直角三角形的面积问题。
直角三角形的面积可以通过以下公式来计算:S = 1/2 * a * b其中,a和b分别为直角三角形的两直角边的长度。
当我们已知直角三角形的两直角边的长度时,可以利用二次函数来求解斜边的长度。
根据勾股定理,我们可以得到以下公式:c = sqrt(a^2 + b^2)其中,c为直角三角形的斜边的长度。
当我们已知直角三角形的两个直角边的长度时,可以利用二次函数来求解直角三角形的两个锐角的正弦、余弦和正切值。
根据三角函数的定义,我们可以得到以下公式:sinA = a / ccosA = b / ctanA = a / b其中,A为直角三角形的一个锐角。
在二次函数中,我们也常常会遇到求解直角三角形的最大值或最小值的问题。
对于直角三角形,我们可以通过二次函数的顶点来求解其最大值或最小值。
在直角三角形中,顶点即为直角三角形的顶点,其x坐标为a/2,y坐标为b/2,其中a和b分别为直角三角形的两直角边的长度。
二次函数之三角形面积最大-教师版
![二次函数之三角形面积最大-教师版](https://img.taocdn.com/s3/m/cc40b7fe172ded630b1cb699.png)
突破中考压轴类型二:二次函数之三角形面积最大例3.(12分)(2014•达州)如图,在平面直角坐标系中,己知点O (0,0),A (5,0),B (4,4).(1)求过O 、B 、A 三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M ,使以O 、A 、B 、M 为顶点的四边形面积最大,求点M 的坐标.(3)作直线x=m 交抛物线于点P ,交线段OB 于点Q ,当△PQB 为等腰三角形时,求m 的值.答: 解:(1)∵该抛物线经过点A (5,0),O (0,0), ∴该抛物线的解析式可设为y=a (x ﹣0)(x ﹣5)=ax (x ﹣5).∵点B (4,4)在该抛物线上, ∴a×4×(4﹣5)=4. ∴a=﹣1.∴该抛物线的解析式为y=﹣x (x ﹣5)=﹣x 2+5x .(2)以O 、A 、B 、M 为顶点的四边形中,△OAB 的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大.①当0<x≤4时,点M 在抛物线OB 段上时,如答图1所示.∵B (4,4),∴易知直线OB 的解析式为:y=x .设M (x ,﹣x 2+5x ),过点M 作ME ∥y 轴,交OB 于点E ,则E (x ,x ),∴ME=(﹣x 2+5x )﹣x=﹣x 2+4x .S△OBM=S△MEO+S△MEB=ME(x E﹣0)+ME(x B﹣x E)=ME•x B=ME×4=2ME,∴S△OBM=﹣2x2+8x=﹣2(x﹣2)2+8∴当x=2时,S△OBM最大值为8,即四边形的面积最大.②当4<x≤5时,点M在抛物线AB段上时,图略.可求得直线AB解析式为:y=﹣4x+20.设M(x,﹣x2+5x),过点M作ME∥y轴,交AB于点E,则E(x,﹣4x+20),∴ME=(﹣x2+5x)﹣(﹣4x+20)=﹣x2+9x﹣20.S△ABM=S△MEB+S△MEA=ME(x E﹣x B)+ME(x A﹣x E)=ME•(x A﹣x B)=ME×1=ME,∴S△ABM=﹣x2+x﹣10=﹣(x﹣)2+∴当x=时,S△ABM最大值为,即四边形的面积最大.比较①②可知,当x=2时,四边形面积最大.当x=2时,y=﹣x2+5x=6,∴M(2,6).(3)由题意可知,点P在线段OB上方的抛物线上.设P(m,﹣m2+5m),则Q(m,m)当△PQB为等腰三角形时,①若点B为顶点,即BP=BQ,如答图2﹣1所示.过点B作BE⊥PQ于点E,则点E为线段PQ中点,∴E(m,).∵BE∥x轴,B(4,4),∴=4,解得:m=2或m=4(与点B重合,舍去)∴m=2;②若点P为顶点,即PQ=PB,如答图2﹣2所示.易知∠BOA=45°,∴∠PQB=45°,则△PQB为等腰直角三角形.∴PB∥x轴,∴﹣m2+5m=4,解得:m=1或m=4(与点B重合,舍去)∴m=1;③若点P为顶点,即PQ=QB,如答图2﹣3所示.∵P(m,﹣m2+5m),Q(m,m),∴PQ=﹣m2+4m.又∵QB=(x B﹣x Q)=(4﹣m),∴﹣m2+4m=(4﹣m),解得:m=或m=4(与点B重合,舍去),∴m=.综上所述,当△PQB为等腰三角形时,m的值为1,2或.例4.(12分)(2013•雅安)如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C (0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.解答:解:(1)由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3,BC=;(3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2).1.