对称加密算法实验报告
对称加密算法的实训报告
一、实训背景随着信息技术的快速发展,数据安全越来越受到人们的关注。
对称加密算法作为一种重要的加密技术,在保障数据安全方面发挥着重要作用。
本次实训旨在让学生了解对称加密算法的基本原理,掌握其实现方法,并能够运用对称加密算法对数据进行加密和解密。
二、实训目标1. 理解对称加密算法的基本原理和特点;2. 掌握常用的对称加密算法,如AES、DES、3DES等;3. 能够运用对称加密算法对数据进行加密和解密;4. 分析对称加密算法在实际应用中的优势和局限性。
三、实训内容1. 对称加密算法的基本原理对称加密算法是指使用相同的密钥进行加密和解密的加密方法。
其特点是加密和解密速度快,但密钥的分配和管理较为复杂。
对称加密算法的加密和解密过程如下:(1)加密过程:发送方使用密钥对明文进行加密,得到密文;(2)解密过程:接收方使用相同的密钥对密文进行解密,得到明文。
2. 常用对称加密算法(1)AES加密算法:AES是一种高级加密标准,提供128、192、256位密钥长度,具有较好的安全性。
(2)DES加密算法:DES是一种经典的加密算法,使用56位密钥长度,安全性相对较低。
(3)3DES加密算法:3DES是DES的扩展,使用三个密钥进行加密和解密,提高了安全性。
3. 对称加密算法的编程实现本次实训采用Python编程语言,使用pycryptodome库实现对称加密算法的加密和解密功能。
(1)安装pycryptodome库:在Python环境中安装pycryptodome库,可以使用pip命令:pip install pycryptodome。
(2)编写加密和解密代码:以下是一个使用AES加密算法对数据进行加密和解密的示例代码。
```pythonfrom Crypto.Cipher import AESfrom Crypto.Util.Padding import pad, unpad# 密钥和明文key = b'sixteen byte key'plaintext = b'This is a test message.'# 创建AES加密对象cipher = AES.new(key, AES.MODE_CBC)# 加密ciphertext = cipher.encrypt(pad(plaintext, AES.block_size))# 解密decrypted = unpad(cipher.decrypt(ciphertext), AES.block_size)print("密文:", ciphertext)print("明文:", decrypted)```4. 对称加密算法的实际应用对称加密算法在实际应用中具有广泛的应用场景,如:(1)数据传输安全:在数据传输过程中,使用对称加密算法对数据进行加密,确保数据传输的安全性;(2)数据存储安全:在数据存储过程中,使用对称加密算法对数据进行加密,防止数据泄露;(3)安全认证:在安全认证过程中,使用对称加密算法对用户密码进行加密,提高认证的安全性。
对称算法实验报告
河北科技师范学院欧美学院《网络安全综合实习》实习总结实习类型教学实习实习单位河北科技师范学院欧美学院实习起止时间2014 年12月22 日至2015 年1 月2 日指导教师刘正林所在院(系)信息技术系专业班级网本1101学生姓名9210110225学号张欣军一、实习的基本概况(一)理论指导对称密钥加密机制即对称密码体系,也称为单钥密码体系和传统密码体系。
对称密钥密码通常分为两大类,一类是分组密码(如DES、AES算法),另一类是序列密码(如RC4算法)。
对称密码体系加密和解密时所用的密钥是相同的或者是类似的,即由加密密钥可以很容易地推导出解密密钥,反之亦然。
同时在一个密码系统中,我们不能假定加密算法和解密算法是保密的,因此密钥必须保密。
发送信息的通道往往是不可靠的或者不安全的,所以在传统的密码系统中,必须用不同于发送信息的另外一个安全信道来发送密钥。
如图描述了对称密码(传统密码)系统原理框架,其中M表示明文;C表示密文;E表示加密算法;D 表示解密算法;K表示密钥;I表示密码分析员进行密码分析时掌握有其他有关信息;B表示密码分析员对明文M的分析和猜测传统密码系统原理框架图二、项目情况项目名称:对称密码算法开发环境:基于“对称密钥”的加密算法主要有DES、TripleDES、RC2、RC4、RC5和Blowfish等。
项目分工情况:对称密码算法是对信息加密的一种,首先我们分头收集有关对称密码算法的材料,展开讨论,对学过的知识进行回顾。
在老师的讲解下又加深了理解,最后我们每个人根据自己的认识展开对对称密码算法的研究,完成个人实习总结。
三、实习过程或步骤DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位。
首先,DES把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,并进行前后置换,最终由L0输出左32位,R0输出右32位,根据这个法则经过16次迭代运算后,得到L16、R16,将此作为输入,进行与初始置换相反的逆置换,即得到密文输出。
aes实验报告
aes实验报告AES实验报告引言:AES(Advanced Encryption Standard)是一种对称加密算法,被广泛应用于保护敏感数据的安全传输和存储。
本实验旨在探究AES算法的原理和应用,并通过实验验证其加密和解密的效果。
一、AES算法的原理AES算法是一种分组密码算法,将明文分成固定长度的数据块,并通过一系列的加密和解密操作来保护数据的机密性。
AES算法的核心是轮函数,它通过一系列的轮变换来对数据进行加密和解密。
二、实验准备1. 实验环境搭建:在计算机上安装支持AES算法的编程环境,如Python或Java。
2. 实验材料准备:准备一些测试用的明文和密钥,以及相应的加密和解密结果。
三、AES算法的加密过程1. 密钥扩展:AES算法需要对输入的密钥进行扩展,生成一系列的轮密钥。
这些轮密钥用于后续的加密和解密操作。
2. 初始轮:将明文与第一轮密钥进行异或运算。
3. 轮变换:AES算法中的轮变换包括字节代换、行移位、列混淆和轮密钥加。
这些变换操作按照一定的顺序进行,每一轮都会产生一个新的加密结果。
4. 最终轮:在最后一轮中,省略列混淆操作,并将结果与最后一轮密钥进行异或运算。
四、实验步骤1. 选择一组明文和密钥作为输入数据。
2. 使用AES算法对明文进行加密,得到密文。
3. 使用相同的密钥对密文进行解密,得到还原的明文。
4. 比较还原的明文与原始明文是否一致,验证AES算法的正确性。
五、实验结果与分析在实验中,我们选择了一组明文和密钥进行加密和解密操作。
经过实验,我们成功地得到了相应的密文和还原的明文,并与原始明文进行了比较。
结果显示,还原的明文与原始明文完全一致,证明了AES算法的正确性和可靠性。
六、AES算法的应用AES算法在现代密码学中被广泛应用于数据的加密和解密过程。
它可以用于保护敏感数据的安全传输和存储,如网络通信、文件加密和数据库加密等领域。
AES算法具有高度的安全性和可靠性,被认为是目前最强大的对称加密算法之一。
【精品】DES算法实验报告
【精品】DES算法实验报告一、理论部分DES算法是一种对称加密算法,也是目前广泛应用的加密算法之一。
DES算法使用的是分组加密的思想,将明文数据分成一定长度的数据块,按照一定的算法进行加密,得到密文数据。
DES算法中的关键是密钥,只有持有正确密钥的人才能解密。
DES算法的密钥长度为64位,但由于存在弱密钥的问题,使用时需要特别注意。
