2020届河南省名校联盟高三11月教学质量检测数学(理)试题(解析版)
2020年11月河南省九师联盟高2021届高2018级高三11月联考理科数学试题参考答案
23 ,!!
'!(!RSTUV7WXYWX"# Z[&B # \])S^_A:WXYWX"# `W&a_A:WXbYUX "# R
S7cd`W&1*_A+eDfg*hi+&B 4\])UX"# YjR S7cdklmnop&qopY`W&B (
rs)tgUX"# Y Z[&TUX"# 7opmuY Z[&B ,\]&23 (!
槡 5&&$8+7,0!23 4!~ ,t$#+)!$$&&J$$+&)!&B&$8+$+')!8#+)!$8!+& +')!"#+)!$
8!$0&44&$$+)!&$$!&+$*5&&$8+7,0!23 4! 1!,!~m,4$+%5&,-#$$$#$8!$9$&B,-#!$$&9&,#!$$9&./X+$,#$$R#!&,#!$$7X,+)9
$)*+,-./0!"#$
河南省九师联盟 %&'(1234567
!!#!+,"$'%&!&&(&#$'$"$#!-$$'(&./%#$'$"!&$&'(&01"'#%#$$'!&&(!23 #!
2020届高三第十一次考试数学(理)河南省顶级名校答案
设
AQ
a
,b,
c
是平面
ACM
的一个法向量
则 AQAM 2xb 2 2x c 0
AQ AC 2a 2b 0
a b
∴
c
2x 2x 2
b
令 b 2x 2 ,则 AQ 2x 2, 2x 2, 2x ,它背向二面角
又∵平面
ACD
的法向量
AP
0,
0,
2
,它指向二面角
这样,二面角 M AC D 的大小为 60
1
2 时, e 3
x22 x1x2
x22 x22
x12 x12
,∴
x2 x1
1
e3 ,令 q
x2 x1
1
e3
0 ,则 q
1,
∵
x1
1,∴下面证明对任意的正整数
n,
xn
n1
e3
.
①当 n 1 ,2 时,显然成立;
k 1
k
②假设对任意的 n k 时, xk e 3 ,下面证明 n k 1 时, xk1 e 3 ;
a2
分
(Ⅱ)又
A 2, 0 ,
B 0,1 ,所以
k AB
1 2
.由 CD
/
/
AB
,可直线 CD
的方程为
y
1 2
x
m
.由已知得
M
2m,
0,
N
0,
m
,设
C
x1,
y1 ,
D
x2 ,
y2
.
由
x2 4
y2
1
,得:
y
1 2
x
m
x2 2mx 2m2 2 0 . 2m2 4 2m2 2 0 m2 2 ,所以
河南省名校联盟2020届高三数学11月教学质量检测试题 理(含答案)
£|'WX¡O¦'§¡¨'¦!d*¡*¤8y'¦©¢£|'¡
¨©¢£2'¤©¢£ªy!
1!#'($2
#>?@A$B?CD&EP#«H¬!
#RT$®'(*)&'(*')'¯')*!'')&'!'WX#«%')&X'! V°''! V±HP#«'§')&
-!#'($.
#>?@A$B?CD&Eijklm_`Hcnop!
#RT$qr)st! ,!#'($.
#>?@A$B?CD&Euv!
#RT$w!-xyiz;<{#|d!$$H}1x'WXw!-xy}1xiz;<~' 2 st)
w!-xyiz;<{#Hyc#3"*#!#!&!$+!,'.Ost)!$9!! !$9!- 'iz
(1)求 C 的普通方程和 l 的直角坐标方程; (2)求 C 上的点到 l 距离的最大值.
-4-
23.[选修 4-5:不等式选讲](10 分)
已知 a,b 为正数,且满足 a+b=1.
(1)求证:(1+ 1 )(1+ 1 )≥ 9 ;
a
b
(2)求证:( a + 1 )( b + 1 )≥ 25 .
#''ÀÁ1 HÅÆV2&'0&槡"'#槡#! !$!#'($(
#>?@A$B?CD&E²#HµÇ´mÈÉ´! #RT$UV*!#*!"Dz#'WX*!'#*!"&*!#*!"'§*!'#"&*!#*#") UV*!#'!"Dz#'WX*!'#'!"&*!#'!"'§*!'#"&*!#'#"! d*!#*#"&*!#'#"'*!#*-"&*!#"'WX*!#"X-VÈÉH²#! UV*!'#'!"&*!#'!"'WX*!'#'!*-"&*!#'!*-"'Ê*!'#*+"&*!#*+"' WX*!#*+"Dz#! !!!#'($( #>?@A$B?CD&E¶«ËG9 #RT$+ÌÍ&Î+.KÍ'Ïy!ÐÑÒÓ+Ô+ÕÖ×ØÙ'ÚÛ+ÐÑÒÓÜ+Ô!ÕÖ×ØÙ' ÝÍ+Ô(Þ#V (+"2--&-3$).MÍ'Ïy#ÐÑÒÓÜ+Ô#ÕÖ×ØÙ'ÚÛ#ÐÑÒÓÜ+Ô !ÕÖ×ØÙ'ÝÍ+Ô(Þ#V(2#"(# ##-(2! #(# #! !2- -&!$3$9OH+Ô(0}!,"$Þ9 !#!#'($( #>?@A$B?CD&E8ß²#H´;! #RT$UV*!'#"&4)5!'#"(4)5!#'##"&4)5#(4)5!'##"&'4)5#(4)5##&'*!#"'WX3&
河南省顶级名校2019-2020学年高三尖子生11月诊断性检测数学(理)试卷及答案解析
河南省顶级名校2019-2020学年高三尖子生11月诊断性检测数学(理)试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上。
第I 卷(选择题)一、单选题1.已知集合{}1,1,3,5,7,9U =-,{}1,5A =,{}1,5,7B =-,则()U C AB =( )A .{}3,9B .{}1,5,7C .{}1,1,3,9-D .{}1,1,3,7,9-2.已知空间三条直线,,l m n ,若l 与m 垂直,l 与n 垂直,则( ) A .m 与n 异面 B .m 与n 相交C .m 与n 平行D .m 与n 平行、相交、异面均有可能3.复数z 满足|1||3|z z -=+,则||z ( ) A .恒等于1B .最大值为1,无最小值C .最小值为1,无最大值D .无最大值,也无最小值4.某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm 2)是( )A .16B .32C .44D .645.已知0x y +>,则“||2||222x y x y +>+”是“0x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件6.函数y =ln |x |·cos (2π-2x )的图像可能是( ) A . B .C .D .7.已知两个不相等的非零向量a ,b ,满足1a =,且a 与b -a 的夹角为60°,则b 的取值范围是( )A .⎛ ⎝⎭B .⎫⎪⎪⎣⎭ C .⎫+∞⎪⎪⎣⎭D .()1,+∞8.已知随机变量ξ的分布列,则下列说法正确的是( )A .存在x ,y ∈(0,1),E (ξ)>12B .对任意x ,y ∈(0,1),E (ξ)≤14C .对任意x ,y ∈(0,1),D (ξ)≤E (ξ)D .存在x ,y ∈(0,1),D (ξ)>149.设函数()()320f x ax bx cx d a =+++≠,若()()()02233441f f f <==<,则()()15f f +的取值范围是( ) A .()0,1B .()1,2C .()2,3D .()3,410.已知F 1,F 2分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在双曲线右支上存在点P ,使得点F 2到直线PF 1的距离为a ,则该双曲线的离心率的取值范围是( )A .1,2⎛ ⎝⎭ B .,2⎛⎫+∞ ⎪ ⎪⎝⎭C .(D .)+∞11.如图,在菱形ABCD 中,∠ABC =60°,E ,F 分别是边AB ,CD 的中点,现将△ABC 沿着对角线AC 翻折,则直线EF 与平面ACD 所成角的正切值最大值为( )ABC .3D .212.己数列{a n }满足a 1=1,a n +1=lna n +1na +1,记S n =[a 1]+ [a 2]+···+[a n ],[t ]表示不超过t 的最大整数,则S 2019的值为( ) A .2019 B .2018 C .4038 D .4037第II 卷(非选择题)二、填空题13.[]22-,上随机地取一个数k ,则事件“直线y=kx 与圆()2259x y -+=相交”发生的概率为_________。
河南省名校联盟2020-2021学年高三11月联考数学试题
河南省名校联盟2020-2021学年高三11月联考数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 已知集合,,则()A.B.C.D.2. 若,则下列不等式成立的是()A.B.C.D.3. 中,角,,,的对边分别为,,,若,,,则()A.B.C.D.4. 已知向量,,若向量与的夹角为,则()A.B.10 C.D.5. 已知幂函数为奇函数,则实数的值为()A.4或3 B.2或3 C.3 D.26. 已知,为第二象限角,则()A.B.C.D.7. 5G技术的数学原理之一便是著名的香农公式:,它表示:在受高斯白噪声干扰的信道中,最大信息传递速率取决于信道带宽、信道内所传信号的平均功率、信道内部的高斯噪声功率的大小,其中叫做信噪比.按照香农公式,在不改变的情况下,将信噪比从1999提升至,使得大约增加了20%,则的值约为(参考数据:,)()A.7596 B.9119 C.11584 D.144698. 已知函数,则函数的零点个数为()A.1 B.2 C.3 D.49. 已知数列满足,,则()A.B.3 C.1D.10. 的部分图象如图所示,若将函数的图象向右平移个单位长度,得到函数的图象,则()A.B.C.D.11. 如图,在离地面的热气球上,观察到山顶处的仰角为,在山脚处观察到山顶处的仰角为60°,若到热气球的距离,山的高度,,则()A.30°B.25°C.20°D.15°12. 已知函数,其中是自然对数的底数,若,则实数的取值范围为()C.D.A.B.二、填空题13. 已知变量,满足约束条件,则目标函数的最大值为______.14. 已知为等比数列,为其前项和,若,,则______.15. 曲线在点处的切线与轴交点的横坐标为2,则实数的值为______.16. 已知一个圆锥内接于球(圆锥的底面圆周及顶点均在球面上),若球的半径,圆锥的高是底面半径的2倍,则圆锥的侧面积为______.三、解答题17. 设等差数列的前项和为,.(1)求;(2)求数列的前项和.18. 在中,角A,B,C的对边分别为a,b,c,.(1)求c的值;(2)若,求面积的最大值.19. 已知的图象过点,且图象的相邻两条对称轴的距离为.(1)求函数的单调区间;(2)若在区间上的最大值与最小值之和为,求实数的值.20. 已知向量,,且. (1)求及;(2)求函数的最值以及对应的值.21. 如图,已知平行四边形中,为的中点,且,且,且.将四边形沿折起,使平面,连接、.(1)求证:平面;(2)设为的中点,求点到平面的距离.22. 已知函数,.(1)求的单调区间;(2)当时,判断函数的零点个数.。
2020届高三11月联考数学(理)试题(解析版)
2020届高三11月联考数学(理)试题一、单选题1.复数312112ii i +++-的模为( )A .1BCD .5【答案】C【解析】对复数进行计算化简,然后根据复数的模长公式,得到答案.【详解】 根据题意,31211211212i i i i i i +++++=+-+(12)(1)122i i i+-+=+3122i i++=+2i =+,所以|2|i +==故选:C.【点睛】本题考查复数的四则运算,求复数的模长,属于简单题.2.集合{|3}A x x =≤,(){}22|log 2,B x y x x x R ==-+∈,则A B =ð( )A .{|0}x x ≤B .{|2 3 0}x x x ≤≤≤或C .{|23}x x ≤≤D .{|03}x x ≤≤【答案】B【解析】对集合B 进行化简,然后根据集合的补集运算,得到答案.【详解】因为(){}22|log 2,B x y x x x ==-+∈R{}2|20,x x x x =-+>∈R{}|02,x x x =<<∈R ,因为集合{|3}A x x =≤所以{|2 3 0}A B x x x =≤≤≤或ð.故选:B.【点睛】本题考查解对数不等式,一元二次不等式,集合的补集运算,属于简单题.3.已知向量(3,4)a =r ,则实数1λ=是||5a λ=r的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】先求出a r ,然后分别判断由1λ=能否得到||5a λ=r ,和由||5a λ=r 能否得到1λ=,从而得到答案.【详解】因为向量(3,4)a =r,所以5a ==r因为1λ=,所以可得5a a λλ==r r ,所以1λ=是||5a λ=r的充分条件. 因为||5a λ=r ,所以||||5a λ= ||1λ=即1λ=±.所以1λ=是||5a λ=r的不必要条件.综上所述,实数1λ=是||5a λ=的充分而不必要条件.故选:A.【点睛】本题考查根据向量的坐标求向量的模长,判断充分而不必要条件,属于简单题. 4.已知函数32,0()log ,0x x g x x x ⎧-≤=⎨>⎩,则不等式()1g x <的解集为( ) A .(0,2)B .(,2)-∞C .(1,2)-D .(1,2)【答案】C【解析】按0x ≤和0x >,分别解不等式()1g x <,从而得到答案.【详解】 根据题意,32,0,()log ,0,x x g x x x ⎧-≤=⎨>⎩,由不等式()1g x <得310x x ⎧-<⎨≤⎩或2log 10x x <⎧⎨>⎩,, 所以10x -<≤或02x <<.即12x -<<所以不等式()1g x <的解集为(1,2)-.故选:C.【点睛】本题考查解分段函数不等式,解对数不等式,属于简单题.5.某几何体的三视图如图所示,则该几何体的体积为( )正视图 侧视图俯视图A .43-B .23-C .32-D .34- 【答案】C【解析】根据三视图还原出几何体的直观图,将几何体分为三棱锥E ABC -和三棱锥E ACD -两部分,根据三视图中的数据及线段的位置关系分别得到底面积和高,求出几何体的体积.【详解】该几何体的直观图如下图,平面ACD ⊥平面ABC ,DE P 平面ABC ,ACD V 与ACB △均是边长为2的等边三角形,2BE =,点E 在平面ABC 上的射影落在ABC ∠的平分线上,所以DE ⊥平面ACD ,所以113E ABC ABC V S -∆=⨯=, 13E ACD ACD V S DE -=⨯⨯V 11)3=1=,所以几何体的体积为2. 故选:C.【点睛】本题考查三视图还原结合体,根据三视图求几何体的体积,属于中档题.6.函数1()1x f x x +=-的图象在点(3,2)处的切线与函数2()2g x x =+的图象围成的封闭图形的面积为( )A .1112B .3316C .3516D .12548【答案】D【解析】对()f x 求导,利用导数的几何意义,求出切线方程,然后求出切线与()g x 的交点坐标,利用定积分求出围成的封闭图形的面积,得到答案.【详解】 由题意,22()(1)f x x '=--, 221(3)(31)2f '∴=-=--, 所以切线方程为270x y +-=,与2()2g x x =+的交点横坐标为132x =-,21x =. 故封闭图形的面积13227222x S x dx -⎛⎫=--- ⎪⎝⎭⎰ 3122231323311d 22243x x x x x x --⎛⎫⎛⎫=⎰--=-- ⎪ ⎪⎝⎭⎝⎭12548= 故选:D.【点睛】本题考查利用导数求函数图像上在一点的切线方程,定积分求封闭图形的面积,属于中档题.7.已知数列满足11a =,121n n a a +=+,设数列(){}2log 1n a +的前n 项和为n S ,若12111n nT S S S =++⋅⋅⋅+,则与9T 最接近的整数是( ) A .5B .4C .2D .1 【答案】C【解析】根据递推关系式121n n a a +=+,得到1121n n a a ++=+,得到{}1n a +的通项,从而得到(){}2log 1n a +的通项和前n 项和n S ,从而求出n T ,再得到9T ,从而得到答案.【详解】由题意,()112221n n n a a a ++=+=+, 所以1121n n a a ++=+, 所以{}n a 为以112a +=为首项,2为公比的等比数列,所以()11112n n a a -+=+2n =,因此()2log 1n a n +=,数列(){}2log 1n a +的前n 项和为(1)2n n n S +=, 12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 12111n n T S S S =++⋅⋅⋅+ 11111212231n n ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭ 1211n ⎛⎫=- ⎪+⎝⎭所以995T =. 所以与9T 最接近的整数是2.故选:C.【点睛】本题考查构造法求数列的通项,等差数列前n 项和公式,裂项相消法求数列的和,属于中档题.8.已知函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,若函数()()g x f x m =-有两个零点,则实数m的取值范围为( )A .[2,)+∞B .(1,0)(2,)-+∞UC .(1,2]-D .(1,0)-【答案】D【解析】画出()y f x =的图像,然后得到()y f x =的图像和y m =的图像有两个交点,从而得到m 的取值范围.【详解】 根据函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,画出()f x 的图象如图所示,函数()()g x f x m =-有两个零点则函数()y f x =的图象与y m =的图象有2个交点,所以10m -<<,所以实数m 的取值范围为(1,0)-.故选:D.【点睛】本题考查画分段函数的图像,函数与方程,属于简单题.9.如果函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞,则14m n+的最小值为( ) A .92 B .2 C .1 D .34【答案】A【解析】由()f x 单调递增区间为[1,)+∞,得到对称轴方程21n m --=,即2m n +=,再根据基本不等式求出14m n+的最小值,得到答案. 【详解】 因为函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞ 所以对称轴为:21n m --=,即2m n +=, 所以14114()2m n m n m n ⎛⎫+=++ ⎪⎝⎭ 1452m n n m ⎛⎫=++ ⎪⎝⎭1(52≥+92=, 当且仅当2,3m =43n =时,等号成立. 故选:A.【点睛】本题考查根据二次函数的单调区间求参数之间的关系,基本不等式求和的最小值,属于简单题.10.已知sin()1223πα-= 则sin(2)6πα+= ( ) A .710- B .710 C .79- D .79【答案】C【解析】利用倍角公式,结合函数名的转换求解.【详解】21cos()12sin ()61223ππαα-=--=,(2)cos[(2)]cos(2)6263sin ππππααα+=-+=-272()169cos πα=--=-,故选C. 【点睛】本题主要考查三角函数的给值求值问题,首先从角入手,寻求已知角和所求角的关系,再利用三角恒等变换公式求解.11.如图,在三角形ABC 中,AC 上有一点D 满足4BD =,将ABD △沿BD 折起使得5AC =,若平面EFGH 分别交边AB ,BC ,CD ,DA 于点E ,F ,G ,H ,且AC P 平面EFGH ,BD P 平面EFGH 则当四边形EFGH 对角线的平方和取最小值时,DH DA=( )A .14B .1641C .2041D .3241【答案】B【解析】易得HG AC P ,EF AC P ,设DH GH k DA AC==,易得∥EH BD ,∥FG BD ,得1AH EH k DA BD==-,从而得到5GH k =,4(1)EH k =-,平行四边形EFGH 中,()2222413216EG HF k k +=-+,从而得到22EG HF +最小时的k 值,得到答案.