数列的通项公式与求和的常见方法
数列求和与求通项公式方法总结
![数列求和与求通项公式方法总结](https://img.taocdn.com/s3/m/0159d82824c52cc58bd63186bceb19e8b8f6ec37.png)
数列求和与求通项公式方法总结数列是数学中的一种重要概念,它是由一列按照一定规律排列的数字所组成的序列。
在数列中,求和与求通项公式是两个重要的问题,本文将对这两个问题的方法进行总结。
首先,我们来讨论数列的求和问题。
数列的求和是指对一个给定的数列中的所有元素进行求和的操作。
数列求和的方法主要有以下几种。
1.等差数列求和公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
等差数列求和的公式为Sn=[(a1+an)n]/2,其中an为末项。
这个公式适用于等差数列的求和问题,可以更快地求得数列的和。
2.等差数列求和差法:对于一个等差数列,当项数为n时,可以通过求和的差法Sn=(a1+an)(n/2)来求得数列的和。
这个方法适用于项数较多且公差较小的等差数列。
3.等比数列求和公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
等比数列求和的公式为Sn=a1*(1-r^n)/(1-r),其中r不等于1、这个公式适用于等比数列的求和问题,可以轻松地求得数列的和。
4.等比数列求和减法:对于一个等比数列,当公比r满足,r,<1时,可以通过求和的减法Sn=a1/(1-r)来求得数列的和。
这个方法适用于公比绝对值小于1的等比数列。
其次,我们来讨论数列的求通项公式问题。
数列的通项公式是指能够根据数列的位置n来快速计算出数列中相应位置上的数值的公式。
数列求通项公式的方法主要有以下几种。
1.等差数列通项公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。
2.等比数列通项公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。
数列求和及求通项方法总结
![数列求和及求通项方法总结](https://img.taocdn.com/s3/m/a8658ed084868762caaed570.png)
数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1312--=n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如)(1k n n a n +=,可裂项成)11(1kn n k a n +-=,列出前n 项求和消去一些项②形如kn n a n ++=1,可裂项成)(1n k n ka n -+=,列出前n 项求和消去一些项 例:已知数列1)2()1)(1(11=≥+-=a n n n a n ,,求前n 项和n S4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。
例:已知数列122-+=n a nn ,求前n 项和n S5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)一、数列求通项公式的常见方法有:1、关系法2、累加法3、累乘法4、待定系数法5、逐差法6、对数变换法7、倒数变换法 8、换元法 9、数学归纳法累加法和累乘法最基本求通项公式的方法求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。
二、方法剖析1、关系法:适用于)(n f s n =型求解过程:⎩⎨⎧≥-===-)2()1(111n s s n s a a n n n例:已知数列{}n a 的前n 项和为12++=n n S n ,求数列{}n a 的通项公式2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列求解过程:若)(1n f a a n n +=+则)1(12f a a =- )2(23f a a =-所有等式两边分别相加得:∑-==-111)(n k n k f a a 则∑-=+=111)(n k nk f a a例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列求解过程:若n n a n f a )(1=+,则)(1n f a a nn =+ ......累加则)1()......2()1(12312-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:∏-==111)(n k n k f a a 则∏-==111)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n nn ,其中{}的通项公式,求n a a 31= 4、待定系数法:适用于)(1n f pa a n n +=+①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=p b k ,所以有:)1(11-+=-++p ba p pb a n n ,这样就构造出了一个以11-+p b a 为首项,公比为p 的等比数列⎭⎬⎫⎩⎨⎧-+1p b a n 。
数列求通项公式及求和9种方法
![数列求通项公式及求和9种方法](https://img.taocdn.com/s3/m/ba8ea24284254b35effd3411.png)
数列专题1:根据递推关系求数列的通项公式根据递推关系求数列的通项公式主要有如下几种类型一、nS是数列{}n a的前n项的和11(1)(2)nn nS naS S n-=⎧=⎨-≥⎩【方法】:“1n nS S--”代入消元消n a。
【注意】漏检验n的值(如1n=的情况【例1】.(1)已知正数数列{}na的前n项的和为nS,且对任意的正整数n满足1na=+,求数列{}na的通项公式。
(2)数列{}na中,11a=对所有的正整数n都有2123na a a a n⋅⋅⋅⋅=L,求数列{}n a的通项公式【作业一】1-1.数列{}na满足21*123333()3nnna a a a n N-++++=∈L,求数列{}na的通项公式.(二).累加、累乘型如1()n na a f n--=,1()nnaf na-=导等差数列通项公式的方法)【方法】1()n n a a f n --=, 12(1)n n a a f n ---=-, ……,21(2)a a f -=2n ≥,从而1()(1)(2)n a a f n f n f -=+-++L ,检验1n=的情况()f n =,用累乘法求通项公式(推导等比数列通项公式的方法)【方法】2n ≥,12121()(1)(2)n n n n a a a f n f n f a a a ---⋅⋅⋅=⋅-⋅⋅L L即1()(1)(2)n a f n f n f a =⋅-⋅⋅L ,检验1n =的情况【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘).【例2】. (1) 已知211=a ,)2(1121≥-+=-n n a a n n,求n a .(2)已知数列{}n a 满足12n n n aa n +=+,且321=a ,求n a .【例3】.(2009广东高考文数)在数列{}n a 中,11111,(1)2n n n n a a a n ++==++.设n na b n =,求数列{}n b 的通项公式(三).待定系数法1n n a ca p +=+ (,1,1c,p c p ≠≠为非零常数)【方法】构造1()n n a x c a x ++=+,即1(1)n n a ca c x +=+-,故(1)c x p -=, 即{}1n p a c +-为等比数列【例4】. 11a =,123n n a a +=+,求数列{}n a 的通项公式。