DES算法的加密过程包括以下几个步骤:1、密钥的生成和处理:DES算法的密钥长度为64位,但由于存在弱密钥的问题,使用时需要使用程序进行特殊处理,以确保生成的密钥不为弱密钥。
2、初始置换(IP):将明文数据按照一定的规则进行置换,得到置换后的数据。
3、分组:将置换后的明文数据分成左半部分和右半部分。
4、轮函数(f函数):将右半部分进行扩展置换、异或运算、S盒代替、置换等操作,得到一个新的右半部分。
5、轮秘钥生成:生成本轮加密所需要的秘钥。
6、异或运算:将左半部分和右半部分进行异或运算,得到一个新的左半部分。
7、左右交换:将左右部分进行交换。
以上步骤循环执行16次,直到得到最终的密文数据。
二、实验部分本次实验使用C语言实现了DES算法的加密和解密过程。
具体实现过程包括以下几个部分:1、密钥的生成:使用DES算法生成64位密钥,其中包括了对弱密钥的处理。
2、置换:使用DES算法中的IP置换和IP逆置换进行数据置换。
3、轮函数:使用DES算法中的f函数进行一轮加密操作。
5、加密:循环执行16轮加密操作,得到密文数据。
以上实现过程全部基于DES算法的规范。
三、结果分析1、速度慢:由于DES算法采用的是分组加密的思想,需要执行多次操作才能得到最终结果。
因此本次实验的加密和解密速度相对较慢。
2、代码简单:本次实验的代码相对简单,只需要用到一些基本数据结构和算法即可实现DES算法的加密和解密过程。
但需要注意的是,由于DES算法本身的复杂性,代码实现中需要注意细节和边界问题。
四、总结本次实验使用C语言实现了DES算法的加密和解密过程,通过实验得到了一些结果。
des 加密算法实验报告
des 加密算法实验报告DES加密算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称加密算法,由IBM公司于1975年研发并被美国联邦政府采用为标准加密算法。
DES算法具有高效、可靠、安全等特点,被广泛应用于信息安全领域。
本实验旨在通过对DES算法的实验研究,深入了解其原理、性能和应用。
二、DES算法原理DES算法采用对称密钥加密,即加密和解密使用相同的密钥。
其核心是Feistel结构,将明文分成左右两部分,经过16轮迭代加密后得到密文。
每一轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和密钥进行变换。
DES算法中使用了置换、代换和异或等运算,以保证加密的安全性。
三、DES算法实验过程1. 密钥生成在DES算法中,密钥长度为64位,但实际上只有56位用于加密,8位用于奇偶校验。
实验中,我们随机生成一个64位的二进制密钥,并通过奇偶校验生成最终的56位密钥。
2. 初始置换明文经过初始置换IP,将明文的每一位按照特定规则重新排列,得到初始置换后的明文。
3. 迭代加密经过初始置换后的明文分为左右两部分,每轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和子密钥进行变换。
函数f包括扩展置换、S盒代换、P盒置换和异或运算等步骤,最后与右半部分进行异或运算得到新的右半部分。
4. 逆初始置换经过16轮迭代加密后,得到的密文再经过逆初始置换,将密文的每一位按照特定规则重新排列,得到最终的加密结果。
四、DES算法性能评估1. 安全性DES算法的密钥长度较短,易受到暴力破解等攻击手段的威胁。
为了提高安全性,可以采用Triple-DES等加强版算法。
2. 效率DES算法的加密速度较快,适用于对大量数据进行加密。
但随着计算机计算能力的提高,DES算法的加密强度逐渐降低,需要采用更加安全的加密算法。
3. 应用领域DES算法在金融、电子商务、网络通信等领域得到广泛应用。
DES实验报告范文
DES实验报告范文实验目的:了解DES算法的基本原理和加密过程;掌握DES算法的加密过程;了解DES算法的弱点并掌握略解决方法。
实验原理:DES(Data Encryption Standard)即数据加密标准,是一种对称加密算法。
它的基本原理是,通过将明文分组(64位)进行多次迭代,每次都经过相同的置换和替代操作,最终得到密文。
加密和解密都使用相同的过程和密钥。
实验步骤:1.密钥生成首先,用户需要选择一个64位的密钥,但该密钥只有56位是有效的,剩余8位用作奇偶校验位。
用户可以任意选择一个64位的二进制串,然后将满足奇偶校验的8位奇偶位加到末尾。
2.初始置换将64位的明文分成两个32位的部分,左边为L0,右边为R0。
进行一个固定的初始置换,将L0右边的32位和R0左边的32位合并,得到一个64位的二进制串。
3.子密钥生成通过对初始密钥进行置换等操作,生成16个子密钥(每个48位)。
每个子密钥与初始密钥无关。
4.迭代加密(16轮)迭代加密过程中,每次都涉及到对L和R的操作。
具体步骤如下:-对R进行扩展置换,扩展为48位,并将扩展后的结果与子密钥进行异或;-将异或结果分成8个6位的块,每个块对应一个S盒;-将S盒输出的结果经过置换P后与L异或,得到新的R;-将新的R赋值给R(R=R');-将旧的R赋值给L(L=R');-重复以上操作16轮。
5.逆初始置换将L16和R16按照逆初始置换的方式进行合并,得到一个64位的二进制串,即密文。
实验结果分析:经过实验,我们成功完成了DES算法的加密过程,并获得了加密后的密文。
通过解密过程,可以将密文重新转换为原始的明文。
实验总结:DES算法是一种较为经典的对称加密算法,由于其密钥长度较短,容易受到暴力破解的攻击。
为了提升安全性,可以对DES算法进行改进,如使用更长的密钥长度、增加迭代次数等。
此外,还可以使用其他更加先进的加密算法来替代DES算法,如AES算法等。
对称加密小工具实训报告
一、实训背景随着互联网的快速发展,信息安全问题日益凸显。
对称加密算法作为一种重要的信息安全技术,被广泛应用于数据传输、存储等领域。
为了提高自身对对称加密算法的理解和应用能力,我们开展了对称加密小工具实训。
二、实训目的1. 理解对称加密算法的基本原理和常用算法;2. 掌握对称加密算法在Java中的实现方法;3. 提高编程能力和信息安全意识。
三、实训内容1. 对称加密算法简介对称加密算法是指加密和解密使用同一个密钥的加密算法。
常见的对称加密算法有DES、3DES、AES等。
对称加密算法的优点是加密速度快,但密钥管理难度较大。
2. Java实现对称加密算法在Java中,可以使用javax.crypto包中的类实现对称加密算法。
以下以AES算法为例,介绍Java实现对称加密算法的方法。
(1)引入加密库首先,在项目中引入加密库。
由于不使用第三方库,我们可以使用Java自带的java.security包中的类实现AES加密。
(2)生成密钥使用KeyGenerator类生成AES密钥。
AES密钥长度为128位、192位或256位,这里以128位为例。
```javaKeyGenerator keyGenerator = KeyGenerator.getInstance("AES");keyGenerator.init(128);SecretKey secretKey = keyGenerator.generateKey();```(3)加密数据使用Cipher类对数据进行加密。
以下代码示例演示了如何使用AES加密算法加密数据:```javaCipher cipher = Cipher.getInstance("AES");cipher.init(Cipher.ENCRYPT_MODE, secretKey);byte[] encryptedData = cipher.doFinal(data.getBytes());```(4)解密数据解密数据与加密数据类似,只是使用Cipher的DECRYPT_MODE模式。
