ansys常见结构建模
ANSYS中几种建模方法的研究

ANSYS中几种建模方法的研究ANSYS是一种广泛应用于工程领域的有限元分析软件,用于模拟和分析不同领域中的物理现象。
这个软件提供了多种建模方法,以适应不同的工程需求。
下面将要介绍ANSYS中的几种建模方法,并对它们的研究进行详细说明。
1.离散多体建模方法:离散多体建模方法是一种用于模拟和分析具有多个刚体组成的物体系统的方法。
它将物体系统分解为多个刚体,通过约束和连接关系来模拟物体之间的相互作用。
例如,在机械工程中,可以使用离散多体建模方法来分析机械装置的运动和力学行为,以帮助设计更有效的机械系统。
研究者可以通过优化连杆,减小振动,改进机械系统的设计以提高机械性能。
2.连续介质建模方法:连续介质建模方法是一种用于模拟和分析具有连续性物质特性的系统的方法。
它将物体系统视为由连续分布的物质组成的体积。
这种建模方法适用于描述流体动力学,电磁场和热传导等现象。
例如,在空气动力学中,可以使用连续介质建模方法来分析飞机在飞行过程中的空气流动和气动特性。
研究者可以通过优化飞行器的气动外形和控制设备来提高飞行性能。
3.电磁场建模方法:电磁场建模方法用于模拟和分析与电磁现象相关的系统。
它主要用于描述电场和磁场之间的相互作用。
这种建模方法适用于电力系统,电机设计以及电磁兼容性等领域。
例如,在电机设计中,可以使用电磁场建模方法来分析电机的磁场分布和电机的性能。
研究者可以通过优化电机的磁路结构和控制算法来提高电机的效率。
4.结构动力学建模方法:结构动力学建模方法用于分析物体在受外部力作用下的动力学行为。
它主要用于描述结构的振动和变形。
这种建模方法适用于建筑结构,桥梁和航天器设计等领域。
例如,在建筑结构设计中,可以使用结构动力学建模方法来分析建筑物在地震和风荷载下的响应。
研究者可以通过优化结构的材料和几何设计来提高结构的安全性和稳定性。
总的来说,ANSYS提供了多种建模方法,以满足不同领域的模拟和分析需求。
这些建模方法帮助研究者更好地理解和预测不同物理现象的行为,并提供了优化设计的工具。
(完整版)1车架ANSYS建模过程

一、ANSYS建模选择Main Menu\Preprocessor\Modeling\Create\Keypoints\In Active CS,出现图2.1的对话框,输入第1点的坐标。
然后点Apply。
依次输入纵梁的各个坐标。
结果如图2.2。
图2.1 生成点对话框图2.2 生成的纵梁关键点图2.3 横梁关键点建立第3,4,5,6横梁在纵梁上的关键点。
选择MainMenu\Preprocessor\Modeling \Create\Keypoints\In Active CS命令。
copy各个横梁的点,以建立横梁翼板。
选择Main Menu\Preprocessor\Modeling\Copy\Keypoints,建立了图2.3中横梁关键点。
图2.4 车架骨架关键点将现所有点向Y轴的负方向偏移100mm,仍然用copy命令。
然后将所有点镜像Main Menu\Preprocessor\Modeling\Reflect\Keypoints,以xz平面为镜象中心。
结果如图2.4。
基本生成了NJ1030车架骨架点模型。
图2.5 车架轮廓将所有的关键点连接生成线(必须依次连接并且都在同一平面内)并如图2.5所示:Main Menu\Preprocessor\Modeling\Create\Lines\Straight Line。
将所有的线连接生成面(必须依次连接并且都在同一平面内),结果如图2.6:Main Menu\Preprocessor\Modeling\Create\Areas\Arbitrary\By Lines。
为了将车架所有的面连接起来以进行网格划分和对梁厚度的不同的设立,需要将所有的面粘合起来。
选择Main Menu\Preprocessor\Modeling\Operate\Booleans\Glue\Areas出现对话框,选择Pick ALL即可。
图2.6 NJ1030车架骨架几何模型至此NJ1030车架的有限元模型以在ANSYS中建立成功。
ANSYS框架结构建模命令流详解

