第五章 岩石爆破理论PPT课件
第五章岩石爆破理论 -PPT精选文档83页
我国工程界应用较为广泛的是前苏联学者鲍列斯阔夫
提出的经验公式:
f(n) = 0.4+0.6n3 Qp= (0.4+0.6n3)kbW3
适用于集中药包抛掷爆破装药量的计算
02.12.2019
第五章 岩石爆破理论
28
上式计算加强抛掷爆破的装药量时,结 果与实际情况比较接近。但是,当最小抵抗
02.12.2019
第五章 岩石爆破理论
16
a n = 1.0
标准抛掷爆破漏斗
b n > 1.0
加强抛掷爆破漏斗
0.75 < n < 1.0
c 减弱抛掷爆破漏斗 (也称加强松动爆破漏斗)
d n < 0.75
松动爆破漏斗
02.12.2019
第五章 岩石爆破理论
17
第三节 成组药包爆破时岩石破坏特征
r
2
式中:Q----装药量,kg;
W
W----最小抵抗线,m;
应力波作用学说只考虑了拉应力波在自由面的反射 作用,不仅忽视了爆轰气体的作用,而且也忽视了压应 力的作用,对拉应力和压应力的环向作用也未予考虑。 实际上爆破漏斗主要以由里向外的爆破作用为主。
02.12.2019
第五章 岩石爆破理论
3
爆炸应力波反射拉抻作用理论 (爆破的外部作用-----霍金逊效应)
第五章 岩石爆破理论
21
一、体积公式的计算原理
在一定的炸药和岩石条件下,爆落的土石方体积与 所用的装药量成正比。这就是体积公式的计算原理。 体积公式的形式为:
Q=k·V
式中: Q — 装药量,kg ;
k — 单位体积岩石的炸药消耗量,kg/m3 ;
岩土爆破课件ppt
根据爆破需要,精确计算炸药用量,避免 因炸药过多或过少引起的安全事故。
设立安全警戒区
培训专业爆破人员
在爆破作业区域设立明显的警戒标志,禁 止非工作人员进入,确保人员安全。
对参与爆破作业的人员进行专业培训,确 保他们具备相应的技能和知识,能够安全 、有效地完成爆破任务。
岩土爆破对环境的影响
空气污染
爆破过程中会产生大量 粉尘和有害气体,对周
静态破碎技术是指利用静态力使岩石产生裂纹,再通过爆破剂使 裂纹扩展,从而达到破碎岩石的目的。
应用场景
适用于岩石的破碎和拆除,特别是对周围环境有严格要求的情况 。
技术特点
安全可靠、无噪声、无振动、无飞石,但施工周期长,需要使用 专门的静态破碎设备和药剂。
其他岩土爆破技术
定向爆破
利用炸药在特定方向上产生破碎力的技术,适用于大规模的岩石开 挖和拆除。
边空气造成污染。
噪音污染
爆破作业会产生巨大的 爆炸声,对周边居民和
动物造成噪音干扰。
振动影响
爆破产生的振动可能会 对周边建筑、道路、桥
梁等设施造成影响。
水体污染
爆破过程中产生的废水 可能对周边水体造成污
染。
岩土爆破的环保措施与标准
粉尘控制
采取喷雾、洒水等措施减少粉尘的产生和扩散,同时对产生的粉尘进 行清理和回收。
破裂扩展
破裂扩展是岩土爆破的重要过程, 它涉及到岩石和土壤的破裂和位移 。
能量转化
岩土爆破过程中,化学能转化为机 械能,导致岩石和土壤的破碎。
岩土爆破的化学原理
炸药反应
炸药在起爆后发生化学反应,产生大量的热能 和气体。
爆炸气体生成
炸药反应产生大量的气体,这些气体在封闭环 境中形成高压。
《岩土爆破理论》课件
可持续发展要求
合理利用资源、降低能耗 、提高效率、推动技术创 新等
和减震降噪技术, 实现绿色施工
05
岩土爆破理论展望