【详解】AC P 平面EFGH ,AC ⊂平面ACD ,平面ACD I 平面EFGH HG =,所以AC HG P ,同理AC EF P设DH GH k DA AC==(01)k <<, BD P 平面EFGH ,BD ⊂平面ABD ,平面ABD ⋂平面EFGH HE =,所以BD HE P ,同理∥FG BD所以1AH EH k DA BD==-, 因为4BD =,5AC =所以5GH k =,4(1)EH k =-,在平行四边形EFGH 中,222222516(1)EG HF k k ⎡⎤∴+=+-⎣⎦(22413216)k k =-+, 又01k <<Q ,∴当1641k =时,22EG HF +取得最小值. 故选:B.【点睛】本题考查线面平行证明线线平行,平行四边形对角线的性质,二次函数求最值,属于中档题.12.定义在R 上的函数()f x 满足(2)()0f x f x ++=,(2018)2f =,任意的[1,2]t ∈,函数32(2)()(2)2f m g x x x f x ⎡⎤=+-++⎢⎥⎣⎦在区间(,3)t 上存在极值点,则实数m 的取值范围为( ) A .37,53⎛⎫-- ⎪⎝⎭B .(9,5)--C .37,93⎛⎫-- ⎪⎝⎭D .37,3⎛⎫-∞- ⎪⎝⎭ 【答案】C 【解析】根据(2)()0f x f x ++=得到()f x 周期为4,再求得()()220182f f ==,得到()g x ,求导得到()g x ',判断出()0g x '=的两根一正一负,则()g x 在区间(,3)t 上存在极值点,且[]1,2t ∈,得到()g x '在(),3t 上有且只有一个根,从而得到关于t 的不等式组,再根据二次函数保号性,得到关于m 不等式组,解得m 的范围.【详解】由题意知,(2)()f x f x +=-,(4)()f x f x ∴+=,所以()f x 是以4为周期的函数,(2018)(2)2f f ∴==,所以322()22m g x x x x ⎛⎫=+-++ ⎪⎝⎭32222m x x x ⎛⎫=++- ⎪⎝⎭, 求导得2()3(4)2g x x m x '=++-,令()0g x '=,23(4)20x m x ∴++-=, 2(4)240m ∆=++>, 由12203x x =-<, 知()0g x '=有一正一负的两个实根.又[1,2],t ∈(,3)x t ∈,根据()g x 在(,3)t 上存在极值点,得到()0g x '=在(,3)t 上有且只有一个正实根.从而有()0(3)0g t g ''<⎧⎨>⎩,即23(4)2027(4)320t m t m ⎧++-<⎨++⨯->⎩恒成立, 又对任意[1,2]t ∈,上述不等式组恒成立,进一步得到2311(4)20,322(4)20,273(4)20,m m m ⨯+⨯+-<⎧⎪⨯+⨯+-<⎨⎪+⨯+->⎩所以59373m m m ⎧⎪<-⎪<-⎨⎪⎪>-⎩故满足要求的m 的取值范围为:3793m -<<-. 故选:C.【点睛】本题考查函数的周期性的应用,根据函数的极值点求参数的范围,二次函数根的分布和保号性,属于中档题.二、填空题13.在平面直角坐标系中,O 为坐标原点,(1,1)A -,(0,3)B ,(3,0)C ,3BD DC =u u u r u u u r,则OA OD ⋅=u u u r u u u r________.【答案】32-【解析】将3BD DC =u u u r u u u r 转化为3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,从而得到OD uuu r的坐标,然后根据向量数量积的坐标运算,得到答案. 【详解】因为3BD DC =u u u r u u u r,所以3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,所以()134OD OC OB =+u u u r u u u r u u u r 93,44⎛⎫= ⎪⎝⎭, ()1,1OA =-u u u r所以9344OA OD ⋅=-+u u u r u u u r 32=-.故答案为:32-.【点睛】本题考查向量线性运算的坐标表示,数量积的坐标表示,属于简单题.14.已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,则11y z x +=+的最小值为________.【答案】13【解析】根据约束条件,画出可行域,将目标函数看成点(,)x y 与点(1,1)--两点连线的斜率,从而得到斜率的最小值,得到答案. 【详解】因为已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,画出可行域,如图所示,11y x ++表示点(,)x y 与点(1,1)--两点连线的斜率,所以可得当直线过点A 时,z 最小, 由0240y x y =⎧⎨+-=⎩得2,0,x y =⎧⎨=⎩ 所以z 的最小值为011213+=+. 故答案为:13. 【点睛】本题考查根据线性规划求分式型目标函数的最值,属于简单题.15.如图,底面ABCD 为正方形,四边形DBEF 为直角梯形,DB EF ∥,BE ⊥平面ABCD ,2AB BE ==,2BD EF =,则异面直线DF 与AE 所成的角为________.【答案】6π 【解析】设正方形ABCD 的中心为O ,可得OE DF ∥,得到直线DF 与AE 所成角为AEO ∠(或其补角),根据余弦定理,可得cos AEO ∠的值,从而得到答案. 【详解】 如图,设正方形ABCD 的中心为O ,连接AO ,EO , 则12OD BD =因为DB EF ∥,2BD EF = 所以EF OD P ,EF OD = 所以DFEO 为平行四边形, 所以OE DF ∥,所以直线DF 与AE 所成角等于OE 与AE 所成的角,即AEO ∠(或其补角),因为AE =OA =OE =在三角形AEO 中,根据余弦定理,可知222cos 22EO EA AO AEO EO EA +-∠==⋅, 所以6AEO π∠=.故答案为:6π. 【点睛】本题考查求异面直线所成的角的大小,属于简单题.16.已知函数()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭(0)>ω在区间,63ππ⎛⎫⎪⎝⎭上有最小值4f π⎛⎫⎪⎝⎭,无最大值,则ω=________. 【答案】73【解析】先对()f x 进行整理,得到()2sin 23f x x πω⎛⎫=+⎪⎝⎭,根据最小值4f π⎛⎫⎪⎝⎭,得到743k ω=+,然后根据()f x 在区间,63ππ⎛⎫⎪⎝⎭无最大值,得到周期的范围,从而得到ω的范围,确定出ω的值. 【详解】()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭14cos sin 2x x x ωωω⎛⎫=⋅+ ⎪ ⎪⎝⎭)22sin cos 2cos 1x x x ωωω=+-sin 22x x ωω=+2sin 23x πω⎛⎫=+ ⎪⎝⎭,依题意,则322,432k ππωππ⨯+=+k Z ∈, 所以743k ω=+()k ∈Z .因为()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值, 所以342πππω-≤,即6ω≤, 令0k =,得73ω=. 故答案为:73ω=. 【点睛】本题考查二倍角公式,辅助角公式化简,根据正弦型函数的最值和周期求参数的值,属于中档题.三、解答题17.已知递增的等比数列{}n a 的前n 项和为n S ,149a a +=,238a a =. (1)求数列{}n a 的通项公式; (2)求数列{}n n S ⋅的前n 项和n T .【答案】(1)12n n a -=;(2)1(1)(1)222n n n nT n ++=-⋅+-【解析】(1)根据等比数列23148a a a a ==,解出1a 和4a 的值,从而得到公比q ,得到{}n a 的通项公式;(2)根据(1)得到n S ,再利用错位相减法和分组求和的方法求出{}n n S ⋅的前n 项和nT.【详解】(1)由题意,1423149,8,a a a a a a +=⎧⎨==⎩ 解得11,a =48a =或18,a =41a =; 而等比数列{}n a 递增,所以11,a =48a =,故公比2q =,所以12n n a -=. (2)由(1)得到12n S =++…1221n n -=-, 所以()*21n n S n ⋅=-2n n n =⋅-,23122232n T =⨯+⨯+⨯+…2(12n n +⋅-++…)n +,设23122232t =⨯+⨯+⨯+…2n n +⋅,2342122232t =⨯+⨯+⨯+…12n n ++⋅,两式相减可得,23222t -=+++ (1)22n n n ++-⋅()1212212n n n +-=-⋅-故1(1)22n t n +=-⋅+,所以1(1)(1)222n n n nT n ++=-⋅+-. 【点睛】本题考查等比数列通项基本量的计算,分组求和的方法,错位相减法求数列的前n 项的和,属于简单题. 18.已知函数321()3f x x ax bx =-+(),a b ∈R 在区间(1,2)-上为单调递减函数. (1)求+a b 的最大值;(2)当2a b +=-时,方程2135()32b f x x +=+有三个实根,求b 的取值范围. 【答案】(1)32-;(2)123,5⎡⎤--⎢⎥⎣⎦【解析】(1)先求得()f x ',根据()f x 在区间(1,2)-上为减函数,得到(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立,从而得到关于a ,b 的约束条件,画出可行域,利用线性规划,得到+a b 的最大值;(2)根据2a b +=-,得到b 的范围,设2135()()32b h x f x x +=--,求导得到()h x ',令()0h x '=得到x b =或1x =,从而得到()h x 的极值点,根据()h x 有3个零点,得到b 的不等式组,解得b 的范围. 【详解】(1)2()2f x x ax b '=-+,因为()f x 在区间(1,2)-上为减函数,所以(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立即120,440,a b a b ++≤⎧⎨-+≤⎩,画出可行域如图所示:设z a b =+,所以b a z =-+,z 表示直线l ,b a z =-+在纵轴上的截距.当直线:l b a z =-+经过A 点时,z 最大, 由120,440,a b a b ++=⎧⎨-+=⎩所以12a =,2b =- 故z a b =+的最大值为13222-=-. (2)由2a b +=-得2a b =-- 代入120,440,a b a b ++≤⎧⎨-+≤⎩可得1235b -≤≤-, 令2135()()32b h x f x x +=--32111323b x x bx +=-+-, 故由2()(1)h x x b x b '=-++(1)()0x x b =--=,得x b =或1x =,所以得到()h x 和()h x '随x 的变化情况如下表:x (,)b -∞ b(,1)b 1(1,)+∞ ()h x '+-+()h xZ极大值32111623b b -+- ]极小值12b -要使()h x 有三个零点,故需321110,62310,2b b b ⎧-+->⎪⎪⎨-⎪<⎪⎩ 即()2(1)220,1,b b b b ⎧---<⎪⎨<⎪⎩解得1b <,而1215>-所以b 的取值范围是123,5⎡⎤--⎢⎥⎣⎦. 【点睛】本题考查利用导数研究函数的单调性、极值和零点,根据函数的单调性求参数的取值范围,根据函数零点个数求参数的取值范围,属于中档题.19.已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c 满足cos cos 2cos ca Bb A C+=,且BC 边上一点P 使得PA PC =.(1)求角C 的大小; (2)若3PB =,sin 38BAP ∠=,求ABC V 的面积. 【答案】(1)3C π=;(2【解析】根据正弦定理,将边化成角,然后整理化简,得到cos C 的值,从而得到C 的值;(2)根据条件得到APC △为等边三角形,从而得到23APB ∠=π,根据正弦定理,得到AB 的值,根据余弦定理,得到AP 的长,根据三角形面积公式,得到答案. 【详解】(1)因为cos cos 2cos ca Bb A C+=在ABC V ,由正弦定理sin sin sin a b cA B C== 所以得2cos (sin cos sin cos )C A B B A +sin C =. 所以2cos sin()sin C A B C +=. 即2cos 1C =所以1cos 2C =, 因为()0,C π∈,所以3C π=(2)由(1)知3C π=,而PA PC =APC △为等边三角形.由于APB ∠是APC △的外角, 所以23APB ∠=π. 在APB △中,由正弦定理得2sin sin3PB ABBAPπ=∠, 即2357sin 3ABπ=,所以19AB =. 所以由余弦定理得,2222co 23s AB PA PB PA PB π=+-⋅, 即21993PA PA =++, 所以2PA =,故235BC =+=,2AC =, 所以11353sin 252222ABC S CA CB C =⋅⋅=⨯⨯⨯=V . 【点睛】本题考查正弦定理的边角互化,正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.20.如图,在四棱锥1A ABCD ﹣中,底面ABCD 为直角梯形,90BAD ︒∠=,AB DC P ,2DC AB =24AD ==,12AA =,且O 为BD 的中点,延长AO 交CD 于点E ,且1A 在底ABCD 内的射影恰为OA 的中点H ,F 为BC 的中点,Q 为1A B 上任意一点.(1)证明:平面EFQ ⊥平面1A OE ;(2)求平面1A OE 与平面1A DC 所成锐角二面角的余弦值.【答案】(1)证明见解析;(2 【解析】(1)根据1A H ⊥平面ABCD ,得到1A H EF ⊥,由平面几何知识得到EF AE ⊥,从而得到EF ⊥平面1A OE ,所以所以平面EFQ ⊥平面1A OE ;(2)以O 为原点建立空间直角坐标系,得到平面1A DC 和平面1A OE 的法向量,利用向量的夹角公式,得到这两个面所成的锐角二面角的余弦值. 【详解】(1)由题意,E 为CD 的中点,因为1A H ⊥平面ABCD ,EE ⊂平面ABCD , 所以1A H EF ⊥,又因为DB EF ∥,AB AD =,OB OD =,所以AE 垂直平分BD , 所以DE BE =又因AB DE ∥,90BAD ︒∠= 所以ADEB 为正方形, 所以DE EC AB == 因为F 为BC 的中点, 所以EF BD P而DB AE ⊥,所以EF AE ⊥,又1A H AE H =I ,所以EF ⊥平面1A OE , 又EF ⊂平面EFQ , 所以平面EFQ ⊥平面1A OE .(2)因为1A 在底面ABCD 内的射影恰为OA 的中点H ,所以11242OH OA BD ===. 因为AB AD ⊥,所以过点O 分别作AD ,AB 的平行线(如图), 并以它们分别为x ,y 轴,以过O 点且垂直于xOy 平面的直线为z 轴, 建立如图所示的空间直角坐标系,所以(1,1,0)A --,(1,1,0)B -,(1,3,0)C ,(1,1,0)D -,1116,,222A ⎛-- ⎝⎭,所以1316,,222A D ⎛=-- ⎝⎭u u u u r ,1376,,222A C ⎛=- ⎝⎭, 设平面1A DC 的一个法向量为(,,)n x y z =r,则1100n A D n A C ⎧⋅=⎪⎨⋅=⎪⎩r v u u v v ,所以316022376022x y z x y z ⎧--=⎪⎪⎨⎪+=⎪⎩令6z =6)n =r,由(1)知,BD ⊥平面1A OE ,所以OD ⊥平面1A OE ,所以(1,1,0)OD =-u u u r为平面1A OE 的一个法向量,则||5|cos ,|||||102n OD n OD n OD ⋅〈〉===⋅r u u u rr u u u r r u u ur . 故平面1A OE 与平面1A DC 5. 【点睛】本题考查线面垂直的判定和性质,面面垂直的判定,利用空间向量求二面角的余弦值,属于中档题.21.已知函数1()1ln1mxf x x x-=-++(0)m >与满足()2()g x g x -=-()x R ∈的函数()g x 具有相同的对称中心.(1)求()f x 的解析式;(2)当(,]x a a ∈-,期中(0,1)a ∈,a 是常数时,函数()f x 是否存在最小值若存在,求出()f x 的最小值;若不存在,请说明理由;(3)若(21)(1)2f a f b -+-=,求22211a b a b+++的最小值. 【答案】(1)1()1ln 1x f x x x -=-++;(2)11ln 1a a a--++(3)94 【解析】(1)根据()g x 关于()0,1对称,从而得到()()2f x f x +-=,整理化简,得到m 的值;(2)判断出()f x 的单调性,得到当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,从而得到()f x 最小值;(3)由(21)(1)2f a f b -+-=得到a ,b 关系,然后将22b a =-代入到22211a b a b+++,利用基本不等式,得到其最小值. 【详解】(1)因为()2()g x g x -=-,所以()()2g x g x -+=,所以()y g x =图象关于(0,1)对称, 所以11()()1ln 1ln 11mx mx f x f x x x x x-++-=-+++++- 22212ln 21m x x ⎛⎫-=+= ⎪-⎝⎭所以22211,1m x x-=-0m > 解得1m =, 所以1()1ln 1x f x x x-=-++. (2)()f x 的定义域为(1,1)-,1()1ln 1x f x x x -=-++21ln 11x x ⎛⎫=-+-+ ⎪+⎝⎭, 当12x x <且12,(1,1)x x ∈-时,()f x 为减函数,所以当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,所以当x a =时,min 1()1ln1a f x a a-=-++. (3)由(21)(1)2f a f b -+-=, 得2110,1211,111,a b a b -+-=⎧⎪-<-<⎨⎪-<-<⎩解得01,a <<02,b <<22a b +=, 所以2222221211(1)a b a b ab b a a b a b++++++=++ 21(1)b a a b++=+()25321a a -=- 令53t a =-,则5,3t a -=(2,5)t ∈, ()()225392121016a t a t t -=--+- 916210t t =⎛⎫--+ ⎪⎝⎭94≥= 当且仅当4t =时,等号成立, 即当13a =,43b =时,22211a b a b+++的最小值为94. 【点睛】本题考查根据函数的对称性求参数的值,根据函数的单调性求最值,基本不等式求和的最小值,属于中档题.22.已知函数1()ln 2f x mx x =--()m R ∈,函数()F x 的图象经过10,2⎛⎫ ⎪⎝⎭,其导函数()F x '的图象是斜率为a -,过定点(1,1)-的一条直线.(1)讨论1()ln 2f x mx x =--()m R ∈的单调性; (2)当0m =时,不等式()()F x f x ≤恒成立,求整数a 的最小值.【答案】(1)当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)2【解析】对()f x 求导,得到()f x ',按0m ≤和0m >进行分类讨论,利用导函数的正负,得到()f x 的单调性;(2)根据题意先得到()F x ',然后得到()F x 的解析式,设()()()g x F x f x =-,按0a ≤和0a >分别讨论,利用()g x '得到()g x 的单调性和最大值,然后研究其最大值恒小于等于0时,整数a 的最小值.【详解】(1)函数()f x 的定义域是(0,)+∞,1()mx f x x-'=, 当0m ≤时,()0f x '≤,所以()f x 在(0,)+∞上为减函数,当0m >时,令()0f x '=,则1x m =, 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数, 综上,当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)根据题意,()(1)1F x a x '=-++, 设21()(1)2F x ax a x c =-+-+,代入10,2⎛⎫ ⎪⎝⎭,可得12c =, 令()()()g x F x f x =-21ln (1)12x ax a x =-+-+, 所以1()(1)g x ax a x '=-+-2(1)1ax a x x-+-+=. 当0a ≤时,因为0x >,所以()0g x '>.所以()g x 在(0,)+∞上是单调递增函数, 又因为21(1)ln11(1)112g a a =-⨯+-⨯+3202a =-+>, 所以关于x 的不等式()()F x f x ≤不能恒成立.当0a >时,2(1)1()ax a x g x x -+-+'=1(1)a x x a x⎛⎫-+ ⎪⎝⎭=-, 令()0g x '=,得1x a =. 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 因此函数()g x 在10,x a ⎛⎫∈ ⎪⎝⎭上是增函数,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上是减函数. 故函数()g x 的最大值为211111ln (1)12g ax a a a a a ⎛⎫⎛⎫=-+-⨯+ ⎪ ⎪⎝⎭⎝⎭1ln 2a a =-. 令1()ln 2h a a a =-,因为1(1)0,2h =>1(2)ln 204h =-<, 又因为()h a 在(0,)a ∈+∞上是减函数.所以当2a ≥时,()0h a <.所以整数a 的最小值为2.【点睛】本题考查函数与方程的应用,利用导数研究函数的单调区间、极值和最值,根据导函数的解析式求原函数的解析式,利用导数研究不等式恒成立问题,涉及分类讨论的思想,题目比较综合,属于难题.。
