分析化学——沉淀滴定法
分析化学 第七章 沉淀滴定法
![分析化学 第七章 沉淀滴定法](https://img.taocdn.com/s3/m/2ec6c051f7ec4afe04a1df25.png)
沉淀滴定法
“十二五”职业教育国家规划教材 高等职业教育应用化工技术专业教学资源库建设项目规划教材
学习目标:
1.掌握常用的沉淀滴定方法;
2.掌握沉淀滴定分析结果的计算; 3.了解沉淀滴定法在生产实践中的应用。
本章导读
理论基础:沉淀反应。
重要知识点:溶解度与溶度积;分步沉淀。
难点:佛尔哈德法中的返滴定法;吸附指示剂 的作用原理。
二、返滴定法测定卤化物
第三节 佛尔哈德法
佛尔哈德法是在酸性介质中,以铁铵矾
[NH4Fe(SO4)2·12H2O] 作指示剂来确定滴定终
点的一种银量法。根据滴定方式的不同,佛
尔哈德法分为直接滴定法和返滴定法两种。
一、直接滴定法测定Ag+
在含有 Ag+ 的 HNO3 介质中,以铁铵矾作指 示剂,用 NH4SCN 标准溶液直接滴定,当滴定 到化学计量点时,微过量的 SCN- 与 Fe3+ 结合 生成红色的[FeSCN]2+即为滴定终点。
2
滴定溶液中c (K2CrO4)为5×10-3mol/L是适宜的 浓度。
四、应用
莫尔法通常用来测定氯化物和溴化物。 莫尔法不能用于准确测定碘化物和硫氰化物。
莫尔法干扰因素较多,凡能与 CrO42- 生成沉淀 的阳离子,与Ag+生成沉淀的阴离子,均产生干 扰。
第三节 佛尔哈德法
一、直接滴定法测定Ag+
第一节 概述
第二节 莫尔法
第三节 佛尔哈德法
第四节 法扬司法
第一节 概述
一、沉淀滴定法的基本原理
二、沉淀滴定法Βιβλιοθήκη 分类一、沉淀滴定法的基本原理
第八章沉淀滴定法
![第八章沉淀滴定法](https://img.taocdn.com/s3/m/26e2e739b90d6c85ec3ac6f9.png)
如果溶液中的CrO42-恰好在 [Ag+]sp= 1.3×10-5(mol/L)时与
Ag+形成Ag2CrO4↓,则观察到的终点恰能与计量点相符合。
《分析化学》 沉淀滴定法 蔡莉 Nhomakorabea(b) 试剂中加入过量AgNO3后,加入有机溶剂,如1,2-二氯乙
烷或硝基苯1-2 mL,用力震荡,在AgCl表面覆盖一层有机 溶剂,避免与外界溶液接触,阻止SCN-与AgCl发生转化反 应。
《分析化学》 沉淀滴定法 蔡莉
☆用返滴定法测定Br-和I-时,由于AgBr和AgI的溶解度均比 AgSCN小,不会发生沉淀转化反应。因此不用采取上述措 施。 ☆在测定I-,应先加入过量AgNO3,待反应完全后,再加入
法扬司法。
滴定剂、指示剂、应用范围、应用条件。
《分析化学》 沉淀滴定法 蔡莉
1.莫尔法——铬酸钾(K2CrO4)作指示剂
(1) 原理
在含有Cl- 的中性或弱碱性溶液中,以K2CrO4为指示剂,
用AgNO3溶液直接滴定Cl-。由于AgCl溶解度小于Ag2CrO4,
先生成的是AgCl白色沉淀,当Ag+与Cl-沉淀完全后,稍过
《分析化学》 沉淀滴定法 蔡莉
(X-代表Cl-、Br-、I-、SCN-)
2.滴定曲线
以0.1000mol/L AgNO3滴定20.00mL NaCl溶液为例。以
滴入的AgNO3溶液体积为横坐标,pX(卤素离子浓度的负对 数)为纵坐标,绘制滴定曲线。 化学计量点前:根据溶液中剩余的Cl-浓度和溶度积计算[Ag+]。 例如:滴定百分数为99.9%,即加入19.98 mL AgNO3,溶液中 剩余的[Cl-]为:
第八章 沉淀滴定法
![第八章 沉淀滴定法](https://img.taocdn.com/s3/m/65761446915f804d2a16c126.png)
第八章沉淀滴定法第一节概述沉淀滴定法(precipation titration)又称容量沉淀法(volumetric precipation method)是以沉淀反应为基础的滴定方法。