(12分)(2013•攀枝花)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.解答:解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a (x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=5,解得 a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;(2)过点P作x轴的垂线,交AC于点N.设直线AC的解析式为y=kx+m,由题意,得,解得,∴直线AC的解析式为:y=﹣x﹣3.设P点坐标为(x,x2+2x﹣3),则点N的坐标为(x,﹣x﹣3),∴PN=PE﹣NE=﹣(x2+2x﹣3)+(﹣x﹣3)=﹣x2﹣3x.∵S△PAC=S△PAN+S△PCN,∴S=PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+,∴当x=﹣时,S有最大值,此时点P的坐标为(﹣,﹣);(3)在y轴上是否存在点M,能够使得△ADE是直角三角形.理由如下:∵y=x2+2x﹣3=y=(x+1)2﹣4,∴顶点D的坐标为(﹣1,﹣4),∵A(﹣3,0),∴AD2=(﹣1+3)2+(﹣4﹣0)2=20.设点M的坐标为(0,t),分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=,所以点M的坐标为(0,);②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=﹣,所以点M的坐标为(0,﹣);③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3,所以点M的坐标为(0,﹣1)或(0,﹣3);综上可知,在y轴上存在点M,能够使得△ADE是直角三角形,此时点M的坐标为(0,)或(0,﹣)或(0,﹣1)或(0,﹣3).2.(12分)(2013•泸州)如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,﹣),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)解:(1)将A(﹣2,0),B(1,﹣),O(0,0)三点的坐标代入y=ax2+bx+c(a≠0),可得:,解得:,故所求抛物线解析式为y=﹣x2﹣x;(2)存在.理由如下:如答图①所示,∵y=﹣x2﹣x=﹣(x+1)2+,∴抛物线的对称轴为x=﹣1.∵点C在对称轴x=﹣1上,△BOC的周长=OB+BC+CO;∵OB=2,要使△BOC的周长最小,必须BC+CO最小,∵点O与点A关于直线x=﹣1对称,有CO=CA,△BOC的周长=OB+BC+CO=OB+BC+CA,∴当A、C、B三点共线,即点C为直线AB与抛物线对称轴的交点时,BC+CA最小,此时△BOC的周长最小.设直线AB的解析式为y=kx+t,则有:,解得:,∴直线AB的解析式为y=﹣x﹣,当x=﹣1时,y=﹣,∴所求点C的坐标为(﹣1,﹣);(3)设P(x,y)(﹣2<x<0,y<0),则y=﹣x2﹣x ①如答图②所示,过点P作PQ⊥y轴于点Q,PG⊥x轴于点G,过点A作AF⊥PQ轴于点F,过点B作BE⊥PQ 轴于点E,则PQ=﹣x,PG=﹣y,由题意可得:S△PAB=S梯形AFEB﹣S△AFP﹣S△BEP=(AF+BE)•FE﹣AF•FP﹣PE•BE=(y++y)(1+2)﹣y•(2+x)﹣(1﹣x)(+y)=y+x+②将①代入②得:S△PAB=(﹣x2﹣x)+x+=﹣x2﹣x+=﹣(x+)2+∴当x=﹣时,△PAB的面积最大,最大值为,此时y=﹣×+×=,∴点P的坐标为(﹣,).3.(2012眉山)已知:如图,直线与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.(1)求过A.B.C三点的抛物线的解析式;(2)若直线CD∥AB交抛物线于D点,求D点的坐标;(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.解答:解:(1)令y=3x+3=0得:x=﹣1,故点C的坐标为(﹣1,0);令x=0得:y=3x+3=3×0+3=3故点A的坐标为(0,3);∵△OAB是等腰直角三角形.∴OB=OA=3,∴点B的坐标为(3,0),设过A.B.C三点的抛物线的解析式y=ax2+bx+c,解得:∴解析式为:y=﹣x2+2x+3;(2)设直线AB的解析式为y=kx+b,∴解得:∴直线AB的解析式为:y=﹣x+3∵线CD∥AB∴设直线CD的解析式为y=﹣x+b∵经过点C(﹣1,0),∴﹣(﹣1)+b=0解得:b=﹣1,∴直线CD的解析式为:y=﹣x﹣1,令﹣x+1=﹣x2+2x+3,解得:x=﹣1,或x=4,将x=4代人y=﹣x2+2x+3=﹣16+2×4+3=﹣5,∴点D的坐标为:(4,﹣5);(3)存在.