加密算法实验报告
#### 实验名称:加密算法设计与实现#### 实验时间:2023年10月15日#### 实验地点:XX大学计算机科学与技术学院实验室#### 实验者:[姓名] [学号]#### 一、实验目的1. 理解并掌握常见的加密算法原理,包括对称加密算法和非对称加密算法。
2. 能够运用所学知识设计并实现简单的加密算法。
3. 通过实验加深对加密算法安全性的认识。
#### 二、实验内容本次实验主要包括以下内容:1. 对称加密算法:DES算法实现。
2. 非对称加密算法:RSA算法实现。
3. 加密算法的安全性分析。
#### 三、实验原理1. 对称加密算法(DES):DES算法是一种基于密钥的加密算法,其密钥长度为56位。
它将64位的明文输入经过16轮迭代,最终生成64位的密文输出。
DES算法的核心是它的密钥生成和迭代加密过程。
2. 非对称加密算法(RSA):RSA算法是一种基于公钥和私钥的非对称加密算法。
它利用了数论中的大数分解难题。
RSA算法包括密钥生成、加密和解密三个过程。
其中,公钥用于加密,私钥用于解密。
#### 四、实验步骤1. DES算法实现:- 实现DES算法的初始化密钥生成。
- 实现DES算法的16轮迭代加密过程。
- 对明文进行加密,生成密文。
2. RSA算法实现:- 实现RSA算法的密钥生成过程。
- 实现RSA算法的加密和解密过程。
- 对明文进行加密,生成密文;对密文进行解密,恢复明文。
3. 加密算法的安全性分析:- 分析DES算法和RSA算法的安全性。
- 比较两种算法的优缺点。
#### 五、实验结果与分析1. DES算法:- 加密速度较快,适合加密大量数据。
- 密钥长度较短,安全性相对较低。
2. RSA算法:- 加密速度较慢,适合加密少量数据。
- 密钥长度较长,安全性较高。
#### 六、实验总结通过本次实验,我们掌握了DES和RSA两种加密算法的原理和实现方法。
在实验过程中,我们深刻认识到加密算法在信息安全中的重要性。
对称加密算法实验报告
//Expand array 4,5,6,7,8,9, 8,9,10,11,12,13, 12,13,14,15,16,17, 16,17,18,19,20,21, 20,21,22,23,24,25, 24,25,26,27,28,29, 28,29,30,31,32,1 }; int S[][][]={{ //S-diagram array {14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7}, {0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8}, {4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0}, {15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13} }, { {15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10}, {3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5}, {0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15},
{13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9} }, { {10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8}, {13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1}, {13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7}, {1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12} }, { {7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15}, {13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9}, {10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4}, {3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14} }, { {2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9}, {14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6}, {4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14}, {11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3} }, { {12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11},
实验13.2AES对称加密实验
实验13.2AES对称加密实验1.实验目的随着Internet网的广泛应用,信息安全问题日益突出,以数据加密技术为核心的信息安全技术也得到了极大的发展。
最常用的对称密码算法是数据加密标准(DES)算法,但是由于DES密钥长度较短,已经不适合当今分布式开放网络对数据加密安全性的要求。
目前,一种新的基于Rijndael算法对称高级数据加密标准AES取代了数据加密标准DES。
通过本次实验加深对称加密算法机制的认识,进一步了解AES加密算法相关内容,可以读源码并试着调试一下程序,这会有助于加深对编程的认识。
2.实验原理美国国家标准和技术研究所(NIST)经过三轮候选算法筛选,从众多的分组密码中选中Rijndael算法作为高级加密标准(AES)。
Rijndael密码是一个迭代型分组密码,其分组长度和密码长度都是可变的,分组长度和密码长度可以独立的指定为128比特,192比特或者256比特。
AES的加密算法的数据处理单位是字节,128位的比特信息被分成16个字节,按顺序复制到一个4*4的矩阵中,称为状态(state),AES的所有变换都是基于状态矩阵的变换。
用Nr表示对一个数据分组加密的轮数。
在轮函数的每一轮迭代中,包括四步变换,分别是字节代换运算(ByteSub())、行变换(ShiftRows())、列混合(MixColumns())以及轮密钥的添加变换AddRoundKey(),其作用就是通过重复简单的非线形变换、混合函数变换,将字节代换运算产生的非线性扩散,达到充分的混合,在每轮迭代中引入不同的密钥,从而实现加密的有效性。
3.实验工具AES 加密算法演示程序:用来演示AES对字符串以及文件的加密及解密的过程。
(该程序来源于互联网,基于Delphi开发)4.实验环境Windows XP操作系统,1G以上CPU,256以上内存,单机操作。
(也可网络操作,进行加密和解密。
)5.实验步骤运行AES加密算法演示程序 ,出现如图:2、各部分作用如下图:图1字符串加/解密过程演示a)先输入加密密钥,密钥的不同将会直接影响加密的结果。
加密算法实验报告
加密算法实验报告加密算法实验报告引言在当今信息时代,数据安全是一个非常重要的问题。