河南省名校联盟2020届高三11月教学质量检测——理科综合
河南省名校联盟2020届高三11月教学质量检测理科综合能力测试本试题卷共12页,38题(含选考题)。
全卷满分300分。
考试用时150分钟。
注意事项:1.答题前,先将自已的姓名、准考证号填写存答题卡上,并将准考证号条形码贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将答题卡上交。
可能用到的相对原子质量:H 1 Li 3 B 11 C 12 N 14 O 16 Na 23 P 31 Fe 56 Pt 207一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于细胞结构及其组成成分的叙述,正确的是A.变性的蛋白质、DNA在环境条件改变时活性都不能恢复B.人体不同细胞内的DNA和RNA都是相同的C.神经元兴奋前后细胞内的Na+浓度都低于组织液的Na+浓度D.有丝分裂和减数第一次分裂中都发生姐妹染色单体的分离2.下列实验方法或操作,可以达成实验目的的是3.将洋葱鳞茎从土壤中拔出,立即取其鳞片叶表皮置于0.3 g·mL-1的蔗糖溶液中,待细胞形态不再发生变化,将该表皮从蔗糖溶液中取出并置于清水中,当细胞形态再次不发生变化时,则A.细胞中的含水量与实验开始时相等B.细胞液中蔗糖浓度较实验开始时高C.细胞壁对原生质层的“挤压”达到最大程度D.细胞液渗透压消失,细胞不再吸水4.如图是某个体的一对同源染色体,其中有一条染色体发生了变异(图中字母表示基因,竖线标明相应基因在染色体上的位置)。
河南省2020届高三11月质量检测数学(理)试卷
数学理一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列集合中不同于另外三个集合的是() A.{}3|1x x =B.{}4|1x x = C.{1}D.1|1x x ⎧⎫=⎨⎬⎩⎭答案:B 【分析】计算每个集合中的元素再判断即可.解:{}4|1{1,1}x x ==-,另外三个集合都是{1}, 故选:B .点评:本题主要考查集合中元素的求解,属于基础题型. 2.下列说法正确的是() A.若a b >,则44ac bc > B.若a b <,则2211a b> C.若a b c >>,则222a b c >> D.若a b >,c d >,则a c b d +>+答案:D 【分析】根据不等式的性质或者举反例逐个选项判断即可. 解:对于A 选项,若0c,则命题错误.故A 选项错误;对于B 选项,取2a =-,1b =-,则满足a b <,但2211a b <,故B 选项错误; 对于C 选项,取1a =,2b =-,3c =-,则满足a b c >>,但222a b c <<,故C 选项错误; 对于D 选项,由不等式的性质可知该选项正确. 故选:D .点评:本题主要考查了不等式的性质,属于基础题型.3.已知向量(,3)a x =,(2,7)b =-,若()a b b -⊥,则实数x 的值为() A.-16 B.67-C.67D.16答案:A 【分析】根据向量坐标的运算与垂直的数量积为0求解即可.解:因为(,3)(2,7)(2,4)a b x x -=--=+-,且()a b b -⊥,所以()(2,4)(2,7)a b b x -⋅=+-⋅-=2(2)(4)70x -++-⨯=,解得16x =-. 故选:A .点评:本题主要考查了向量的坐标运算与向量垂直则数量积为0,属于基础题型. 4.若函数21()x f x e +=,则曲线()y f x =在点11,22f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()A.220x y ++=B.220x y -+=C.220x y +-= D.220x y --=答案:B 【分析】 先求出12f ⎛⎫- ⎪⎝⎭,再求导代入12x =-求得在切点出的切线斜率,再根据点斜式求解方程即可.解:依题意,得0112f e ⎛⎫-== ⎪⎝⎭,21()2x f x e '+=,则切线的斜率为122f '⎛⎫-= ⎪⎝⎭,所以切线方程为1122y x ⎡⎤⎛⎫-=-- ⎪⎢⎥⎝⎭⎣⎦,即220x y -+=.故选:B .点评:本题主要考查了导数的几何意义,属于基础题型. 5.下列命题中正确的是()A.若三个平面两两相交,则它们的交线互相平行B.若三条直线两两相交,则它们最多确定一个平面C.若不同的两条直线均垂直于同一个平面,则这两条直线平行D.不共线的四点可以确定一个平面 答案:C 【分析】根据线面平行与垂直的判定与性质,或举出反例逐个判断即可.解:在A 中,从正方体的一个顶点出发的三个平面是两两相交,但他们的交线互相垂直,故A 错误;在B 中,从正方体的一个顶点出发的三条棱可以确定三个平面,故B 错误;在C 中,不同的两条直线均垂直于同一个平面,则由线面垂直的性质定理得这两条直线平行,故C 正确;在D 中,若四点连线构成两条异面直线,这时四点不能确定一个平面,故D 错误. 故选:C .点评:本题主要考查了线面垂直与平行的性质与判定,属于基础题型.6.若关于x 的不等式20x ax b +-<(a ,b 为常数)的解集为(2,1)-,则不等式230bx ax +->的解集是()A.3,(1,)2⎛⎫-∞-⋃+∞ ⎪⎝⎭B.3,12⎛⎫- ⎪⎝⎭C.3(,1),2⎛⎫-∞-⋃+∞ ⎪⎝⎭D.31,2⎛⎫- ⎪⎝⎭答案:A 【分析】根据不等式20x ax b +-<(a ,b 为常数)的解集为(2,1)-可知2,1x =-为方程20x ax b +-=的两根即可求得,a b ,再求解230bx ax +->即可.解:由20x ax b +-<解集为(2,1)-,可得211(2)12a b -=-+=-⎧⎨-=-⨯=-⎩,解得12a b =⎧⎨=⎩.∴所求不等式230bx ax +->即为2230x x +->,解得32x <-或1x >. 即不等式230bx ax +->的解集是3,(1,)2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选:A .点评:本题主要考查了二次不等式的解集的性质,属于基础题型.7.函数()3sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的相邻两条对称轴之间的距离为2π,则将()f x 的图象向右平移4π个单位长度,所得函数图象的一个对称中心是() A.,04π⎛⎫ ⎪⎝⎭B.,04π⎛⎫- ⎪⎝⎭C.,03π⎛⎫ ⎪⎝⎭D.,03π⎛-⎫⎪⎝⎭答案:D 【分析】由相邻两条对称轴之间的距离为2π即可得()3sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的周期,再求得平移后的函数表达式,再求解对称中心即可.解:由题意.函数()f x 的最小正周期为π,则2ππω=,解得2ω=,所以()3sin 26f x x π⎛⎫=+ ⎪⎝⎭.将()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位长度.所得函数3sin 246y x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦3sin 23x π⎛⎫- ⎪⎝⎭.令2()3x k k ππ-=∈Z ,得()26k x k ππ=+∈Z , 所以所得函数图象的一个对称中心是,03π⎛-⎫⎪⎝⎭.点评:本题主要考查了三角函数图像的平移与基本性质,属于中等题型. 8.已知实数a ,b 满足0b >,||1a b +=,则120192019||a a b++的最小值为()A.2018B.2019C.2020D.2021答案:D 【分析】 将12019||a a +拆成12019||2019||a a a +,再根据||1ab +=构造12019(||)2019||a b a b ⎛⎫+⋅+ ⎪⎝⎭的结构,利用基本不等式从而求得最小值.解:因为0b >,||1a b +=,所以12019120192019||2019||2019||2019||a a a ab a a b a ++=++=+1201912019||(||)20192019||2019||20192019||a b a a b a b a a b ⎛⎫+⋅+=++++ ⎪⎝⎭1120192019≥-++20192021+=, 当且仅当0a <,2019||2019||b a a b =,即12020a =-,20192020b =时等号成立.故选:D .点评:本题主要考查了基本不等式的运用与构造,属于中等题型. 9.在单调递减的等比数列{}n a 中,已知3a ,5a 为一元二次方程2204081729x x -+=的两个根,则其前n 项和为()A.31729n -B.131243n +-C.1313n n --D.1313n n+- 答案:C由3a ,5a 为一元二次方程2204081729x x -+=与单调递减的等比数列{}n a 可求得35,a a 进而求得13q =.再利用求和公式求前n 项和即可. 解:设等比数列{}n a 的公比为q ,由已知得352081a a +=,35354,729a a a a =>, 所以329a =,5281a =,2532918129a q a ==⨯=,又数列{}n a 单调递减,所以13q =, 3122929a a q ==⨯=,所以其前n 项和为11213311313n nn -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦=-.故选:C .点评:本题主要考查了等比数列的性质与求和,属于基础题型. 10.函数()ln 2(1)2(1)x x f x x x ⎡⎤=--⎢⎥-+⎣⎦的图象大致是()A. B. C.D.答案:B 【分析】先求得()ln 2(1)2(1)x x f x x x ⎡⎤=--⎢⎥-+⎣⎦求得定义域,排除A,D,再分析当1x >时的单调性即可.详解】22(1)(1)11()ln ln ln ln ln 2(1)2(1)2(1)(1)1x x x x x x x x f x x x x x x x x x ⎡⎤+---⎛⎫=--=-=-==- ⎪⎢⎥-+-+-⎝⎭⎣⎦, 由10x x->得10x -<<或1x >,即函数()f x 的定义域为(1,0)(1,),故A,D 错误;当1x >时,1y x x =-为增函数,所以1()ln f x x x ⎛⎫=- ⎪⎝⎭为增函数,所以排除C .故选:B .点评:本题主要考查了函数图像的判定,属于基础题型.11.在三棱锥A BCD -中,BCD 3BAC π∠=,二面角A BC D --的大小为θ,且1cos 3θ=-,则三棱锥A BCD -体积的最大值为()答案:B 【分析】画图分析,设AB x =,AC y =,在BCD 中利用BAC ∠对应的余弦定理求得,x y 的关系式,再表达出三棱锥A BCD -体积关于,x y 的关系式利用基本不等式求解即可. 解:设AB x =,AC y =,因为3BAC π∠=,所以2223BC x y xy =+-=,所以223x y xy =+-2xy xy xy ≥-=,即3xy ≤,当且仅当x y ==过A 作AO ⊥平面BCD ,垂足为O ,作AE BC ⊥垂足为E ,连接OE ,则AEO πθ∠=-,所以sin()sin AO AE AE πθθ=-=3AE ==,又11sin 223BC AE xy π⋅=,所以12AE xy =,所以3AO xy =≤所以1133344A BCD BCDV SAO AO -=⋅=⋅⋅⋅≤.故选:B .点评:本题主要考查了基本不等式在立体几何中的运用,需要根据题意建立未知量的关系,再根据关系选用合适的基本不等式求解.属于中等题型.12.已知定义域为R 的函数2log (1),1()1,12,1x x f x x x +>-⎧⎪==-⎨⎪<-⎩,若关于x 的方程2()()0f x bf x c --=有无数个不同的实数解,但只有三个不同的实数解123,,[1,)x x x ∈-+∞,则()123f x x x b c ++++=()A.2log 5B.2log 6C.3D.2答案:A 【分析】对每个分段中的函数表达式讨论,即可得11x =-,再根据只有三个不同的实数解123,,[1,)x x x ∈-+∞,可分析得()1,2f x =为2()()0f x bf x c --=的根,进而求得3b =,2c =-.再求()123f x x x b c ++++即可.解:当1x >-时.函数()f x 单调递增,则关于x 的方程2()()0f x bf x c --=在(1,)-+∞内至多只有两个解,所以1x =-必为其中一解,即11x =-.故当1x =-时,2()()0f x bf x c --=,此时由函数()1f x =,得10b c --=;①若关于x 的方程2()()0f x bf x c --=有无数个不同的实数解,则当1x <-时, ()2f x =也一定满足2()()0f x bf x c --=,代入得420b c --=.②联立①②,解得3b =,2c =-.当1x >-时,2()log (1)=+f x x ,由2()()0f x bf x c --=即2()3()20f x f x -+=,得22log 2(1)3log (1)20x x +-++=,解得2log (1)1x +=或2log (1)2x +=,解得21x =或33x =.所以()1232(11332)(4)log 5f x x x b c f f ++++=-+++-==. 故选:A .点评:本题主要考查了分段函数的运用以及复合函数的问题,需要根据题意分析每个根满足的条件与具体值等.属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.若等差数列{}n a 和等比数列{}n b 满足111a b ==,448a b ==,则33a b +=________. 答案:293【分析】根据等差等比数列的性质先求得公比公差,再求得33a b +即可. 解:由4137173733a a d d a -==⇒=⇒=,34182b q q b ==⇒=,34b =,则331729433a b +=+=. 故答案为:293点评:本题主要考查了等差等比数列的基本性质与运用,属于基础题型.14.若命题“0x R ∃∈,使得201k x >+成立”是假命题,则实数k 的取值范围是________. 答案:(,1]-∞ 【分析】由题意先找到等价命题“x R ∀∈,都有21k x ≤+恒成立”,再求21x +的最小值即可. 解:“0x R ∃∈,使得201k x >+成立”是假命题等价于“x R ∀∈,都有21k x ≤+恒成立”是真命题.因为211x +≥,即21x +的最小值为1,要使“21k x ≤+恒成立”,只需()2min1k x ≤+,即1k ≤.故答案为:(,1]-∞点评:本题主要考查了特称命题的否定与恒成立问题,属于简单题型.15.若x ,y 满足约束条件2201220x y y x y -+≥⎧⎪≥-⎨⎪+-≤⎩,则目标函数3z x y =+的最小值为________.答案:-7 【分析】画出可行域,再判断3z x y =+取最小值时的点即可.解:画出约束条件2201220x y y x y -+≥⎧⎪≥-⎨⎪+-≤⎩,表示的平面区域(阴影部分)如图所示:平移直线30x y +=,由图形知,当目标函数3z x y =+过点M 时取得最小值,由2201x y y -+=⎧⎨=-⎩,解得(4,1)M --.代入得min (4)3(1)7z =-+⨯-=-.所以3z x y =+的最小值为―7. 故答案为:-7点评:本题主要考查了线性规划的不等式问题,属于基础题型.16.在直三棱柱111ABC A B C -内有一个与其各面都相切的球O 1,同时在三棱柱111ABC A B C -外有一个外接球2Q .若AB BC ⊥,3AB =,4BC =,则球2Q 的表面积为______. 答案:29π 【分析】先求出球O 1的半径,再求出球2Q 的半径,即得球2Q 的表面积.解:由题得AC=5,设球O 1的半径为r ,由题得11345)34,122r r r r ++=⨯⨯∴=(. 所以棱柱的侧棱为22r.,所以球2Q 的表面积为2429ππ⋅=. 故答案:29π点评:本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知在ABC 中.,,A B C 所对的边分别为,,a b c ,若2228a b c ,ABC 的面积为(1)求角C 的大小;(2)若c =,求 sin A sin B +的值. 答案:(1)3π;(2)32【分析】(1)由三角形的面积为12absinC =,由余弦定理以及2228a b c +-=得到28abcos C =,进而可求出tan C ,得到角C ;(2)由(1)的结果,先求出ab ,根据c =,即可求出a b +,再由正弦定理可得sin sin sin sin a C b CA B c c+=+,即可求出结果.解:(1)由ABC ∆的面积为12absinC =,由2228a b c +-=及余弦定理可得28abcos C =,故tan 3C π==;(2)∵,2cos 8,83C ab C ab π==∴=又2228,23a b c c +-==,可得6a b += 由正弦定理,sin sin sin a b c A B C ==,得()sin sin sin 3sin sin 2a Cb C C A B a bc c c +=+=+= 点评:本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型. 18.城市中大量公园的兴建意味着建筑让位,还地于民,城市公共空间被越来越充分地打开.这种打开不只是物理意义上的空间开放,而是使城市公园不仅供民众用来休憩、娱乐、锻炼,还用于相互交往、传播文化、锤炼公民意识,让城市与人建立更好的连接,推动城市回归人本.