L,(II-1)*20+3,(II-1)*20+7
L,(II-1)*20+7,(II-1)*20+11
L,(II-1)*20+4,(II-1)*20+8
L,(II-1)*20+8,(II-1)*20+12
K,18+(II-1)*20,6,1.875,3.9 K,18,6,1.875,3.9
K,20+(II-1)*20,6,3.125,3.9 K,20,6,3.125,3.9
*ENDDO 结束循环
*DO,II,1,10 利用循环命令,循环变量II从1~10
K,16+II*20,6,3.125,(II-1)*3+6
K,17+II*20,0,1.875,(II-1)*3+6+1.5
K,18+II*20,6,1.875,(II-1)*3+6+2
K,19+II*20,0,3.125,(II-1)*3+6+1.5
L,(II-1)*20+7,(II-1)*20+8
L,(II-1)*20+9,(II-1)*20+10
L,(II-1)*20+10,(II-1)*20+11
L,(II-1)*20+11,(II-1)*20+12
L,(II-1)*20+5,(II-1)*20+9
K,3+(II-1)*20,12,0,(II-1)*6 K,3,12
K,4+(II-1)*20,17,0,(II-1)*6 K,4,17
桥梁结构ANSYS建模原则及常见问题

桥梁结构 ANSYS 建模原则及常见问题
王东绪,周昱,王士刚,李永乐
西南交通大学桥梁工程系李永乐研学团队 二 O 一SYS 模拟方法及原则 ................................. 1
1.1 模拟方法.......................................................... 1 1.1.1 梁格法 ...................................................... 1 1.1.2 实体元法和板壳元法 ......................................... 1 1.1.3 空间梁单元 ................................................. 1 1.2 各种构件模拟...................................................... 2 1.2.1 主梁模拟原则 ............................................... 2 1.2.2 刚臂问题. ................................................... 3 1.2.3 质量及质量惯性矩 ............................................ 3 1.2.4 索结构模拟 ................................................. 4 1.2.5 常用单元特性 ............................................... 4 1.3 命令流编写注意事项................................................ 5
Ansys基础培训几何建模建模方法和技巧PPT教学课件

• 实体建模是建立实体模型的过程.
• 首先回顾前面的一些定义:
体
• 一个实体模型由基本要素组成。
• 体,面,线,关键点
面
• 体由面围成,面由线组成,线由关键点组成。
• 实体的层次由低到高: 关键点 — 线 — 面。 如果高一级的实体存在,则依附它的低级 实体不能删除。
• 另外,只由面及面以下层次组成的实体,
反射
合并或粘合
32/50
倒角 • 线倒角需要两条相交的线,且在相交处有
共同的关键点。
• 如果没有共同的关键点,则先作分割操作。 • ANSYS不改变原来依附的面(如果有),
因此,需要用加或减填充区域。
• 面倒角与线倒角类似。
33/50
从原面中 减去倒角面
建立倒角 建立面
• 演示: • 恢复 r.db 文件(如果需要)。 • 在点 (0,0) 和 (0,1)建立关键点,连成轴,然后把面绕轴旋转 60º拉伸。 • 恢复r.db 数据库文件。 • 沿Y轴方向复制rib: • 在整体坐标系原点按角度THYZ = -90建立柱体局部坐标系。 • 复制7份 (6份是新复制的)增量为 DY=15。 • 用ASKIN,P命令生成3个外部表面。
28/50
可通过两个关键点旋转) [VROTAT]。
移动
• 通过指定增量DX ,DY,DZ控制实体的 移动或旋转。
• DX ,DY,DZ按激活坐标系。
• 平移激活直角坐标。
• 转动激活柱坐标系或球坐标系。
• 或使用命令VGEN, AGEN, LGEN, KGEN。
旋转 -30°
从 csys,0 转换 到
Lines
Arcs
Splines
Operate > Extrude
ansys 钢筋混凝土建模

ansys 钢筋混凝土建模Ansys 钢筋混凝土建模在现代工程领域中,钢筋混凝土结构的应用极为广泛,从高楼大厦到桥梁隧道,从水利设施到工业厂房,无一不见其身影。
为了确保这些结构的安全性、可靠性和经济性,对其进行准确的力学分析至关重要。
Ansys 作为一款功能强大的有限元分析软件,为钢筋混凝土建模提供了高效且精确的解决方案。
钢筋混凝土是一种由钢筋和混凝土两种材料共同作用的复合材料。
混凝土具有较高的抗压强度,但抗拉强度较低;而钢筋则具有良好的抗拉性能。
在实际结构中,两者协同工作,共同承受外力。
因此,在Ansys 中进行钢筋混凝土建模时,需要准确地模拟这两种材料的特性以及它们之间的相互作用。
首先,我们来谈谈混凝土的建模。
在 Ansys 中,混凝土通常可以采用实体单元进行模拟。
对于混凝土的本构关系,我们可以选择合适的模型,如经典的混凝土损伤塑性模型(Concrete Damaged Plasticity Model)。
这个模型能够较好地考虑混凝土在受压和受拉时的非线性行为,包括混凝土的开裂、压碎等现象。
在定义混凝土的材料参数时,需要输入诸如弹性模量、泊松比、抗压强度、抗拉强度等参数。
这些参数的准确取值对于模型的准确性至关重要。
一般来说,可以通过实验测试或者参考相关的规范和标准来获取这些参数。
接下来是钢筋的建模。
钢筋在 Ansys 中有多种建模方法,常见的有两种:一种是使用杆单元(Link Element)来模拟钢筋,另一种是将钢筋嵌入到混凝土实体单元中(Embedded Element)。
使用杆单元模拟钢筋时,需要定义钢筋的截面积、弹性模量、屈服强度等参数。
这种方法计算效率较高,但对于钢筋与混凝土之间的粘结滑移行为模拟不够精确。
将钢筋嵌入到混凝土实体单元中的方法能够更准确地考虑钢筋与混凝土之间的相互作用,但计算量相对较大。
在这种方法中,需要确保钢筋单元与混凝土单元之间的节点协调。
在钢筋混凝土建模中,还需要考虑钢筋与混凝土之间的粘结滑移。
ANSYS 入门教程 (16) - 几何建模技巧 (a)