如图1所示,设P(x,y)是第一象限的抛物线上一点,过点P作PN⊥x轴于点N,则ON=x,PN=y,BN=OB﹣ON=3﹣x.S△ABP=S梯形PNOA+S△PNB﹣S△AOB=(OA+PN)•ON+PN•BN﹣OA•OB=(3+y)•x+y•(3﹣x)﹣×3×3=(x+y)﹣,∵P(x,y)在抛物线上,∴y=﹣x2+2x+3,代入上式得:S△ABP=(x+y)﹣=﹣(x2﹣3x)=﹣(x﹣)2+,∴当x=时,S△ABP取得最大值.当x=时,y=﹣x2+2x+3=,∴P(,).所以,在第一象限的抛物线上,存在一点P,使得△ABP的面积最大;P点的坐标为(,).4.(2012•乐山)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.解答:解(1)解方程x2﹣2x﹣3=0,得 x1=3,x2=﹣1.∵m<n,∴m=﹣1,n=3…(1分)∴A(﹣1,﹣1),B(3,﹣3).∵抛物线过原点,设抛物线的解析式为y=ax2+bx.∴解得:,∴抛物线的解析式为.…(4分)(2)①设直线AB的解析式为y=kx+b.∴解得:,∴直线AB的解析式为.∴C点坐标为(0,).…(6分)∵直线OB过点O(0,0),B(3,﹣3),∴直线OB的解析式为y=﹣x.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设P(x,﹣x),(i)当OC=OP时,.解得,(舍去).∴P1(,).(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2(,﹣).(iii)当OC=PC时,由,解得,x2=0(舍去).∴P3(,﹣).∴P点坐标为P1(,)或P2(,﹣)或P3(,﹣).…(9分)②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH,=DQ(OG+GH),=,=,∵0<x<3,∴当时,S取得最大值为,此时D(,﹣).…(13分)5.(2012攀枝花)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=.(1)求过A.C.D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.解答:解:(1)∵四边形ABCD是菱形,∴AB=AD=CD=BC=5,sinB=sinD=;Rt△OCD中,OC=CD•sinD=4,OD=3;OA=AD﹣OD=2,即:A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0);设抛物线的解析式为:y=a(x+2)(x﹣3),得:2×(﹣3)a=4,a=﹣;∴抛物线:y=﹣x2+x+4.(2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣;由(1)得:y2=﹣x2+x+4,则:,解得:,;由图可知:当y1<y2时,﹣2<x<5.(3)∵S△APE=AE•h,∴当P到直线AB的距离最远时,S△ABC最大;若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时,﹣x+b=﹣x2+x+4,且△=0;求得:b=,即直线L:y=﹣x+;可得点P(,).由(2)得:E(5,﹣),则直线PE:y=﹣x+9;新课标第一网则点F(,0),AF=OA+OF=;∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=.综上所述,当P(,)时,△PAE的面积最大,为.。
二次函数背景下三角形面积最值问题的几种解法
![二次函数背景下三角形面积最值问题的几种解法](https://img.taocdn.com/s3/m/f84e96f264ce0508763231126edb6f1aff00712d.png)
数学篇纵观近年来各地中考数学试题,一类以二次函数为载体,探讨图形面积的最值问题频频出现.这类试题整合了代数和几何的部分重要知识,并融合了许多数学方法,难度颇高.如何根据题目提供的信息,依据图形的变化特征,抓住解答问题的关键,从而化难为易,正确解题呢?对此,笔者介绍四种常用方法,希望能给同学们攻破难题带来帮助.一、割补法在平面直角坐标系中,当三角形任意一边均不在坐标轴上,或者不与坐标轴平行时,一般采用割补法求解.割补法分为两部分,割是指将图形分解成几部分分别求解;补是指将所求图形填上一部分,然后用补后的图形面积减去所补部分的面积.两种方法的实质都是将二次函数中图形面积的最值问题通过“转化”思想,化为“线段(和)”最值问题,间接地求出图形面积的最值.例1如图1,在平面直角坐标系中,二次函数y =x 2+2x -3交x 轴于点A ,B ,在y 轴上有一点E (0,1),连接AE .