沉淀反应很多,但能用作沉淀滴定的沉淀方法并不多,应用于沉淀滴定的反应必须满足滴定分析反应的基本条件,为使反应定量完成,对沉淀反应而言沉淀的溶解度必须足够小(约10-6g/ml)。
用于沉淀滴定法的反应,主要是生成难溶性银盐的反应。
如:这种利用生成难溶性银盐反应来进行滴定分析的方法,称为银量法(argentometric method)。
本法可用于测定含Cl-、Br-、I-、SCN-及Ag+等离子的化合物。
本章主要讨论银量法的基本原理及应用。
第二节银量法一、基本原理银量法是用硝酸银标准溶液,测定能与Ag+生成沉淀的物质,它的反应是:其中X-代表Cl-、Br-、I-及SCN-等离子。
(一)滴定曲线沉淀滴定法在滴定过程中溶液中离子浓度的变化情况与酸碱滴定法相似,可用滴定曲线表示。
现以AgNO3溶液(0.1000mol/L)滴定20.00ml NaCl溶液(0.1000mol/L)为例。
1.滴定开始前:溶液中氯离子浓度为溶液的原始浓度[Cl-]=0.1000mol/L pCl=-lg1.000×10-1=1.002.滴定至化学计量点前随着硝酸银溶液的不断滴入,溶液中[Cl-]逐渐减小,此时溶液中氯离子浓度,取决于剩余的氯化钠的浓度。
例如加入AgNO3溶液18.00ml时,溶液中Cl-浓度为:而Ag+浓度则因为同理,当加入AgNO3溶液19.98ml时,溶液中剩余的Cl-浓度为(化学计量点前0.1%):[Cl-]=5.0×10-5pCl=4.30 pAg=5.513.化学计量点时溶液是AgCl的饱和溶液:4.化学计量点后当滴入AgNO3溶液20.02ml时(化学计量点后0.1%),溶液的Ag+浓度由过量的AgNO3浓度决定。
第八章 沉淀滴定法
![第八章 沉淀滴定法](https://img.taocdn.com/s3/m/34f590f3856a561252d36fe9.png)
Cl-
FI-
第四节 吸附指示剂法
吸附指示剂的变色原理:
化学计量点后,沉淀表面荷电状态发生变 化,指示剂在沉淀表面静电吸附导致其结构变 化,进而导致颜色变化,指示滴定终点。 AgCl︱Cl- + FIAg + AgCl︱Ag+ FI-
第四节 吸附指示剂法
注意事项:
(1)沉淀的比表面要大,以利于终点观察。 ①可加入糊精,防止 AgCl过分凝聚; ②溶液的浓度适当,以获得足够量的沉淀,才有一 定的比表面;如用AgNO3滴Cl-时, Cl-浓度应大于
sp:
[Ag+]=[Cl-]
pCl = pAg = 1/2 pKsp = 4.89
化学计量点后:根据过量的Ag+计算
+ 0.1% [Ag+](过) = 5.0 10-5 mol/L, pAg = 4.30 pCl = pKsp-pAg = 9.81-4.30 = 5.51
第一节 概述
滴定曲线
10
Ag++ SCN- = AgSCN↓(白色)
指示剂反应: Fe3++ SCN- = [Fe(SCN)]2+(橙红色络合物)
第三节 铁铵矾指示剂法
待测物:X- (Cl-、Br-、I-、SCN-) 标准溶液:AgNO3、NH4SCN 滴定反应:X- + Ag+(过量) AgX+ Ag+(剩余) + SCN ‖ AgSCN 指示剂:铁铵矾 FeNH4(SO4)2
第二节 铬酸钾指示剂法
滴定反应:(以滴Cl-为例) Cl−+ Ag+↔ AgCl ↓ (白色) 滴定终点时指示剂的反应: CrO42−+ 2Ag+↔ Ag2CrO4 ↓(砖红色) K sp = 2.0×10−12
分析化学 沉淀滴定法
![分析化学 沉淀滴定法](https://img.taocdn.com/s3/m/1d190fce767f5acfa1c7cd8a.png)
第六章 沉淀滴定法6.1 概述6.2 沉淀滴定曲线6.3 沉淀滴定终点指示剂和 沉淀滴定分析方法(莫尔法、佛尔哈德法、法扬司法)(Precipitation titration ) 6.1 概述沉淀滴定法:以沉淀反应为基础的滴定分析方法。