某城市计划在靠近环城公路Ax ,Ay 的P 处建一所职业技校,且配套修建一条道路BC ,并把三条路围成的三角形区域开辟为休闲公园(如图).经测量P 到Ax ,Ay 的距离PE ,PF 分别为4km ,3km ,若,2BAC πθθπ⎛⎫⎛⎫∠=∈ ⎪⎪⎝⎭⎝⎭,3sin 4θ=,km AB x =,km AC y =.(1)试建立x ,y 间的等量关系;(2)为尽量减少土地占用,试问如何确定B 点的位置,才能使得该公园的面积最小?并求最小面积. 答案:(1)3434x y xy +=;(2)当8km AB =时,最小面积为232km 【分析】 (1)根据ABCABPAPCSSS=+建立等量关系即可.(2)由(1)有3434x y xy +=,表达出公园的面积38ABCS xy =,再利用基本不等式求解即可. 解:(1)因为Р到Ax .Ay 的距离分别为4,3.所以4PE =,3PF =.因为11143(43)222ABC ABP APCSSSx y x y =+=⋅⋅+⋅⋅=+,① 又1324ABC S xy =⨯,②,所以3434x y xy +=.(2)因为43212x y xy +≥所以32124xy xy ≥,解得2563xy ≥.当且仅当43x y =时,取“=”,即8x =,323y =.所以38ABC S xy =有最小值32.所以当8km AB =时,该公园的面积最小,最小面积为232km .点评:本题主要考查了基本不等式的实际运用,需要根据题目条件列出对应的表达式,再根据变量间的关系选用合适的基本不等式即可.属于中等题型.19.已知函数()4(sin cos )cos 2(0)f x x x x ωωωω=-+>图象的一个对称中心为,08π⎛⎫⎪⎝⎭,设函数()f x 的最小正周期为T . (1)求T 的最大值;(2)当T 取最大值时,若82f πα⎛⎫+= ⎪⎝⎭,04πα<<,求sin 4πα⎛⎫+ ⎪⎝⎭的值.答案:(1)π;(2 【分析】(1)利用降幂公式与辅助角公式求得()24f x x πω⎛⎫=-⎪⎝⎭,再根据一个对称中心为,08π⎛⎫⎪⎝⎭求得41()k k ω=+∈Z ,再求T 的最大值即可.(2)由(1)有()24π⎛⎫=-⎪⎝⎭f x x ,利用82f πα⎛⎫+= ⎪⎝⎭求得sin 24α=,再求得cos2α,利用降幂公式求解sin ,cos αα与sin 4πα⎛⎫+⎪⎝⎭即可. 解:(1)由题意得()4(sin cos )cos 2f x x x x ωωω=-+24sin cos 4cos 2x x x ωωω=-+2sin22cos2x x ωω=-24x πω⎛⎫=- ⎪⎝⎭.因为函数()f x 的一个对称中心为,08π⎛⎫⎪⎝⎭,所以2()84k k ππωπ⋅-=∈Z ,得41()k k ω=+∈Z .又0>ω,所以ω最小值为1.所以T 的最大值为22ππ=.(2)由(1)知,()24π⎛⎫=-⎪⎝⎭f x x ,若82f πα⎛⎫+= ⎪⎝⎭,则2284ππαα⎡⎤⎛⎫+-== ⎪⎢⎥⎝⎭⎣⎦,即sin 24α=.因为04a π<<,所以022πα<<.所以3cos24α==.所以sin 44αα====.所以1sin sin cos cos sin 44442424πππααα+⎛⎫+=+=⨯+= ⎪⎝⎭. 点评:本题主要考查了三角恒等变换中的公式,包括降幂公式、辅助角公式等.需要根据题目中角度的关系选用合适的公式,属于中等题型.20.已知数列{}n a 的前n 项和n S 满足126n n a S +=+,且16a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:23123111133333nnT T T T ++++<⋅⋅⋅⋅. 答案:(Ⅰ)16323n n n a -=⋅=⋅;(Ⅱ)试题分析:(Ⅰ)根据1n n n a S S -=-得出{}n a 是等比数列,从而可得{}n a 的通项;(Ⅱ)求出n T ,利用裂项法计算2312311113333n nT T T T ++++⋅⋅⋅⋅得出结论. 试题解析:(Ⅰ)由已知得当2n ≥时,()1122n n n n n a a S S a +--=-=,所以13n n a a +=, 又2112626183n a S a a =+=+==.所以{}n a 是以16a =为首项,3为公比的等比数列,所以16323n nn a -=⋅=⋅.(Ⅱ)由(Ⅰ)得1123nn a =⋅,所以1n a ⎧⎫⎨⎬⎩⎭是等比数列,1111163114313n n nT ⎛⎫- ⎪⎛⎫⎝⎭==-⎪⎝⎭-. 所以()()()()111111431431146331313131313131n n n n n n n n n n n T +++++-⋅⎛⎫==⋅<=- ⎪⋅-------⎝⎭.所以2312311113333n nT T T T ++++⋅⋅⋅⋅122311111116313131313131n n +⎛⎫<-+-+⋯⋯+- ⎪------⎝⎭11163231n +⎛⎫=-< ⎪-⎝⎭.得证点睛:本题主要考查了等比数列的证明,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于n n n c a b =+,其中{}na 和{}nb 分别为特殊数列,裂项相消法类似于()11n a n n =+,错位相减法类似于n n n c a b =⋅,其中{}n a 为等差数列,{}n b 为等比数列等.21.如图,在四棱锥S ABCD -中,底面ABCD 是直角梯形,AD BC ∥,AB BC ⊥,SAB 是等边三角形.SAB ⊥底面ABCD ,23AB =,3BC =,1AD =,点M 是棱SB 上靠近点S 的一个三等分点.(1)求证:AM平面SCD ;(2)求二面角S CD B --的大小. 答案:(1)见解析;(2)60︒ 【分析】(1)取棱SC 上靠近点S 的一个三等分点N ,再证明AM ND ∥即可.(2)作SO AB ⊥,垂足为点O .再建立空间直角坐标系,分别求平面SCD 的一个法向量与平面BCD 一个法向量,利用法向量夹角的余弦值求二面角S CD B --的大小即可.解:(1)证明:取棱SC 上靠近点S 的一个三等分点N ,连接MN ,DN , 因为13SM SN SB SC ==,所以MN BC 且13MN BC =.因为AD BC ∥,所以MN AD .又因为3BC =,1AD =,所以13AD BC MN ==.所以四边形MNDA 是平行四边形. 所以AMND ∥.又因为AM ⊄平面SCD ,ND ⊂平面SCD ,所以//AM 平面SCD .(2)作SO AB ⊥,垂足为点O .如图所示.因为SAB 是等边三角形,所以点O 是线段AB 的中点.因为侧面SAB ⊥底面ABCD , 侧面SAB底面ABCD AB =,SO AB ⊥,SO ⊂二侧面SAB ,所以SO ⊥底面ABCD .所以以点O 为原点,OA 为x 轴,过点O 且平行于EC 的射线为y 轴,OS 为z 轴,建立如上图所示的空间直角坐标系O xyz -.因为23AB =3BC =,1AD =,SAB 是等边三角形, 所以132AO BO AB ===3sin 602332SO AS ︒=⋅==. 所以点(0,0,0)O ,3,0,0)A ,(3,1,0)D ,(3,3,0)C ,(0,0,3)S ,所以(3,1,3)SD =-,(3,3,3)SC =--.设平面SCD 的一个法向量为(,,)x y z =m ,则由00m SD m SC ⎧⋅=⎨⋅=⎩,得3303330x y z x y z +-=-+-=⎪⎩,解得3232x z y z ⎧=⎪⎪⎨⎪=⎪⎩. 令2z =,得平面SCD 的一个法向量为(3,3,2)m =.易知平面BCD 一个法向量为(0,0,1)n =.设二面角S CD B --的大小是θ,易知θ是锐角,则||1cos ||||2m n m n θ⋅===.又0180θ︒︒≤≤,所以60θ︒=.所以二面角S CD B --的大小是60︒.点评:本题主要考查了空间中平行垂直的证明与性质等,同时也考查了建立空间直角坐标系求解二面角的问题,属于中等题型. 22.已知函数1()2(2)x f x ea x -=-+,()(1ln )()g x a x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若对任意的[1,)x ∈+∞,()()f x g x ≥恒成立,求实数a 的取值范围. 答案:(1)当2a ≤-时,()f x 在R 上单调递增,当2a >-时,()f x 在2,ln12a +⎛⎫-∞+ ⎪⎝⎭上单调递减,在2ln 1,2a +⎛⎫++∞ ⎪⎝⎭上单调递增;(2)(,2]-∞ 【分析】(1)求导得1()2(2)x f x ea '-=-+,再分(2)0a -+≥与(2)0a -+<两种情况讨论即可.(2)将()()f x g x ≥中()g x 移至左边,再构造新函数1()ln 2(2)x h x a x e a x a -=+-++,根据第(1)问的结论,分2a ≤与2a >两种情况讨论()h x 的最小值即可. 解:(1)1()2(2)x f x ea x -=-+的定义域是R ,则1()2(2)x f x ea '-=-+.当(2)0a -+≥,即2a ≤-时,()0f x '>对任意x ∈R 恒成立,故函数()f x 在R 上单调递增 当(2)0a -+<,即2a >-时,令()0f x '<,得2ln12a x +<+;令()0f x '>,得2ln12a x +>+, 故函数()f x 在2,ln12a +⎛⎫-∞+ ⎪⎝⎭上单调递减,在2ln 1,2a +⎛⎫++∞ ⎪⎝⎭上单调递增. 综上,当2a ≤-时,()f x 在R 上单调递增,当2a >-时,()f x 在2,ln12a +⎛⎫-∞+ ⎪⎝⎭上单调递减,在2ln 1,2a +⎛⎫++∞ ⎪⎝⎭上单调递增. (2)()()f x g x ≥,即12(2)(1ln )x e a x a x --+≥-+,得1ln 2(2)0x a x e a x a -+-++≥.令1()ln 2(2)x h x a x ea x a -=+-++,则112(2)()2(2)x x a xe a x a h x e a x x-'--++=+-+=. 由(1)知,函数122x y ex -=-在区间(1,)+∞上单调递增,所以当1x >时,1022220x e x e -->-=,即在(1,)+∞上,恒有1x e x ->.所以在(1,)+∞上22(2)(2)(1)()x a x a x a x h x x x'-++-->=. ①当2a ≤时,()0h x '≥在区间[1,)+∞上恒成立,即()h x 在[1,)+∞上单调递增,所以()(1)0h x h ≥=(符合题意);②当2a >时,由12(2)()x xe a x a h x x-'-++=,得12()2x a h x e x ''-=-+,且()h x ''在[1,)+∞上单调递增,又(1)20h a ''=-<,1210h ''=->,故()h x ''在上存在唯一的零点0x ,当[)01,x x ∈时,()0h x ''<,即()h x '在()01,x x ∈上单调递减,此时()(1)0h x h ''≤=,知()h x 在()01,x x ∈上单调递减,此时()(1)0h x h <=与已知矛盾(不合题意). 综上,a 的取值范围是(,2]-∞.点评:本题主要考查了利用导数分析函数的单调性与最值问题,同时也考查了利用导数解决恒成立问题与最值问题等,需要求导分情况进行最值的讨论,属于难题.。
河南省九师联盟2020届高三数学11月质量检测试题理(含解析)
河南省九师联盟2020届高三数学11月质量检测试题 理(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列集合中不同于另外三个集合的是( ) A. {}3|1x x =B. {}4|1x x =C. {1}D.1|1x x ⎧⎫=⎨⎬⎩⎭【答案】B 【解析】 【分析】计算每个集合中的元素再判断即可.【详解】{}4|1{1,1}x x ==-,另外三个集合都是{1}, 故选:B .【点睛】本题主要考查集合中元素的求解,属于基础题型. 2.下列说法正确的是( ) A. 若a b >,则44ac bc > B. 若a b <,则2211a b> C. 若a b c >>,则222a b c >> D. 若a b >,c d >,则a c b d +>+【答案】D 【解析】 【分析】根据不等式的性质或者举反例逐个选项判断即可. 【详解】对于A 选项,若0c,则命题错误.故A 选项错误;对于B 选项,取2a =-,1b =-,则满足a b <,但2211a b <,故B 选项错误; 对于C 选项,取1a =,2b =-,3c =-,则满足a b c >>,但222a b c <<,故C 选项错误; 对于D 选项,由不等式的性质可知该选项正确. 故选:D .【点睛】本题主要考查了不等式的性质,属于基础题型.3.已知向量(,3)a x =,(2,7)b =-,若()a b b -⊥,则实数x 的值为( ) A. -16 B. 67-C.67D. 16【答案】A 【解析】 【分析】根据向量坐标的运算与垂直的数量积为0求解即可.【详解】因为(,3)(2,7)(2,4)a b x x -=--=+-,且()a b b -⊥,所以()(2,4)(2,7)a b b x -⋅=+-⋅-=2(2)(4)70x -++-⨯=,解得16x =-. 故选:A .【点睛】本题主要考查了向量的坐标运算与向量垂直则数量积为0,属于基础题型. 4.若函数21()x f x e+=,则曲线()y f x =在点11,22f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为( )A. 220x y ++=B. 220x y -+=C. 220x y +-=D.220x y --=【答案】B 【解析】 【分析】 先求出12f ⎛⎫-⎪⎝⎭,再求导代入12x =-求得在切点出的切线斜率,再根据点斜式求解方程即可. 【详解】依题意,得0112f e ⎛⎫-== ⎪⎝⎭,21()2x f x e '+=,则切线的斜率为122f '⎛⎫-= ⎪⎝⎭,所以切线方程为1122y x ⎡⎤⎛⎫-=-- ⎪⎢⎥⎝⎭⎣⎦,即220x y -+=.故选:B .【点睛】本题主要考查了导数的几何意义,属于基础题型. 5.下列命题中正确的是( )A. 若三个平面两两相交,则它们的交线互相平行B. 若三条直线两两相交,则它们最多确定一个平面C. 若不同的两条直线均垂直于同一个平面,则这两条直线平行D. 不共线的四点可以确定一个平面 【答案】C 【解析】 【分析】根据线面平行与垂直的判定与性质,或举出反例逐个判断即可.【详解】在A 中,从正方体的一个顶点出发的三个平面是两两相交,但他们的交线互相垂直,故A 错误;在B 中,从正方体的一个顶点出发的三条棱可以确定三个平面,故B 错误;在C 中,不同的两条直线均垂直于同一个平面,则由线面垂直的性质定理得这两条直线平行,故C 正确;在D 中,若四点连线构成两条异面直线,这时四点不能确定一个平面,故D 错误. 故选:C .【点睛】本题主要考查了线面垂直与平行的性质与判定,属于基础题型.6.若关于x 的不等式20x ax b +-<(a ,b 为常数)的解集为(2,1)-,则不等式230bx ax +->的解集是( ) A. 3,(1,)2⎛⎫-∞-⋃+∞ ⎪⎝⎭B. 3,12⎛⎫- ⎪⎝⎭C. 3(,1),2⎛⎫-∞-⋃+∞ ⎪⎝⎭D. 31,2⎛⎫- ⎪⎝⎭【答案】A 【解析】 【分析】根据不等式20x ax b +-<(a ,b 为常数)的解集为(2,1)-可知2,1x =-为方程20x ax b +-=的两根即可求得,a b ,再求解230bx ax +->即可.【详解】由20x ax b +-<解集为(2,1)-,可得211(2)12a b -=-+=-⎧⎨-=-⨯=-⎩,解得12a b =⎧⎨=⎩.∴所求不等式230bx ax +->即为2230x x +->,解得32x <-或1x >.即不等式230bx ax +->的解集是3,(1,)2⎛⎫-∞-⋃+∞ ⎪⎝⎭.故选:A .【点睛】本题主要考查了二次不等式的解集的性质,属于基础题型. 7.函数()3sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的相邻两条对称轴之间的距离为2π,则将()f x 的图象向右平移4π个单位长度,所得函数图象的一个对称中心是( ) A. ,04π⎛⎫⎪⎝⎭ B. ,04π⎛⎫-⎪⎝⎭C. ,03π⎛⎫⎪⎝⎭D.,03π⎛-⎫⎪⎝⎭【答案】D 【解析】 【分析】由相邻两条对称轴之间的距离为2π即可得()3sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的周期,再求得平移后的函数表达式,再求解对称中心即可.【详解】由题意.函数()f x 的最小正周期为π,则2ππω=,解得2ω=,所以()3sin 26f x x π⎛⎫=+ ⎪⎝⎭.将()3sin 26f x x π⎛⎫=+⎪⎝⎭的图象向右平移4π个单位长度.所得函数3sin 246y x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦3sin 23x π⎛⎫- ⎪⎝⎭.令2()3x k k ππ-=∈Z ,得()26k x k ππ=+∈Z , 所以所得函数图象的一个对称中心是,03π⎛-⎫⎪⎝⎭. 故选:D .【点睛】本题主要考查了三角函数图像的平移与基本性质,属于中等题型. 8.已知实数a ,b 满足0b >,||1a b +=,则120192019||a a b++的最小值为( )A. 2018B. 2019C. 2020D. 2021【答案】D 【解析】 【分析】 将12019||a a +拆成12019||2019||a a a +,再根据||1ab +=构造12019(||)2019||a b a b ⎛⎫+⋅+ ⎪⎝⎭的结构,利用基本不等式从而求得最小值.【详解】因为0b >,||1a b +=,所以12019120192019||2019||2019||2019||a a a ab a a b a ++=++=+1201912019||(||)20192019||2019||20192019||a b a a b a b a a b ⎛⎫+⋅+=++++ ⎪⎝⎭1120192019≥-++20192021+=, 当且仅当0a <,2019||2019||b a a b =,即12020a =-,20192020b =时等号成立.故选:D .【点睛】本题主要考查了基本不等式的运用与构造,属于中等题型.9.在单调递减的等比数列{}n a 中,已知3a ,5a 为一元二次方程2204081729x x -+=的两个根,则其前n 项和为( )A. 31729n -B. 131243n +-C. 1313n n --D. 1313n n+- 【答案】C 【解析】 【分析】由3a,5a为一元二次方程22040 81729x x-+=与单调递减的等比数列{}n a可求得35,a a进而求得13 q=.再利用求和公式求前n项和即可.【详解】设等比数列{}n a的公比为q,由已知得352081a a+=,35354,729a a a a=>,所以329a=,5281a=,2532918129aqa==⨯=,又数列{}na单调递减,所以13q=,3122929aaq==⨯=, 所以其前n项和为11213311313nnn-⎡⎤⎛⎫-⎢⎥⎪⎝⎭-⎢⎥⎣⎦=-.故选:C.【点睛】本题主要考查了等比数列的性质与求和,属于基础题型.10.函数()ln2(1)2(1)x xf xx x⎡⎤=--⎢⎥-+⎣⎦的图象大致是()A. B. C. D.【答案】B【解析】【分析】先求得()ln2(1)2(1)x xf xx x⎡⎤=--⎢⎥-+⎣⎦求得定义域,排除A,D,再分析当1x>时的单调性即可.详解】22(1)(1)11 ()ln ln ln ln ln 2(1)2(1)2(1)(1)1x x x x x x x xf x xx x x x x x x ⎡⎤+---⎛⎫=--=-=-==-⎪⎢⎥-+-+-⎝⎭⎣⎦, 由10x x->得10x -<<或1x >,即函数()f x 的定义域为(1,0)(1,),故A,D 错误;当1x >时,1y x x =-为增函数,所以1()ln f x x x ⎛⎫=- ⎪⎝⎭为增函数,所以排除C .