随着互联网的发展和普及,人们在进行各种在线交易、通信和存储时,需要保护自己的个人隐私和敏感信息。
为了实现数据的保密性和完整性,加密算法应运而生。
本实验旨在通过实际操作,了解和掌握几种常见的加密算法,包括对称加密算法和非对称加密算法。
一、对称加密算法对称加密算法是指加密和解密使用相同的密钥的算法。
在实验中,我们选择了DES算法作为对称加密算法的代表。
DES算法是一种分组密码算法,将明文分成64位的数据块,并使用56位的密钥进行加密。
经过16轮的迭代运算,最终得到密文。
实验步骤:1. 生成随机的64位密钥。
2. 将明文分组,并进行初始置换。
3. 将初始置换后的明文分成左右两部分。
4. 进行16轮的迭代运算,每轮都包括扩展置换、异或运算、S盒代替、P盒置换和交换左右两部分。
5. 最后进行逆初始置换,得到密文。
实验结果:经过实验,我们成功地对明文进行了加密,并得到了相应的密文。
通过解密操作,我们可以将密文还原为明文。
二、非对称加密算法非对称加密算法是指加密和解密使用不同的密钥的算法。
在实验中,我们选择了RSA算法作为非对称加密算法的代表。
RSA算法是一种基于大素数的数论算法,其安全性基于质因数分解的难题。
实验步骤:1. 选择两个大素数p和q,并计算它们的乘积n。
2. 计算n的欧拉函数值phi(n)。
3. 选择一个整数e,使得1 < e < phi(n)且e与phi(n)互质。
4. 计算e的模反元素d。
5. 将明文转化为整数m。
6. 计算密文c,其中c ≡ m^e (mod n)。
7. 将密文c转化为明文m',其中m' ≡ c^d (mod n)。
实验结果:经过实验,我们成功地对明文进行了加密,并得到了相应的密文。
通过解密操作,我们可以将密文还原为明文。
三、加密算法的应用加密算法在现代通信和存储中起着重要的作用。
aes 实验报告
aes 实验报告AES实验报告1. 引言AES(Advanced Encryption Standard)是一种对称加密算法,被广泛应用于各种领域中的数据保护和安全通信。
本实验旨在通过实际操作,深入了解AES算法的原理和应用。
2. 实验目的2.1 理解AES算法的基本原理;2.2 掌握AES算法的加密和解密过程;2.3 通过实验验证AES算法的安全性和效率。
3. 实验环境本实验使用的环境为Python编程语言和相关的密码学库。
4. 实验步骤4.1 密钥生成AES算法使用的密钥长度可以是128位、192位或256位。
在本实验中,我们选择128位密钥长度。
首先,通过随机数生成器生成一个128位的密钥。
4.2 加密过程4.2.1 分组将待加密的明文按照128位分组,如果最后一个分组不足128位,则需要进行填充。
4.2.2 轮密钥扩展AES算法使用了多轮加密,每一轮都需要使用不同的轮密钥。
通过密钥扩展算法,将初始密钥扩展为多个轮密钥。
4.2.3 轮函数AES算法的核心是轮函数,它包括字节替代、行移位、列混淆和轮密钥加四个步骤。
这些步骤在每一轮中都会被执行。
4.2.4 轮数循环根据密钥长度的不同,AES算法的轮数也不同。
在本实验中,我们选择10轮加密。
4.2.5 输出密文经过多轮加密后,得到最终的密文。
4.3 解密过程解密过程与加密过程相似,只是在轮密钥的使用上有所不同。
解密过程需要使用逆向的轮密钥。
5. 实验结果与分析通过实验,我们得到了AES算法对明文进行加密和解密的结果。
经过比对,我们可以验证加密和解密的正确性。
同时,我们还可以通过实验数据分析AES算法的安全性和效率。
6. 实验结论AES算法是一种安全可靠的对称加密算法,能够有效地保护数据的机密性。
通过本实验,我们深入了解了AES算法的原理和应用,并且掌握了AES算法的加密和解密过程。
7. 实验总结通过本次实验,我们不仅学习了AES算法的基本原理和应用,还通过实际操作加深了对该算法的理解。
aes算法实验报告
aes算法实验报告AES 算法实验报告一、实验目的本次实验的主要目的是深入研究和理解高级加密标准(AES)算法的工作原理、加密和解密过程,并通过实际编程实现来验证其安全性和有效性。
二、实验原理AES 算法是一种对称加密算法,它使用了分组密码的结构,将明文分成固定长度的分组进行处理。
AES 支持 128、192 和 256 位三种密钥长度,对应的分组长度均为 128 位。
AES 算法的核心是轮函数,包括字节替换(SubBytes)、行移位(ShiftRows)、列混淆(MixColumns)和轮密钥加(AddRoundKey)四个操作。
经过多次轮函数的迭代,实现对明文的加密。
字节替换操作是一个非线性的字节替换,通过一个固定的 S 盒进行替换。
行移位操作是将矩阵中的每行进行循环移位。
列混淆操作是对矩阵中的每列进行线性变换。
轮密钥加操作是将轮密钥与当前状态进行异或运算。
三、实验环境编程语言:Python相关库:pycryptodome操作系统:Windows 10四、实验步骤1、导入所需的库```pythonfrom CryptoCipher import AESfrom CryptoUtilPadding import pad, unpad ```2、定义加密和解密函数```pythondef encrypt_aes(message, key):cipher = AESnew(key, AESMODE_ECB) padded_message = pad(message, AESblock_size) ciphertext = cipherencrypt(padded_message) return ciphertextdef decrypt_aes(ciphertext, key):cipher = AESnew(key, AESMODE_ECB)plaintext = cipherdecrypt(ciphertext)unpadded_plaintext = unpad(plaintext, AESblock_size) return unpadded_plaintext```3、生成密钥```pythonkey = b'secretkey123456' 16 字节的密钥```4、明文输入```pythonmessage = b'This is a secret message'```5、加密过程```pythonciphertext = encrypt_aes(message, key)print("加密后的密文:", ciphertext)```6、解密过程```pythondecrypted_message = decrypt_aes(ciphertext, key)print("解密后的明文:", decrypted_message)```五、实验结果与分析通过实验,成功对输入的明文进行了 AES 加密,并能够正确解密得到原始明文。
AES加密算法实验报告
AES加密算法实验报告AES(Advanced Encryption Standard)是一种对称加密算法,用于保护数据的机密性和完整性。
它是由美国国家标准与技术研究所(NIST)于2001年选定的替代算法,用于替代旧有的DES(Data Encryption Standard)算法。
AES算法的设计目标是提供高安全性以及高效率的加密和解密速度。
AES算法采用分组密码的方式,将明文按照固定大小(128比特)进行分组,然后对每个分组进行加密。
密钥长度可以选择128、192或256比特,不同的密钥长度对应着不同的加密强度。
其中,128比特密钥长度适用于大部分的安全应用,而192和256比特密钥长度适用于更高级别的安全应用。
AES算法的加密和解密过程有以下四个步骤:1. 字节代换(SubBytes):将每个输入字节替换为固定的对应字节,通过查找S盒表中的元素实现。