只有少数沉淀反应可以用于沉淀滴定,因为:(1)沉淀的溶解度必须很小(沉淀完全)(2)反应迅速(3)沉淀组成固定,按反应式定量进行(4)有合适方法指示滴定终点(4)沉淀吸附不能影响终点的确定测定Ag +和卤素离子(Cl -、Br -、I -等)的沉淀滴定法。
银量法:用于沉淀滴定的反应必须满足以下条件:沉淀滴定分析曲线: 1. 沉淀滴定曲线2. 影响沉淀滴定突跃的因素3. 分步滴定沉淀滴定终点指示方法: 1. 莫尔法(铬酸钾指示剂法) 2. 佛尔哈德法(铁铵矾指示剂法) 3. 法扬司法(吸附指示剂法)6.2 沉淀滴定曲线Ø沉淀滴定曲线Ø影响沉淀滴定突跃的因素Ø分步滴定1.沉淀滴定曲线沉淀滴定反应:颜色突变指示终点到达与指示剂作用发生过量+Ag 以0.100mol·L -1AgNO 3标准溶液滴定50.0mL 0.050 mol ·L -1 Cl -为例910-sp 106.5108.11K 1K K ⨯=⨯==为沉淀反应的平衡常数滴定曲线计算基础:生成沉淀物质的溶度积常数 K sp 溶度积常数:当溶解与结晶速度相等时,平衡常数K AgCl 为: K AgCl = [Ag +][Cl -]该常数称为溶度积常数,用K sp 表示。
溶度积通式:m-n n m B A sp,][B ]A [K m n +=例:溶度积与溶解度之间的关系:解:(1) 设AgCl 的溶解度为s 1(mol·L -1),则:的溶解度。
和试计算例:已知42-12CrO Ag sp,-10AgCl sp,CrO Ag AgCl ,10.02K ,101.8K 42⨯=⨯=平衡时 s 1 s 11-51-1021AgCl sp,L mol 103.1s 101.8s K -⋅⨯=∴⨯==则(2)设Ag 2CrO 4的溶解度为s 2(mol·L -1),则:平衡时 2s 2 s 21-52-1232222CrO Ag sp,Lmol 109.7s 102.0s 4s )s 2(K 42-⋅⨯=∴⨯==⨯=则 同一类型的沉淀,可以用K sp 直接比较溶解度的大小,不同类型的难溶电解质,不能用K sp 比较。
分析化学沉淀滴定法
![分析化学沉淀滴定法](https://img.taocdn.com/s3/m/8396b665a4e9856a561252d380eb6294dd8822bd.png)
分析化学沉淀滴定法沉淀滴定法是一种常用的化学分析方法,可以用于测定溶液中的离子浓度,以及确定化学反应的速率和机理。
本文将介绍沉淀滴定法的基本原理、实验步骤、应用场景以及注意事项。
一、沉淀滴定法的基本原理沉淀滴定法利用沉淀反应的化学反应速率与溶液中待测离子的浓度成正比的关系,通过滴定计量液体中的离子浓度。
在滴定过程中,通过加入适量的滴定剂,使待测离子与滴定剂发生反应,生成不溶性的沉淀。
当反应完成时,将沉淀过滤、洗涤、烘干,最后称重,从而确定待测离子的浓度。
二、实验步骤1、准备试剂和样品:选择合适的试剂作为滴定剂,并准备待测溶液样品。
2、校准滴定管:使用已知浓度的标准溶液校准滴定管,确保滴定结果的准确性。
3、确定终点:通过加入过量滴定剂,使待测离子完全反应,并生成不溶性的沉淀。
通过观察实验现象,确定反应终点。
4、过滤和洗涤:将生成的沉淀过滤,并使用洗涤剂洗涤沉淀,以去除杂质。
5、烘干和称重:将过滤后的沉淀烘干,并使用天平称重。
根据称重结果计算待测离子的浓度。
三、应用场景沉淀滴定法广泛应用于化学、环境、食品等领域。
例如,在化学领域中,可以利用沉淀滴定法测定溶液中的金属离子浓度;在环境领域中,可以用于测定水样中的重金属离子浓度;在食品领域中,可以用于测定食品中的添加剂和有害物质的浓度。
四、注意事项1、试剂的选择:应根据待测离子的性质选择合适的沉淀剂,以确保反应的完全性和沉淀的生成。
2、校准滴定管:为了确保滴定结果的准确性,需要对滴定管进行校准。
可以使用已知浓度的标准溶液进行校准。
3、终点判断:在滴定过程中,需要仔细观察实验现象,准确判断反应终点。
过量的滴定剂会导致误差增大。