故选:B .【点睛】本题主要考查了函数图像的判定,属于基础题型.11.在三棱锥A BCD -中,BCD 是边长为3的等边三角形,3BAC π∠=,二面角A BC D --的大小为θ,且1cos 3θ=-,则三棱锥A BCD -体积的最大值为( )A.36B.6 C.3 D.3 【答案】B 【解析】 【分析】画图分析,设AB x =,AC y =,在BCD 中利用BAC ∠对应的余弦定理求得,x y 的关系式,再表达出三棱锥A BCD -体积关于,x y 的关系式利用基本不等式求解即可. 【详解】设AB x =,AC y =,因为3BAC π∠=,所以2223BC x y xy =+-=,所以223x y xy =+-2xy xy xy ≥-=,即3xy ≤,当且仅当3x y ==时等号成立.过A 作AO ⊥平面BCD ,垂足为O ,作AE BC ⊥垂足为E ,连接OE ,则AEO πθ∠=-, 所以sin()sin AO AE AE πθθ=-=122193AE AE =-=,又11sin 223BC AE xy π⋅=,所以12AE xy =,所以22AO xy =≤,所以113633344A BCD BCDV SAO AO -=⋅=⋅⋅⋅≤.【点睛】本题主要考查了基本不等式在立体几何中的运用,需要根据题意建立未知量的关系,再根据关系选用合适的基本不等式求解.属于中等题型.12.已知定义域为R 的函数2log (1),1()1,12,1x x f x x x +>-⎧⎪==-⎨⎪<-⎩,若关于x 的方程2()()0f x bf x c --=有无数个不同的实数解,但只有三个不同的实数解123,,[1,)x x x ∈-+∞,则()123f x x x b c ++++=( )A. 2log 5B. 2log 6C. 3D. 2【答案】A 【解析】 【分析】对每个分段中的函数表达式讨论,即可得11x =-,再根据只有三个不同的实数解123,,[1,)x x x ∈-+∞,可分析得()1,2f x =为2()()0f x bf x c --=的根,进而求得3b =,2c =-.再求()123f x x x b c ++++即可.【详解】当1x >-时.函数()f x 单调递增,则关于x 的方程2()()0f x bf x c --=在(1,)-+∞内至多只有两个解,所以1x =-必为其中一解,即11x =-.故当1x =-时,2()()0f x bf x c --=,此时由函数()1f x =,得10b c --=;①若关于x 的方程2()()0f x bf x c --=有无数个不同的实数解,则当1x <-时, ()2f x =也一定满足2()()0f x bf x c --=,代入得420b c --=.②联立①②,解得3b =,2c =-.当1x >-时,2()log (1)=+f x x ,由2()()0f x bf x c --=即2()3()20f x f x -+=,得22log 2(1)3log (1)20x x +-++=,解得2log (1)1x +=或2log (1)2x +=,解得21x =或33x =.所以()1232(11332)(4)log 5f x x x b c f f ++++=-+++-==.【点睛】本题主要考查了分段函数的运用以及复合函数的问题,需要根据题意分析每个根满足的条件与具体值等.属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.若等差数列{}n a 和等比数列{}n b 满足111a b ==,448a b ==,则33a b +=________. 【答案】293【解析】 【分析】根据等差等比数列的性质先求得公比公差,再求得33a b +即可. 【详解】由4137173733a a d d a -==⇒=⇒=,34182b q q b ==⇒=,34b =,则331729433a b +=+=. 故答案为:293【点睛】本题主要考查了等差等比数列的基本性质与运用,属于基础题型.14.若命题“0x R ∃∈,使得201k x >+成立”是假命题,则实数k 的取值范围是________.【答案】(,1]-∞ 【解析】 【分析】由题意先找到等价命题“x R ∀∈,都有21k x ≤+恒成立”,再求21x +的最小值即可.【详解】“0x R ∃∈,使得201k x >+成立”是假命题等价于“x R ∀∈,都有21k x ≤+恒成立”是真命题.因为211x +≥,即21x +的最小值为1,要使“21k x ≤+恒成立”,只需()2min1k x ≤+,即1k ≤.故答案为:(,1]-∞【点睛】本题主要考查了特称命题的否定与恒成立问题,属于简单题型.15.若x ,y 满足约束条件2201220x y y x y -+≥⎧⎪≥-⎨⎪+-≤⎩,则目标函数3z x y =+的最小值为________.【答案】-7 【解析】 【分析】画出可行域,再判断3z x y =+取最小值时的点即可.【详解】画出约束条件2201220x y y x y -+≥⎧⎪≥-⎨⎪+-≤⎩,表示的平面区域(阴影部分)如图所示:平移直线30x y +=,由图形知,当目标函数3z x y =+过点M 时取得最小值,由2201x y y -+=⎧⎨=-⎩,解得(4,1)M --.代入得min (4)3(1)7z =-+⨯-=-.所以3z x y =+的最小值为―7. 故答案为:-7【点睛】本题主要考查了线性规划的不等式问题,属于基础题型.16.在直三棱柱111ABC A B C -内有一个与其各面都相切的球O 1,同时在三棱柱111ABC A B C -外有一个外接球2Q .若AB BC ⊥,3AB =,4BC =,则球2Q 的表面积为______. 【答案】29π 【解析】 【分析】先求出球O 1的半径,再求出球2Q 的半径,即得球2Q 的表面积. 【详解】由题得AC=5,设球O 1的半径为r ,由题得11345)34,122r r r r ++=⨯⨯∴=(. 所以棱柱的侧棱为22r.所以球2Q 的表面积为2429ππ⋅=. 故答案:29π【点睛】本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知在ABC 中. ,,A B C 所对的边分别为,,a b c ,若2228a b c ,ABC 的面积为(1)求角C 的大小;(2)若c =,求 sin A sin B +的值. 【答案】(1)3π;(2)32【解析】 【分析】(1)由三角形的面积为得到12absinC =,由余弦定理以及2228a b c +-=得到28abcos C =,进而可求出tan C ,得到角C ;(2)由(1)的结果,先求出ab ,根据c =a b +,再由正弦定理可得sin sin sin sin a C b CA B c c+=+,即可求出结果.【详解】(1)由ABC ∆的面积为 12absinC =,由2228a b c +-=及余弦定理可得28abcos C =,故tan 3C π==;(2)∵,2cos 8,83C ab C ab π==∴=又2228,a b c c +-==6a b += 由正弦定理,sin sin sin a b c A B C ==,得()sin sin sin 3sin sin 2a Cb C C A B a bc c c +=+=+= 【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型.18.城市中大量公园的兴建意味着建筑让位,还地于民,城市公共空间被越来越充分地打开.这种打开不只是物理意义上的空间开放,而是使城市公园不仅供民众用来休憩、娱乐、锻炼,还用于相互交往、传播文化、锤炼公民意识,让城市与人建立更好的连接,推动城市回归人本.某城市计划在靠近环城公路Ax ,Ay 的P 处建一所职业技校,且配套修建一条道路BC ,并把三条路围成的三角形区域开辟为休闲公园(如图).经测量P 到Ax ,Ay 的距离PE ,PF 分别为4 km ,3 km ,若,2BAC πθθπ⎛⎫⎛⎫∠=∈ ⎪⎪⎝⎭⎝⎭,3sin 4θ=,km AB x =,km AC y =.(1)试建立x ,y 间的等量关系;(2)为尽量减少土地占用,试问如何确定B 点的位置,才能使得该公园的面积最小?并求最小面积.【答案】(1)3434x y xy +=;(2)当8km AB =时,最小面积为232km 【解析】 【分析】 (1)根据ABCABPAPCSSS=+建立等量关系即可.(2)由(1)有3434x y xy +=,表达出公园的面积38ABCS xy =,再利用基本不等式求解即可. 【详解】(1)因为Р到Ax .Ay 的距离分别为4,3.所以4PE =,3PF =.因为11143(43)222ABC ABP APCSSSx y x y =+=⋅⋅+⋅⋅=+,① 又1324ABC S xy =⨯,②,所以3434x y xy +=.(2)因为43212x y xy +≥所以32124xy xy ≥,解得2563xy ≥.当且仅当43x y =时,取“=”,即8x =,323y =.所以38ABCS xy =有最小值32. 所以当8km AB =时,该公园的面积最小,最小面积为232km .【点睛】本题主要考查了基本不等式的实际运用,需要根据题目条件列出对应的表达式,再根据变量间的关系选用合适的基本不等式即可.属于中等题型.19.已知函数()4(sin cos )cos 2(0)f x x x x ωωωω=-+>图象的一个对称中心为,08π⎛⎫ ⎪⎝⎭,设函数()f x 的最小正周期为T . (1)求T 的最大值;(2)当T 取最大值时,若82f πα⎛⎫+= ⎪⎝⎭,04πα<<,求sin 4πα⎛⎫+ ⎪⎝⎭的值.【答案】(1)π;(2 【解析】 【分析】(1)利用降幂公式与辅助角公式求得()24f x x πω⎛⎫=-⎪⎝⎭,再根据一个对称中心为,08π⎛⎫⎪⎝⎭求得41()k k ω=+∈Z ,再求T 的最大值即可.(2)由(1)有()24π⎛⎫=- ⎪⎝⎭f x x ,利用82f πα⎛⎫+=⎪⎝⎭求得sin 24α=,再求得cos2α,利用降幂公式求解sin ,cos αα与sin 4πα⎛⎫+⎪⎝⎭即可.【详解】(1)由题意得()4(sin cos )cos 2f x x x x ωωω=-+24sin cos 4cos 2x x x ωωω=-+2sin22cos2x x ωω=-24x πω⎛⎫=- ⎪⎝⎭.因为函数()f x 的一个对称中心为,08π⎛⎫⎪⎝⎭,所以2()84k k ππωπ⋅-=∈Z ,得41()k k ω=+∈Z .又0>ω,所以ω最小值为1.所以T 的最大值为22ππ=.(2)由(1)知,()24π⎛⎫=- ⎪⎝⎭f x x ,若82f πα⎛⎫+= ⎪⎝⎭,则22842ππαα⎡⎤⎛⎫+-== ⎪⎢⎥⎝⎭⎣⎦,即sin 2α=.因为04a π<<,所以022πα<<.所以3cos24α==.所以sin 44αα====.所以1sin sin cos cos sin 44442424πππααα+⎛⎫+=+=⨯+= ⎪⎝⎭. 【点睛】本题主要考查了三角恒等变换中的公式,包括降幂公式、辅助角公式等.需要根据题目中角度的关系选用合适的公式,属于中等题型.20.已知数列{}n a 的前n 项和n S 满足126n n a S +=+,且16a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:23123111133333nnT T T T ++++<⋅⋅⋅⋅. 【答案】(Ⅰ) 16323n nn a -=⋅=⋅;(Ⅱ)【解析】试题分析:(Ⅰ)根据1n n n a S S -=-得出{}n a 是等比数列,从而可得{}n a 的通项;(Ⅱ)求出n T ,利用裂项法计算2312311113333n nT T T T ++++⋅⋅⋅⋅得出结论. 试题解析:(Ⅰ)由已知得当2n ≥时,()1122n n n n n a a S S a +--=-=,所以13n n a a +=, 又2112626183n a S a a =+=+==.所以{}n a 是以16a =为首项,3为公比的等比数列,所以16323n nn a -=⋅=⋅.(Ⅱ)由(Ⅰ)得1123n n a =⋅,所以1n a ⎧⎫⎨⎬⎩⎭是等比数列,1111163114313nn nT ⎛⎫- ⎪⎛⎫⎝⎭==-⎪⎝⎭-. 所以()()()()111111431431146331313131313131n n n n n n n n n n n T +++++-⋅⎛⎫==⋅<=- ⎪⋅-------⎝⎭.所以2312311113333n nT T T T ++++⋅⋅⋅⋅ 122311111116313131313131n n +⎛⎫<-+-+⋯⋯+- ⎪------⎝⎭ 11163231n +⎛⎫=-< ⎪-⎝⎭.得证点睛:本题主要考查了等比数列的证明,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于n n n c a b =+,其中{}n a 和{}n b 分别为特殊数列,裂项相消法类似于()11n a n n =+,错位相减法类似于n n n c a b =⋅,其中{}n a 为等差数列,{}n b 为等比数列等.21.如图,在四棱锥S ABCD -中,底面ABCD 是直角梯形,AD BC ∥,AB BC ⊥,SAB 是等边三角形.SAB ⊥底面ABCD ,23AB =,3BC =,1AD =,点M 是棱SB 上靠近点S 的一个三等分点.(1)求证:AM平面SCD ;(2)求二面角S CD B --的大小. 【答案】(1)见解析;(2)60︒ 【解析】 【分析】(1) 取棱SC 上靠近点S 的一个三等分点N ,再证明AM ND ∥即可.(2) 作SO AB ⊥,垂足为点O .再建立空间直角坐标系,分别求平面SCD 的一个法向量与平面BCD 一个法向量,利用法向量夹角的余弦值求二面角S CD B --的大小即可.【详解】(1)证明:取棱SC 上靠近点S 的一个三等分点N ,连接MN ,DN , 因为13SM SN SB SC ==,所以MN BC 且13MN BC =.因为AD BC ∥,所以MN AD .又因为3BC =,1AD =,所以13AD BC MN ==.所以四边形MNDA 是平行四边形.所以AM ND ∥.又因为AM ⊄平面SCD ,ND ⊂平面SCD ,所以//AM 平面SCD .(2)作SO AB ⊥,垂足为点O .如图所示.因为SAB 是等边三角形,所以点O 是线段AB 的中点.因为侧面SAB ⊥底面ABCD , 侧面SAB底面ABCD AB =,SO AB ⊥,SO ⊂二侧面SAB ,所以SO ⊥底面ABCD .所以以点O 为原点,OA 为x 轴,过点O 且平行于EC 的射线为y 轴,OS 为z 轴,建立如上图所示的空间直角坐标系O xyz -.因为23AB =3BC =,1AD =,SAB 是等边三角形, 所以132AO BO AB ===3sin 602332SO AS ︒=⋅==. 所以点(0,0,0)O ,3,0,0)A ,3,1,0)D ,(3,3,0)C ,(0,0,3)S ,所以(3,1,3)SD =-,(3,3,3)SC =--.设平面SCD 的一个法向量为(,,)x y z =m ,则由00m SD m SC ⎧⋅=⎨⋅=⎩,得3303330x y z x y z +-=+-=⎪⎩,解得332x z y z ⎧=⎪⎪⎨⎪=⎪⎩. 令2z =,得平面SCD 的一个法向量为3,3,2)m =.易知平面BCD 一个法向量为(0,0,1)n =. 设二面角S CD B --的大小是θ,易知θ是锐角,则222|||(3,3,2)(0,0,1)|1cos ||||2(3)321m n m n θ⋅⋅===++⨯.又0180θ︒︒≤≤,所以60θ︒=.所以二面角S CD B --的大小是60︒.【点睛】本题主要考查了空间中平行垂直的证明与性质等,同时也考查了建立空间直角坐标系求解二面角的问题,属于中等题型. 22.已知函数1()2(2)x f x ea x -=-+,()(1ln )()g x a x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若对任意的[1,)x ∈+∞,()()f x g x ≥恒成立,求实数a 的取值范围. 【答案】(1)当2a ≤-时,()f x 在R 上单调递增,当2a >-时,()f x 在2,ln12a +⎛⎫-∞+ ⎪⎝⎭上单调递减,在2ln 1,2a +⎛⎫++∞ ⎪⎝⎭上单调递增;(2)(,2]-∞ 【解析】 【分析】(1)求导得1()2(2)x f x ea '-=-+,再分(2)0a -+≥与(2)0a -+<两种情况讨论即可.(2)将()()f x g x ≥中()g x 移至左边,再构造新函数1()ln 2(2)x h x a x e a x a -=+-++,根据第(1)问的结论,分2a ≤与2a >两种情况讨论()h x 的最小值即可. 【详解】(1)1()2(2)x f x ea x -=-+的定义域是R ,则1()2(2)x f x ea '-=-+.当(2)0a -+≥,即2a ≤-时,()0f x '>对任意x ∈R 恒成立,故函数()f x 在R 上单调递增 当(2)0a -+<,即2a >-时,令()0f x '<,得2ln12a x +<+;令()0f x '>,得2ln12a x +>+, 故函数()f x 在2,ln12a +⎛⎫-∞+ ⎪⎝⎭上单调递减,在2ln 1,2a +⎛⎫++∞ ⎪⎝⎭上单调递增. 综上,当2a ≤-时,()f x 在R 上单调递增,当2a >-时,()f x 在2,ln12a +⎛⎫-∞+ ⎪⎝⎭上单调递减,在2ln1,2a +⎛⎫++∞ ⎪⎝⎭上单调递增. (2)()()f x g x ≥,即12(2)(1ln )x e a x a x --+≥-+,得1ln 2(2)0x a x e a x a -+-++≥.令1()ln 2(2)x h x a x ea x a -=+-++,则112(2)()2(2)x x a xe a x a h x e a x x-'--++=+-+=. 由(1)知,函数122x y ex -=-在区间(1,)+∞上单调递增,所以当1x >时,1022220x e x e -->-=,即在(1,)+∞上,恒有1x e x ->.所以在(1,)+∞上22(2)(2)(1)()x a x a x a x h x x x'-++-->=. ①当2a ≤时,()0h x '≥在区间[1,)+∞上恒成立,即()h x 在[1,)+∞上单调递增,所以()(1)0h x h ≥=(符合题意);②当2a >时,由12(2)()x xe a x a h x x-'-++=,得12()2x a h x e x ''-=-+,且()h x ''在[1,)+∞上单调递增,又(1)20h a ''=-<,1210h ''=->,故()h x ''在上存在唯一的零点0x ,当[)01,x x ∈时,()0h x ''<,即()h x '在()01,x x ∈上单调递减,此时()(1)0h x h ''≤=,知()h x 在()01,x x ∈上单调递减,此时()(1)0h x h <=与已知矛盾(不合题意). 综上,a 的取值范围是(,2]-∞.【点睛】本题主要考查了利用导数分析函数的单调性与最值问题,同时也考查了利用导数解决恒成立问题与最值问题等,需要求导分情况进行最值的讨论,属于难题.。
2020届河南省名校联盟高三11月教学质量检测数学(文)试题(解析版)