这一步骤主要用于消除明文的统计性质,增加密码的复杂性。
2. 行移位(ShiftRows):按照特定规则对每个分组中的字节进行循环移位。
这一步骤可以增加明文的扩散性质,增强密码的混淆效果。
3. 列混淆(MixColumns):对每个分组的列进行线性变换。
该变换采用矩阵乘法的方式,通过与固定矩阵的乘法操作实现。
这一步骤可以增加密码的扩散和混淆效果。
4. 轮密钥加(AddRoundKey):将每个分组与轮密钥进行异或操作。
轮密钥是由主密钥派生出来的,用于对每个分组进行不同轮数的加密。
这一步骤可以将密钥的信息混合到每个分组中。
AES算法通过多轮的加密和解密操作,将明文转化为密文,或将密文转化为明文。
每轮加密和解密操作都会使用不同的轮密钥,并对明文或密文进行不同的变换操作。
这样可以增加密码的强度和混淆效果。
在实际应用中,AES算法已被广泛使用于各种安全领域,如电子商务、数字版权保护、无线通信等。
它具有高安全性、高效率和高灵活性的特点,适用于不同安全等级的应用环境。
现代密码学实验报告(DES-AES-RSA)
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
38,6,46,14,54,22,62,30,
37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,
35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58,26,
33,1,41,9,49,17,57,25};
//E位选择表
static const char e_table[48]={32,1,2,3,4,5,4,5,
19,11,3,60,52,44,36,
63,55,47,39,31,23,15,
7,62,54,46,38,30,22,
14,6,61,53,45,37,29,
21,13,5,28,20,12,4};
//pc2选位表
const static char pc2_table[48]={14,17,11,24,1,5,3,28,
{
for(char i=0,j,k;i<8;i++,in+=6,out+=4)
2.AES算法的基本原理和特点。
答:AES加密数据块分组长度必须为128比特,密钥长度可以是128比特、192比特、256比特中的任意一个(如果数据块及密钥长度不足时,会补齐)。AES加密有很多轮的重复和变换。大致步骤如下:1、密钥扩展(KeyExpansion),2、初始轮(Initial Round),3、重复轮(Rounds),每一轮又包括:SubBytes、ShiftRows、MixColumns、AddRoundKey,4、最终轮(Final Round),最终轮没有MixColumns。
加密解密实验报告
加密解密实验报告加密解密实验报告一、引言随着信息技术的飞速发展,数据安全性成为了一个重要的问题。
为了保护敏感数据的安全,加密解密技术应运而生。
本实验旨在探究加密解密的原理与方法,并通过实验验证其可行性和有效性。
二、加密方法1. 对称加密对称加密是一种加密方法,使用相同的密钥进行加密和解密。
在实验中,我们选择了最常用的对称加密算法——AES(Advanced Encryption Standard)。
通过实验我们发现,AES算法能够在保证数据安全的同时,加解密速度较快。
2. 非对称加密非对称加密是一种使用不同密钥进行加密和解密的方法。
在实验中,我们选择了RSA算法进行实验。
RSA算法基于数论的难题,具有较高的安全性。
实验结果表明,RSA算法在加密过程中较为耗时,但加密后的数据安全性较高。
三、实验步骤1. 对称加密实验(1)选择明文:在实验中,我们选择了一段文字作为明文进行加密。
明文内容为:“加密解密实验报告”。
(2)选择密钥:在AES算法中,密钥长度可以选择128位、192位或256位。
我们选择了128位密钥进行实验。
(3)加密过程:将明文和密钥输入AES算法中,得到密文。
(4)解密过程:将密文和密钥输入AES算法中,得到明文。
2. 非对称加密实验(1)选择明文:同样选择了一段文字作为明文,内容为:“加密解密实验报告”。
(2)生成密钥对:使用RSA算法生成一对密钥,包括公钥和私钥。
(3)加密过程:将明文和公钥输入RSA算法中,得到密文。
(4)解密过程:将密文和私钥输入RSA算法中,得到明文。
四、实验结果1. 对称加密实验结果经过AES算法加密和解密后,我们成功地将明文“加密解密实验报告”转化为了密文,并且通过解密过程将密文还原为了明文。
实验结果表明,对称加密算法能够有效地保护数据的安全性。
2. 非对称加密实验结果通过RSA算法的加密和解密过程,我们同样将明文“加密解密实验报告”转化为了密文,并通过解密过程将密文还原为了明文。
广东工业大学网络工程实验报告-对称密码算法DES
一.实验目的通过用DES算法对实际的数据进行加密和解密来深刻了解DES的运行原理。
二.实验软件环境运行Windows或Linux操作系统的PC机,具有gcc(Linux)、VC(Windows)等C语言编译环境。
三.实验内容1.算法分析根据所提供的程序分析DES算法的实现过程。
DES程序包括一个头文件和一个实现DES算法的C文件。
头文件里主要是一些宏定义和函数声明,其中还包括保证可移植性的一些定义。
DES程序通过宏定义可选择小代码模式(#define small code)或者选择大代码模式。
在大代码模式下,程序定义了多个表,从而使DES算法中的很多运算都可以通过查表实现,速度较快,但要求有较多的存储空间;在小代码模式运行时,可以不查表,从而节省了存储空间,但是速度较慢。
读者可以根据自己的需求来选择不同的运行模式。
加密解密时主要用到下面5个函数。
(l)int des_setup(const unsigned char *key,int keylen,int num_rounds,des_key *skey)函数名称:密钥生成函数。
参数说明:key是一个指针,指向用户输入的初始密钥。
keylen是输入密钥的长度,以字节为单位。
num_rounds是加密轮数,当输入0时,使用算法默认的轮数。
skey是一个指向结构体变量的指针,变量里面存储加密和解密时每轮使用的子密钥。
当密钥生成时,返回值为CRYPT_OK(0),结果保留在Skey指向的结构体。
des_key的定义如下:typedef struct des_key{ulong32 ek[32], dk[32];}des_key结构体里的ek存储加密时用的子密钥,dk存储解密时用的子密钥。
结构体中用2个32位的整数来存储一轮的48位密钥,每一个32位整数被分成4个8位,每个8位的第6位存储密钥。
如果把48位密钥分成8组,则这8组按存储的顺序从高到低分别为1、3、5、7、2、4、6、8。
对称加密算法实验报告331
对称加密算法实验报告页组别姓名同组实验者实验项目名称DES对称加密算法实验日期教师评语实验成绩:指导教师(签名):年月日一、报告要求a)使用光盘附录提供的程序对输入的十六进数加密(把输入的字符转化成二进制整数,比如输入两个字符1F,转化成二进制数00011111),比较输入和输出。
当把输入的数改变一个比特时(如把1F变为1E),比较输出的变化,说明原因。
b)请阅读光盘附录提供的程序并做修改,使得DES的16轮循环中每一轮循环结束都能输出一个结果(显示为十六进制的数),即输出L i、R i(1≤i≤16)的值。