4、过滤和洗涤:过滤和洗涤是保证测量准确性的重要步骤。
需要仔细操作,确保沉淀物被完全收集。
5、防止污染:在实验过程中,应防止试剂和样品受到污染,以确保测量结果的准确性。
6、安全问题:在实验过程中,需要注意安全问题。
例如,一些试剂可能具有腐蚀性或毒性,需要谨慎使用和储存。
分析化学要用化学基础第七章沉淀滴定法
![分析化学要用化学基础第七章沉淀滴定法](https://img.taocdn.com/s3/m/8975a9b8b8d528ea81c758f5f61fb7360b4c2b2b.png)
二、铁铵矾指示剂法(佛尔哈德法)
与被测组分卤化物反应的AgNO3滴定液的物质的量 等于加入AgNO3滴定液的总量减去过量的AgNO3滴定液。
二、铁铵矾指示剂法(佛尔哈德法)
被测组分卤化物的量即可计算X-的含量,计算 公式为:
二、铁铵矾指示剂法(佛尔哈德法)
二、铁铵矾指示剂法(佛尔哈德法)
2.直接滴定法 铁铵矾指示剂直接滴定法是在酸性介质中,以铁铵 矾[NH4Fe(SO4)2·12H2O]作为指示剂,以硫氰酸铵 (NH4SCN)为滴定液,通过直接滴定测定Ag+含量的银量 法。
二、铁铵矾指示剂法(佛尔哈德法)
(1)分析依据 ①滴定反应 铁铵矾指示剂直接滴定法的滴定反应式 为:
一、铬酸钾指示剂法(莫尔法) (2)化学计量关系。计量点时
一、铬酸钾指示剂法(莫尔法)
(3)结果计算。根据滴定液的浓度和终点时消耗的 体积即可计算氯化物的含量,计算公式为:
一、铬酸钾指示剂法(莫尔法)
3.滴定终点的确定(以测定氯化钠的含量为例) (1)滴定前。在NaCl溶液中加入K2CrO4指示剂, NaCl和K2CrO4分别电离,溶液呈现CrO42-的颜色,为黄 色的透明溶液,反应式为:
二、铁铵矾指示剂法(佛尔哈德法)
(4)排除干扰物质 强氧化剂、氮的低价氧化物、铜盐、汞盐均可与 SCN-作用而干扰测定,应预先除去。
三、吸附指示剂法
1.概念 吸附指示剂法(法扬司法)是以硝酸银为滴定液,用 吸附指示剂确定滴定终点,通过直接滴定测定卤化物和 硫氰酸盐含量的银量法。
三、吸附指示剂法
二、铁铵矾指示剂法(佛尔哈德法)
②滴定开始至终点前 加入的NH4SCN为滴定液与 Ag+反应生成白色的AgSCN沉淀,溶液为白色的混浊液。
分析化学-重量分析法和沉淀滴定法
![分析化学-重量分析法和沉淀滴定法](https://img.taocdn.com/s3/m/bb2b028aa1116c175f0e7cd184254b35eefd1aa9.png)
αAg(NH3)=1+β1[NH3]+β2[NH3]2=1.7×105 S2=2.9×10-4mol/L S2/S1=4.1×102
5 影响沉淀溶解度的其它因素 (1)温度
目前应用较广的是生成难溶性银盐的沉淀反应, Ag++Cl-=AgCl↓ Ag++SCN-=AgSCN↓
利用生成难溶性银盐反应来进行测定的方法, 称为银量法(Aregentometric method) 。
银量法可以测定C1—、Br—、I—、Ag+、SCN— 等,还可以测定经过处理而能定量地产生这些离 子的有机物。
例如,测定铝时,称量形式可以是 Al2O3(M=101.96)或8-羟基喹啉铝(M=459.44)。 如果在操作过程中损失沉淀1mg,以A12O3为 称量形式时铝的损失量:
A12O3:2A1=1:x x=0.5 mg
以8-羟基喹啉铝为称量形式时铝的损失量 :
A1(C9H6NO)3:A1=1:x x=0.06 mg
由于许多沉淀的固有溶解度比较小,所以 计算溶解度时,一般可以忽略固有溶解度的 影响。
S=[M+]=[A-]
二 活度积和溶度积
K2 = aM+aA-/aMA(水) ,
得:aM+aA-=K2S0=K
0 sp
K 0sp称为活度积常数,简称活度积。
aM+aA-=γM+[M+] γA-[A-]=K0 sp
[M+][A-]=K 0sp/γM+γA-= Ksp
分析化学课件 沉淀滴定法