ANSYS 入门教程 (16) - 几何建模技巧 (a)2.5 几何建模技巧2.5.1 ANSYS的单位1. 结构分析的单位ANSYS 软件不进行计算单位的换算和检查,默认用户使用的单位制是统一的。
虽然有/UNITS 命令,但该命令仅仅是“注释”用户使用了何种单位制,以便他人阅读,该命令并不进行单位制的换算,也即并不影响计算结果。
因此要求用户使用统一的单位制。
在力学范围内,国际单位制的基本物理量仅3 个:长度(m)、质量(kg )和时间(s)。
其它物理量如力、力矩、应力、弹性模量、加速度、截面特性等的单位都可用上述基本单位表示。
当采用国际单位制时(称为m-kg-s 单位制):长度- m、质量- kg、时间- s,则导出的物理量单位分别为:面积- m^2;体积- m^3;惯性矩- m^4;速度- m/s;加速度- m/s^2;密度- kg/m^3;力- kg·m/s^2 =N;力矩- kg·m^2/s^2 = N·m;应力、压力、模量等- kg/(m·s2) = kg·m/s^2/m^2 = N/m^2 = Pa。
如果采用长度- mm、质量- kg、时间- s,(称为mm-kg-s 单位制),则导出的物理量单位分别为:面积- mm^2;体积- mm^3;惯性矩- mm^4;速度-mm/s;加速度- mm/s^2;密度- kg/mm^3;力- kg·mm/s^2 = 10^(-3) N = mN;力矩- kg·mm^2/s^2 = 10^-3 N·mm = mN·mm;应力、压力、模量等- kg/(mm·s^2) = kg·mm/s^2/mm^2 = 10^-3 MPa= kPa。
基本物理量单位的不同,导出物理量的单位也不同。
实际工程中常用N 和Pa 或MPa 单位,而长度单位随模型的大小常取m 或mm,因此可以将上述物理量的单位进行换算,即采用长度、力和时间为基本物理量,然后导出其它物理量的单位,这样仅质量和密度两个物理量。
ansys管单元和实体单元建模

ANSYS管单元和实体单元建模一、引言在工程设计和分析领域,使用计算机辅助工程软件进行建模和仿真是一项重要的任务。
ANSYS是一款广泛使用的工程仿真软件,其中管单元和实体单元建模是常见的两种建模方法。
本文将探讨ANSYS中管单元和实体单元建模的原理、应用、优缺点以及建模实例。
二、管单元建模2.1 管单元建模原理管单元建模是指将结构或流体管道建模为一系列连续的线元素。
管单元建模的基本原理是将管道分割为多个小段,每个小段都可以看作是一根线元素。
在ANSYS中,可以通过输入管道的起始点和终止点坐标、直径和材料等参数来创建管单元模型。
2.2 管单元建模应用管单元建模广泛应用于流体力学、热传导和结构分析等领域。
例如,在流体力学中,可以使用管单元建模来模拟液体或气体在管道中的流动,分析流速、压力和温度等参数的变化。
在热传导分析中,可以使用管单元建模来研究热量在管道中的传递过程。
在结构分析中,管单元建模可以用于研究管道的强度和稳定性。
2.3 管单元建模优缺点管单元建模具有以下优点: - 管单元建模适用于长管道的分析,可以更好地描述流体或热量在管道中的传递过程。
- 管单元建模可以减少模型的复杂度,提高计算效率。
- 管单元建模可以更方便地进行参数化分析和优化设计。
然而,管单元建模也有一些缺点: - 管单元建模无法精确地描述管道内部的细节,例如内部流动的湍流和乱流现象。
- 管单元建模对于非直线管道和复杂几何形状的建模较为困难。
- 管单元建模需要对管道进行前处理和后处理操作,工作量较大。
三、实体单元建模3.1 实体单元建模原理实体单元建模是指将结构或流体建模为一系列连续的体元素。
实体单元建模的基本原理是将结构或流体分割为多个小体元素。
在ANSYS中,可以通过输入结构的几何信息、材料属性和边界条件等参数来创建实体单元模型。
3.2 实体单元建模应用实体单元建模广泛应用于结构力学、流体力学和电磁场分析等领域。
例如,在结构力学中,可以使用实体单元建模来研究零件或整体结构的强度、刚度和变形等特性。
ansys建模实例