(1)求直线AE 的解析式;(2)若点D 为抛物线在x 轴负半轴下方的一个动点,求△ADE面积的最大值.图1解:(1)∵y =x 2+2x -3=(x +3)(x -1),∴当y =0时,x 1=-3,x 2=1,∴点A 的坐标为(-3,0),设直线AE 的解析式为y =kx +b ,∵过点A (-3,0),E (0,1),∴ìíî-3k +b =0,b =1,解得:ìíîïïk =13,b =1,∴直线AE 的解析式为y =13x +1;(2)如图1,过点D 作DG ⊥x 轴于点G ,延长DG 交AE 于点F ,设D (m ,m 2+2m -3),则F (m ,13m +1),∴DF =-m 2-2m +3+13m +1=-m 2-53m +4,∴S △ADE =S △ADF +S △DEF=12×DF ×AG +12DF ×OG =12×3×DF =32(-m 2-53m +4)=-32(m +56)2+16924,∴当m =-56时,△ADE 的面积取得最大值为16924.二、铅垂法如图2,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可以得出一种计算三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半.这种方法我们称之为铅垂法.求二次函数中三角形面积的最值,往往可以转化为求铅垂高的最值,当铅垂高取得最大值时,三角形的面积最大.二次函数背景下三角形面积最值问题的几种解法四川绵阳陈霖数苑纵横23数学篇例2已知:如图3,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?图3解:(1)∵抛物线过点B(6,0)、C(-2,0),∴设抛物线解析式为y=a(x-6)(x+2),将点A(0,6)代入,得:-12a=6,解得:a=-12,所以抛物线的解析式为y=-12(x-6)(x+2)=-12x2+2x+6;(2)如图3,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:ìíîb=6,6k+b=0,解得:ìíîk=-1,b=6,则直线AB的解析式为y=-x+6,设P(t,-12t2+2t+6),其中0<t<6,则N(t,-t+6),所以PN=PM-MN=-12t2+2t+6-(-t+6)=-12t2+3t,所以S△PAB=S△PAN+S△PBN=12PN⋅AG+12PN⋅BM=12PN(AG+BM)=12PN⋅OB=12×(-12t2+3t)×6=-32(t-3)2+272,所以当t=3,P位于(3,152)时,△PAB三、切线法切线法体现了数学中最为常见的数形结合思想,将三角形的一边作为三角形的底,只要求出高的最大值就可以求出面积的最值.将底边所在的直线平移,与抛物线只有一个交点,即相切时,两直线的距离即高的长度最大,然后将直线与抛物线的解析式联立方程组,求出切点的坐标,此时不用求出三角形面积的解析式就可直接运用三角形的面积公式求出最值.例3如图4,在平面直角坐标系xOy中,直线y=-x-4与x轴,y轴分别交于点A和点B.抛物线y=ax2+bx+c经过A,B两点,且对称轴为直线x=-1,抛物线与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S.图4解:(1)在y=-x-4中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线x=-1,可得方程组ìíîïïïï-b2a=-1,16a-4b+c=0,c=-4,解方程组可得:ìíîïïïïa=12,b=1,c=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)设点E的坐标为(m,12m2数苑纵横数学篇上且距AB 最远,此时E 点所在直线与AB 平行,且与抛物线相切,只有一个交点,设点E 所在直线为l :y =-x +b ,联立得方程组:ìíîïïy =-x +b ,y =12x 2+x -4,消去y ,得:12x 2+2x -4-b =0,据题意得Δ=22-4×12(-4-b )=0,解得b =-6,∴直线l 的解析式为y =-x -6,联立方程,得ìíîïïy =-x -6,y =12x 2+x -4,解得:ìíîx =-2,y =-4,∴点E (-2,-4),过点E 作y 轴的平行线交直线AB 于H ,此时点N (-2,-2),EN =-2-(-4)=2,∴S △ABE =12EN ×AO =12×2×4=4,△ABE 面积的最大值为4.四、三角函数法对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中,只需要知道一边的长度和除直角外任意一个角的度数,就可以用三角函数式表示出其余的边长或高.然后将三角函数式带入三角形面积公式,求出三角形面积的解析式,利用二次函数的性质即可求得面积最值.