岩土爆破理论研究前沿
数值模拟与物理模拟相结合
通过建立更精确的数值模型,结合物理实验,深入研究岩土爆破 过程中的力学行为和破坏机制。
智能爆破技术
岩土爆破的基本原理
01
炸药爆炸产生的高温高压气体使岩土介质破碎或松 动。
02
炸药爆炸产生的冲击波和爆炸气体在岩土中形成冲 击应力波和剪切波,使岩土介质产生破坏。
03
炸药爆炸产生的爆炸气体膨胀作用将破碎的岩土介 质抛出,形成爆破漏斗。
岩土爆破的历史与发展
01
19世纪中叶,炸药和爆破技术开始应用于采矿和隧道开挖领域 。
利用微震监测技术,实时监测爆破过 程中的振动和破坏情况,提高爆破效 果和安全性。
通过控制炸药爆炸的方向和能量分布 ,实现特定方向的岩土破碎和分离。
岩土爆破工程实践展望
1 2 3
复杂环境下的爆破工程
针对复杂地形、地貌、地质条件下的岩土爆破工 程,研究相应的技术和方法,提高工程安全性和 可靠性。
城市地下空间开发中的爆破工程
确保使用的爆破设备和工具符合安全标准, 并定期进行检查和维护。
应急预案
制定应急预案,以应对可能发生的意外情况 ,包括人员伤亡、设备损坏等。
岩土爆破效果评估
01
02
03
破碎效果评估
根据破碎后的岩土粒径分 布、破碎程度等指标,评 估爆破效果是否达到预期 要求。
经济效益评估
比较不同爆破方案的施工 成本、经济效益等指标, 选择最优方案。
根据岩土性质、爆破条件和爆破 要求,选择合适的炸药类型和规 格,以达到最佳的爆破效果。
第5章 爆破工程岩石爆破基本原理
• 也就是药包在自由面附近爆炸时,岩石是怎样破坏的。 又称自由面的破坏作用。
§5
岩石爆破基本ቤተ መጻሕፍቲ ባይዱ理
• (1)反射拉应力波引起自由面岩石破坏(片落)
• 即由霍布金森效应引起的破坏。
• ①当入射压应力波传播到自由面时,一部分或全部反 射回来成为同传播方向正好相反的拉应力波,拉应力 超过岩石的抗拉强度时,发生片落现象。这种效应叫 做霍布金森(Hopkinson)效应。
下
§5
岩石爆破基本原理
σr σr
径向拉应力 岩石开裂 环向裂隙 返回
`
`
§5
岩石爆破基本原理
• ④产生剪切裂隙的原因
• 在径向裂隙和环向裂隙形成的同时,岩石还受到径向 应应力和切向应力的的共同作用,进而产生剪切裂隙。 如下图所示。
• 4. 岩石的分区 • 根据岩石的破坏特征,由内向外,可将岩石大致分为 三个区: • ① 压缩(粉碎)区(近区) • 形成的空腔称为压缩区。
§5
岩石爆破基本原理
• ②(8~150)r:应力波作用区;
• 特点:冲击波压应力波,波阵面上的状态参数变化 比较平缓;波速等于岩石中的声速。
• 由于压应力波的作用,岩石处于非弹性状态,可导致 岩石的破坏或残余变形。 • 应力衰减与距离二次方成正比。
爆炸应力波及其作用范围 r—药包半径 tH—介质状态变化的时间 ts—介质状态恢复到静止状态的时间
§5
岩石爆破基本原理
• 3.爆破漏斗的几何参数
θ
r
H h W
• (1)最小抵抗线W • (3)爆破作用半径R
•(4)爆破漏斗深度H •(6)爆破漏斗张开角θ
• (2)爆破漏斗底圆半径r •(5)爆破漏斗可见深度h •说明:(1)、(2)、(3)称为爆破漏斗三要素。
岩石爆破理论
爆轰压力、爆炸压力、爆炸作用时间、能量利用率
炸药爆热、爆温、 爆轰气体体积
7.7.2 岩石特性对爆破作用的影响