Ansys建模实例引言Ansys是一种广泛使用的有限元分析软件,可以用来模拟和解决各种工程问题。
本文将介绍一些Ansys的建模实例,包括常见的建模技术和步骤。
通过这些实例,读者可以了解Ansys的基本操作和建模技巧。
实例一:三维实体建模在Ansys中进行三维实体建模是常见的任务之一。
以下是一个简单的三维实体建模实例:1.打开Ansys软件并创建一个新的项目。
2.在几何建模模块中,选择“Create”来创建几何模型。
3.选择适当的几何元素,如圆柱体、球体或立方体,并指定其尺寸和位置。
4.调整模型的属性,如材料属性和边界条件。
5.运行静态或动态分析以获得解决方案。
6.分析结果可以通过数据可视化工具来展示和分析。
这个实例展示了Ansys建模的基本步骤。
读者可以根据自己的需求和具体问题进行相应的调整和修改。
实例二:二维平面建模在某些情况下,我们只需要进行二维平面建模,比如平面结构的分析。
以下是一个二维平面建模的实例:1.打开Ansys软件并创建一个新的项目。
2.在几何建模模块中,选择“Create”来创建几何模型。
3.选择适当的几何元素,如直线、圆弧或多边形,并指定其尺寸和位置。
4.调整模型的属性,如材料属性和边界条件。
5.运行静态或动态分析以获得解决方案。
6.分析结果可以通过数据可视化工具来展示和分析。
这个实例展示了在Ansys中进行二维平面建模的基本步骤。
在实际应用中,读者可以根据具体情况选择适当的元素和属性。
实例三:流体建模Ansys还可以用于流体建模和分析。
以下是一个流体建模实例:1.打开Ansys软件并创建一个新的项目。
2.在几何建模模块中,选择“Create”来创建几何模型。
3.选择适当的几何元素,如管道、储罐或泵,并指定其尺寸和位置。
4.定义流体属性,如流体类型、流速和压力等。
5.调整模型的边界条件,如流入口和流出口的速度或压力。
6.运行流体分析以获得流体的流动情况和压力分布。
7.可以通过动画或图形展示来可视化流体的流动情况。
ANSYS的建模方法和网格划分

ANSYS的建模方法和网格划分ANSYS的建模方法和网格划分ANSYS是一种广泛应用于工程领域的数值分析软件,它的建模方法和网格划分是进行仿真分析的关键步骤。
本文将介绍ANSYS的建模方法和网格划分的基本原理和常用技术。
一、建模方法1.1 几何建模在ANSYS中,几何建模是将实际物体转化为计算机能够识别和处理的几何形状,是进行仿真分析的基础。
几何建模可以通过直接绘制几何形状、导入CAD模型或利用几何操作进行创建。
直接绘制几何形状是最简单的建模方法,可以通过ANSYS的几何绘制工具直接绘制点、线、面、体等几何形状。
这种方法适用于几何形状较简单的情况。
导入CAD模型是将已有的CAD文件导入到ANSYS中进行分析。
导入的CAD文件可以是各种格式,如IGES、STEP、SAT等。
通过导入CAD模型,可以方便地利用已有的CAD设计进行分析。
几何操作是通过几何操作工具进行模型的创建和修改。
几何操作工具包括旋转、缩放、挤压、倒角等操作。
利用几何操作可以对模型进行非常灵活的设计和修改。
1.2 材料属性定义在进行仿真分析前,需要定义材料的物理性质和力学性能。
在ANSYS中,可以通过在建模环境中定义材料属性的方法进行。
定义材料属性包括确定材料的密度、弹性模量、泊松比、热膨胀系数等物理性质。
这些属性对于仿真分析的准确性和可靠性起到重要作用。
定义材料的力学性能包括确定材料的材料模型和本构关系,如线弹性、非线弹性、塑性、强化塑性等。
这些性能可以根据实际需要进行选择和确定。
1.3 界面条件设置界面条件设置是定义与外部环境或其他系统之间的边界条件和加载条件。
在ANSYS中,可以通过多种方式进行界面条件设置。
界面条件设置包括确定材料与外界的热传导、流体传输、气固反应、接触等边界条件。
这些条件对于模拟实际工程问题的边界反应至关重要。
加载条件设置包括定义外加力、固定边界、压力加载、温度加载等力学和热力加载条件。
通过加载条件设置,可以模拟实际工程中的载荷和边界约束。
ansys结构仿真案例