二、实验过程a)算法:输入16位16进制数,转化成2进制为64位,用16位字符数组作输入保存;再将从高位到低位每两位16进制数也就是8bit,按照数值作为相应得内存模型用字符保存,共8个字符保存64位2进制数,也就是输入的16位16进制数,在对此8个字符进行对称加密,比较加密前后的输入输出。
程序如下:#include "des.h"int main(){int i;unsigned char ct[8],key[8]={'a','b','c','d','a','b','c','d'};des_key skey;printf("Please enter a hexadecimal integer which is equal to 16 digits:\n");char ptHexNum[16];//用16位字符数组保存16位16进制数gets(ptHexNum);unsigned char ptBinHignNum[8],ptBinLowNum[8];//将16位16进制数共64位按内存模型转变成8位字符数组ptNumtoCh中unsigned char ptNumtoCh[9];ptNumtoCh[8]=ct[8]='\0';for(i=0;i<16;i++){if(i%2==0){switch(ptHexNum[i])//16进制数高位{case'0':ptBinHignNum[i/2]=char(0x00);break;case'1':ptBinHignNum[i/2]=char(0x10);break;case'2':ptBinHignNum[i/2]=char(0x20);break;case'3':ptBinHignNum[i/2]=char(0x30);break;case'4':ptBinHignNum[i/2]=char(0x40);break;case'5':ptBinHignNum[i/2]=char(0x50);break;case'6':ptBinHignNum[i/2]=char(0x60);break;case'7':ptBinHignNum[i/2]=char(0x70);break;case'8':ptBinHignNum[i/2]=char(0x80);break;case'9':ptBinHignNum[i/2]=char(0x90);break;case'a':case'A':ptBinHignNum[i/2]=char(0xA0);break;case'b':case'B':ptBinHignNum[i/2]=char(0xB0);break;case'c':case'C':ptBinHignNum[i/2]=char(0xC0);break;case'd':case'D':ptBinHignNum[i/2]=char(0xD0);break;case'e':case'E':ptBinHignNum[i/2]=char(0xE0);break;case'f':case'F':ptBinHignNum[i/2]=char(0xF0);break;default:printf("error...\n");}}if(i%2==1){switch(ptHexNum[i])//16进制数低位{case'0':ptBinLowNum[i/2]=char(0x00);break;case'1':ptBinLowNum[i/2]=char(0x01);break;case'2':ptBinLowNum[i/2]=char(0x02);break;case'3':ptBinLowNum[i/2]=char(0x03);break;case'4':ptBinLowNum[i/2]=char(0x04);break;case'5':ptBinLowNum[i/2]=char(0x05);break;case'6':ptBinLowNum[i/2]=char(0x06);break;case'7':ptBinLowNum[i/2]=char(0x07);break;case'8':ptBinLowNum[i/2]=char(0x08);break;case'9':ptBinLowNum[i/2]=char(0x09);break;case'a':case'A':ptBinLowNum[i/2]=char(0x0A);break;case'b':case'B':ptBinLowNum[i/2]=char(0x0B);break;case'c':case'C':ptBinLowNum[i/2]=char(0x0C);break;case'd':case'D':ptBinLowNum[i/2]=char(0x0D);break;case'e':case'E':ptBinLowNum[i/2]=char(0x0E);break;case'f':case'F':ptBinLowNum[i/2]=char(0x0F);break;default:printf("error...\n");}}}for(i=0;i<8;i++){ptNumtoCh[i]=ptBinHignNum[i]^ptBinLowNum[i];}//校验输入字符变换后是否正确for(i=0;i<8;i++){printf("%X",int(ptNumtoCh[i]));}des_setup(key,8,0,&skey);printf("\nNow The L vector and R vector is followed when program is encrypting:\n\n");des_ecb_encrypt(ptNumtoCh,ct,&skey);printf("\nNow The L vector and R vector is followed when program is decrypting:\n\n");des_ecb_decrypt(ct,ptNumtoCh,&skey);printf("The hexadecimal integer is followed which is encrypted:\n");for(i=0;i<8;i++){printf("%X",int(ptNumtoCh[i]));}printf("The string is followed after encrypted:\n");printf("%s\n",ct);//system("PAUSE");return 0;}b)算法:因为加密函数des_ecb_encrypt、解密函数des_ecb_decrypt都是调用的desfunc函数对明文进行加密的,在desfunc函数中有一个for循环,一共循环8轮,每轮进行加密或解密的两轮运算,所以再此处添加代码以输出L、R的值。
计算机网络安全--对称密码算法DES实验报告
实验一对称密码算法DES一、实验目的通过用DES算法对实际的数据进行加密和解密来深刻了解DES的运行原理。
二、实验环境运行Windows或Linux操作系统的PC机,具有gcc(Linux)、VC(Windows)等C语言编译环境。
三、实验内容和步骤(1)使用附录提供的程序对一个文件进行加密和解密,程序代码和执行结果如下所示。