2020届河南省名校联盟高三11月教学质量检测数学(文)试题一、单选题1.已知集合3{}12A =,,,5{}13B =,,,则A B =( )A .{1}3,B .{123},,C .{135},,D .15}2{3,,, 【答案】A【解析】直接利用交集的运算即可得到结果. 【详解】{1,2,3}{1,3,5}{1,3}A B ==.故选:A . 【点睛】本题主要考查交集的定义及运算,属于基础题. 2.复平面内表示复数1212iz i-+=的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】直接利用复数代数形式的乘除运算化简,再求出z 的坐标得答案. 【详解】因为212i (12i)34i 12i (12i)(12i)55z --===--++-, 所以复数1212i z i -=+所对应的复平面内的点为34,55Z ⎛⎫-- ⎪⎝⎭,位于第三象限. 故选:C . 【点睛】本题主要考查复数的几何意义,复数的运算,属于基础题.3.设向量a b ,满足1a b ==,12a b ⋅=-r r ,则34a b +=( )A .1B CD .7【答案】B【解析】由222349+24+16a b a a b b +=⋅,然后用数量积的定义,将a b ,的模长和a b ⋅代入即可求解.因为222349+24+16a b a a b b +=⋅191624132⎛⎫=++⨯-= ⎪⎝⎭,所以34a b += 故选:B . 【点睛】本题考查向量的模长,向量的数量积的运算,属于基础题.4.设有不同的直线a ,b 和不同的平面α,β,给出下列四个命题: ①若//a α,//b α,则//a b ; ②若//a α,//a β,则//αβ; ③若a α⊥,b α⊥,则//a b ; ④若a α⊥,a β⊥,则//αβ. 其中正确的个数是( ) A .1 B .2C .3D .4【答案】B【解析】利用空间中线线、线面、面面间的位置关系判断求解即可. 【详解】对于①,若a ∥α,b ∥α,则直线a 和直线b 可以相交也可以异面,故①错误; 对于②,若a ∥α,a ∥β,则平面a 和平面β可以相交,故②错误; 对于③,若a ⊥α,b ⊥α,则根据线面垂直性质定理,a ∥b ,故③正确; 对于④,若a ⊥α,a ⊥β,则α∥β成立; 故选:B . 【点睛】本题考查命题真假的判断,考查推理判断能力,是基础题,解题时要认真审题,注意空间思维能力的培养.5.甲、乙2名党员干部各自等可能地从A ,B ,C ,D ,4个贫困村中选择1个驻村扶贫,则他们选择不同的贫困村驻村扶贫的概率为( ) A .34B .12C .14D .116【答案】A【解析】列举出符合题意的所有情况,找出满足选择不同的贫困村驻村扶贫的种数,利用古典概型的概率公式计算即可..甲乙2名党员干部各自等可能地从A ,B ,C ,D ,4个贫困村中选择1个驻村扶贫,可能的结果共有如下16种:(,)A A ,(,)A B ,(A,C),(,)A D ,(,)B A ,(,)B B ,(,)B C ,(,)B D ,(C,A),(,)C B ,(,)C C ,(,)C D ,(,)D A ,(,)D B ,(,)D C ,(,)D D ,其中他们选择相同的贫困村驻村扶贫的结果共有如下4种:(,)A A ,(,)B B ,(,)C C ,(,)D D ,故他们选择不同的贫困村驻村扶贫的概率为431164-=. 故选:A . 【点睛】本题主要考查古典概型,考查了列举法求基本事件的方法,属于基础题.6.已知甲、乙、丙三人中,一位是河南人,一位是湖南人,一位是海南人,丙比海南人年龄大,甲和湖南人不同岁,湖南人比乙年龄小.由此可以推知:甲、乙、丙三人中( ) A .甲不是海南人 B .湖南人比甲年龄小 C .湖南人比河南人年龄大 D .海南人年龄最小 【答案】D【解析】通过分析,排除即可. 【详解】由于甲和湖南人不同岁,湖南人比乙年龄小,可知湖南人不是甲乙,故丙是湖南人; 由于丙比海南人年龄大,湖南人比乙年龄小,可知甲是海南人; 故:乙(河南人)的年龄>丙(湖南人)的年龄>甲(海南人)的年龄; 所以ABC 错,D 对. 故选:D . 【点睛】本题考查简单的逻辑推理,属于基础题. 7.已知tan 24πα⎛⎫+ ⎪⎝⎭=,则sin 21cos 2αα=+( ) A .13 B .12C .2D .3【答案】A【解析】利用二倍角公式化简,再利用两角差的正切公式,将弦化切,代入计算即可求出值.2tan tansin 22sin cos 21144tan tan 1cos22cos 441231tan tan 44ππααααππααππααα⎛⎫+- ⎪-⎡⎤⎛⎫⎝⎭===+-=== ⎪⎢⎥++⎛⎫⎝⎭⎣⎦++ ⎪⎝⎭. 故选:A . 【点睛】此题考查了运用二倍角的正余弦公式化简求值,考查了同角三角函数间的基本关系的应用,属于基础题.8.函数()3sin 3x f x x =+的图像大致是( )A .B .C .D .【答案】D【解析】本题首先可根据()3sin 3x f x x =+得出()3sin 3x f x x 骣琪-=-+琪桫,然后即可判断出函数是奇函数并排除B 项,然后利用导数判断函数的单调性,问题得解。
河南省名校联考2020届高三联考数学(理)试题Word版含解析
河南省名校联考2020届高三联考数学(理)试题考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数满足,则()A. 1B.C.D.【答案】C【解析】【分析】化简为的形式,再求.【详解】依题意,故,故选C.【点睛】本小题主要考查复数的除法运算,考查复数的模的运算,属于基础题. 求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模,共轭复数的概念都与复数的实部与虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即的形式,再根据题意求解.2.若集合,,则()A. B. C. D.【答案】B【解析】【分析】先解一元二次不等式得集合A,再根据集合补集与并集定义求结果.【详解】因为,所以,选B.【点睛】本题考查集合的补集与并集定义,考查基本分析求解能力,属基本题.3.如图给出的是某小区居民一段时间内访问网站的比例图,则下列选项中不超过...的为()A. 腾讯与百度的访问量所占比例之和B. 网易与搜狗的访问量所占比例之和C. 淘宝与论坛的访问量所占比例之和D. 新浪与小说的访问量所占比例之和【答案】B【解析】【分析】根据图表,分析出两个网站访问量不超过...的选项.【详解】由于网易与搜狗的访问量所占比例之和为,不超过,故选B.【点睛】本小题主要考查图表分析,考查分析处理数据的能力,属于基础题.4.为了得到函数的图象,需对函数的图象所作的变换可以为()A. 先将图象上所有点的横坐标压缩为原来的,纵坐标不变,再向右平移个单位B. 先向左平移个单位,再将图象上所有点的横坐标压缩为原来的,纵坐标不变C. 先向左平移个单位,再将图象上所有点的横坐标压缩为原来的,纵坐标不变D. 先向右平移个单位,再将图象上所有点的横坐标伸长为原来的3倍,纵坐标不变【答案】A【解析】【分析】根据三角函数图像变换规律作出判断.【详解】函数的图象上所有点的横坐标压缩为原来的,纵坐标不变,再向右平移个单位得--,函数的图象先向左平移个单位,再将图象上所有点的横坐标压缩为原来的,纵坐标不变得+,函数的图象先向左平移个单位,再将图象上所有点的横坐标压缩为原来的,纵坐标不变得+,函数的图象先向右平移个单位,再将图象上所有点的横坐标伸长为原来的3倍,纵坐标不变得-,所以选A.【点睛】本题考查三角函数图像变换,考查基本分析判别能力,属基本题.5.已知双曲线:的左、右焦点分别为,,满足.若为等腰三角形,则双曲线的离心率为()A. B. C. D.【答案】B【解析】【分析】由条件得在双曲线右支,代入方程解得,进而确定等腰三角形的腰,列方程解离心率.【详解】因为满足,所以在双曲线右支,因此,又为等腰三角形,所以,因为,所以,选B.【点睛】本题考查双曲线定义以及离心率,考查基本分析求解能力,属中档题.6.若,则()A. B. C. D.【答案】D【解析】【分析】由,得,化简,代入求值即可.【详解】由,得,则故选:D【点睛】本题考查了三角函数的恒等变形,考查了三角函数的倍角公式和同角三角函数的基本关系等知识,也考查了计算能力,属于中档题7.已知抛物线:与圆:交于,,,四点.若轴,且线段恰为圆的一条直径,则点的横坐标为()A. B. 3 C. D. 6【答案】A【解析】【分析】求出圆心和半径,根据轴和线段恰为圆的一条直径得到的坐标,代入抛物线方程求得的值,设出点的坐标,利用是圆的直径,所对圆周角为直角,即,由此求得点的横坐标.【详解】圆:可化为,故圆心为,半径为,由于轴和线段恰为圆的一条直径,故.将点坐标代入抛物线方程得,故,抛物线方程为.设,由于是圆的直径,所对圆周角为直角,即,也即,所以,化简得,解得,故点横坐标为.故选A.【点睛】本小题主要考查圆和抛物线的位置关系,考查抛物线的对称性,考查抛物线方程的求法,考查圆的几何性质,考查圆一般方程化为标准方程,考查圆的直径所对的圆周为直角,考查向量的数量积运算,运算量较大,属于中档题.8.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为()A. B.C. D.【答案】C【解析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.9.若,,,则实数,,的大小关系为()A. B. C. D.【答案】D【解析】【分析】先判断出大于,而小于,得到最小为.然后利用对数的运算和性质,比较两个数的大小.【详解】,而,故是最小的.由于,即,即,故选D.【点睛】本小题主要考查指数式和对数式比较大小,考查对数函数的性质,考查比较大小的方法,属于中档题.10.运行如图所示的程序框图,若输出的的值为1011,则判断框中可以填()A. B. C. D.【答案】C【解析】利用程序框图的功能,进行模拟计算即可.【详解】程序的功能是计算S=1sin+3sin+5sin+…=1﹣3+5﹣7+9+…+,则1011=1+505×2=1﹣3+5﹣7+9+…则第1011个奇数为2×1011﹣1=2021不成立,第1012个奇数为2×1012﹣1=2023成立,故条件为i>2022?,故选:C.【点睛】本题主要考查程序框图的应用,利用程序框图的功能是解决本题的关键,属于基础题.11.在正方体中,点平面,点是线段的中点,若,则当的面积取得最小值时,()A. B. C. D.【答案】D【解析】【分析】取的中点,连接,证明点在直线上,当时,三角形的面积取得最小值,进而求得的值.【详解】取的中点,连接,设.作出图像如下图所示.易得,所以平面,所以.易得,所以平面,所以.故平面,所以在直线上,可使得.由于,所以最短时三角形的面积取得最小值,此时点在点的位置.设正方体棱长为,故.,所以,所以,故,故选D.难度较大,属于难题..本题解题关键点在于找到点所在的位置,主要通过证明线面垂直来找到.12.已知,若,且,使得,则满足条件的的取值个数为()A. 5B. 4C. 3D. 2【答案】A【解析】【分析】先求,值域,再研究单调性与值域,进而确定取值范围,即得结果.【详解】因为,所以由题意得在上不单调,因为,所以,当时, ,, 当时, ,,因此,选A.【点睛】本题考查任意存在性问题以及函数值域与单调性,考查综合分析化简求解能力,属难题.二、填空题.13.若向量,,且,则实数____.【答案】【解析】【分析】由向量垂直与向量数量积的关系可得,若,得,解x的值即可.【详解】由,得且,得,解得.故答案为:【点睛】本题考查了向量数量积的坐标计算,关键是掌握向量垂直与向量数量积的关系,属于基础题.14.若,满足约束条件,则的最大值为______.【答案】【解析】【分析】先作出可行域,再根据斜率含义确定最优解.【详解】作出可行域,如图,则的最大值为.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.15.的展开式中,含的项的系数为_____.(用数字填写答案)【答案】35【解析】【分析】先根据二项展开式通项公式确定含的项的项数,再代入求结果.【详解】,即含的项的系数为【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.16.如图所示,点,分别在菱形的边,上,,,则的面积的最小值为______.【答案】【解析】【分析】设,,在中,且由正弦定理得,在中,由正弦定理得,在中,计算即可.【详解】在菱形中,,所以=,在中,=,设,,则,且由正弦定理得,在中, ,则,由正弦定理,得,在中,因为,所以,即,所以,所以故答案为:【点睛】本题考查了正弦定理在三角形的应用,也考查了直角三角形的面积公式,三角函数求最值得问题,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知等差数列的前项和为,且,.(Ⅰ)证明:是等差数列;(Ⅱ)设,求数列的前项和.【答案】(Ⅰ)详见解析;(Ⅱ).【解析】【分析】(Ⅰ)设等差数列的公差为,,由,得,,求出,利用定义法即可判断;(II)由得,由数列的乘公比错位相减法求和即可.【详解】设等差数列的公差为,,则,解得.所以,解得,所以.所以.所以.因为当时,,当时,,故是首项为,公差为的等差数列.(II)由可知,故.故.两式相减可得.故.【点睛】本题考查了利用定义法证明数列是等差数列,也考查了利用乘公比错位相减法求数列和,考查了学生的计算能力,属于中档题.18.如图,在四棱锥中,与交于点,,,.(Ⅰ)在线段上找一点,使得平面,并证明你的结论;(Ⅱ)若,,,求二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】【分析】(I)取线段上靠近的三等分点,连接,因为,,所以,由,得,所以,即可证明结论成立.(II)以为坐标原点,以直线分别为轴,过点且与平面垂直的直线为轴建立空间直角坐标系,求出平面的一个法向量为,平面的个法向量为,由向量法即可求出二面角的平面角.【详解】(I)取线段上靠近的三等分点,连接.因为,,所以,所以.而,所以,所以.而平面.平面,故平面.(II)易知为等边三角形,所以.又,故,所以有.由已知可得,又,所以平面.以为坐标原点,以直线分别为轴,过点且与平面垂直的直线为轴建立如图所示的空间直角坐标系.设,则,所以,,,,则,,,.设平面的一个法向量为,则有即设,则,所以.设平面的个法向量为,则有即令,则,所以.所以.因为二面角为锐角,故所求二面角的余弦值为.【点睛】本题考查空间线面平行的判定定理和利用向量法求二面角,也考查了计算能力,属于中档题. 19.2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考——如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.(Ⅰ)求得分在上的频率;(Ⅱ)求社区居民问卷调查的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)(Ⅲ)以频率估计概率,若在全部参与学习的居民中随机抽取5人参加问卷调查,记得分在间的人数为,求的分布列以及数学期望.【答案】(Ⅰ)0.3 ;(Ⅱ)70.5;(Ⅲ)详见解析.【解析】【分析】(I)由频率分布直方图可得所求的频率;(II)由频率分布直方图的平均值公式计算即可;(III)人数服从,即可得出P(X=k)=,k=0,1,2,3,4,5,及其分布列与数学期望E(X).【详解】(I)依题意,所求频率.(II)由(1)可知各组的中间值及对应的频率如下表:即问卷调查的平均得分的估计值为.(III)依题意,.故,.,,.故的分布列为:故.【点睛】本题考查了二项分布列的概率计算公式及其数学期望、频率分布直方图的应用,考查了推理能力与计算能力,属于中档题.20.已知椭圆:,点,.(Ⅰ)若直线与椭圆交于,两点,且为线段的中点,求直线的斜率;(Ⅱ)若直线:与椭圆交于,两点,求的面积的最大值.【答案】(Ⅰ)-1;(Ⅱ)【解析】【分析】(I)因为在椭圆上,设,且为线段的中点,得,,由点差法即可计算直线的斜率;(II)联立,得,由可得,,由弦长公式可得点到直线的距离由计算即可.【详解】(I)设,故,将两式相减,可得,即因为为线段的中点,所以得即故直线的斜率(II)联立可得,由可得,解得.设由根与系数的关系可得又点到直线的距离当且仅当,即时取等号.故的面积的最大值为.【点睛】本题考查了直线与椭圆的位置关系,弦长公式和点到直线的距离,也考查了点差法在弦中点的应用,计算能力和均值不等式,属于中档题.21.已知函数.(Ⅰ)若函数在上单调递增,求实数的取值范围;(Ⅱ)设,求证:.【答案】(1)(2)见证明【解析】【分析】(1)由于函数在上单调递增,故另导函数恒大于零,分离常数得到,利用导数求得的最小值,由此求得的取值范围.(2)令,则.将原不等式等价转化为,构造函数,利用导数证得,由此证得不等式成立.【详解】(1)由题可知.令,即,当时有.令,则.所以当时,,所以在上单调递增.所以,即,故实数的取值范围为.(2)令,则.故.构造函数,则.所以在上单调递增,所以,所以当时,,故.【点睛】本小题主要考查利用导数研究函数单调性,考查利用导数证明不等式,考查化归与转化的数学思想方法,综合性较强,属于难题.在解题过程中,导数是一种工具的作用,用来求单调区间和最值.22.在极坐标系中,曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数).(Ⅰ)若,求曲线的直角坐标方程以及直线的极坐标方程;(Ⅱ)设点,曲线与直线交于,两点,求的最小值.【答案】(Ⅰ)曲线的直角坐标方程为,直线的极坐标方程为;(Ⅱ)【解析】【分析】(I)由普通方程与参数方程,极坐标方程的互化,即可得到结果;(II)联立直线与曲线的方程得,设点对应得参数分别为,得,则,即可求的最小值.【详解】(I)曲线,将代入得,即曲线的直角坐标方程为直线,故故直线的极坐标方程为(II)联立直线与曲线的方程得即设点对应得参数分别为,则因为当时,取等号.所以的最小值为【点睛】本题考查普通方程与参数方程,极坐标方程的互化,直线参数方程的应用,属于基础题.23.[选修4-5:不等式选讲]已知函数.(Ⅰ)在如图所示的网格纸中作出函数的图象;(Ⅱ)记函数的最小值为,证明:不等式成立的充要条件是.【答案】(1)见解析;(2)见证明【解析】【分析】(1)利用零点分段法去绝对值,将表示为分段函数的形式,由此画出函数的图像.(2)根据(1)求得的值.将原不等式转化,然后判断出不等式成立的充要条件是.【详解】(1)依题意,,作出函数的图象如图所示:(2)由(Ⅰ)中图象可知..因为当时,,当时,,故不等式成立的充要条件是.【点睛】本小题主要考查利用零点分段法化简含有两个绝对值的函数,考查充要条件的证明,属于中档题.。
河南省部分重点中学2020届高考质量监测理科数学试卷及答案解析