• 岩石特性——物理力学性质、动载特性和地 质条件。实际是岩石对应力波传播的影响
• 结构面对应力波传播的影响:加剧了应力波 能量的吸收;改变了应力波的传播方向(反 射、透射)。决定了爆破裂隙的扩展程度。
为了获得较好的爆破效果,应使炸药的波阻抗尽量 接近岩石的波阻抗。
• 岩石中的动应力场
爆炸荷载为动荷载,在爆炸荷载作用下,岩石中引 起的应力 状态表现为动的应力状态。它不仅随时 间变化,而且随距离远近而变化。
最大主应力、最小主应力、剪应力
7.3岩石中的爆炸气体
• 冲击波在前,爆炸气体在后 • 冲击波时间短,爆炸气体作用时间长 • 爆炸气体能量大 • 按准静态分析
爆破理论确立阶段 :冲击波拉伸破坏理论;爆炸气体膨胀压破坏理论; 冲击波和爆炸气体综合作用理论,爆破过程3阶段论。
爆破理论最新发展阶段 :裂隙岩体爆破理论;断裂力学和损伤力学引入; 计算机模拟和再现,爆破块度和爆堆形态预测; 新思想和新方法进入爆破理论研究。
岩石爆破理论研究的内容:
• 爆轰波理论的研究
• 应力波分类:
应力波 (传播途径)
体积波
表面波
纵波P波
运动方向一致 压缩波
横波S波
运动方向垂直 剪切波
瑞利波R波
能量大 地震破坏
勒夫波 Q波
按波阵面形状分类:球面波、柱面波、平面波 按介质变形性质分类:弹性波、粘弹性波、塑性波、冲击波
冲击荷载的特征: 承受载荷作用的物体自重非常重要; 在承载体中诱发出的应力是局部性的; 承载体的反应是动态的
岩爆PPT课件
12
Russense 判据
• Russense岩爆判别法是根据洞室的最大切向应力σθ与岩 石点荷载强度Is的关系,建立了岩爆烈度关系图。把点荷 载Is换算成岩石的单轴抗压强度Rc ,并根据岩爆烈度关系 图判别是否有无岩爆发生。其判别关系如下:
15
岩体RQD值判据
• 中国学者把岩体的RQD(岩体质量指标)值大 于60%作为岩爆发生时的判据。有资料表 明,σ1/Rc值大部分介于0.2~0.5之间,其 出现频率与总事件数为66%,岩爆发生时 其比值一般大于0.2,其出现频率与总事件 数82%。
16
秦岭隧道判据方法
• 谷明成通过对秦岭隧道的研究提出以下判 据:
6
能量理论
• 20世纪60年代中期,库克等人在总结南非 金矿岩爆研究成果的基础上提出了能量理 论。他们指出:随着采掘范围的不断扩大, 岩爆是由于岩体-围岩系统在其力学平衡状 态破坏时, 系统释放的能量大于岩体本身 破坏所消耗的能量而引起的。这种理论较 好地解释了地震和岩石抛出等动力现象。
7
断裂损伤理论
Rc≥15Rt Wet≥2.0 σθ≥0.3Rc Kv≥0.55
17
谷–陶岩爆判据
σ1>0.15Rc (力学要求) Rc≥15Rt (脆性要求) Kv≥0.55 (完整性要求) Wet≥2.0 (储能要求)
18
岩爆的现场预测方法
• 岩爆预测预报是为岩爆防治工作确定岩爆 发生的时间、地点、烈度等信息。
• 微震(A-E)法 • 微重力法 • 电磁辐射监测预报法 • 地震学预测法
11
Turchaninov 方法(T方法)
第五章 岩石爆破基本原理
第5章 岩石爆破基本原理第1节 爆破破碎原理炸药在岩体内爆炸瞬间释放出巨大的能量,使岩体产生不同程度的变形和破坏。
为了达到低能耗、高效率破碎岩体的目的,并能有效地控制爆破产生的各种危害,就必须了解爆炸荷载作用下岩体的变形与破坏规律,分析爆破破碎原理,指导爆破设计与施工。