数列的通项公式与求和公式
![数列的通项公式与求和公式](https://img.taocdn.com/s3/m/8a0eb831f342336c1eb91a37f111f18583d00c38.png)
数列的通项公式与求和公式数列是数学中一个重要的概念,它是有规律地排列的一串数值。
在解决数学问题时,我们经常需要求数列的通项公式和求和公式。
本文将介绍数列的通项公式与求和公式,并以具体的例子来说明其应用。
一、数列的通项公式数列的通项公式是指能够表示数列第n项与n的关系的公式。
通过通项公式,我们可以直接得到数列中任意一项的数值,而不需要逐个计算。
下面以等差数列和等比数列为例介绍通项公式的求解方法。
1. 等差数列的通项公式等差数列的特点是每一项与其前一项之差都相等。
设等差数列的首项为a1,公差为d,则其通项公式可以表示为:an = a1 + (n-1)d。
其中,an表示数列的第n项。
例如,对于等差数列1,4,7,10,13...,首项a1=1,公差d=3。
根据通项公式an = a1 + (n-1)d,可以计算得到第10项为a10 = 1 + (10-1)×3 = 28。
2. 等比数列的通项公式等比数列的特点是每一项与其前一项的比值都相等。
设等比数列的首项为a1,公比为r,则其通项公式可以表示为:an = a1 × r^(n-1)。
其中,an表示数列的第n项。
例如,对于等比数列2,4,8,16,32...,首项a1=2,公比r=2。
根据通项公式an = a1 × r^(n-1),可以计算得到第5项为a5 = 2 × 2^(5-1) = 32。
二、数列的求和公式数列的求和公式是指能够直接求解数列前n项和的公式。
通过求和公式,我们可以快速计算数列前n项的和而无需逐个相加。
下面以等差数列和等比数列为例介绍求和公式的求解方法。
1. 等差数列的求和公式设等差数列的首项为a1,公差为d,数列前n项的和表示为Sn。
等差数列的求和公式可以表示为:Sn = (n/2) × (2a1 + (n-1)d)。
例如,对于等差数列1,4,7,10,13...,首项a1=1,公差d=3。
数列的通项公式与求和的常用方法
![数列的通项公式与求和的常用方法](https://img.taocdn.com/s3/m/87fb2230866fb84ae45c8db3.png)
解法三
由已知得,(n∈N*) ①, 所以有 ②, 由②式得, 整理得Sn+1-2·+2-Sn=0, 解得, 由于数列{an}为正项数列,而, 因而, 即{Sn}是以为首项,以为公差的等差数列
所以= +(n-1) =n,Sn=2n2, 故an=即an=4n-2(n∈N*)
对任意正整数n都成立,其中m为常数,且m<-1
(1)求证 {an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足 b1=a1,bn=f(bn-1)(n≥2,n∈N*) 试问当m为何值时,成立?
6 已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145
(1)求数列{bn}的通项bn; (2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1),记Sn是数列{an}的 前n项和,试比较Sn与logabn+1的大小,并证明你的结论
②假设当n=k时,结论成立,即有ak=4k-2,由题意,有,将ak=4k -2
代入上式,解得2k=,得Sk=2k2, 由题意,有,Sk+1=Sk+ak+1, 将Sk=2k2代入得()2=2(ak+1+2k2), 整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k, 所以ak+1=2+4k=4(k+1)-2, 即当n=k+1时,上述结论成立
(1)求数列{an}的通项公式; (2)设Sn=|a1|+|a2|+…+|an|,求Sn; (3)设bn=(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m, 使得对任意n∈N*均有Tn>成立?若存在,求出m的值;若不存在,说 明理由
求数列通项公式与数列求和的几种方法
![求数列通项公式与数列求和的几种方法](https://img.taocdn.com/s3/m/cb7e5c6b182e453610661ed9ad51f01dc28157f3.png)
求数列通项公式与数列求和的几种方法数列是由一定规律形成的数的序列,通常可以用数学公式表示。
数列的通项公式是指能够表示数列中任意一项的公式。
数列的求和是指将数列中所有项相加的过程。
在数学中,有多种方法可以求解数列的通项公式和数列的求和问题。
下面将介绍一些常见的方法。
一、通过递推关系求解通项公式与求和递推关系是指数列中相邻项之间的数学关系。
通过观察数列中的规律,可以找到数列的递推关系,从而求解通项公式和数列的求和。
1.1等差数列等差数列是指数列中相邻项之间的差是一个常数。
设数列的第一项为a1,公差为d,则等差数列的递推关系可以表示为:an = a1 + (n-1)d。
通过该递推关系,可以求解等差数列的通项公式和求和。
1.2等比数列等比数列是指数列中相邻项之间的比是一个常数。
设数列的第一项为a1,公比为r,则等比数列的递推关系可以表示为:an = a1 * r^(n-1)。
通过该递推关系,可以求解等比数列的通项公式和求和。
1.3斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和。
设数列的第一项为a1,第二项为a2,则斐波那契数列的递推关系可以表示为:an = an-1 + an-2、通过该递推关系,可以求解斐波那契数列的通项公式和求和。
二、通过数学工具求解通项公式与求和2.1代数方法对于一些特定的数列,可以使用代数方法求解通项公式和求和。
例如,对于等差数列和等比数列,可以使用代数方法推导出通项公式和求和公式。
2.2比较系数法比较系数法是一种常用的方法,适用于具体的数列。
通过对比数列中的系数和常数,可以列方程组求解通项公式和求和。
2.3拆分合并法对于一些数列,可以通过拆分合并法求解通项公式和求和。
该方法将数列分为不同的部分进行拆分和合并,从而得到整个数列的通项公式和求和。
三、通过数学工具和技巧求解通项公式与求和3.1差分法差分法是一种常见的求解通项公式和求和的方法。
对于一些特殊的数列,可以通过数列和数列之间的差值来推导出数列的特征,进而求解通项公式和求和。
数列求通项公式及求和的方法
![数列求通项公式及求和的方法](https://img.taocdn.com/s3/m/45ce8c3300f69e3143323968011ca300a7c3f65d.png)
数列求通项公式及求和的方法数列是指按照一定规律排列的一组数。
解决数列问题,首先需要找到数列的通项公式,然后可以利用通项公式求出数列的各项,再利用求和公式求出数列的和。
找到数列的通项公式的方法有多种,常见的方法包括等差数列的通项公式和等比数列的通项公式。
一、等差数列的通项公式及求和方法等差数列是指数列中的每一项与它前一项的差值相等的数列。
我们可以通过数列中的两项之间的关系来求出等差数列的通项公式。
设等差数列的第一项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式为:aₙ=a₁+(n-1)d。
求等差数列的和,我们可以利用求和公式。
设等差数列的第一项为a₁,公差为d,共有n项,其中首项为a₁,末项为aₙ,求和公式为:Sn=n/2*(a₁+aₙ)。
二、等比数列的通项公式及求和方法等比数列是指数列中的每一项与它前一项的比值相等的数列。
我们可以通过数列中的两项之间的关系来求出等比数列的通项公式。
设等比数列的第一项为a₁,公比为q,第n项为aₙ,则等比数列的通项公式为:aₙ=a₁*q^(n-1)。
求等比数列的和,我们可以利用求和公式。