例4如图5,已知抛物线y =-x 2+bx +c 经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)设抛物线交y 轴于点C ,在抛物线上的第一象限上是否存在一点P ,使△PAC 的面积最大?若存在,求出点P 的坐标及△PAC 面积的最大值;若不存在,请说明理由.图5解:(1)把A (-1,0),B (3,0)代入y =-x 2+bx +c ,可得,{-1+b +c =0,-9-3b +c =0,解得{b =-2,c =3,∴抛物线的解析式为:y =-x 2-2x +3.(2)如图5,作PE ⊥x 轴于点E ,交AC 于点F ,作PM ⊥AC 于点M .设直线AC 的解析式为y =mx +n ,把B (-3,0)、C (0,3),代入得{-3m +n =0,n =3,解得{m =1,n =3,故直线BC 的解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3)(-3<x <0),则点F 的坐标为(x ,x +3).由A 、C 坐标可知,AC =32,S ΔPAC =12AC ∙PM=12×32PF ∙sin ∠PFM =]()-x 2-2x +3-()x +3∙sin ∠ACO =32()-x 2-3x =-32æèöøx +322+278,当x =-32时,-x 2-2x +3=154,即P (-32,154).所以存在一点P ,使△PAC 的面积最大,最大值为278,P 点坐标为(-32,154).通过对以上四种方法的分析介绍,相信同学们对二次函数背景下三角形面积的最值问题的解法有了一定的了解.同学们只要掌握好了这四种方法,在二次函数的综合题中,再出现求图形面积的最值问题,就能轻松应对了.数苑纵横25。
二次函数之三角形面积最大值专题
![二次函数之三角形面积最大值专题](https://img.taocdn.com/s3/m/ce730296aaea998fcd220e66.png)
432y 2+-=x x 1221y 2++-=x x =max y 21ah S ABC 21=∆专题一:二次函数与面积问题------类型1:三角形面积的最大值一、知识点睛1.点P 是抛物线 上一动点。
若设点P 的横坐标为m ,则点P 的纵坐标可表示为: ,∴点P 的坐标可表示为:2.如右图,AB ∥x 轴,BC ∥y 轴。
则线段BC= ,AB=故:“竖直方向”上的线段长 = —“水平方向”上的线段长 = —3.二次函数的一般式为: ,顶点式为: 例如:将 化为顶点式为: ,开口向 ,顶点坐标: ∴当x= 时,二、铅垂法(割补求面积) 坐标系中三角形面积公式:S= •一点引铅垂线段的长•另两点的水平宽锐角三角形中过点C 引的铅垂线 钝角三角形中过点C 引的铅垂线锐角三角形中过点B 引的铅垂线 ah S ABC 21=∆ 铅垂法的优点: 1.任何一点引铅垂线都可以 2.任何形状的三角形都适用 3.与三角形在第几象限无关 4.与三角形在不在坐标系无关 ah S ABC 21=∆三、典例讲解例1.已知二次函数62343y 2++-=x x 交x 轴于A ,B 两点,交y 轴于点C 。
点P 是第一象限抛物线上一动点。
连结BC ,BP 和CP 。
当△BCP 面积最大时,求P 点坐标。
四、小试牛刀例2.如图,已知抛物线经过两点A(-3,0),B(0,3)且其对称轴为直线x= -1(1)求此抛物线的解析式(2)若点P 是抛物线上点A 与点B 之间的动点(不包括点A 点B )求△PAB 的面积最大值,并求出此时点P 的坐标。
五、能力提升1.如图,在平面直角坐标系中,抛物线34383y 2--=x x 与x 轴交于点A(-2,0),B(4,0),与直线323y -=x 交于点C(0,-3),直线323y -=x 与x 轴交于点D ,点P 是抛物线上第四象限上的一个动点,连接PC ,PD 。
当△PCD 面积最大时,求点P 坐标.2. 如图,已知抛物线c bx ++-=2x y 过(1,4)与(4,-5)两点,且与一直线1x y +=相交于A,C 两点,(1)求该抛物线解析式.(2)求A,C 两点的坐标.(3)若P 是抛物线上位于直线AC.上方的一个动点,求△APC 的面积的最大值.B C A O M N xy3.如图,抛物线经过A (-1,0)、B (3,0)、C (0,3)三点.(1)求抛物线的解析式.(2)点M 是直线BC 上方抛物线上的点(不与B 、C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长.(3)在(2)的条件下,连接MB 、MC ,是否存在点M ,使四边形OBMC 的面积最大?若存在,求出点M 的坐标及最大面积;若不存在,说明理由.4.如图,在直角坐标系中,抛物线经过点A (0, 4), B(1, 0), C(5, 0),其对称轴与x 轴相交于点M.(1)求抛物线的解析式和对称轴.(2)在抛物线的对称轴上是否存在一点P ,使△PAB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)连接AC,在直线AC 的下方的抛物线上,是否存在一点N,使△NAC 的面积最大?若存在,请求出点N 的坐标:若不存在,请说明理由.。