只有这样,才能合理地确定爆破参数和有效地控制爆破作用。
由于炸药的爆炸反应是高温、高压和高速的瞬态过程,岩体性质和爆破条件复杂多变,加之爆破工作具有较大的危险性,因此给直接观测和研究岩体的爆破破坏过程造成了极大的困难。
迄今为此,人们对岩体爆破作用过程仍然了解得不透彻,尚不能形成一套完整而系统的爆破理论。
尽管如此,随着长期实践经验的积累和现代科学技术的发展,借助先进的爆破测试技术以及模拟爆破试验,对爆破作用原理的研究取得了较大的进展,提出了多种岩体爆破机理的观点,在一定程度上反映了岩体的爆破破坏规律,具有一定的指导意义和实用价值。
一、爆破作用的基本原理1. 爆破破坏作用的基本观点爆破破坏作用的观点很多,大致可归纳为如下三种:(1) 爆轰气体破坏作用的观点。
从静力学的观点出发,认为药包爆炸后,产生大量的高温、高压气体。
这种气体膨胀产生的推力作用在药包周围的岩壁上,引起岩石质点的径向位移。
当药包埋深不大时,在最小抵抗线方向(即地表方向),岩1石移动的阻力最小,运动速度最高。
由于存在不同速度的径向位移,在岩体中形成剪切应力,当这种剪切应力超过岩石的动态抗剪强度时就会引起岩石破裂。
在爆轰气体膨胀推力作用下,自由面附近的岩石隆起、开裂,并沿径向方向推出,如图5—1。
这种观点不考虑冲击波的破碎作用。
(2) 应力波破坏作用观点。
从爆炸动力学的观点出发,认为药包爆炸产生强烈的冲击波,冲击、压缩周围的岩体,造成邻近药包的岩体局部压碎,之后冲击波衰减为压应力波继续向外传播。
当压应力波传播到岩体界面(自由面)时,产生反射拉应力波,若此拉应力波超过岩石的动态抗拉强度时,从界面开始向爆源方向产生拉伸片裂破坏,如图5—2所示。
5 爆破工程地质 sjsppt 3 122页PPT文档
但是这种方法忽视了各岩石 特性的特殊性和差异性,因 此有一定的误差,显得有些 片面和笼统
如坚硬(强度高)但节理裂 隙发育,完整性差的岩体, 普氏系数大,但实际不难爆。
23
*
(2)前苏联库图佐夫 岩石爆破性分级方法 (多种指标)
24
*
(3)东北大学岩石分级法 东北大学综合考虑了爆破材料、工艺、参数等条件,进行了爆破
体材料那样有明显的屈服点,而是在所谓的弹塑性范围
内呈现弹性和塑性,甚至在弹性变形一开始破关系)。
9
*
岩石的主要力学特性
10
*
岩石的主要力学特性
非
线 性
弹
性
线
变
性
形
弹
性
变 形
脆 性
比
破
例
坏
极
限
塑 性 屈 服 变 形
延 性 破 坏
弹性变形区
塑性变形区
γ = G /V
式中 γ ——岩石的堆积密度,N/m3;
G——岩石的重量,N;
V——岩石的体积,m3。
岩石的堆积密度一般为20~30KN/m3。岩石密度大,其容重也 大,岩石的强度和抵抗爆破作用的能力也增强,破碎和移动 岩石所耗费的能量也增加。
在工程实践中常用公式K=0.4+(γ/2450)2(kg·m-3),来估算
25
*
并按f值的大小将岩石划分为五级,见表4-5。 表4-5 东北大学岩石可爆性分级
级别
I
I1 I2
II
II1 II2
III
III1 III2
IV
IV1 IV2
V
V1 V2
f
<29 29.001~38
《岩石力学》(完整版)PPT课件
平行层面波速/垂直岩层波速=各向异性系数C C=1.08-2.28;多数:C=1.67 相当一部分:c=1.10
.