设等比数列的第一项为a₁,公比为q,共有n项,其中首项为a₁,末项为aₙ,求和公式为:Sn=a₁(q^n-1)/(q-1)。
除了等差数列和等比数列之外,还有其他种类的数列,如等差数列与等比数列交替出现的数列、斐波那契数列等。
这些数列有着特定的规律,可以通过观察数列中的数字之间的关系来确定其通项公式和求和公式。
在实际应用中,数列的求通项公式和求和公式可以帮助我们计算数列的任意项和总和,进而解决与数列相关的问题。
在数学、物理、经济等领域中,数列经常被运用到,掌握数列的通项公式和求和公式对于解决实际问题非常重要。
总结起来,数列问题的解决方法主要包括找到数列的通项公式和求和公式。
通过运用这些公式,我们可以计算数列的任意项和总和,进而解决与数列相关的问题。
而在确定通项公式和求和公式时,我们可以通过观察数列中的数字之间的关系来推导,常见的数列类型包括等差数列、等比数列等。
数列通项公式及数列求和的常用方
![数列通项公式及数列求和的常用方](https://img.taocdn.com/s3/m/9805466addccda38376baf34.png)
数列通项公式及数列求和的常用方法邓 飞一.通项公式求法1. 迭乘法:1()n n a a f n += 型例1 已知数列{}n a 满足112(1)53n n n a n a a +=+= ,,求数列{}n a 的通项公式。
解:因为112(1)53n n n a n a a +=+= ,,所以0n a ≠,则12(1)5n n na n a +=+,故132112211221(1)1(1)(2)2112[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n --------+-+++-=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯ 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯2. 迭加法:1()n n a a f n +=+ 型例2 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n , 则,211112-+=a a 312123-+=a a ,413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=. 3. 待定系数法:1n n a pa q +=+ 型――转化为1()n n a x p a x ++=+ 型。
(等比型)例3 已知数列{}n a 满足11236n n a a a +=+=,,求数列{}n a 的通项公式。
解:设12()n n a x a x ++=+ 比较系数得3,x = 所以 132(3)n n a a ++=+ 又13639a +=+=,则数列{3}n a +是以9为首项,2为公比的等比数列, 则1392n n a -+= ,故1923n n a -=- 。
数列求通项公式及求和9种方法
![数列求通项公式及求和9种方法](https://img.taocdn.com/s3/m/14a244a6f9c75fbfc77da26925c52cc58ad69057.png)
数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
高中数学-数列求和及数列通项公式的基本方法和技巧演示教学
![高中数学-数列求和及数列通项公式的基本方法和技巧演示教学](https://img.taocdn.com/s3/m/ce92b8d516fc700aba68fc85.png)
C
n n
1
C
n n
)
2(n 1) 2n
(反序相加)
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或
常见的数列,然后分别求和,再将其合并即可
.
若数列 an 的通项公式为 cn an bn ,其中 an , bn 中一个是等差数列,另一个是等比
数列,求和时一般用分组结合法。 [例 ]:求数列 1 1 ,2 1 ,3 1 ,4 1 2 4 8 16
数列通项公式的十种求法
一、公式法
例 1 已知数列 { an} 满足 an 1 2an 3 2n , a1 2 ,求数列 { an} 的通项公式。
二、累加法
例 2 已知数列 { an} 满足 an 1 an 2n 1,a1 1 ,求数列 { an} 的通项公式。
例 3 已知数列 { an} 满足 an 1 an 2 3n 1, a1 3 ,求数列 { an} 的通项公式。
∴
Sn
(1 x)2
注意、 1 要考虑 当公比 x 为值 1 时为特殊情况
2 错位相减时要注意末项
此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
对 应 高 考 考 题 : 设 正 项 等 比 数 列 an 的 首 项 a1
1
,前 2
n
项 和 为 Sn , 且
210 S30 ( 210 1)S20 S10 0 。(Ⅰ)求 an 的通项; (Ⅱ)求 nSn 的前 n 项和 Tn 。
1 (1 4an 16
1 24an ), a1 1 ,求数列 { an} 的通项公式。
九、不动点法
例 14 已知数列 { an} 满足 an 1 21an 24 , a1 4 ,求数列 { an} 的通项公式。 4an 1
数列求通项公式及求和的方法
![数列求通项公式及求和的方法](https://img.taocdn.com/s3/m/4d72c61d3069a45177232f60ddccda38376be135.png)
数列求通项公式及求和的方法数列专题-数列求通项公式及求和的方法考点1:求通项公式1、公式法:已知数列{an}为等差或等比数列,可根据通项公式an=a1+(n-1)d或an=a1qn-1进行求解。
例1:已知{an}是一个等差数列,且a2=1,a5=-5,求{an}的通项公式。
变式:已知等差数列{an}中,a10=28,S6=51,求{an}的通项公式。
2、前n项和法:已知数列{an}的前n项和Sn的解析式,可求出an。
例2:已知数列{an}的前n项和Sn=2n-1,求通项an。
变式:已知下列数列{an}的前n项和Sn的公式为Sn=3n2-2n(n∈N*),求{an}的通项公式。
3、Sn与an的关系式法:已知数列{an}的前n项和Sn与通项an的关系式,可求出an。
例3:已知数列{an}的前n项和Sn满足an+1=Sn,其中a1=1,求an。
变式:已知{an}中,an+1=nan,且a1=2,求{an}的通项公式。
4、累加法:当数列{an}中有an-an-1=f(n),即第n项与第n-1项的差是个有“规律”的数时,可用这种方法。
例4:a1=0,an+1=an+2(n-1),求通项an。
变式:已知数列{an}的首项a1=1,且an=an-1+3(n≥2),求通项an。
5、累乘法:当数列{an}中有an/an-1=f(n),即第n项与第n-1项的商是个有“规律”的数时,可用这种方法。
例5:a1=1,an=an-1(n),求通项an。
6、构造法:1)配常数法:在数列{an}中有an=kan-1+b(k、b均为常数且k≠),从表面形式上来看an是关于an-1的“一次函数”的形式,可用下面的方法:一般化方法:设an+m=k(an-1+m),则{an+m}成等比数列。
例6:已知a1=1,an=2an-1+1(n2),求通项an。
2)配一次函数法:在数列{an}中有an=kan-1+bn+c(k、b、c均为常数且k≠),可用下面的方法:一般化方法:设an+tn+u=k(an-1+t(n-1)+u),则{an+tn+u}成等比数列。
求数列通项公式、数列求和问题的常用方法
![求数列通项公式、数列求和问题的常用方法](https://img.taocdn.com/s3/m/104a55335727a5e9856a6117.png)