求二次函数之内接三角形求面积的方法
![求二次函数之内接三角形求面积的方法](https://img.taocdn.com/s3/m/e3c2731e581b6bd97f19ea45.png)
S CAB
1 32 2
3
(3)、假设存在符合条件的点 P,设 P 点的横坐标为 x,△PAB 的铅垂高为 h,
则 h y1 y2 (x2 2x 3) (x 3) x2 3x
9 由 S△ PAB= 8 S△ CAB
1 3 (x2 3x) 9 3
= 1 ������������ × ������������
2
AD 即为铅垂高,BF 即为 B 点与 C 点的水平宽。
明白了这个原理,让我们一起来看一下二次函数内接三角形求面积的题型。
例题 1:
如图 12-2,抛物线顶点坐标为点 C(1,4),交 x 轴于点 A(3,0),交 y 轴于点 B.
(1)求抛物线和直线 AB 的解析式;
设直线 AB 的解析式为: y2 kx b
由 y1 x2 2x 3求得 B 点的坐标为 (0,3)
y C
BDLeabharlann 1 O1x A图 12-2
把 A(3,0) , B(0,3) 代入 y2 kx b 中,解得: k 1,b 3 ,所以 y2 x 3 .
(2)、因为 C 点坐标为(1,4),所以当 x=1时,y1=4,y2=2,所以 CD=4-2=2 ,
向下的函数,所以把二次函数一般式化成顶点式即可求出面积的最大值。
讲了这么多,相信同学们已经跃跃欲试了,请自己动手做一下面这个习题↓↓↓
得: 2
8
化简得: 4x2 12x 9 0
|PE|即为铅垂高 h,h 等于 P,E 两点纵坐标之差
x 3 解得, 2
将
x
3 2
代入
y1
x2
二次函数动点三角形面积最值问题
![二次函数动点三角形面积最值问题](https://img.taocdn.com/s3/m/a5f848343186bceb18e8bb25.png)
当点CC在何处时SS△AAAAAA有最大值?1.铅垂高法做CCCC⊥ xx轴且交直线AABB于点D,设点CC坐标为(mm, aamm2+ bbmm+ cc),直线AB的解析式为gg(xx) = kkxx + qq,∴点D坐标为(mm, kkmm + qq),∴CC CC的长度为f(m) − g(m) = aamm2 + bbmm + cc−kkmm−qq, ∴SS△AA AAAA= SS△AAAAAA+ SS△AA AAAA= AAAA×(xx BB−xx AA),将CC CC为aamm2 + bbmm + cc−kkmm−qq代入,令(xx−xx) = ss,可2 AA AA得SS= (aamm2+bbmm+cc−kk mm−qq)×ss= aa ss mm2+(bb−kk)ss mm+ss(cc−qq),当aassmm2+ (bb−△AAAAAA 2 2kk)ssmm + ss(cc−qq)有最大值时,SS△AA AAAA有最大值.当m = −bb= −(bb−kk)ss= −bb−kk时, aassmm2 + (bb−kk)ssmm + ss(cc−qq)有最2aa2aass2aa大值, SS△AAAAAA有最大值.A A � A A A � A作直线l l 平行于直线AABB 且与f(x)只有一个交点C (即直线l 与ff (xx ) = aaxx 2 + bbxx + cc 相切),此时SS △AAAAAA 为最大值.∴ ff ′(xx ) =ff (xx AA ) − ff (xx A A ) = 2aaxx + bb xx AA − xx AA (aaxx 2 + bbxx AA + cc ) − (aaxx 2 + bbxx A A + cc ) ⇒= 2aaxx + bb xx AA − xx AA aa (xx 2 − xx 2) + bb (xx AA − xx A A ) ⇒= 2aaxx + bb xx AA − xx AA aa (xx AA + xx A A )(xx AA − xx A A ) + bb (xx AA − xx A A )⇒ xx AA − xx AA= 2aaxx + bb ⇒ aa (xx AA + x x AA ) + bb = 2aaxx + bb ⇒ xx = xx AA + xx AA 2 ∴当xx = xx BB +xx AA时, SS 有最大值. 2 △AAAAAA。
求二次函数中三角形面积最大值压轴题专题汇编
![求二次函数中三角形面积最大值压轴题专题汇编](https://img.taocdn.com/s3/m/d3b36571af1ffc4ffe47aca0.png)
,解得 m=﹣2.