43
表3-6
.
44
•交通方面 :北京道路面积4.4m2/人;东京11.3m2/ 人;伦敦21.3m2/人。
.
4
1.3 岩体力学的研究方法
研究方法:实验、理论分析与工程应用相结合
实验 理论
室内
岩块(拉、压、剪…) 模拟 收敛(表面位移)
野外 位移 应力
应变 绝对位移、相对位移(内部)
压力 连介
非连介
有限元
数值方法 离散元
VP0.3 51.88
.
34
.
35
二、岩体波速与岩体中裂隙或夹层的关系
弹性波在岩体中传播时,遇到裂隙,则视
充填物而异。若裂隙中充填物为空气,则弹 性波不能通过,而是绕过裂隙断点传播。在 裂隙充水的情况下,声能有5%可以通过, 若充填物为其他液体或固体物质,则弹性波 可部分或完全通过。弹性波跨越裂隙宽度的 能力与弹性波的频率和振幅有关.
.
29
.
30
根据实验结果整理的岩体动弹性模量见表(3-2)
.
31
动弹性模量与静弹性模量的比值
• 一般来说,岩体越坚硬越完整,则差 值越小,否则,差值就越大。
• 根据对比资料的统计,动弹性模量比 静弹性模量高百分之几至几十倍,如 图3-4所示。
• 从动弹性模量的数字来看,多集中 在 1 51305 0130MP之a间。
.
12
(二)渗透性
在一定的水压作用下,水穿透岩石的能力。反映 了岩石中裂隙向相互连通的程度,大多渗透性可用达 西(Darcy)定律描述:
石方爆破简介课件PPT
爆破作业安全规范
爆破作业人员资质
爆破器材管理
爆破作业现场安全管理
爆破后检查与处理
爆破作业人员必须经过专业培 训,取得相应的资格证书后方 可上岗作业。
爆破器材的购买、运输、储存 和使用必须符合国家相关法律 法规的规定,严禁非法买卖、 转让、出借、私藏爆破器材。
爆破作业现场必须设置警戒线 ,标明安全区域和危险区域, 并配备专职安全管理人员进行 现场监督。同时,应制定应急 预案,以应对可能发生的突发 事件。
根据评估结果,制定相应的风 险控制措施,降低事故发生概 率。
应急预案制定及演练实施
针对可能发生的突发事件,制定 完善的应急预案。
应急预案应包括应急组织、通讯 联络、现场处置、医疗救护、安
全防护等内容。
定期组织应急演练,提高员工应 急处置能力和协同作战能力。
事故报告、调查和处理程序
01
发生事故后,应立即启 动事故报告程序,及时 向上级主管部门报告。
事故。
03 石方爆破作业流程与方法
作业前准备工作及现场勘察
爆破作业前准备
明确爆破任务和目标,制 定爆破方案,准备所需器 材和设备。
现场勘察内容
了解地形地貌、地质构造、 岩石性质及周边环境,评 估爆破作业的安全性和可 行性。
勘察方法
采用现场踏勘、地质勘探、 试验钻孔等方法,获取准 确的地质资料和岩石力学 参数。
导爆管
内壁涂有薄层炸药的塑料 管,用于传递爆轰波,起 爆雷管或非电导爆系统。
起爆器
提供起爆能量的装置, 如发爆器、起爆器等。
钻孔机械和装药设备简介
01
02
03
钻孔机械
包括潜孔钻、牙轮钻、凿 岩机等,用于在岩石上钻 孔,为装药提供空间。
岩石爆破理论
岩石爆破理论5岩石爆破理论5.1岩石爆破破坏基本理论炸药爆炸引起岩石破坏,这是一个高能转化释放、传递作功的过程。