求数列通项公式、数列求和问题的常用方法一、求数列通项公式的三种常用方法2;3.n n S a ⎧⎪⎨⎪⎩1、利用与的关系;、累加(乘)法、构造法(或配凑法、待定系数法)1、利用n n S a 与的关系求通项公式:1-11-1=1;=-.-n n n n n S a S S S S S ⎧⎨≥⎩ , 当n 时利用 ,当n 2时注意:当也适合时,则无需分段(合二为一)。
例1、设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,11a b =且2211().b a a b -= (Ⅰ)求数列}{n a 和}{n b 的通项公式;解:(1),24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当当;2,111===S a n 时也满足上式。
故{a n }的通项公式为42,n a n =-设{b n }的公比为q , 111, 4, .4b qd b d q ==∴=则 故1111122,44n n n n b b q ---==⨯= 12{}.4n n n b b -=即的通项公式为例2、数列}{n a 的前n 项和为S n ,且111,3, 1,2,3,n n a S a n +=== ,求: (1)2a 的值。
(2)数列}{n a 的通项公式; 解:(1)由得,,3,2,1,31,111 ===+n S a a n n .313131112===a S a 111234222211()(2),3344,(2), (33)114,()(2).3331,1,,{}14(), 2.33n n n n n n n n n n n n a a S S a n a a n a a a a q a a n n a a n +-+---=-=≥=≥===≥=⎧⎪=⎨≥⎪⎩(2)由得即,,,是以为首项,为公比的等比数列又所以所以数列的通项公式为例3、(09广东四校文期末)已知函数 f (x ) = a x 2 + bx -23 的图象关于直线x =-32对称, 且过定点(1,0);对于正数列{a n },若其前n 项和S n 满足S n = f (a n ) (n ∈ N *)(Ⅰ)求a , b 的值;(Ⅱ)求数列{a n } 的通项公式;(Ⅰ)∵函数 f (x ) 的图象关于关于直线x =-32对称,∴a ≠0,-b 2a =-32, ∴ b =3a ①∵其图象过点(1,0),则a +b -23=0 ②由①②得a = 16 , b = 12. 4分(Ⅱ)由(Ⅰ)得2112()623f x x x =+- ,∴()n n S f a ==2112623n n a a +- 当n ≥2时,1n S -=211112623n n a a --+- .两式相减得 2211111()622n n n n n a a a a a --=-+-∴221111()()062n n n n a a a a ----+= ,∴11()(3)0n n n n a a a a --+--= 0,n a >∴ 13n n a a --=,∴{}n a 是公差为3的等差数列,且22111111112340623a s a a a a ==+-∴--=∴a 1 = 4 (a 1 =-1舍去)∴a n =3n+1 9分2、累加(乘)法:11-111 12-1. 2 3+2. 3 2-1.14 .(n+1)n n n n n n n n n a a n a a n a a a a n ++++=+=+=+=+例如:、 、、、 n 1112. 2 .+1n n n n a a na a n ++==例如:、 、 3、配凑法或待定系数法或构造法:111 12 1. 2 2 1. 3 3 2.n n n n n n a a a a a a +++=+=+=+例如:、 、、11+111111+12+1 1.+1=2--------2.221,=2{}=1=21=.2n n n n n n n nn n n n n n a a a a a a a b b a b b b a a q b ++++=+=+∴=+++==+ 解:方法一配凑法(或拆配法) 即 令则有, 故是以为首项,以为公比的。
数列通项公式与求和的常见解法
![数列通项公式与求和的常见解法](https://img.taocdn.com/s3/m/c3abb98edb38376baf1ffc4ffe4733687f21fc5f.png)
数列通项公式与求和的常见解法数列通项公式是指一个数列中,每一项与它的序号之间的关系表达式。
常见的数列通项公式包括等差数列、等比数列、斐波那契数列等。
求和则是指将数列中的所有项相加的过程,常见的求和方法有逐项相加法、数列求和公式法以及数列分组求和法等。
下面将详细介绍这些数列通项公式和求和的常见解法。
一、等差数列的通项公式与求和等差数列是指数列中的任意两个相邻项之间的差值保持不变。
等差数列的通项公式为:an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。
以等差数列1,4,7,10,13...为例,首项a1 = 1,公差d = 4 -1 = 3,第n项可以表示为an = 1 + (n - 1)3等差数列的求和可以使用数列求和公式Sn = n(a1 + an) / 2,其中Sn表示前n项和。
二、等比数列的通项公式与求和等比数列是指数列中的任意两个相邻项之间的比值保持不变。
等比数列的通项公式为:an = a1 * r^(n - 1),其中an表示第n项,a1表示首项,r表示公比。
以等比数列2,6,18,54,162...为例,首项a1 = 2,公比r = 6/ 2 = 3,第n项可以表示为an = 2 * 3^(n - 1)。
等比数列的求和可以使用数列求和公式Sn=a1*(1-r^n)/(1-r),其中Sn表示前n项和。
三、斐波那契数列的通项公式与求和斐波那契数列是指数列中的每一项都是前两项的和,通常以F(n)表示第n项,a1=1,a2=1、斐波那契数列的通项公式可以使用递归形式表示:Fn=Fn-1+Fn-2斐波那契数列的求和可以使用迭代方式进行计算,将每一项逐个相加即可得到和。
四、逐项相加求和法逐项相加法是最基本的求和方法,对于数列中的每一项逐个相加得到和。
即S = a1 + a2 + a3 + ... + an,其中S表示和。
逐项相加法的计算量较大,对于项数较多的数列效率较低。
求数列通项公式与求和的基本方法
![求数列通项公式与求和的基本方法](https://img.taocdn.com/s3/m/1f8b0dbf33d4b14e85246874.png)
求数列通项公式及求和的基本方法1.公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。
例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式? 12nn a ⎛⎫= ⎪⎝⎭.反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键.2.累加法:利用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的方法称为累加法。
累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和).已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.3. 累乘法:利用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积).已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. n a n =.反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=. 4.构造新数列:类型1)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例1:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 1131122n a n n =+-=- 解:类型2n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