ansys结构仿真案例ANSYS是一款常用的结构仿真软件,可以对各种结构进行静力学、动力学、热力学等仿真分析。
下面列举10个以ANSYS结构仿真为题的案例,以展示其在不同领域的应用。
1. 桥梁结构分析:使用ANSYS对桥梁结构进行有限元分析,评估其受力性能和安全性,为工程设计提供依据。
可以对桥梁主要构件进行应力、变形、疲劳寿命等分析。
2. 建筑结构分析:通过ANSYS对建筑结构进行静力学分析,确定结构的承载能力和稳定性。
例如,可以分析高层建筑的抗震性能,优化结构设计,提高抗震安全性。
3. 飞机机翼结构分析:使用ANSYS对飞机机翼进行有限元分析,评估其受力性能和结构强度。
可以分析机翼的振动模态、应力分布等,优化结构设计,提高飞行安全性。
4. 汽车车身结构分析:通过ANSYS对汽车车身进行有限元分析,评估其受力性能和刚度。
可以分析车身的应力分布、变形情况,优化结构设计,提高车辆性能和安全性。
5. 器械设备结构分析:使用ANSYS对器械设备进行有限元分析,评估其受力性能和可靠性。
可以分析设备的应力分布、振动模态等,优化结构设计,提高设备性能和使用寿命。
6. 钢结构建筑分析:通过ANSYS对钢结构建筑进行有限元分析,评估其受力性能和稳定性。
可以分析结构的应力、变形、破坏模式等,优化结构设计,提高建筑的安全性和经济性。
7. 水力发电机组分析:使用ANSYS对水力发电机组进行有限元分析,评估其受力性能和效率。
可以分析机组的应力、变形、振动等,优化结构设计,提高发电机组的性能和可靠性。
8. 船舶结构分析:通过ANSYS对船舶结构进行有限元分析,评估其受力性能和强度。
可以分析船体的应力分布、变形情况,优化结构设计,提高船舶的航行性能和安全性。
9. 油井套管结构分析:使用ANSYS对油井套管进行有限元分析,评估其受力性能和耐久性。
可以分析套管的应力、变形、破坏模式等,优化结构设计,提高油井的开采效率和安全性。
10. 桩基础结构分析:通过ANSYS对桩基础结构进行有限元分析,评估其受力性能和稳定性。
ANSYS 整体式钢筋混凝土建模算例

ANSYS整体式钢筋混凝土模型算例分析在土木工程结构中,最为常用的一种结构形式就是钢筋混凝土结构,在各类房屋、水坝、桥梁、道路中都有广泛应用。
ANSYS软件提供了专门的钢筋混凝土单元和材料模型。
本算例将介绍ANSYS软件分析混凝土一些基本应用。
(1) 首先建立有限元模型,这里我们选用ANSYS软件自带的专门针对混凝土的单元类型Solid 65,进入ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete,选择添加Solid 65号混凝土单元。
(2) 点击Element types窗口中的Options,设定Stress relax after cracking为Include,即考虑混凝土开裂后的应力软化行为,这样在很多时候都可以提高计算的收敛效率。
(3) 下面我们要通过实参数来设置Solid 65单元中的配筋情况。
进入ANSYS主菜单Preprocessor-> Real Constants->Add/Edit/Delete,添加实参数类型1与Solid 65单元相关,输入钢筋的材料属性为2号材料,但不输入钢筋面积,即这类实参数是素混凝土的配筋情况。
(4) 再添加第二个实参数,输入X方向配筋为0.05,即X方向的体积配筋率为5%。
(5) 下面输入混凝土的材料属性。
混凝土的材料属性比较复杂,其力学属性部分一般由以下3部分组成:基本属性,包括弹性模量和泊松比;本构关系,定义等效应力应变行为;破坏准则,定义开裂强度和压碎强度。
下面分别介绍如下。
(6) 首先进入ANSYS主菜单Preprocessor-> Material Props-> Material Models,在Define Material Model Behavior 窗口中选择Structural-> Linear -> Elastic-> Isotropic,输入弹性模量和泊松比分别为30e9和0.2(7) 下面输入混凝土的等效应力应变关系,这里我们选择von Mises屈服面,该屈服面对于二维受力的混凝土而言精度还是可以接受的。
ANSYS 基本建模方法及结构稳定性分析-推荐下载