在这个过程中,岩石受力情况极其复杂,而历时又极为短暂,因此要正确地解释岩石爆破破碎机理,就极为困难,人们已作了多年的努力,仍没有一个确切全面的唯一的解释,而是各执一词。
但将多类解释的基本观点和理论依据归类,可概括为三大假说:5.1.1 爆生气体膨胀作用理论这种理论是从静力学的观点出发,认为:岩石的破碎主要是由爆炸气体产物的膨胀压力引起。
(1) 炸药爆炸时,产生高压膨胀气体,在周围介质中形成压应力场。
炸药爆炸生成大量气体产物,在爆热的作用下,处于高温高压的状态,而急剧膨胀,这些膨胀气体以极高的压力作用于周围介质,而形成压应力场。
(2) 气体膨胀推力使质点产生径向位移,而产生径向压应力,其衍生拉应力,产生径向裂隙。
很高的压应力场,势必使周围岩石质点发生径向移动,这种位移又产生径向压应力,形成径向压应力的传递;质点在受径向压应力时,将产生径向压缩变形,而在切向伴随有拉伸变形生产,这个拉伸应变就是径向压应力所衍生的切向拉应力所产生。
当岩石的抗拉强度低于此切向拉应力时,就将产生径向裂隙;岩石的抗拉强度远远地小于抗压强度(常为其1/10~1/15),所以拉伸破坏极易发生,而形成径向裂隙。
(3) 质点移动所受阻力不等,引起剪切应力,而导致径向剪切破坏。
质点位移受到周围介质的阻碍,阻力不平衡在介质中就会引起剪切应力,若药包附近有自由面时,质点位移的阻力在最小抵抗线方向最小,其质点位移速度最高,偏离最小抵抗线方向阻力增大,质点位移速度降低,这样在阻力不等的不同方向上,不等的质点位移速度,必然产生质点间的相对运动而产生剪切应力。
在剪切应力超过岩石抗剪强度的地方,将发生径向剪切破坏。
(4) 当介质破裂,爆炸气体尚有较高的压力时,则推动破裂块体沿径向朝外运动,形成飞散。
上述破坏发生将消耗大量的爆炸能,如果爆炸气体还有足够大的压力,则将推动破碎岩块作径向外抛运动,若压力不够就可能仅是松动爆破破坏,而没有抛散,甚至只是内部爆破。
5.岩石爆破破碎机理
(4)松动爆破漏斗 W
n < 0.75
11/9/2019
25
二、利文斯顿爆破漏斗理论 1.利文斯顿爆破漏斗理论的实质 (1)传递给岩石能量大小的相关因素
岩石性质、炸药性能、药包质量、炸药埋置深 度和起爆方式。 (2)爆破后炸药能量分配
1)岩石的弹性变形; 2)岩石的破碎和破裂; 3)岩石的抛掷; 4)空气冲击波和对气体做功。
11/9/2019
35
二、面积公式 1.适用范围 预裂爆破、光面爆破和切割爆破 2.计算公式
Q qm A
(5-37)
11/9/2019
36
三、单位炸药消耗量的确定方法(BE0101-2) 单位炸药消耗量q b 是指单个集中药包形成标准 抛掷爆破漏斗时,爆破每立方岩石所消耗的2 号岩石铵梯炸药的质量。
11/9/2019
18
(2)破裂区的形成
1)径向裂隙的形成
①在应力波的作用下,使岩石质点产生径向 位移,在构成径向压应力场和切向拉应力场。 当切向拉应力大于岩石的抗拉强度时,该处 岩石被拉断,形成与粉碎区贯通的径向裂隙;
②高压爆生气体膨胀作用在对周围岩石产生 强烈压缩的同时,也对已形成的径向裂隙产 生气楔作用,促进了径向裂隙的扩展;
11/9/2019
20
(3)片落区的形成
应力波传播到自由面时,使岩石产生反射拉 伸,若该拉应力大于岩石的抗拉强度时,表 面的岩石被拉断形成片落区。
(4)爆破漏斗的形成