数列求和7种方法
![数列求和7种方法](https://img.taocdn.com/s3/m/8397fa8eab00b52acfc789eb172ded630b1c98f3.png)
数列求和7种方法一、求等差数列的和:等差数列的通项公式为 an = a1 + (n-1)d ,其中an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。
1.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等差数列的首项 a1 = 2,公差 d = 3,项数 n = 5,求和公式为 S = (a1 + an) * n / 2 = (2 + 2 + 4 * 3) * 5 / 2 = 35 2.公式法:利用等差数列的求和公式:S = (a1 + an) * n / 2例如:已知等差数列的首项a1=2,公差d=3,项数n=5,代入公式即可得到结果。
3.递推法:利用数列的递推关系a(n)=a(n-1)+d,可得到递归式,通过递归累加求和。
例如:已知等差数列的首项a1=2,公差d=3,项数n=5,则S(n)=S(n-1)+(a(n-1)+d)=S(n-1)+a(n-1)+d。
二、求等比数列的和:等比数列的通项公式为 an = a1 * q^(n-1),其中an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。
4.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,求和公式为S=(a1*(q^n-1))/(q-1)=(2*(3^5-1))/(3-1)=2425.公式法:利用等比数列的求和公式:S=(a1*(q^n-1))/(q-1)。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,代入公式即可得到结果。
6.迭代法:利用数列的递推关系a(n)=a(n-1)*q,可得到递归式,通过递归累加求和。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,则S(n)=S(n-1)+a(n-1)*q=S(n-1)+a(n-1)*q。
三、其他数列的求和方法:7.利用数列的递归关系:对于一些特殊的数列,可能没有通项公式,但可以根据数列的递归关系利用递归求和。
求数列通项公式及前n项和常见方法
![求数列通项公式及前n项和常见方法](https://img.taocdn.com/s3/m/c65978ddbe23482fb5da4c0d.png)
数列求通项及前n 项和常见方法求n a一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式注意:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
二、累加法求形如a n -a n-1=f(n)(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。
例2.已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a . 注意:累加法是反复利用递推关系得到n —1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n —1项的和,要注意求和的技巧三、迭代法求形如1n n a qa d +=+(其中,q d 为常数)的数列通项,可反复利用递推关系迭代求出。
例3.已知数列{a n }满足a 1=1,且a n+1=3n a +1,求n a注意:因为运用迭代法解题时,一般数据繁多,迭代时要小心计算,应避免计算错误,导致走进死胡同四、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n n n n ΛΛΛΛΛ求解。
例4.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式;注意:利用公式⎩⎨⎧≥-==-211n S S n S a n n n n ΛΛΛΛΛ求解时,要注意对n 分类讨论,但若能合写时一定要合并.五、累乘法 对形如1()n n a f n a +=的数列的通项,可用累乘法,即令n=2,3,…n —1得到n —1个式子累乘求得通项。
数列通项公式及其求和公式
![数列通项公式及其求和公式](https://img.taocdn.com/s3/m/f9b54f676f1aff00bfd51e66.png)
2n12,依此类推有b n 1 b n 2、b n 2 b n 3b 2 1b 1-、数列通项公式的求法(1) 已知数列的前n 项和S n ,求通项a n ; (2) 数学归纳法:先猜后证;(3) 叠加法(迭加法):a n (a n a ni ) (a n 1 a n 2) L (a ? ai) ai ;【叠加法主要应用于数列{a n }满足a n 1 a n f (n),其中f (n)是等差数列或等比数列的条件下,可 把这个式子变成a n 1 a nf(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出a n ,从而求出S n 】(4)构造法(待定系数法):形如a n ka n 1 b 、a * ka * 1 b n ( k, b 为常数)的递推数列;【用构造法求数列的通项或前 n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列 的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前 n 项和.】(5)涉及递推公式的问题,常借助于“迭代法”解决 .【根据递推公式求通项公式的常见类型】①c 1=a,a n +1 a n f(n)型,其中f(n)是 可以和 数列,a f(n 1)f(n 2 ……f(2) f(1) a类型 1: a n 1 a n f (n)类型 2: a n 1 pa n f(n)那么问题就可以转化为类型一进行求解了 例题: 已知 a 1 2 , a n 1 4a n 2n 1,求 a n叠乘法(迭乘法):a na n a n 1 an 2a 3 a 2 an 1 a n 2 an 3a : a 1用累加法求通项公式,即思路 (叠加法)a n a n 1 f(n 1),依次类推有:a n 1 a n 2f (n 2)、0.2 q 3 f(n 3)、…、a 2 a 1 f(1), 将各式叠加并整理得n 1a n a 1f(n)'即 a . i 1n 1a 1f(n)i 1例题 1 :已知a 1 1,a n a n 1 n ,求a n解:T a n a n 1a n an 1n ,依次类推有:12 3n 2、…a 2 a 1•••将各式叠加并整理得 a na 1nn ,a ni 2n(n 1) 2思路(转化法)a n pq 1 f (n1),递推式两边同时除以a n npb n ,解:T a n 1 4a n 2• an 4an1 2n ,则2i•- a n 4nb类型 3: a n 1 f (n)a nf (n 2) f(n 1) a当p 1时,数列{a n }是等差数列;当 p 0,q0时,数列{a n }是等比数列;当p 0且p 1,q 0时,可以将递推关系转化为 a n1pq Q ,则数列 a n —⑴ 是以p 1 p 1p 1a 1 —匚为首项,p 为公比的等比数列.p 1•••各式叠加得 b n bl,即 b n bia n f(n) ② 6=4 4+1a n f(n 1) f(n 2) 型 苴 …f(2)f(1Rf (n )是可 求积数 求通项思路(叠乘法):旦a nf (n 1),依次类推有: 邑f(n an 22)、3nan 3f(n3)、…、a2a 1f(1),将各式叠乘并整理得 a n f(1)f(2) f(3)…f(n2) f(n 1),a n f(1)f(2) f(3)…例题:已知 a 1 1, n 1,求 an .