![分析化学课件 沉淀滴定法](https://img.taocdn.com/s3/m/bf255b3231126edb6f1a1028.png)
S = Ksp = 6 10
-10
= 2.4 10 molL
-5
-1
m(BaSO4)=2.4×10-5×300×233.4=1.7mg 若加入过量Ba2+, [Ba2+]=0.01mol· -1 L S=[SO42-]=Ksp/[Ba2+]=6×10-10/0.01=6×10-8 mol· -1 L
下面是几种物质的溶解度曲线图:
6.1 沉淀溶解度及其影响因素
二、影响沉淀溶解度的因素
(一)离子强度的影响 (二)共同离子效应 (三)副反应的影响
1.酸效应(例题) 2.配位效应 (四)影响沉淀溶解度的其它因素 1.温度: 沉淀的溶解度一般随温度的升高而增大。
6.1 沉淀溶解度及其影响因素
2.溶剂: 大多数无机物沉淀是离子晶体,它们在有机溶剂 中的溶解度比在水中的小。
消除方法— 陈化或重结晶 例: 硫酸钡的共沉淀(30℃)
包藏离子 包藏量(mol/100 mol BaSO4) Ba2+加入 SO42-中 0.45 5.4 15.9 SO42- 加 入Ba2+中 2.7 19.6 3.6 玷污盐溶解度
(mol·-1) L
ClNO3Ca2+
1.83
0.46 0.02
Q= [Fe3+ ]t · - ]t3 K sp [OH
OH-浓度为
即 [OH- ]t3 K sp/ [Fe3+ ]t
6.1 沉淀溶解度及其影响因素
[OH ] 3
K sp
[ Fe ]
3
3
4.0 1038 1.591012 m ol/ L 0.01
对应于开始沉淀的pH pH=14-pOH=2.20 pH 2.20时, Fe(OH)3开始沉淀。 沉淀完全,溶液中的[Fe3+] 10-5mol/L
沉淀滴定方法
![沉淀滴定方法](https://img.taocdn.com/s3/m/a301f9e6551810a6f5248619.png)
沉淀滴定方法沉淀滴定方法是以沉淀反应为基础的一种滴定分析方法。
沉淀滴定法必须满足的条件:1.S小,且能定量完成;2.反应速度大;3.有适当指示剂指示终点;4.吸附现象不影响终点观察。
生成沉淀的反应很多,但符合容量分析条件的却很少,实际上应用最多的是银量法,即利用Ag+与卤素离子的反应来测定Cl-、Br-、I-、SCN-和Ag+。
银量法共分三种,分别以创立者的姓名来命名。
一.莫尔法1.莫尔法的起源学习化学的人都知道实验室里有一种常见的复盐,分子式为(NH4)2SO4·FeSO4·6H2O,它是一种淡绿色的晶体,学名叫做六水合硫酸亚铁·硫酸铵,可是却很少有人用这个名称,人们总是称它为莫尔盐。
莫尔(Karl Friedrich Mohr)是一位分析化学家,以他的名字命名的东西还有很多,例如莫尔弹簧、莫尔滴定法、莫尔天平等。
卡尔·弗雷德里契·莫尔于1808年11月4日出生于德国的科布伦茨。
他的父亲是一位药剂师,所以他就进了大学里的药学系。
先后在波恩、海德尔贝格、柏林三个大学读书,并获得博士学位。
毕业后,莫尔回到科布伦茨继承父业。
他用业余时间从事各方面的科学试验,最初研究物理学,在1837年发表了第一篇论文《关于热的性质的看法》。
1847年,莫尔独立地进行了《普鲁士药典》的修订工作。
接着又编写了一部《药学手册》,这部书受到国内外的重视;曾经两次被译成英文。
后来,莫尔的兴趣又转到容量分析方面,还发表了很多有关这方面的论文。
1855年写出了《化学分析滴定法教程》一书,这部书经过多次重版,一直到1914年还修订出版了最后一个版本。
莫尔早于1879年去世,这个版本当然是由别人修订的。
在书里面记录了沉淀滴定方法之一的莫尔法。
2.莫尔法的应用自来水中氯的测定●实验原理可溶性氯化物中氯含量的测定一般采用莫尔法。
该法是在中性或弱碱性介质中,以K2CrO4指示剂,用AgNO3标准溶液进行滴定,可以直接滴定Cl-或Br-。
分析化学:19章(4)_沉淀滴定法.