在埋深适当的情况下,压碎区、破裂区和片 落区相连接,形成连续性破坏。最后在爆生 气体膨胀作用下,将最小抵抗线方向的岩石 鼓起、抛掷,最终形成倒锥形的凹坑。
1-铵油炸药;2-浆状炸药;3-含铝浆状炸药
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.6 影响爆破作用的主要因素
21.08.2020
第五章 岩石爆破理论
3
第一节 岩石爆破破坏基本理论(1)
爆生气体膨胀作用理论
爆炸应力波反射拉抻 作用理论
爆生气体和应力波综合 作用理论
爆炸生成气体产物的膨胀作用
21.08.2020
第五章 岩石爆破理论
4
岩石爆破破坏基本理论(2)
爆生气体膨胀作用理论
即:
r=W
所以,爆破漏斗体积的大小为:
V r2 W W3
3 标准抛掷爆破的装药量可以认为是:
Q标 KW3
于是:
Q抛f(n)KW3
f(n)为爆破作用指数函数(function of crater index)
第五章 岩石爆破理论
20
利文斯顿爆破漏斗理论
利文斯顿爆破漏斗示意图
利文斯顿将岩石爆破时的变形和破坏形态分为四种类型:
b n > 1.0
加强抛掷爆破漏斗
0.75 < n < 1.0
c 减弱抛掷爆破漏斗 (也称加强松动爆破漏斗)
d n < 0.75
松动爆破漏斗
21.08.2020
第五章 岩石爆破理论
15
第三节 延长装药爆破作用
延长药 (extended charge)
包
当药包的长度和它横载面的直径(或
最大边长)之比值 大于某一值时,叫
部
(2)裂隙区(破裂区)
作
用
径向压缩引起的切向拉伸
爆破的内部作用
1—径向裂隙 2—环向裂隙
Rc-药包半径;Rp-粉碎区半径;Rc-破裂区半径 径向裂隙和环向裂隙的形成原理
21.08.2020
第五章 岩石爆破理论
8
单个药包爆破外部作用(1)
外 (1)反射拉伸波引起自由面附近岩石的片落 部 作 用
霍普金森效应的破碎机理
岩体内最初裂隙的形成是由冲击波或应力波造成的,随后 爆生气体渗入裂隙并在准静态压力作用下,使应力波形成的裂 隙进一步扩展。爆生气体膨胀的准静态能量,是破碎岩石的主 要能源。
哈努卡耶夫把岩石按波阻抗值分为三类:
(1) 第一类岩石属于高阻抗岩石。其波阻抗为15~25MPa·s/m . 这类岩石的破坏,主要取决于应力波,包括入射波和反射波。 (2) 第二类岩石属于中阻抗岩石。其波阻抗为5~15MPa·s/m。 这类岩石的破坏,主要是入射应力波和爆生气体综合作用的结果 (3) 第三类岩石属于低阻抗岩石。其波阻抗小于5MPa·s/m。 这类岩石的破坏,以爆生气体形成的破坏为主。
相关名词解释:临界深度 ,最适宜深度 ,转折深度。
5 爆炸气体扩展应力波所产生的裂隙。
21.08.2020
第五章 岩石爆破理论
13
爆破漏斗
爆破作用 (crater index)
指数
爆破作用指数n :它是爆破漏斗半径r和最小抵抗线W的比值,即:
n r W
21.08.2020
第五章 岩石爆破理论
14
爆破漏斗的基本形式
a n = 1.0
标准抛掷爆破漏斗
第五章 岩石爆破理论
6
爆炸应力波反射拉抻作用理论 的试验基础
岩石杆件的爆破
21.08.2020
板件爆破试验
1—装药孔 2—破碎区 3—拉裂区 4—震动区