ANSYS 基本建模方法及结构稳定性分析一 ANSYS与结构分析ANSYS软件是融结构、流体、电磁场、声场和热场分析于一体的大型通用有限元分析软件,可广泛应用于土木、地质、矿业、材料、机械、水利等工程的分析和研究。
可在大多数计算机和操作系统(如Windows、UNIX、Linux、HP-UX等)中运行,可与大多数CAD软件接口。
结构分析用于确定结构的变形、应变、应力及反作用力等,它包括以下几种类型:静力分析——用于静态载荷。
可以考虑结构的线性及非线性行为,例如:大变形、大应变、应力刚化、接触、塑性、超弹及蠕变等。
屈曲分析——用于计算线性屈曲载荷并确定屈曲模态形状。
同时可以实现非线性屈曲分析。
模态分析——计算线性结构的自振频率及振形。
谐响应分析——确定线性结构对随时间按正弦曲线变化的载荷的响应。
瞬态动力学分析——确定结构对随时间任意变化的载荷的响应. 可以考虑与静力分析相同的结构非线性行为.谱分析——是模态分析的扩展,用于计算由于随机振动引起的结构应力和应变(也叫作响应谱或PSD)。
显式动力分析——ANSYS/LS-DYNA(显式动力学分析模块)可用于计算高度非线性动力学问题和复杂的接触问题。
专项分析——断裂分析, 复合材料分析,疲劳分析。
二 ANSYS分析过程中三个主要的步骤:.1. 创建有限元模型–创建或读入几何模型.–定义材料属性.–划分单元(节点及单元).2. 施加载荷进行求解– 施加载荷及载荷选项.– 求解.3. 查看结果– 查看分析结果.– 检验结果. (分析是否正确)三几何建模ANSYS软件几何建模通常包括两种方式,自底向上建模和自顶向下建模。
所谓自底向上建模,顾名思义就是又建立模型的最低单元的点到最高单元的体来构造实体模型。
即首先定义关键点,然后利用这些关键点定义较高级的实体图元,如线,面,体。
ANSYS软件允许通过汇集线面体等几何体素的方法构造建模。
当生成一种体素时,ANSYS程序会自动生成所有从属于该体素较低级的土元,这种一开始便由较高级的实体图元构造模型的方法就是所谓的自顶向下的建模方法。
ANSYS基本介绍与实用建模

(4)旋转生成实体: Modeling/Operate/Extrude/Areas/About Axis ,先选面,再选轴线,旋转360度 (5)旋转生成曲面: Modeling/Operate/Extrude/Lines/About Axis ,先选曲线,再选轴线旋转一周
Page: 14/26
T-T
Page: 10/26
T-T
2.求解设置 求解设置 (1)施加约束:Define Loads/Apply/Structural/Displacement/On Lines,选左边两条竖直线,然 后将其All DOF选中 (2) 施加载荷: Define Loads/Apply/Structural/Pressure/On Lines,选右边两条竖直线,输入 500N的压力(输入负值表压力) (3) 进行求解 3.后处理:查看结果,最大位移在两边缘约0.215e-5m 后处理: 后处理
(2)查看位移云图:Plot Results/ Contour Plot/Nodal Solu/DOF Solution/Dsp vector sum
(3)查看应力(Stresssults/Nodal Solution/DOF Solution,可看到每一对应点的值 (5)动态显示变化过程:PlotCtrls/Animate/Mode Shape,可设置延迟时间等 (6)抓取图像:PlotCtrls/Capture Image
Page: 5/26
T-T
(4)利用求解器进行求解:Solution/Solve/Current LS,待计算完成后出现“Solution is done” 5. 进行后处理 进行后处理Postprocessor,查看计算结果: ,查看计算结果: (1)以图形查看位移变化:General Postproc/Plot Results/Deformed Shape,选变化前后均查看
ANSYS建模基本方法

ANSYS 建模
• ANSYS建模措施 • ANSYS坐标系与工作平面 • 实体建模 • 网格划分 • 建模实例
ANSYS建模措施
• 直接建模 • 实体建模 • 输入在计算机辅助设计系统中创建旳实体
模型 • 输入在计算机辅助设计系统创建旳有限元
模型
直接建模
• 直接创建节点和单元,模型中没有实体 • 优点
• 按给定角度旋转结点坐标系:NMODIF – GUI->Main Menu->Preprocessor->Modeling->Create->Node->Rotate Node CS->By Angle – GUI->Main Menu->Preprocessor->Modeling->Move/Modify->Node->Rotate Node CS>By Angle
• 将关键点移到一种交点上:KMOVE
– Main Menu->Preprocessor->Modeling->Move/Modify->>Keypoint->To Intrsect
• 在已知结点处定义关键点:KNODE
– Main Menu->Preprocessor->Modeling->Create->Keypoints->On Node
• 在2个关键点之间生成单个关键点:KBTW
– Main Menu->Preprocessor->Modeling->Create->Keypoints->KP between KPs
• 在2个关键点之间生成多种关键点:KFILL
2.ANSYS结构分析与结构建模