【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函
数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义 的理解,在(2)①中分别求得 A、B、C、D 的坐标是解题的关键,在(2)② 中用 x 表示出△PBC 的面积是解题的关键.本题考查知识点较多,综合性较 强,难度适中.
2
y a x h k .例如:抛物线 y 2 x 1 3 的伴随直线为 y 2 x 1 3 ,即
2
y 2 x 1.
(1)在上面规定下,抛物线 y x 1 4 的顶点为
2
.伴随直线
为 和
;抛物线 y x 1 4 与其伴随直线的交点坐标为
1 2
8分
24( 海南).抛物线 y ax 2 bx 3 经过点 A 1, 0 和点 B 5, 0 。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线 y
3 x 3 相交于 C、D 两点,点 P 是抛物线上的动点且 5
1 2 1 ∴ OM AC . 4
分别表示出线段的长,可得到关于 P 点坐标的方程,可求得 P 点坐标. 【解答】解: (1)∵抛物线 y=ax2+bx+3 经过点 A(1,0)和点 B(5,0), ∴ ,解得 ,
∴该抛物线对应的函数解析式为 y= x2﹣
x+3;
(2)①∵点 P 是抛物线上的动点且位于 x 轴下方, ∴可设 P(t, t2﹣ t+3)(1<t<5),
B M O N C x y A
4a 2b 4 0 , 64a 8b 4 0
1 4
3 2
1 4
课 件 《二次函数中的三角形面积最值问题》
![课 件 《二次函数中的三角形面积最值问题》](https://img.taocdn.com/s3/m/89f46651e009581b6ad9eb6b.png)
课堂小结
1、本节课你都收获了什么? 2、S=(水平距离× 铅锤高) ÷2
谢谢聆听!
解: 由抛物线的顶点坐标P(1,4),得对称轴为
x=1, 又因为B(3,0),所以A(-1,0)。
因此AB=3-(-1)=4,OC=3-0=3
S△ABC=(AB ×OC) ÷2 =(4 × 3)÷2
A
=6
y
P (1,4)
4 C3 (0,3)
2
1 铅锤高
O
2
水平距离
B(3,0) x
方法归纳
当三角形的一边在坐标轴上时,就以这边为底,作高 求面积即可。
二次函数中三角形面积的最值问题
课题分析
常见的类型有: 1.三角形的边在坐标轴上; 2.三角形的边均不在或不与坐标轴平行。
题型讲解
例1:已知抛物线y=-x2+2x+3与x轴交于A,B两点,其中A点位于B点的左侧, 与y轴交于C点,顶点为P,求 △ABC的面积。
分析:由图可知,△ ABC有一边AB在坐标轴上, 所以 △ABC的面积就是以AB边为底,OC为高来求。
分,这两部分的面积之和就是△PAC的面积 。
解:由A、C两点都在抛物线 y=-x2+2x+3 上,所以A ( 1,0), C(2,3)。
4P
令yAC=kx+b,将A(-1,0),C(2,3)代入得:ቤተ መጻሕፍቲ ባይዱ
-k+b=o 2k+b=3
解得
k=1 b=1
即yAC=x+1
令点P(m,-m2+2m+3 ),则B(m,m+1)
S=(水平距离× 铅锤高) ÷2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点(知识点)
12年
背景
示三角形 面积;求满足等腰三角形条 件的t的值。 求三角形面积、线段长度; 表示三角形面积。
求点的坐标,直线关系式; 满足菱形条件的点的坐标。 求点的坐标,直线关系式;表 示三角形面积、并求面积最 大;求满足等腰三角形的点 的坐标
y
B x
(图2)
(图3)
26.(11本题14分)如图,在平面直角坐标系中.四边形OABC是平 行四边形.直线l经过O、C两点.点A的坐标为(8,o),点B的坐 标为(11.4),动点P在线段OA上从点O出发以每秒1个单位的速 度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿 A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一 C—B相交于点M。当P、Q两点中有一点到达终点时,另一点也随 之停止运动,设点P、Q运动的时间为t秒(t>0) △MPQ的面积为 S. (1)点C的坐标为___________,直线的解析式为 ___________.(每空l分,共2分); (2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的 取值范围。
26(09本题14分)如图,已知直线 l1 : y 3 x 3 于 C,l1、l2 分别交 x 轴于 A、B 两点.矩形 DEFG
2 8
1 2
y
y E C D
A
O (第26题)
F (G)
B x
y y E C R A O F M G (图1) B x D E
y
y
y
D C R R A F O G M B x F A G O M E D C
2
2.如图,在平面直角坐标系中,抛物线 y x2 mx n 经过点A(3,0)、B(0,-3),点P是直线AB上的动 点,过点P作x轴的垂线交抛物线于点M,设点P的 横坐标为t. (1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长 时,求△ABM的面积.