![分析化学:19章(4)_沉淀滴定法.](https://img.taocdn.com/s3/m/71762f1d16fc700abb68fc69.png)
(1)沉淀反应必须迅速,并按一定的化学计量关系进行。 (2)生成的沉淀应具有恒定的组成,而且溶解度必须很小。 (3)有确定化学计量点的简单方法。 (4)沉淀的吸附现象不影响滴定终点的确定。
目前应用最多的是生成难溶银盐的反应(银量法)。 Ag+ + Xˉ = AgX (Xˉ :Cl ˉ,Br ˉ,I ˉ,CN ˉ,SCN ˉ)
2 3 3 2 如SO3 、PO4 、AsO4 、S 2、C2 O4 等
优点:测Cl-、Br- 直接、简单、准确。) 缺点:干扰大(生成沉淀AgmAn 、Mm(CrO4 )n、 M (OH)n等); 不可测I-、SCN- ; 注意 先产生的AgCl沉淀容易吸附溶液中的C1-,使
溶液中的Cl-浓度降低,以致终点提前而引入误差。
入已知过量的AgNO3标准溶液,再用铁铵矾作指示剂,用
NH4SCN标准溶液回滴剩余的Ag+(HNO3介质)。 X-+ Ag+(过量)=AgX↓ Ag+(剩余)+SCN-=AgSCN↓ Fe3++SCN-=(FeSCN)2+
注意的几个问题:
(1)因为Ksp(AgSCN) < Ksp(AgCl)
AgCl SCN AgSCN Cl
[Ag ]AgCl
[Ag ]Ag 2CrO 4
Ksp(AgCl) 1.8 1010 9 1 1 . 8 10 mol L [Cl ] 0.10
K sp(Ag 2CrO 4 ) 1.110 12 5 -1 1 . 0 10 mol L [CrO 2 0.010 4 ]
(3)此方法的优点:在酸性溶液中滴定,许 多的弱酸根离子都不会干扰,选择性较高。 (4)干扰:强氧化剂、氮的低价氧化物、铜
无机及分析化学 第十九章(5) 沉淀滴定法
![无机及分析化学 第十九章(5) 沉淀滴定法](https://img.taocdn.com/s3/m/ced55cd333d4b14e8524685b.png)
(3) 避免强光照射。 避免强光照射。 使AgCl↓变灰黑色, 影响终点。 (4) 指示剂的吸附能力要适当 胶体微粒对指示剂离子的吸附能力,应略小于对待 测离子的吸附能力,否则提前变色,但如果吸附能力太 差,终点时变色也不敏锐。 (5) 溶液浓度不能太低 否则沉淀少, 观察终点困难。 [Cl- ]>0.005 mol·L-1。 Br- 、I - 、SCN - 可低至0.001 mol·L-1。
一、摩尔法(Moh准溶液: 指示剂: 标准溶液:AgNO3 指示剂:K2CrO4 Ag+ + Cl- = AgCl↓(白) ↓ Ksp =1.56×10-10 × ep: CrO42- + 2 Ag+ = Ag2CrO4↓(砖红) 砖红) Ksp =9.0×10-12 ×
1.0 × 10 −12 [Ag + ]ep = = 3.4 × 10 −7 mol ⋅ L−1 2.9 × 10 −6
真正过量的: 真正过量的:
cSCN = 2.9 × 10 −6 − 3.4 × 10 −7 + 6.0 × 10 −6 = 8.6 × 10 −6 mol ⋅ L−1
cSCN × 2V 8.6 × 10 −6 × 2 × 100 = × 100 = 0.02 TE % = 0.1000V 0.1000
实验表明: 实验表明: [CrO2− ] = 5 × 10−3 mol ⋅ L−1 4
ep: :
K SP 9.0 × 10 −12 [Ag + ]ep = = = 4.24 × 10 −5 mol ⋅ L−1 [CrO 2− ] 5.0 × 10 −3 4
1.56 × 10 −10 [Cl − ]ep = = = 3.68 × 10 −6 mol ⋅ L−1 [Ag + ] 4.24 × 10 −5 K sp(AgCl)
分析化学,第八章 沉淀滴定法(2007-2008)
![分析化学,第八章 沉淀滴定法(2007-2008)](https://img.taocdn.com/s3/m/d07e1ed8ce2f0066f5332279.png)
的碱性太强,可用稀HNO3 中和;酸性太强,可
用NaHCO3、CaCO3或Na2B407等中和。
当试液中有铵盐存在时,则pH较大会有 相当数量的NH3生成,影响滴定,则要求溶液的 酸度范围更窄。如果CNH4+<0.05mol/L, 在 pH为6.5~7.2范围内滴定,可以得到满意的结 果。如果CNH4+>0.15mol/L, 仅仅通过控制 酸度已经无法消除影响,此时须在滴定之前将 大量铵盐除去.