解:T a nn 1 1a na n ,依次类推有:a n 1 a n 2 a 3 a n 1a na na 2a2a 1•将各式叠乘并整理得a na n2 1 43 n(n2 1)③ a 1=a, a n+1pa n q 型(其中 p q 是常数) ,可以采用待定系数法、换元法求通项公式,p(a n冷,设6 a n 壮则b n 1 pb n .利用②的方法求出b n 进而求出a n3思路 (构造法):设a n 1 p a n,即p 1 q 得—,数列a n 是以a 1为p 1首项、 p 为公比的等比数列,则 a nqp 1qn 1 a 1p p 1即 qn 1q,即 a na 1pp 11 p例题: 已知数列 a n 满足a n 2a n 13且a 1 1,求数列 a n 的通项公式解:设a n 1 2 a n ,即 3• ai即化为③.•••数列a n 3是以3i3 4为首项、 2为公比的等比数列④ ai=a,a n+i3 4 2n 12n 1,即 a n 2pa n q n 型,其中p q 是常数且q 0,q 1 导丄设* b n ,则b n 1qb n类型5: 思路(构造法):Oi pan rqa n 1n 1qrq1 ,从而解得例题:已知 a 1a n a n-为首项,q2n ,求解:•••设即2nan 1班2n是以1 6为首项,⑤ a n+1pa n -型, qp为公比的等比数列q1 2n 2n 1,解得1a —为公比的等比数列,即n22n其中p 、q 是常数且a n o ,可以采用等式两边取倒数2n a n1 思路(转化法):对递推式两边取倒数得—an 1 pa n dc a n an 1c an三,令bn丄,这样,a n问题就可以进行求解了例题:已知a1 4 , a n 12 a n 2a n解:•••对递推式左右两边取倒数得a n 1 2a n2a n an 1 a n1•••令b n 则b n 1a n 1bn1.设b n 1 ,即是以彳为首项、1-为公比的等比数列,则2b n 2 点’即bn2n 27~2* 1 ~ ,2* 1ana a n b类型7: a n 1----------- (c 0、ad bc 0)c a n d思路(特征根法):递推式对应的特征方程为心即cx2 (d a)xcx d b 0 .当特征方程有两个相等实根X1x2时,数列一a n11为等差数列,我们可设a da n2c1a d 2c a n1a d2c(为待定系数,可利用印、a2求得);当特征方程有两个不等实根花、X2时,数列X1a n a nX2是以引a1鱼为首项的等比数列,我们可设色x2 a nX1X2a1%a1x2n 1(为待定系数,可利用已知其值的项间接求得);当特征方程的根为虚根时数列a n 通项的讨论方法与上同理,此处暂不作讨论.例题:已知a112 a n 4an13 ( nan 122),求a n解:•••当n 2时,递推式对应的特征方程为2x 3 0,解得x11、x2 3数列旦」是以- 1为首项的等比数列a“ 3 a X2 2a X21 n 4.⑵等比数列求和公式: & a 1 (1 q n )(q 1):r (q 1)另外,还有必要熟练掌握一些常见的数列的前n 项和公式.正整数和公式有:n(n 1);nk 2k 1n (n 1)(2 n 1);6n k 3[0(1)]2k 12例1、 已知数列 f n 的前n 项和为S n ,且S nn 2 2n.若 a 1 a n,求数的前n 项和T列a n分析:根据数列的项和前 通项公式后,确定数列的特点,根据公式解决 解:T 当 n 2 时,f n S n S n 1 2n 1.当 n 1 时,f1 3, a n 1 2a n 1 nn 项和的关系入手求出 n ,再根据a n 1f a n ( nN )求出数列a n 的S 1 3,适合上式,即 a n 11 2(a n 1)f n 2n 1 n N , a 1•••数列a n 1是首项为4、公比为2的等比数列.•- a n 1a 1 1 2n 1 2n 1, a n 2n 1 1 nN ; T n【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合 性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题 变式训练1:已知log 3 xlog 2 3•求 x x 2 x 3x n 的前n 项和.二、数列求和的几种常见方法数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素 材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数 列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种 方法进行系统探讨•1、公式求和法通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式 求和,或者利用前n 个正整数和的计算公式等直接求和 •运用公式求解的注意事项: 首先要注意公式的 应用范围,确定公式适用于这个数列之后,再计算 •特别地,注意数列是等比数列时需要讨论q 1和 q1的情况•⑴等差数列求和公式:S nn(a 1 a n )n(n 1)d2 2•••设生J a n3n1,由 a i3,即a n a n3n 1,从而a n3n1 3n 11a n1 2 3n ,n 13n ^l'n 21x1 2例2、已知函数F x3x 2 2x丄.求F2 2009F —2009F 20082009分析:由所求的和式的特点, 用倒序相加法求和• 易想到探究:和为1的两个自变量函数值的和是否为常数.从而确定可否【解析】••• F x3x 2 2x31 x 2 21 x 13.•••设 S F —200920092008.①S 20092008 2009F 20072009F — 20092S1 2009 2008 20092 2009 2007 2009F 200820092008 【能力提升】倒序相加法来源于课本, 求和方法.当求一个数列的有限项和时, 3012例3 :已知f (x)解:•••由 f(x)•••原式 f(1)f(2)变式训练1:求si n 216024,所以S是等差数列前项和公司推导时所运用的方法,它是一种重要的 若是“与首末两端等距离” 的两项和都相等,即可用此法 ,则 f (1)1 x 2sin 2 2f(2) f(3)f(3) fsin 2 32x1 x 21 1 x 211sin 2 88 sin 289的值*S变式训练2:设s n 1 2… n(n N ),求f(n)-的最大值.(n 32) S n 12、倒序相加法2 3a n a n 1与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法 .