求与x轴、y轴交点坐标、顶点 坐标及直线关系式;求满足平 行四边形条件的点的坐标,奶
09年
直线型(两个一次函数)
直线型(两个一次函数)
10年 11年
直线型(两个一次函数)
12年
抛物线型
二、在二次函数中求三角形面积
1.已知二次函数 y x 2x 3 的图象与x轴交于A、B两 点 (A在B的左侧),与y轴交于点C,顶点为D (1)求点A、B、C、D的坐标,在下面方格中建立适当的 直角坐标系,并画出该二次函数的大致图象;
2
y
A
o
B
x
C D
(2)连接 BC,CD,BD求
CDB 的面积
y
A
o
B
x
C
你喜欢哪种方法?为什么?
D
若P为此抛物线上第四象限内一动点, P的横坐标为t, CPB 是否有最大面积?若有,请求出最大面积;若没有,请说明 理由。 y
A
o
B
x
C P
感谢您的到来
感谢您的参与
26(08本题14分)如图,已知直线 l1 的解析式为 y 3x 6,直线 l1 与x轴、y轴分别相交于A、B两点,直线 l2 经过B、C两点,点C的 坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直 线 l2 上从点C向点B移动, 点P、Q同时运动,且移动的速度都为 1 t 10 ) 每秒1个单位长度,设移动时间为t秒(
连接BC,P为线段BC上一动点,过P作X轴的垂线交抛物 线于M,连接CM、BM,当线段PM最大时,求 CMB 的面积
y
A
o P C M
B
x
若p(x,y)仍为为此抛物线上一动点(其中x>0,y<0), E(1,0), CEP是否有最大面积?若有,请求出 连接CE、CP、PE, 最大面积;若没有,请说明理由。
y
A
E B C P
x
1 3 y x x 2 交x轴于A、B 4.已知:抛物线, 2 2 两点(A在B的左侧),交y轴于点C, 点D的 坐标为(2,0),点P(m,n)是该抛物 线上的一个动点(其中m>0,n>0),连接 AC,BC, DP,DP交BC于点E。△CDP是否 有最大面积?若有,求出△CDP的最大面 积;若没有,请说明理由。
l (1)求直线 l2 的解析式。 (2)设△PCQ的面积为S,请求出S关于t的函数关系式。 (3)试探究:当t为何值时,△PCQ为等腰三角形?
1
l1
l2 : y 2x 16 相交 与直线 的顶点 D、E 分别在直 线 l 、l 上,顶点 F、G 都在 x 轴上,且 G 点与 B 点重合. (1)求△ ABC 的面积; (2)求矩形 DEFG 的边 DE与 EF 的长; (3)若矩形 DEFG 从原点出发,沿 x 轴的反方向以每秒1个单位长 度的速度平移,设移动时间为 t (0 ≤ t ≤12) 秒,矩形 DEFG 与△ABC 重 叠部分的面积为 S ,求 S 关于 t 的函数关系式,并写出相应的的取 值范围.
M
B
y 2 -2 O P B -3 3 A x
M
3.在平面直角坐标系中,已知抛物线经过 A(-4,0),B(0,-4),C(2,0) 三点. (1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点, 点M的横坐标为m,△AMB的面积为S.求 S关于m的函数关系式,并求出S的最大 值.
y A O C x