在滴定过程中,不断形成AgSCN沉淀具 有强烈的吸附作用,部分Ag+ 被吸附于其表 面上,因此往往出现终点过早出现的情况, 使结果偏低。滴定时必须充分摇动溶液, 使被吸附的Ag+及时地释放出来。
2 、返滴定法
• 先向试液中加过量的AgNO3标准溶液,再以 铁铵矾作指示剂,用NH4SCN标准溶液返滴定 过量的Ag+,例如测定Cl-。 • Ag+ + Cl-=AgCl↓(白色)
影响分析结果的准确度。
(二)滴定条件
(1)溶液的pH:一般控制在0.1~lmol/L之 间。这时,Fe3+主要以Fe(H20)63+的形式存 在,颜色较浅。如果酸度较低,则Fe3+水 解,形成颜色较深的棕色Fe(H2O)5OH2+或 Fe2(H20)4(0H)24+等,影响终点的观察,甚 至产生Fe(0H)3沉淀,指示剂失去作用。
[ SCN ]sp [ Ag ]sp K SP ( AgSCN ) 1.0 10
12
1.0 10 m ol L
6
1
要求此时刚好生成FeSCN2+ 以确定 终点,故此时Fe3+的浓度为:
[ Fe( SCN ) ] [ Fe ] 138 SCN ] [
分析化学沉淀滴定法
![分析化学沉淀滴定法](https://img.taocdn.com/s3/m/063c413452d380eb62946d79.png)
沉淀剂 BaCl2
BaSO4
Mg2+ + (NH4)2HPO4
MgNH4PO4· 6H2O
滤,洗 Mg2P2O7 灼烧 ,1100℃
Al3+ + 3
H O
Al(
N
O N
)3 滤
洗
Al(
O
N
)3
Al2O3
12
对沉淀形的要求
1.沉淀的 S 小,溶解损失应<0.1mg。 (该沉淀的定量沉淀) 2.沉淀的纯度高。(不该沉淀的不沉淀,杂质少) 3.便于过滤和洗涤。(晶形好)
K sp
I
,S
1.4
AgCl 1.2 0.005 1.0 0.001 c(KNO3)/(mol· L-1) 0.01
沉淀重量法中,用I=0.1 时的Ksp计算; 计算难溶盐在纯水中的 溶解度用Ksp
16
2. 同离子效应—减小溶解度
沉淀重量法总要加过量沉淀剂.
MA2: K´sp=[M´ ][A´ ]2 =Ksp M A2
/4 MA2 : S = 3 K sp
MmAn?
15
7.2.2 影响S 的因素
1. 盐效应—增大溶解度
K sp
S/S0 1.6 BaSO4
a(M) a(A) [M][A] (M) (A) (M) (A)
3+
40%铁铵 矾1mL
2
Volhard返滴定法
指示剂:铁铵矾FeNH4(SO4)2
标准溶液:AgNO3、NH4SCN 被测物:X- (Cl-、Br-、I-、SCN-) SCN
-
Fe
3+
FeSቤተ መጻሕፍቲ ባይዱN2+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3需用3.50ml,0.07100mol
L1的
KSCN滴至终点,
(1)计
算AgNO
溶液浓度
3
。
(2)
若滴定中未
采取措施防
止AgCl转化为AgSCN,则AgNO
浓
3
度又为多少
?