程序代码:#include "des.h"#include "stdio.h"int main(int argc, char *argv[]){unsigned char key[8]= { 'a','b','c','d','a','b','c','d' };des_key skey;des_setup(key,8,0,&skey);FILE *fd1;FILE *fd2;fd1=fopen("plaintext1.txt","rb");fd2=fopen("cipertext.txt","wb");int count=0;unsigned char p_buf[8];unsigned char c_buf[8];while(true){count=fread(p_buf,sizeof(unsigned char),8,fd1);if(count<8)for(int i=count;i<=7;i++)p_buf[i]='\0';des_ecb_encrypt(p_buf,c_buf,&skey);fwrite(c_buf,sizeof(unsigned char),8,fd2);if(count<8)break;count=0;}fclose(fd1);fclose(fd2);fd2=fopen("cipertext.txt","rb");网络安全实验报告学院专业班学号姓名成绩评定_______ 教师签名实验 1 题目对称密码算法DES 课程名称网络安全fd3=fopen("plaintext2.txt","wb");while(true){count=fread(p_buf,sizeof(unsigned char),8,fd2);if(count==0)break;des_ecb_decrypt(p_buf,c_buf,&skey);fwrite(c_buf,sizeof(unsigned char),8,fd3);count=0;}fclose(fd2);fclose(fd3);system("PAUSE");return 0;}程序执行结果:例如plaintext1.txt存放的明文为:加密后的密文为:解密后plaintext2.txt中的明文为:(2)使用附录提供的程序对输入的十六进制数加密(把输入的字符转化成整数。
DES加密算法实验报告
DES加密算法实验报告DES( Data Encryption Standard)算法是一种对称加密算法,是现代密码学的基础。
DES算法将64位明文数据分为两个32位的部分,将两部分通过一系列复杂的运算和替换操作,最终输出64位的密文。
DES算法的加密过程主要包括初始置换、16轮Feistel网络、逆初始置换等步骤。
首先是初始置换,将明文数据进行位重排列,使得加密的效果更加均匀。
然后是16轮Feistel网络的操作,每一轮都包括密钥的生成和密钥的运算。
密钥的生成过程是将64位的密钥进行重排列和选择运算,生成每一轮所需要的子密钥。
密钥的运算过程是将子密钥与32位明文数据进行异或操作,然后再通过一系列的替换和置换运算,得到新的32位数据。
最后是逆初始置换,将加密后的数据进行反向重排列,得到最终的64位密文数据。
实验中,对于给定的明文和密钥,我们首先需要将明文和密钥转换成二进制形式。
然后根据初始置换表和选择运算表,将明文和密钥进行重排列。
接下来进入16轮Feistel网络的循环中,每一轮都按照密钥的生成和运算过程进行操作。
最后通过逆初始置换表,将加密后的数据进行反向重排列,得到最终的密文。
DES算法的优点是运算速度较快,加密强度较高,安全可靠,广泛应用于网络通信和数据保密领域。
但DES算法也存在一些缺点,主要是密钥长度较短,为56位,容易受到暴力破解攻击;DES算法的设计和实现已经有一定历史了,现在已经有更安全和更高效的算法可供选择。
在实验中,我使用Python语言编写了DES算法的加密程序,在给定的明文和密钥下进行了测试。
实验结果表明,DES算法可以成功加密数据,并且在解密过程中能够准确还原原始数据。
总结来说,DES加密算法是一种经典的对称加密算法,通过初始置换、Feistel网络和逆初始置换等步骤,可以将明文数据加密成密文数据。
DES算法在保证加密强度和运算速度的同时,也有一些缺点需要注意。
因此,在实际应用中需要根据具体的需求和安全要求选择合适的加密算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8}, {9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6}, {4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13} }, { {4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1}, {13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6}, {1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2}, {6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12} }, { {13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7}, {1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2}, {7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8}, {2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11} } }; int P[]={16,7,20,21, //P-change 29,12,28,17, 1,15,23,26, 5,18,31,10, 2,8,24,14,
class Cipher extends JFrame implements ActionListener { JLabel label[] = new JLabel[3]; JButton button[] = new JButton[3]; JTextFieldtext[]=newJTextField[5]; JPanel panel[] = new JPanel[5]; // 置换矩阵 int IP1[]={58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4, 62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8, 57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3, 61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7, }; int IP2[]={40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31, 38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29, 36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27, 34,2,42,10,50,18,58,26,33,1,41,9,49,17,57,25 }; int EBox[]={ 32,1,2,3,4,5,
panel[1].add(label[1]); panel[1].add(text[1]); panel[2].add(label[2]); panel[2].add(text[panel[3].add(text[3]);