我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公式的推导,用的就是“倒序相加法”S nda 2 S na na n 1a n 1 a nn 1n则a ? a 〔如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一个常数,可采用把正着写 a n 1 2S na 1 a na 1 a n a 22 3a n a n 1a k a k da kn1 n1 1 1 1 1 k 1 3k 3k 1k 1d a ka k 1da 1例5 、 数列a n满 足23n22 2 2T n3 3 3 3a 〔a 2 a 2a 3 &a 4 a n a n 1丄丄 1” , • 1• •1 a 2a 2a 3a na n 11, a 25 5 2a 1,a n 2 a n 1 — a n 3 3 31丄 1d a 1a n 1分析:根据给出的递推式求出数列a n ,再根据的特点拆项解决变式训练2 :如已知函数f(x)对任意x € R 都有f(x) f(1 x) 1SSn2f (0)f(-) n23f(—) f ㈠+… n n-f(n 2) f(n 1)n n f(1), (n N *),求S n1 1f(1) f(2)f(2008) f(2)f(3)3、裂项相消法裂项相消法是将数列的各项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的 前n 项和• 一般地,我们把数列的通项分成两项之差,在求和时中间的一些项可以相互抵消,从而求1 ak a kf (x)x 2 1 x 2f (i 2008得其和•适用于类似a n a n 1(其中a n 是各项不为0的等差数列,c 为常数)的数列,以及部分无理数列和含阶乘的数列等•用裂项法求需要掌握些常见的裂项方法(2n 1)(2 n 1) 2 2n 1 2n 1k)例 4:a n 是公差为 d 的等差数列,的等比数列,故a n 1 a n【能力提升】用裂项相消法求和的关键是先将形式复杂的式子转化为两个式子的差的形式因此需要掌 握一些常见的裂项技巧.变式训练 1: 在数列 {a n }中,a n1 2—,又 b n,求数列b n 的前n 项n 1 n 1n 1a nan 1的和•变式训练 :2 :求和: s 111L11 21 2 3 1 2 3 L n变式训练 3: 求和:11 11.2 1. 3 、2 4 3..n 1,n •4、错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式•即若在(差比数列){a n b n }中,{a n }成等差数列, 减整理后即可以求出前 n 项和•解:•••由已知条件,得a n 2 a n 12 a n 1 a n3a n 122a n 是以a 2 a i为首项,一为公比33aana n aa 3{b n }成等比数列,在和式的两边同乘以公比,再与原式错位相 例题:S n 12x 3x 2 4x 3 n ..... nxx- S n x 2x 2 3x 3 4x 4…… ①一② 1 x S n 1 2 x x ............当x 1 时,S n1x n nxnx 1x1 x1n 1 x n 1①nnx②n 1 x n nx 当x 1时,S n 1 2 3n n 1n2【能力提升】错位相减法适用于数列a nb n ,其中a n 是等差数列, b n 是等比数列•若等比数列b n中公比q 未知,则需要对公比 q 分q 1和q1两种情况进行分类讨论例6、已知数列a n 是首项为a-i-,公比为q 丄的等比数列,设b n 4 42 3log 1 a n n4N ,数列C n 满足C n a n b n .求数列C n 的前n 项和S n .比数列对应项的乘积构成的数列,因而可考虑用错位相减法来解决5、(分组)拆项求和法(裂项重组法)所谓裂项重组法就是针对一些特殊的数列,既不是等差数列,也不是等比数列的数列,我们可以 通过拆分、合并、分组,将所求和转化为等差、等比数列求和例7、已知数列a n 的通项公式为a n 2n 3n 1,求数列a n 的前n 项和. 2n 与一个等差数列 3n 1组成的,所以可将其转化为一个等比数列与一个等差数列进行分组求和 【解析】S n a 1 a 2a n 21 2 22 5构成等差数列或等比数列,那么我们就可以用此方法求和例8、数列a n 的前n 项和是S n n N ,若数列a .的各项按如下规则排列:分析:根据等比数列的性质可以知道数列 b n 为等差数列,这样数列 C n 就是一个等差数列与一个等解:•••由题意知,a n3log ! a n 2,故 b n 3n2n N41 …G 3n 2- nN 42311 1 二 S n 14 7 L 3n 4441 C 1 1 1 S n 1 - 4 -7 -L 4 444233111•••两式相减,得3S n 1 3 1- 4 4 4451 n1 1 n 443n 2, n一n 111 3n 53n 244nn 1n 111113n 23n 24424S n2 3n 22 3变式训练1、求Sn 1 2x 3x 4xn 1nx变式训练2、若数列{a n }的通项a n (2n 1) 3n ,求此数列的前n 项和S n .变式训练3、2 4求数列亍豕623,2n ,歹前n 项的和.分析:该数列的通项是由一个等比数列 2n 3n 1=2122=22n2 53n 1 . 21 2nn 2 3n 1=1 22-n 2.2【能力提升】在求和时, 定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别若存在自然数k k N ,使S k 10, S k 1 10,则a k分析:数列的构成规律是分母为 2的一项,分母为 3的两项,分母为 4的三项,•…,故这个数列的和 可以并项求解.11 123 3 1 2 31 2 3 4解:S 1 S 3 —,S 63, S103 -52 23 22 451 2 3 4 5 15十 1 2 3 45 621S 15 5,而3,这样S 2110,而627215 1 2 3 4 5 15 15 15 55 + 5S2010,故 a k,故填272 7 2 277【能力提升】当一个数列连续的几项之间具有明显的规律性,特别是一些正负相间或者是周期性的数列等,可以考虑用并项求和的方法 变式训练3:求数列{n(n 1)(2n1)}的前n 项和.一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数 列有关或具备某种方法适用特点的形式, 从而选择合适的方法求和•高考数学试题中所涉及的数列求和 问题往往具有一定的技巧性,需要考生具有很强的分析问题、解决问题的能力才能解决,但是基本的 求和方法就是上面介绍的这些 •希望广大考生熟练掌握,灵活适用 • 三、数列的综合应用⑴求解等差、等比数列的综合问题的基本途径是:应用等差数列和等比数列的基本量(首项、公差、 或公比、通项、前n 项和)表示数列中的项,适时地应用它们的基本性质求解 .此外,应该熟悉等差数列与等比数列的递推公式•⑵数列与函数、数列与不等式的综合问题主要是:由函数的解析式得到的数列递推公式,转化为等差 数列或等比数列进行求解.⑶数列的应用问题:一般地,涉及递增率通常用到等比数列;涉及依次增加或减少要用到等差数列; 复利和分期付款问题,用等比数列解决1 12 1 23 1 2 34 1—J — J — J — J — J — J — J — J — J — J —23344455556变式训练1:求和:2536+4 7+ ........ +n(n+3)变式训练2:求数列1,1+2,1+2+2 2 2 n 1,•- ,1+2+2 + …+2的前n 项和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见数列通项公式的求法类型一:公式法1(或定义法)例1. 已知数列{}n a 满足11a =,12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。
例2.已知数列{}n a 满足12a =,13n na a += *()n N ∈,求数列{}n a 的通项公式。
变式练习:1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。
2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。