河南省部分重点中学2020届高考质量监测理科数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合{|ln(1)}M x y x ==+.{}|xN y y e ==,则MN =( )A.(1,0)-B.(1,)-+∞C.(0,)+∞D.R2.已知复数552iz i i-=-,则z =( )B. C. D.3.已知2a =,0.2log 0.3b =,11tan 3c π=,则a ,b ,c 的大小关系是( ) A.c b a << B.b a c << C.c a b <<D.b c a <<4.已知ABC ,则“sin cos A B =”是“ABC 是直角三角形”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件5.若过抛物线214y x =焦点的直线与抛物线交于A B 、两点(不重合),则OA OB ⋅ (O 为坐标原点)的值是( ) A.34 B. 34- C. 3 D. 3- 6.《聊斋志异》中有:“挑水砍柴不堪苦,请归但求穿墙术”.在数学中,我们称形如以下形式的等式具有“穿墙术”:===则按照以上规律,若=“穿墙术”,则m ,n 满足的关系式为( ) A.n =2m -1B.n =2(m -1)C.n =(m -1)2D.n =m 2 -17.已知函数()22cos f x x x =+,若()f x '是()f x 的导函数,则函数()f x '的图象大致是( )A. B.C. D.8.执行下面的程序框图,若输出的结果是16,则空白框中应填( )A.1=+n n ,S S n =+B.2=+n n ,S S n =+C.S S n =+,1=+n nD.S S n =+,2=+n n9.已知函数()()()sin cos f x x x ωϕωϕ=+-+(0>ω,2πϕ<)的图象向右平移3π个单位长度得到函数()g x 的图象,若函数()g x 的最小正周期为π,3x π=为函数()g x 的一条对称轴,则函数()g x 的一个单调递增区间为( ) A.06,π⎡⎤⎢⎥⎣⎦B.,2ππ⎡⎤⎢⎥⎣⎦C.5,36ππ⎡⎤⎢⎥⎣⎦D.,63ππ⎡⎤⎢⎥⎣⎦10.分子间作用力只存在于分子与分子之间或惰性气体原子间的作用力,在一定条件下两个原子接近,则彼此因静电作用产生极化,从而导致有相互作用力,称范德瓦尔斯相互作用.今有两个惰性气体原子,原子核正电荷的电荷量为q ,这两个相距R 的惰性气体原子组成体系的能量中有静电相互作用能U .其计算式子为212121111U kcq R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭,其中,kc 为静电常量,1x 、2x 分别表示两个原子的负电中心相对各自原子核的位移.已知12121x x R x x R R -⎛⎫+-=+⎪⎝⎭,111x R x R R ⎛⎫+=+ ⎪⎝⎭,221x R x R R ⎛⎫-=- ⎪⎝⎭,且()1211x x x -+≈-+,则U的近似值为( )A.2123kcq x x RB.2123kcq x x R -C.21232kcq x x RD.21232kcq x x R -11.过双曲线()222210x y a b a b-=>>的右焦点2F 的直线在第一、第四象限交两渐近线分别于P 、Q 两点,且90OPQ ∠=,O 为坐标原点,若OPQ △内切圆的半径为3a,则该双曲线的离心率为( )12.设函数()2ln x e f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,则实数t 的取值范围是( ) A.1,2⎛⎤-∞ ⎥⎝⎦B.1,2⎛⎫+∞⎪⎝⎭ C.1,,233e e ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭D.1,,23e ⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭第II 卷(非选择题)二、填空题(题型注释)13.己知()1,2a =,()2,b x =,且这两个向量的夹角的余弦值为45,则x = ________. 14.若[]1,6a ∈,则函数2x ay x+=在区间[)2,+∞内单调递增的概率是______.15.()6312x x⎛++ ⎝的展开式中3x 项的系数是____________.(用数字作答)16.已知四棱锥P ABCD -中,底面ABCD 是梯形,且AD BC ∥,AD DC ⊥,224===AD DC CB,AP PD ⊥,PA PD =,=PC AD 的中点为E ,则四棱锥-P BCDE 外接球的表面积为________.三、解答题(题型注释),它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du );阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao )指四个面均为直角三角形的四面体.如图在堑堵111ABC A B C -中,AB AC ⊥.(1)求证:四棱锥11B A ACC -为阳马;(2)若12C C BC ==,当鳖膈1C ABC -体积最大时,求锐二面角11C A B C --的余弦值.18.设椭圆C :()222210x y a b a b+=>>的离心率为12e =,椭圆C 上一点P 到左右两个焦点1F 、2F 的距离之和是4. (1)求椭圆的方程;(2)已知过2F 的直线与椭圆C 交于A 、B 两点,且两点与左右顶点不重合,若111F M F A F B =+,求四边形1AMBF 面积的最大值.19.在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占813,统计成绩后得到如下22⨯列联表:(1)请完成上面22⨯列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是X ,求X 的分布列(概率用组合数算式表示);②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差. (下面的临界值表供参考)(参考公式22()()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++)20.已知函数()2ln 1af x x x=+-,a ∈R . (1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 在()1,+∞上的极值;(3)设函数()()2ln g x x a x =-,若2a ≥-,且对任意的实数[]1,x e ∈,不等式()24g x e ≤恒成立(e 是自然对数的底数),求实数a 的取值范围.21.在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =t,y =m −t(t 为参数,m ∈R )以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2=31+2sin 2θ(ρ>0,θ∈[0,π]).(1)求曲线C 1、C 2的直角坐标方程.(2)若P 、Q 分别为C 1、C 2上的动点,且P 、Q 间距离的最小值为2√2,求实数m 的值. 22.已知实数正数x , y 满足1x y +=. (1)解关于x 的不等式522x y x y ++-≤; (2)证明:2211119x y ⎛⎫⎛⎫--≥ ⎪ ⎪⎝⎭⎝⎭.参考答案1.C【解析】1.根据函数ln(1)y x =+的定义域和函数xy e =的值域,化简集合,M N ,按照交集定义,即可求解.{|ln(1)}(1,)M x y x ==+=-+∞,{}|(0,)x N y y e ===+∞, (0,)MN ∴=+∞.故选:C. 2.B【解析】2.先求z ,并根据复数除法法则以及模的定义求结果.552i z i i -=∴-()525551725i i iz i i i i +=+=+=-+-,故z ==故选:B 3.A【解析】3.由对数函数的单调性和正切函数的性质可得01c b a <<<<,即可得解.由对数函数的单调性可知21a =>=,0.20.20log 0.3log 0.21b <=<=,由正切函数的性质得112tan tan 033c ππ===<, 故01c b a <<<<. 故选:A. 4.D【解析】4.若sin cos A B =,则2A B π+=或2A B π=+;若2A π=,则sin cos A B ≠;由充分条件和必要条件的概念即可得解.若sin cos A B =,则2A B π+=或2A B π=+,不能推出ABC 是直角三角形;若2A π=,则sin cos A B ≠,所以ABC 是直角三角形不能推出sin cos A B =;所以“sin cos A B =”是“ABC 是直角三角形”的既不充分也不必要条件. 故选:D . 5.D【解析】5.抛物线为24x y =,焦点为()0,1F ,设:1AB y kx =+, ()11,A x y ,()22,B x y ,由21{4y kx x y =+=有2440x kx --=,所以124x x =-, ()212121116y y x x ==,故1212·3OAOB x x y y =+=-,选D.6.D【解析】6.根据不完全归纳法,以及根式中的分子和分母的关系,可得结果.由题可知:==,====则可归纳:== 所以21n m =- 故选:D 7.A【解析】7.先求导数,再利用二次求导研究导函数零点以及对应区间导函数符号,即可判断选择.()()()22cos 22sin 22cos 0f x x x f x x x f x x '''=+∴=-∴=-≥因此当0x =时,()0f x '=;当0x >时,()()00f x f ''>=;当0x <时,()()00f x f ''<=;故选:A 8.D【解析】8.根据四个选项依次代入检验进行求解判断即可.A :若空白处是1=+n n ,S S n =+时,14i =≤成立,2,022,24n S i ==+==≤成立,所以3,235,34n S i ==+==≤成立,所以4,459,44n S i ==+==≤成立,所以5,5914,54n S i ==+==≤不成立,故14S =,不符合题意;B :若空白处是2=+n n ,S S n =+时,14i =≤成立,3,033,24n S i ==+==≤成立,所以5,538,34n S i ==+==≤成立,所以7,8715,44n S i ==+==≤成立,所以9,15924,54n S i ==+==≤不成立,故24S =,不符合题意;C :若空白处是S S n =+,1=+n n 时,14i =≤成立,1,2,24S n i ===≤成立,所以3,3,34S n i ===≤成立,所以6,4,44S n i ===≤成立,所以10,5,54S n i ===≤不成立,故10S =,不符合题意;D :若空白处是S S n =+,2=+n n 时,14i =≤成立,1,3,24S n i ===≤成立,所以4,5,34S n i ===≤成立,所以9,7,44S n i ===≤成立,所以16,9,54S n i ===≤不成立,故16S =,符合题意. 故选:D 9.C【解析】9.先利用辅助角公式化简函数为()4f x x πωϕ⎛⎫=+- ⎪⎝⎭,再由平移变换得到()34g x x ωππωϕ⎛⎫=-+- ⎪⎝⎭,然后根据()g x 的最小正周期为π,3x π=为()g x的一条对称轴,求得()726g x x π⎛⎫=-⎪⎝⎭,再利用正弦函数的性质求解.由题意知,()4f x x πωϕ⎛⎫=+- ⎪⎝⎭,所以()334g x f x x πωππωϕ⎛⎫⎛⎫=-=-+- ⎪ ⎪⎝⎭⎝⎭, 因为()g x 的最小正周期为π,所以2ππω=,解得2ω=, 所以()2234g x x ππϕ⎛⎫=-+- ⎪⎝⎭,因为3x π=为()g x 的一条对称轴,则42k ππϕπ-=+(k ∈Z ),即34k πϕπ=+(k ∈Z ), 因为2πϕ<,可得4πϕ=-,所以函数()726g x x π⎛⎫=-⎪⎝⎭, 令7222262k x k πππππ-+≤-≤+(k ∈Z ), 解得536k x k ππππ+≤≤+,(k ∈Z ), 当0k =时,536x ππ≤≤. 故选:C 10.D【解析】10.将12121x x R x x R R -⎛⎫+-=+ ⎪⎝⎭,111x R x R R ⎛⎫+=+ ⎪⎝⎭,221x R x R R ⎛⎫-=- ⎪⎝⎭代入U ,结合()1211x x x -+≈-+化简计算可得出U 的近似值.221212121211111111111U kcq kcq x x x x R R x x R x R x R R R R R R R ⎡⎤⎢⎥⎛⎫⎢⎥=+--=+-- ⎪-+-+-⎛⎫⎛⎫⎛⎫⎢⎥⎝⎭++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2222121211221111x x x x x x x x kcq RR R R R R R ⎡⎤--⎛⎫⎛⎫⎛⎫=+-+-+----⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦21232kcq x x R =-. 故选:D. 11.B【解析】11.作出图形,设OPQ △的内切圆圆心为M ,则M 在x 轴上,过点M 分别作MN OP ⊥于N ,MT PQ ⊥于T ,可知四边形MTPN 为正方形,可求得MN 、ON ,进而求得b a,然后利用公式e =可求得该双曲线的离心率e 的值. 如图,设OPQ △的内切圆圆心为M ,则M 在x 轴上,过点M 分别作MN OP ⊥于N ,MT PQ ⊥于T , 由2F P OP ⊥得四边形MTPN 为正方形,双曲线的右焦点()2,0F c 到渐近线0bx ay -=的距离为2F P b ==,又2OF c =,所以OP a ===,由13NP MN a ==,得23a ON OP NP =-=, 所以,1tan 2MN bMON a ON =∠==,故c e a =====. 故选:B. 12.C【解析】12.()f x 恰有两个极值点,则0fx 恰有两个不同的解,求出f x 可确定1x =是它的一个解,另一个解由方程e 02x t x -=+确定,令()()e 02xg x x x =>+通过导数判断函数值域求出方程有一个不是1的解时t 应满足的条件. 由题意知函数()f x 的定义域为0,,()()221e 121x x f x t x xx -⎛⎫'=-+-⎪⎝⎭()()21e 2xx t x x ⎡⎤--+⎣⎦=()()2e 122x x x t x x ⎛⎫-+- ⎪+⎝⎭=.因为()f x 恰有两个极值点,所以0fx恰有两个不同的解,显然1x =是它的一个解,另一个解由方程e 02xt x -=+确定,且这个解不等于1.令()()e 02xg x x x =>+,则()()()21e 02xx g x x +'=>+,所以函数()g x 在0,上单调递增,从而()()102g x g >=,且()13e g =.所以,当12t >且e3t ≠时,()e 2ln x f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,即实数t 的取值范围是1,,233e e ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭.故选:C 13.1【解析】13.直接根据向量夹角公式计算得到答案. 两个向量的夹角的余弦值为45,故45a b a b⋅=⋅,即22x +=, 解得1x =或11x =-,验证11x =-不成立. 故答案为:1. 14.35【解析】14.利用函数2x a y x+=在区间[)2,+∞内单调递增,得出不等式0y '≥对任意的[)2,x ∈+∞恒成立,可求得实数a 的取值范围,再由几何概型的概率公式可求得所求事件的概率.函数2x a yx +=在区间[)2,+∞单调递增,22210a x ay x x -'∴=-=≥在[)2,+∞恒成立,2a x ∴≤在[)2,+∞恒成立,4a ∴≤,又因为[]1,6a ∈,[]1,4a ∴∈,所以函数2x ay x+=在区间[)2,+∞内单调递增的概率是413615-=-. 故答案为:35. 15.300【解析】15.求出62x⎛+ ⎝展开式中的常数项和含3x 的项,分别与3x 和1相乘,即可求解.62x⎛ ⎝展开式的通项为36662166(2)2k k k k k k k T C x C x---+==⋅, 0,1,6k =,令360,42k k -==,363,22k k -==,62x⎛ ⎝展开式中,常数项为4256260T C =⋅=,含3x 项为2433362240T C x x =⋅=,()6312x x⎛++ ⎝的展开式中3x 项系数为60240300+=.故答案为:300. 16.283π【解析】16.由已知得,ABCD 是直角梯形,90ADC ∠=,2DC CB ==,那么DEBC 是正方形,由AD ⊥平面PBE ,可知BC ⊥平面PBE ,可解得PB ,可知PBE △是等边三角形,-P BCDE 外接球的球心O 到,,,B C D E 四点距离相等,设O 在平面BCDE 的投影为H ,根据勾股定理可知点H 是对角线的交点,在ROB 中可得222222R OB HB h h ==+=+,过P 作PF EB ⊥于F ,再根据())222221R OP PF h HF h==-+=+,可求出2R ,由外接球面积公式即得。
2020届河南省名校联盟高三11月教学质量检测数学(文)试题(解析版)
2020届河南省名校联盟高三11月教学质量检测数学(文)试题一、单选题1.已知集合3{}12A =,,,5{}13B =,,,则A B =( )A .{1}3,B .{123},,C .{135},,D .15}2{3,,, 【答案】A【解析】直接利用交集的运算即可得到结果. 【详解】{1,2,3}{1,3,5}{1,3}A B ==.故选:A . 【点睛】本题主要考查交集的定义及运算,属于基础题. 2.复平面内表示复数1212iz i-+=的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】直接利用复数代数形式的乘除运算化简,再求出z 的坐标得答案. 【详解】因为212i (12i)34i 12i (12i)(12i)55z --===--++-, 所以复数1212i z i -=+所对应的复平面内的点为34,55Z ⎛⎫-- ⎪⎝⎭,位于第三象限.故选:C . 【点睛】本题主要考查复数的几何意义,复数的运算,属于基础题.3.设向量a b ,满足1a b ==,12a b ⋅=-r r ,则34a b +=( )A .1B CD .7【答案】B【解析】由222349+24+16a b a a b b +=⋅,然后用数量积的定义,将a b ,的模长和a b⋅代入即可求解. 【详解】因为222349+24+16a b a a b b +=⋅191624132⎛⎫=++⨯-= ⎪⎝⎭,所以34a b += 故选:B . 【点睛】本题考查向量的模长,向量的数量积的运算,属于基础题.4.设有不同的直线a ,b 和不同的平面α,β,给出下列四个命题: ①若//a α,//b α,则//a b ; ②若//a α,//a β,则//αβ; ③若a α⊥,b α⊥,则//a b ; ④若a α⊥,a β⊥,则//αβ. 其中正确的个数是( ) A .1 B .2C .3D .4【答案】B【解析】利用空间中线线、线面、面面间的位置关系判断求解即可. 【详解】对于①,若a ∥α,b ∥α,则直线a 和直线b 可以相交也可以异面,故①错误; 对于②,若a ∥α,a ∥β,则平面a 和平面β可以相交,故②错误; 对于③,若a ⊥α,b ⊥α,则根据线面垂直性质定理,a ∥b ,故③正确; 对于④,若a ⊥α,a ⊥β,则α∥β成立; 故选:B . 【点睛】本题考查命题真假的判断,考查推理判断能力,是基础题,解题时要认真审题,注意空间思维能力的培养.5.甲、乙2名党员干部各自等可能地从A ,B ,C ,D ,4个贫困村中选择1个驻村扶贫,则他们选择不同的贫困村驻村扶贫的概率为( ) A .34B .12C .14D .116【答案】A【解析】列举出符合题意的所有情况,找出满足选择不同的贫困村驻村扶贫的种数,利用古典概型的概率公式计算即可.. 【详解】甲乙2名党员干部各自等可能地从A ,B ,C ,D ,4个贫困村中选择1个驻村扶贫,可能的结果共有如下16种:(,)A A ,(,)A B ,(A,C),(,)A D ,(,)B A ,(,)B B ,(,)B C ,(,)B D ,(C,A),(,)C B ,(,)C C ,(,)C D ,(,)D A ,(,)D B ,(,)D C ,(,)D D ,其中他们选择相同的贫困村驻村扶贫的结果共有如下4种:(,)A A ,(,)B B ,(,)C C ,(,)D D ,故他们选择不同的贫困村驻村扶贫的概率为431164-=. 故选:A . 【点睛】本题主要考查古典概型,考查了列举法求基本事件的方法,属于基础题.6.已知甲、乙、丙三人中,一位是河南人,一位是湖南人,一位是海南人,丙比海南人年龄大,甲和湖南人不同岁,湖南人比乙年龄小.由此可以推知:甲、乙、丙三人中( ) A .甲不是海南人 B .湖南人比甲年龄小 C .湖南人比河南人年龄大 D .海南人年龄最小 【答案】D【解析】通过分析,排除即可. 【详解】由于甲和湖南人不同岁,湖南人比乙年龄小,可知湖南人不是甲乙,故丙是湖南人; 由于丙比海南人年龄大,湖南人比乙年龄小,可知甲是海南人; 故:乙(河南人)的年龄>丙(湖南人)的年龄>甲(海南人)的年龄; 所以ABC 错,D 对. 故选:D . 【点睛】本题考查简单的逻辑推理,属于基础题. 7.已知tan 24πα⎛⎫+ ⎪⎝⎭=,则sin 21cos 2αα=+( ) A .13 B .12C .2D .3【答案】A【解析】利用二倍角公式化简,再利用两角差的正切公式,将弦化切,代入计算即可求出值. 【详解】2tan tansin 22sin cos 21144tan tan 1cos22cos 441231tan tan 44ππααααππααππααα⎛⎫+- ⎪-⎡⎤⎛⎫⎝⎭===+-=== ⎪⎢⎥++⎛⎫⎝⎭⎣⎦++ ⎪⎝⎭. 故选:A . 【点睛】此题考查了运用二倍角的正余弦公式化简求值,考查了同角三角函数间的基本关系的应用,属于基础题.8.函数()3sin 3x f x x =+的图像大致是( )A .B .C .D .【答案】D【解析】本题首先可根据()3sin 3x f x x =+得出()3sin 3x f x x 骣琪-=-+琪桫,然后即可判断出函数是奇函数并排除B 项,然后利用导数判断函数的单调性,问题得解。