(3)此时的相对误差多少?(设Vep 50.00ml,[Fe3 ] 0.015mol L1,能观察出终点时
[[FeSCN]2 ] 6.0 106 mol L1 (血红);K[FeSCN ]2 138, K Sp(AgCl) 1.8 1010 ; K sp(AgSCN) 1.0 1012 )
解:(1)Ag Cl AgCl. Ag SCN AgSCN
(cV ) Ag
(cV)Cl
m NaCl M NaCl
1000
c Ag
30.00
0.07100
3.50
0.1100 58.44
1000
cAg 0.07102mol L1
15
(2)转化平衡: [Ag ][Cl ] K sp(AgCl) 1.8 1010
I-
AgI↓[Ag][X]<Ksp 溶解
SCN -
AgSCN↓
特点:
二.滴定曲线 0.10mol/L的AgNO3滴20.00mL0.10mol/L的 NaCl: 1.sp前:(- 0.1%)
[Cl -]= cCl = —(cV—)—Cl-—- (—cV—)A—g+ V总
=0.1×
0.02 ——
39.98
测定条件: (1)K2CrO4用量: 理论量:[CrO42-]=1.2×10-2mol/L; 实际量:[CrO42-]=5×10-3mol/L 若:[CrO42-]大,则[Ag+]ep<[Ag+]sp 偏低,过早达终点
[CrO42-]小,则 [Ag+]ep > [Ag+]sp 偏高,终点拖后
8
当[CrO42-]=5×10-3,测定浓度为0.1mol/L时 Et= 0.06%<0.1%
6
8.2: 三种银量法
一.莫尔法(Mohr):
K2CrO4指示剂; AgNO3 标准溶液; 被测组分:Cl- Br -;酸度: pH=6.5-10.5
原理:分步沉淀
Cl -被测+Ag+ =AgCl↓
Ksp=1.8×10-10
S Ksp 1.3 105 mol / L
CrO42- +2Ag+ =Ag2CrO4↓(砖红) Ksp=2.0×10-12 S 3 Ksp 1.3 10;][Cl-]=Ksp [Ag ]sp Kw 104.7 PX
PsCpl PAg 4.7
AgI 11.5 △PAg =7.2 AgCl 5.2
起 △PAg =0.9
终
突跃大小与 cCl 和Ksp有关 c×10突跃增大2个单位PAg c×1/10突跃减小2个单位PAg
第八章:沉淀滴定法
8-1 概述 8-2 三种银量法 8-3 银量法应用 习题
8.1: 概述
一.滴定原理:以沉淀反应为基础的滴定分 析方法 (Precipitation Titrations)
反应类型:
Cl-
AgCl↓[Ag][X]=Ksp 饱和
Br -+Ag+(标) →AgBr↓[Ag][X]>Ksp 沉淀
11
*****问BaCl2中Cl -能否用莫尔法测定***** 否! 因为 BaCrO4↓ 若沉淀加入 Na2SO4 → BaSO4↓除去
12
二.佛尔哈德法:NH4Fe(SO4)2指示剂 1.直接滴定法 标准溶液:KSCN(NH4SCN) 被测组分:Ag+ 酸度:0.1---1.0mol/L HNO3 滴定反应: Ag+ +SCN- (标)=AgSCN↓ Ksp=2.0×10-12 Fe3+ +SCN- =Fe(SCN)2+ 血红, K=200 [Fe3+]ep=0.015mol/L [SCN -]ep= [—F[e—F(eS—3C+]N—·K)—2+] =2.0×10-6
[Ag ][SCN ] K sp(AgSCN) 1.0 1012
即:[Cl ] K sp(AgCl) 180;[Cl ] 180[SCN] [SCN ] K Sp ( AgSCN)
10
3.干扰因素 (1)凡能与CrO42-形成沉淀的阳离子: Ba2+ Pb2+ Hg2+ 干扰 (2)凡能与Ag+形成沉淀的阴离子: S2- PO43- CO32- C2O42- AsO43- SO32(3)有色离子:Cu2+ Co2+ Ni2+影响ep观察 (4)水解离子: Al3+ ,Fe3+,Bi3+,Sn2+形成 沉淀干扰测定
Ksp·AgI=10-15.8< Ksp·AgCl=10-9.5
5
三.银量法 1.The Mohr Method → Formation of a Colored Precipitats 2.The Volhard Method → Formation of a Colored Complex 3.Adsorption Indicators:The Fajans Method
13
2.返滴定法
标准液:AgNO3 KSCN 被测液:Cl- Br - I –
酸度:0.1----1.0mol/L HNO3 滴定反应:
K <K spAgSCN
spAgCl
→
AgSCN↓
红色消失
14
例:(发生在佛尔哈德法AgCl沉淀转化时的滴定误差)。
在30.00mlAgNO
溶液
3
中,加入0.1100g纯NaCl,过量的AgNO
当[CrO42-]=5×10-3,测定浓度为0.01mol/L 时
Et>0.1%
9
2.溶液酸度
Ag2CrO4+H+
2Ag++HCrO4-
HCrO4- Ka2=3.2 × 10-7 控制酸度为pH=6.5----10.5
防止副反应发生:
2Ag+ +CrO42- =Ag2CrO4 pH>10.5 Ag+ +OH- =AgOH→Ag2O +H2O pH<6.5 CrO42- +H+ =HCrO4-
=5 ×10-5 =10-4.3
3
故[Ag+]=
—Ks—p Cl-
3.2×10 -10 = —5×—1—0 -5—
=10-5.2
PCl=4.3
PAg=5.2
2.sp后:根据过量的Ag+计算(+0.1%)
[Ag+]=
0.1×
0.02 ——
= 10 -4.3
40.02
pAg=4.3 △pCl=0.9
pCl=5.2