1.4 ANSYS结构分析与结构建模
1.4.1 结构分类及仿真单元
板壳结构: 当L/h<5~8时为厚板,应采用实体单元。 当5~8<L/h<80~100时为薄板,选2D体元或壳元 当L/h>80~100时,采用薄膜单元。 对于壳类结构,一般R/h≥20为薄壳结构,可选择薄 壳单元,否则选择中厚壳单元。
f,2,fy,-400000 !节点2施加向下的荷载400000N
f,3,fy,-400000 !节点3施加向下的荷载400000N
f,4,fy,-400000 !节点4施加向下的荷载400000N
!关闭关键点号显示
/pbc,all,,1
!显示实体上的边界条件和荷载
/psymb,ldiv,-1 !关闭线划分单元属性显示
lplot
!绘制线
solve
!执行求解
finish
!退出solu处理器
!----------后处理-------------------------------
/post1
!进入后处理器
/replot
!显示个线的实常数号
lesize,all,,,1 !定义各个线所划分的单元个数
lmesh,all !对所有线进行单元划分
finish
!退出prep7处理器
!----------加载和求解-------------------------------------------------------
⑴ 创建几何模型,再到有限元模型的分析过程命令流
!e1.1--平面桁架分析
!----------前处理--------------------------------------
/filname,truss,1 !定义工作文件名
ANSYS 钢筋混凝土建模

ANSYS 钢筋混凝土建模一、简介钢筋混凝土有限元建模的方法与结果评价(前后处理),是对钢筋混凝土结构进行数值模拟的重要步骤,能否把握模型的可行性、合理性,如何从计算结果中寻找规律,是有限元理论应用于实际工程的关键一环。
Blackeage以自己做过的一组钢筋混凝土暗支撑剪力墙的数值模拟为例,从若干方面提出一些经验与建议。
希望大家一起讨论、批评指正(******************.cn)。
程序:ANSYS单元:SOLID65、BEAM188建模方式:分离暗支撑剪力墙结构由北京工业大学曹万林所提出,简言之就是一种在普通钢筋配筋情况下,加配斜向钢筋的剪力墙结构。
二、单元选择以前经常采用的钢筋混凝土建模方法是通过SOLID65模拟混凝土,通过SOLID65的实常数指定钢筋配筋率,后来发现这种整体式的模型并不理想,而且将钢筋周围的SOLID65单元选择出来,再换算一个等效的配筋率,工作量也并不小。
最关键的是采用整体式模型之后,得不出什么有意义的结论,弄一个荷载-位移曲线出来又和实验值差距比较大。
只有计算的开裂荷载与实验还算是比较接近,但这个手算也算得出来的东西费劲去装模作样的建个模型又有什么意义?所以,这次我尝试采用分离式的模型,钢筋与混凝土单元分别建模,采用节点共享的方式。
建模时发现,只要充分、灵活地运用APDL的技巧,处理好钢筋与混凝土单元节点的位置,效率还是很高的。
暗支撑剪力墙数值模型看过很多的资料,分离式模型是用LINK8与SOLID65的组合方式,这样做到是非常直观,因为LINK8是spar类型的单元,每个节点有3个自由度,这与SOLID65单元单节点自由度数量是一致的。
但是问题也就由此产生,当周围的混凝土开裂或是压碎时,SOLID65将不能对LINK8的节点提供足够地约束(如下图箭头方向),从而导致总刚矩阵小主元地出现影响计算精度,或者干脆形成瞬变体系导致计算提前发散。
LINK8+SOLID65的问题如果采用梁单元模拟暗钢筋,就算包裹钢筋的混凝土破坏了,钢筋单元本身仍可对连接点提供一定的侧向刚度(其实钢筋本身就是有一定抗弯刚度的),保证计算进行下去。
ansys单元介绍