3. 已知数列{}n a 满足11a =,212=a ,11112n n na a a -++=(2)n ≥,求数列{}n a 的通项公式。
4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。
类型二:(累加法))(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解例:已知数列{}n a 满足121n n a a n +=++*()n N ∈,11a =,求数列{}n a 的通项公式。
变式练习:1.已知数列{}n a 满足211=a ,n a a n n 21+=+,*()n N ∈求数列{}n a 的通项公式。
2.已知数列{}n a 满足11a =,11(1)n n a a n n -=+-,(2)n ≥,求数列{}n a 的通项公式。
3.已知数列{}n a 满足1231n n n a a +=+⨯+, *()n N ∈,13a =,求数列{}n a 的通项公式。
4.已知数列{}n a 中,12a =,11ln(1)n n a a n +=++,求数列{}n a 的通项公式。
类型三:(叠乘法)n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+,(2)n ≥,求数列{}n a 的通项公式。
变式练习:1.已知数列{}n a 满足321=a ,n n a n n a 11+=+,*()n N ∈,求数列{}n a 的通项公式。
2.已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求数列{}n a 的通项公式。
3.已知数列 {}n a 满足125nn n a a +=⨯*()n N ∈,13a =,求数列{}n a 的通项公式。
类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。
例. 已知数列{}n a 的前n 项和为n S ,12a =且12n n S a +=(2)n ≥.求数列{}n a 的通项公式。
1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。
2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。
3.已知数列{}n a 的前n 项和为n S ,23nn S =+,求数列{}n a 的通项公式。
类型五:待定系数法q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 解法:构造新数列{}n b ;p a a n n =+++λλ1解出λ,可得数列λ+=n n a b 为等比数列例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。
变式练习:1. 已知数列{}n a 满足13a =,121n n a a +=-*()n N ∈,求数列{}na 的通项公式。
2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。
3.已知数列{}n a 的前n 项和为n S ,且232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。
类型六:交叉项问题解法:一般采用求倒数或除以交叉项得到一个新的等差数列。
例:已知数列{}n a 满足11a =,122nn n a a a +=+*()n N ∈,求数列{}n a 的通项公式。
变式练习: 1.已知数列{}n a 满足11a =,1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{}n a 的通项公式。
2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足11120n n n n n n a b a b b b +++-+=,令n n nac b =求数列{}n c 的通项公式。
类型七:(公式法2) (nn n p pa a ⨯+=+λ1)p>0;解法:将其变形为p p a p a n n n n λ=-++11,即数列⎭⎬⎫⎩⎨⎧n n p a 为以p λ为公差的等差数列;例. 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
变式练习:1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式2.已知数列{}n a 满足nn n a a 3431⨯+=+,11=a ,求数列{}n a 的通项公式。
数列求和的常用方法类型一:公式法例 .已知3log 1log 23=x ,求32x x x ++⋅⋅⋅++⋅⋅⋅+nx 的前n 项和. 变式练习1.数列}{n a 中,12+=n a n ,求n S .2.等比数列}{n a 的前n 项和12-=nn S ,求2232221n a a a a ++++Λ. 类型二:分组求和法例. 求数列的前n 项和:2321,,721,421,1112-+⋅⋅⋅+++-n n ,…变式练习1.已知数列}{n a 中,nn n a 32+=,求n S .2.已知数列}{n a 中,n n n a 21)12(++=,求n S . 类型三:倒序相加法例.求οοοο88sin 3sin 2sin 1sin 2222+⋅⋅⋅+++ο89sin 2+的值. 1.已知xx f +=11)(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-⋅-n n n a ,求n S .变式练习 1.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 2.数列}{n a 的前n 项和为22n S n =,}{n b 为等比数列,且.)(,112211b a a b b a =-=(1)求数列}{n a 和}{n b 的通项公式; (2)设nnn b a c =,求数列}{n c 的前n 项和n T . 类型五:裂项相消法例.已知数列}{n a 中,)2(1+=n n a n ,求n S .1.求数列11,,321,211++⋅⋅⋅++n n的前n 项和.2.在数列}{n a 中,11211++⋅⋅⋅++++=n nn n a n , 又12+⋅=n n n a a b ,求数列}{n b 的前n 项的和.3.求和求数列的通项与求和作业1.已知数列}{n a 的首项11=a(1)若12n n a a +=+,则n a =__________; (2)若12n n a a +=,则n a =_________111{}:1,{}.31n n n n n a a a a a a --==⋅+ 已知数列满足,求数列的通项公式(3)若11n n a a n +=++,则n a =__________;(4)若12nn n a a +=⋅,则n a =_______(5)若1)1(++=n n a n na ,则n a =__________; (6)若)2(231≥+=-n a a n n ,则n a =__________;(7)若11nn n a a a +=+,则n a =__________。
3.2 4.5. 等比数列 的前n 项和12-=nn S ,求6.求和:7. 求和:8. 设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .9.已知数列}{n a 的前n 项和为n S ,且对任意正整数n 都有2(2)1n n S n a =+-.(1)求数列}{n a 的通项公式; (2)设13242111n n n T a a a a a a +=+++⋅⋅⋅L ,求n T . {}n a 2232221na a a a ++++Λ。