panel[4].add(button[2]); panel[4].add(text[4]); for(int i = 0;i < 5;i++) { add(panel[i]); } button[0].addActionListener(this); button[1].addActionListener(this); button[2].addActionListener(this); setBounds(100,100,300,260); setVisible(true); validate(); } // 字符串转化为二进制整型数组 ( 使用 Unicode 编码, 每一个字符转化为 16 位二进制数 ) public int[] ToBinaryArray(String BinaryStr) { char CArray[] = BinaryStr.toCharArray(); intLen=CArray.length; int ResultArray[] = new int[Len*16]; // 用除 2 余数法将一个字符转化为相应的 16 位二进制数,并保存在二进制数组 IArray 中 for(int i = 0; i < Len; i++) { int IntCArray = (int)(CArray[i]); // 字符型数组 CArray 转化为整型数组 IArray
//Expand array 4,5,6,7,8,9, 8,9,10,11,12,13, 12,13,14,15,16,17, 16,17,18,19,20,21, 20,21,22,23,24,25, 24,25,26,27,28,29, 28,29,30,31,32,1 }; int S[][][]={{ //S-diagram array {14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7}, {0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8}, {4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0}, {15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13} }, { {15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10}, {3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5}, {0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15},
实验题目:对称加密算法
日期:2013-11-3
班级: 软件三班
Email:61536799@
实验目的:
了解对称算法的基本工作流程。
掌握对称算法的使用方法。
学号: 201100300144 姓名: 刘桂良
软件环境:
Windows7
java
实验步骤:
(1)DES 算法
import java.awt.*; import java.awt.event.*; import javax.swing.*; import java.io.*; import ng.*; // 窗体类
32,27,3,9, 19,13,30,6, 22,11,4,25 }; int PC_1[]={57,49,41,33,25,17,9, //PC_1 in keyBuild 1,58,50,42,34,26,18, 10,2,59,51,43,35,27, 19,11,3,60,52,44,36, 63,55,47,39,31,33,15, 7,62,54,46,38,30,22, 14,6,61,53,45,37,29, 21,13,5,28,20,12,4 }; int PC_2[]={14,17,11,24,1,5, //PC_2 in keyBuild 3,28,15,6,21,10, 23,19,12,4,26,8, 16,7,27,20,13,2,
41,52,31,37,47,55, 30,40,51,45,33,48, 44,49,39,56,34,53, 46,42,50,36,29,32 }; Cipher() { setLayout(new FlowLayout()); label[0] = new JLabel(" 要加密的文件 "); label[1] = new JLabel(" 要加密的内容 "); label[2] = new JLabel(" 加密密钥 "); for(int i = 0;i < 5;i++) { text[i] = new JTextField(10); panel[i] = new JPanel(); } text[0].setText("desmc.txt"); text[2].setText("Evon"); button[0] = new JButton(" 确定 "); button[1] = new JButton(" 加密 "); button[2] = new JButton(" 解密 "); panel[0].add(label[0]); panel[0].add(text[0]); panel[0].add(button[0]);
String ResultStr = new String(CArray); return ResultStr; } // 初始变换 IP 算法 public int[] ChangeIP_1(intArray_64[]) { int Res_64[] = new int [64]; for(int i = 0;i < 64;i++) { Res_64[i] = Array_64[IP1[i]-1]; } return Res_64; } (2)简单 AES 算法:
{13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9} }, { {10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8}, {13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1}, {13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7}, {1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12} }, { {7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15}, {13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9}, {10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4}, {3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14} }, { {2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9}, {14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6}, {4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14}, {11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3} }, { {12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11},