ansys单元介绍ANSYS是一款功能强大的工程仿真软件,广泛应用于各种工程领域。
它提供了丰富的单元类型,以满足各种复杂的分析需求。
下面将介绍一些常用的ANSYS 单元类型及其特点。
1. 杆单元(Link):用于模拟杆状结构,如梁、柱等。
该单元具有三个自由度:轴向拉伸/压缩、弯曲和扭转。
可以通过设置截面属性来定义杆的截面特性。
2. 梁单元(Beam):用于模拟梁结构,具有六个自由度:轴向拉伸/压缩、弯曲、扭转和三个平动位移。
梁单元可以承受弯矩、剪力和轴力等载荷。
3. 壳单元(Shell):用于模拟薄壁壳体结构,如圆筒、管道等。
壳单元具有平面内和平面外的刚度,适用于分析壳体的弯曲、屈曲和振动等问题。
4. 实体单元(Solid):用于模拟三维实体结构,如块体、球体等。
实体单元具有任意方向的刚度,可以承受各种复杂载荷,如压力、温度和位移等。
5. 表面单元(Surface):用于模拟二维表面结构,如板、薄膜等。
表面单元可以承受平面内和平面外的载荷,适用于分析表面效应和接触问题。
6. 流体单元(Fluid):用于模拟流体结构和流体行为,如管道流动、流体振动等。
流体单元可以模拟流体的压力、速度和温度等参数。
7. 热单元(Thermal):用于模拟热传导、对流和辐射等热力学问题。
热单元可以模拟温度场、热流密度和热梯度等参数。
8. 电单元(Electrical):用于模拟电场、电流和电压等电磁学问题。
电单元可以模拟电场强度、电流密度和电势等参数。
除了以上介绍的单元类型外,ANSYS还提供了其他多种特殊单元类型,如弹簧单元、质量单元、阻尼器单元等,以满足特定领域的分析需求。
在使用ANSYS 进行仿真分析时,选择合适的单元类型是至关重要的,以确保分析的准确性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、建立过渡面;(1)移动坐标系:UtilityMenu:Workplan>offset WP Increments(如图3),将坐标沿YZ方向旋转90°,同时向上移动95。(2)用坐标平面切割球截面:Main Menu:Preprocessor>modeling>Operate>Divide>Area by Workplane(如图4)。(3)将球截面与筒体连接段删除Main Menu:Preprocessor>modeling>Delete>Area and Below(如图5)。得到图6的模型
图3-2
3、重新建刚才的管子,布尔操作,用公共面切管子,(切割时先点体确定后点面),删除下面部分,得到图3-3
图3-3
4、创建另一根接管,同上,用公用面将其切割,删除多余部分,得到图3-4所示的三通管。
图3图4图5图6
4、创建过渡面:Main Menu:Preprocessor>modeling>create>Line>Straight Line,将封头截面下端点与筒体截面上端点连接(图7),创建过渡面Main Menu:Preprocessor>modeling>create>Areas>Arbitrary>By Lines,得到图8模型。
图2-8
6、进行布尔操作,删掉多余部分得到图2-9。
图2-9
三通管
这两个管子建模简单,布尔操作较麻烦,需要找出公共面后重建!
1、创建两根管子:先创建一根管子,移动坐标平面(使Z轴得指向为着另一根管子的开孔方向),创建第二根管子如图3-1。
图3-1
2、进行布尔操作,保留公共的两条线(如图3-2),将其建成公用面
球形封头
1、建立球形封头截面;从主菜单中选择Main Menu:Preprocessor>modeling>create>Areas>Circle>By Dimensions(如图1)。
图1
2、建立筒体截面;从主菜单中选择Main Menu:Preprocessor>modeling>create>Areas>Rectangle>By Dห้องสมุดไป่ตู้mensions(如图2)。
图2-1
创建局部坐标系
Utility Menu:Workplan>Local coordinate systems>Create Local Cs>At Wp Origin
图2-2
将1、3及2、4连接,Preprocessor>modeling>create>Line>In Active Coord(如图2-3)得到图2-4
图2-3图2-4
3、建筒体截面:按1方法,再创建筒体截面的两个下端点5、6,最后连接1、2,3、4,1、5,2、6这些点(如图2-5)。再将其所连接的线组成面,得到图2-6的截面图
图2-5图2-6
4、按上面方法将截面旋转建成3维模型,如图2-7
图2-7
5、在封头上建立接管:旋转坐标系,将Z轴向上,创建接管如图2-8
图7图8
5、建立三维模型:将截面经其旋转创建出三维模型Main Menu:Preprocessor>modeling>Operate>Extrude>Area>about Axis(如图9),得到图10模型
图9图10
6、创建接管:按步骤3(1)移动坐标系,将其沿Z轴移动1000,再沿ZX方向旋转90°,建立内径为400,厚度为50的接管(如图11)
图11
7、进行布尔操作,Main Menu:Preprocessor>modeling>Operate>Booleans>Overlap>Volumes(如图12),点击接管及与其相连的筒体部分,操作完按步骤3(3)删掉多余部分。得模型13
图12图13
椭圆封头
1、创建椭圆封头截面:先建椭圆的4个端点,Preprocessor>modeling>create>Keypoints>In Active Cs分别是X500,510,Y250,260(如图2-1)