水泥板的爆轰破坏
1—空气冲击波波阵面; 2—水泥板中冲击波波阵面; 3—水泥板
第五章 岩石爆破理论
7
第二节 单个药包爆破作用
内
(1)粉碎区(压缩区)
相 似 法
R' R
Q' Q
1/ 3
则
体
积
法
则 外部药包效应
21.08.2020
第五章 岩石爆破理论
19
能量平衡原理与装药量计算(2)
体 积 法 则
相 似 法 则
21.08.2020
在一定的炸药和岩石条件下,爆落的土石方体积同所用的装药量
成正比,即: Q=KV
如果药包是集中药包,标准抛掷爆破时爆破作用指数n的值为1,
(a)单个A孔产生的切向伴生拉应力
相邻炮孔应力波相遇叠加
(b)单个B孔产生的切向伴生拉应力 (c)两孔合成的切向伴生拉应力
21.08.2020
第五章 岩石爆破理论
17
应力降低的分析
应力降低的分析图
多排成组药包的齐发爆破效果不好,得不到实际使用。
21.08.2020
第五章 岩石爆破理论
18
第五节 能量平衡原理与装药量计算
武汉理工大学
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
第五章 岩石爆破理论
主要内容 :
5.1 岩石爆破破坏基本理论 5.4 成组药包爆破时岩石破坏特征
5.2 单个药包爆破作用
5.5 炸药起爆能量平衡原理与装药量计算
5.3 延长装药爆破作用
拉伸应力 2达到极大值时 1和 2的方向
岩体中任一点A的应力分析
主应力 1和 2 的作用方向
21.08.2020
第五章 岩石爆破理论
11
炸药在岩石中爆破的破坏过程
A
第一阶段
炸药爆炸 后冲击波径 向压缩阶段.
21.08.2020
B
第二阶段
对应力波 反射引起自 由面处的岩 石片落。
C
第三阶段
A—应力波合成的过程;B—岩石表面片落过程
21.08.2020
第五章 岩石爆破理论
9
单个药包爆破外部作用(2)
外 (2)反射拉伸波引起径向裂隙的延伸 部 作 用
反射拉伸波对径向裂隙的影响
21.08.2020
第五章 岩石爆破理论
10
单个药包爆破外部作用(3)
外 (3)自由面影响下的应力场分析 部 作 用
爆炸气体膨胀, 岩石受爆炸气体超 压力的影响,在拉 伸应力和气楔的双 重作用下,径向初 始裂隙迅速扩大。
第五章 岩石爆破理论
12
炸药在岩石中爆破的破坏模式
1 炮孔周围岩石的压碎作用;
主要的 五种破 坏模式
2 径向裂隙作用 ; 3 卸载引起的岩石内部环状裂隙作用; 4 反射拉伸引起的“片落”和引起径向裂隙的延伸;
做延长药包。
装药平行自由面的爆破漏斗
装药倾斜自由面的爆破漏斗
21.08.2020
第五章 岩石爆破理论
装药垂直自由面的爆破漏斗
16
第四节 成组药包爆破时岩石破坏特征
当相邻两药包齐发爆破时,在沿炮孔连心线上的应力得到加强,而在炮 孔连心线中段两侧附近则出现应力降低区。
相邻炮孔中心连线上准静态拉应力分析
爆炸应力波反射拉抻 作用理论
爆生气体和应力波综合 作用理论
21.08.2020
反射拉应力波破坏作用
(a)入射压力波波前;(b)反射拉应力波波前
第五章 岩石爆破理论
5
岩石爆破破坏基本理论(3)
爆生气体膨胀作用理论
爆炸应力波反射拉抻 作用理论
爆生气体和应力波综合 作用理论
21.08.202