2020届河南省八市重点高中联盟领军考试高三11月数学(理)试题(解析版)
2020届河南省八市重点高中联盟领军考试高三11月数学(理)试题一、单选题1.已知集合(){}|ln 2A x y x ==+,{}2|60B x x x =--≥,则A B =I ( )A .()2,-+∞B .[)2,-+∞C .()3,+∞D .[)3,+∞ 【答案】D【解析】分别计算出集合A B 、,再由交集的运算计算出A B I ,可得答案. 【详解】解:由已知可得:{|20}{|2}A x x x x =+>=>-,{}|(3)(2)0B x x x =-+≥{|2x x =≤-或}3x ≥,所以[)3,A B ∞=+I .故选:D. 【点睛】本题主要考查交集的运算,求出集合A B 、是解题的关键.2.下列函数中,既是偶函数,又在区间()0,∞+上单调递减的是( ) A .1y x=-B .22y x =C .sin 2y x =D .lg y x =-【答案】D【解析】根据偶函数及函数单调性的定义对各个选项一一进行判断,可得答案. 【详解】解:对于A ,函数1y x=-是奇函数,在区间()0,∞+上单调递增,不符合题意; 对于B ,函数22y x =是偶函数,在区间()0,∞+上单调递增,不符合题意;对于C ,函数sin 2y x =是奇函数,在区间()0,∞+上不是单调函数,不符合题意; 对于D ,函数lg y x =-是偶函数,又在区间()0,∞+上单调递减,符合题意. 故选:D. 【点睛】本题主要考查具体函数的单调性与奇偶性的判断,属于基础题型. 3.已知函数()f x 的导函数为()f x ',且满足()()22x x f f x'=-,则()2f '=( )A .165B .165-C .516D .516-【答案】B【解析】求导,可得()()222f x xf x ''=--,代入2x =,可得()2f '的值. 【详解】 由()()22x x f f x '=-求导得()()222f x xf x ''=--.令2x =,得()()2424f f ''=--,解得()1526f '=-.故选:B. 【点睛】本题主要考查导数的定义及运算,属于基础题型.4.若0.3log 4a =,0.40.3b =,0.34c =,则,,a b c 的大小关系为( ) A .a b c << B .c b a <<C .c a b <<D .b c a <<【答案】A【解析】由指数函数、对数函数的性质判断,,a b c 所在的范围,可得其大小关系. 【详解】解:可得0303log 4log 10a =<=,0.4000.30.31b <=<=, 0.30441c =>=,所以a b c <<,故选:A. 【点睛】本题主要考查函数值大小的比较,熟悉指数函数、对数函数的性质判断出,,a b c 所在的范围是解题的关键.5.函数()3x xx e f e x -=-的图象大致为( )A .B .C .D .【答案】B【解析】由()3x xx e f ex -=-,可得()()f x f x -=,可得函数()f x 是偶函数,排除选项A ,C ,又当0x >时,()0f x >,排除选项D ,可得答案. 【详解】解:由已知可得函数的定义域为{|0}x x ≠,()()33x xx x x x f x e e e ef x ---===---,所以函数()f x 是偶函数,图象关于y 轴对称,可排除选项A ,C ; 又当0x >时,30x >,210x x xxe e ee---=>,所以()0f x >,可排除选项D , 故选:B. 【点睛】本题考查函数图像的识别和判断、函数奇偶性等知识,注意数形结合思想的运用.6.已知变量,x y 满足约束条件240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则32z x y =-的最小值为( )A .4-B .0C .3D .4【答案】A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可. 【详解】解:作出约束条件240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩表示的可行域,如图所示.由32z x y =-可得322z y x =-,平移直线32y x =,可知当直线过点()0,2A 时,z 取得最小值,为0224-⨯=-. 故选:A. 【点睛】本题主要考查简单的线性规划问题,作出不等式组对应的平面区域,利用目标函数的几何意义进行求解释解题的关键.7.如图,在长方体1111ABCD A B C D -中,12AB AA ==,5AD =,,E F 分别为111,DD C D 的中点,则异面直线AE 与BF 所成角的余弦值为( )A .15B 15C 715D 715【答案】C【解析】取1CC 的中点G ,连接,BG FG .易得//AE FG ,所以FBG ∠是异面直线AE 与BF 所成的角(或其补角),在FBG △中,分别求出BG 、 FG 、BF 的值,由余弦定理可得cos FBG ∠的值. 【详解】解:如图,取1CC 的中点G ,连接,BG FG .易得//AE FG ,所以FBG ∠是异面直线AE 与BF 所成的角(或其补角).在FBG △中,()2222516BG BC CG =+=+=2211FG C F C G =+22112=+=,2211BF C F C B =+=()22215210++=由余弦定理,可得222cos 2BG BF FG FBG BG BF +-∠=⋅⋅715302610==⨯⨯. 故选:C. 【点睛】本题主要考查异面直线所成的角,求出FBG ∠是异面直线AE 与BF 所成的角(或其补角)并进行计算是解题的关键.8.已知等差数列{}n a 为递增数列,且满足146,,a a a 成等比数列,则数列{}n a 的前n 项和n S 最小时,n 的值为( ) A .9 B .10C .11D .9或10【答案】D【解析】由题意等差数列{}n a 为递增数列,且满足146,,a a a 成等比数列,可得190a d +=即100a =,可得当当9n =或10时,n S 最小,可得答案.【详解】解:设等差数列{}n a 的公差为d ,因为等差数列{}n a 为递增数列,所以0d >.又因为146,,a a a 成等比数列,所以2416a a a =,即()()211135a d a a d +=+,化简得190a d +=,即100a =,结合等差数列{}n a 为递增数列,可得129,,,a a a L 都小于10a ,即都小于0,所以当9n =或10时,n S 最小. 故选:D. 【点睛】本题主要考查等差数列的性质与基本量的计算、等差数前n 项和的最值问题,考查数学计算能力与分析能力.9.已知函数()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,则下列说法不正确的是( )A .当4πx =-时,函数()f x 取最小值 B .()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称 C .()f x 在区间,04π⎡⎤-⎢⎥⎣⎦上单调递增D .()f x 的图象可由2sin 34y x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位得到 【答案】B【解析】根据函数图像可求出A 、ω、ϕ的值,可得()f x 的解析式,利用三角函数的性质对各选项进行判断可得答案. 【详解】解:由图象得,2A =,5241243T πππ⎛⎫=⨯-=⎪⎝⎭,则23T πω==. 又5212f π⎛⎫=-⎪⎝⎭,所以5332()122k k Z ππϕπ⨯+=+∈,所以2()4k k Z πϕπ=+∈. 又因为2πϕ<,所以4πϕ=,所以()2sin 34x f x π⎛⎫=+⎪⎝⎭. 对于A ,当4πx =-时,24f π⎛⎫-=- ⎪⎝⎭,为函数最小值,故A 正确; 对于B ,当12x π=时,2sin 3212124f πππ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,所以函数图象关于直线12x π=对称,不关于点,012π⎛⎫⎪⎝⎭对称,故B 错误;对于C ,由232242k x k πππππ-+≤+≤+,可得22()43123k x k k Z ππππ-+≤≤+∈,令0k =,可得412x ππ-≤≤,所以()f x 在区间,04π⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确; 对于D ,由2sin 34y x π⎛⎫=-⎪⎝⎭的图象向左平移6π个单位得到2sin 364y x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦2sin 34x π⎛⎫=+ ⎪⎝⎭,故D 正确.故选:B. 【点睛】本题主要考查三角函数的知识,掌握()()sin f x A x =+ωϕ的图像与性质及参数的含义求出()f x 的表达式是解题的关键.10.如图,在边长为2的菱形ABCD 中,2BD =,以BD 为折痕将ABD △折起,使点A 到达点P 的位置,且2PC =,则空间四面体P BCD -的外接球的表面积为( )A .5πB .4πC .3πD .52π【答案】A【解析】根据空间四面体棱长特征,将其补成长方体,可得四面体P BCD -的外接球也是该长方体的外接球,由长方体的外接球的性质可得其外接球的半径,可得该四面体外接球的表面积. 【详解】解:根据空间四面体棱长特征,将其补成长方体,如图所示,设长方体的长、宽、高分别为,,a b c ,2222224,4,2,a b a c b c ⎧+=⎪+=⎨⎪+=⎩所以2225a b c ++=,由上图可知,四面体P BCD -的外接球也是该长方体的外接球,设外接球的半径为R ,根据长方体的性质知,2222(2)5R a b c =++=.故该四面体外接球的表面积为224(2)5S R R πππ===. 故选:A . 【点睛】本题主要考查空间几何体的外接球问题,将四面体P BCD -的外接球转化为长方体的外接球进行计算是解题的关键.11.在ABC V 中,2AB =,点,D E 在AB 上,且AD DE EB ==,若3CA CB ⋅=u u u r u u u r,则CD CE ⋅u u u r u u u r的值是( )A .359B .329C .113D .53【答案】A【解析】设AB 的中点为O ,由3CA CB ⋅=u u u r u u u r,可得223CA CB CO OA ⋅=-=u u u r u u u r u u u r u u u r ,同时由题意可得24CO =u u u r ,13OD =u u u r ,可得22CD CE CO OD ⋅=-u u u r u u u r u u u r u u u r ,可得答案.【详解】解:如图,设AB 的中点为O .因为()()CA CB CO OA CO OB ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r ()()CO OA CO OA =+⋅-u u u r u u u r u u u r u u u r 223CO OA =-=u u u r u u u r .因为112OA AB ==u u u r u u u r ,所以24CO =u u u r .又因为AD DE EB ==,所以OD OE =-u u u r u u u r ,21133OD AO AD =-=-=u u u r u u u r u u u r ,所以()()CD CE CO OD CO OE ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r ()()CO OD CO OD =+⋅-u u u r u u u r u u u r u u u r22135499CO OD =-=-=u u u r u u u r . 故选:A. 【点睛】本题主要考查平面向量的基本运算,由题意求出24CO =u u u r ,13OD =u u u r 是解题的关键.12.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 10f x f x '++>⎡⎤⎣⎦,则不等式()1xf x e -≥的解集为( )A .(],1-∞B .(],e -∞C .[)1,+∞D .[),e +∞【答案】C【解析】由()()ln 10f x f x '++>⎡⎤⎣⎦,可得()()0f x f x +'>,令()()xg x e f x =⋅,对其求导可得()0g x '>,可得函数()g x 在R 上单调递增,可得()1g e =,()()1g x g ≥可得原不等式的解集.【详解】 解:解:因为()()ln 10f x f x '++>⎡⎤⎣⎦,所以()()11f x f x '++>,即()()0f x f x +'>. 令()()xg x e f x =⋅,则()()()0xg x e f x f x ''=+>⎡⎤⎣⎦,所以函数()g x 在R 上单调递增.又因为()1g e =,不等式()1xf x e -≥,可变形为()xe f x e ⋅≥,即()()1g x g ≥,所以1x ≥,即不等式()1xf x e -≥的解集为[)1,+∞. 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性及解不等式,由题意构造出函数()()x g x e f x =⋅进行求解是解题的关键.二、填空题13.己知向量()2,4a =-r ,()1,3b m =-r,若()2a b a -⊥r r r ,则9log m =__________.【答案】32【解析】由题意计算可得2(5,11)a b m -=--r r,由()2a b a -⊥r r r ,可得()20a b a -⋅=r r r ,代入可得m 的值,可得答案. 【详解】解:由已知可得2(5,11)a b m -=--r r,因为()2a b a -⊥r r r ,所以()()225a b a m -⋅=-r r r()4110-⨯-=,解得27m =,所以993log log 272m ==, 故答案为:32. 【点睛】本题主要考查向量的坐标运算、向量垂直性质,考查运算求解能力,属于基础题型. 14.比萨斜塔建造于1173年8月,是人类历史上著名的建筑奇迹.已知比萨斜塔的倾斜角度为3.99度,偏移距离为4.09米,圆形地基面积为285平方米.若比萨斜塔可近似看成圆柱体,则其侧面积约为__________平方米.(结果保留整数.参考数据:sin3.990.07︒≈,9.7≈,3π≈)【答案】3399【解析】由题意计算出比萨斜塔的高度为h 与圆形地基的半径r ,由圆柱体侧面积公式2S rh π=代入各数据可得答案.【详解】解:设比萨斜塔的高度为h 米,则由已知可得 4.09 4.0958.4sin 3.990.07h =≈≈︒米.设圆形地基的半径为r 米,则2285r π=,解得9.7r ≈≈,所以比萨斜塔的侧面积为2239.758.43399S rh π=≈⨯⨯⨯≈平方米, 故答案为:3399. 【点睛】本题主要考查圆柱体侧面积的计算,相对不难,求出比萨斜塔的高度为h 与圆形地基的半径r 是解题的关键.15.已知n S 是数列{}n a 的前n 项和,满足:11a =,1,21n n a a n +-=-,nS=__________.【答案】21222nn n++--【解析】将1,21n na a n+-=-变形为()()112n na n a n+++=+,可得数列{}na n+是公比为2的等比数列,可得数列{}na n+的通项公式,可得数列{}n a的通项公式,可得nS的值.【详解】解:由121n na a n+-=-,可得()()112n na n a n+++=+,所以数列{}na n+是公比为2的等比数列,又112a+=所以2nna n+=,所以2nna n=-,所以()222212nnS n=+++-+++L L()()2211212n n n-+=--21222nn n++=--. 【点睛】本题主要考查由递推式求数列通项公式及数列前n项的和,构造出数列{}na n+,后求出数列{}n a的通项公式进行求解是解题的关键.16.如图,在平面四边形ACBD中,ABCV是等边三角形,且22AD BD==,则ACDV面积的最大值为__________.31【解析】设ADBα∠=,BADβ∠=,由余弦定理可得254cosABα=-,23cos4ACACβ+=,由正弦定理可得sinsinACαβ=,由1sin23ACDS AC ADπβ⎛⎫=⋅⋅+⎪⎝⎭△,对其进行化简由三角函数性质,可得其最大值. 【详解】解:设ADB α∠=,BAD β∠=,则由余弦定理,可得22221AB =+-22cos 54cos αα⨯⨯=-,22221cos 22AB AB β+-=⨯⨯234AC AC +=.又由正弦定理,可得sin sin BD AB βα=,即sin sin ACαβ=,所以 1sin 23ACD S AC AD πβ⎛⎫=⋅⋅+ ⎪⎝⎭△1sin 2AC ββ⎛⎫=⋅⋅+ ⎪ ⎪⎝⎭21sin 324AC AC AC AC α⎛⎫+=⋅ ⎪ ⎪⎝⎭213sin 24AC α+=154cos 3sin 24αα-+=+1sin 2αα=-sin 3πα⎛⎫=- ⎪⎝⎭.又因为0απ<<,故当56πα=时,ACD ∆1,1. 【点睛】本题主要考查利用正弦定理、余弦定理解三角形及三角形的面积公式,考查学生的运算求解能力,属于中档题.三、解答题17.在平面直角坐标系中,已知量cos ,sin 3a πθθ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭r ,sin ,cos 3b πθθ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭r ,其中,42ππθ⎛⎫∈ ⎪⎝⎭.(1)若//a b r r ,求tan 6πθ⎛⎫- ⎪⎝⎭的值;(2)若1sin 24θ=,求a b ⋅r r 的值. 【答案】(1)1(2)116【解析】(1)由//a b r r,可得cos cos sin sin 33ππθθθθ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭cos 203πθ⎛⎫=-= ⎪⎝⎭, 由题意求出θ的值,可得tan 6πθ⎛⎫-⎪⎝⎭的值; (2)由题意可得22πθπ<<,可求出cos2θ的值,可得sin cos sin cos 33a b ππθθθθ⎛⎫⎛⎫⋅=+-- ⎪ ⎪⎝⎭⎝⎭r r 112sin 2sin 2223πθθ⎛⎫=+-⎪⎝⎭代入sin 2θ,cos2θ可得答案. 【详解】解:(1)因为//a b r r , 所以cos cos sin sin 33ππθθθθ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭cos 203πθ⎛⎫=-= ⎪⎝⎭. 因为42ππθ<<,所以22633πππθ<-<. 所以232ππθ-=,解得512πθ=. 所以5tan tan 6126πππθ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭tan 14π==. (2)因为42ππθ<<,所以22πθπ<<.又因为1sin 24θ=,所以cos 2θ==. 所以sin cos sin cos 33a b ππθθθθ⎛⎫⎛⎫⋅=+-- ⎪ ⎪⎝⎭⎝⎭r r 112sin 2sin 2223πθθ⎛⎫=+-⎪⎝⎭112sin 2sin 2cos 223πθθ=+12cos 2sin 23πθ-1sin 224θθ=114444⎛⎫=⨯-⨯- ⎪ ⎪⎝⎭116=. 【点睛】本题主要考查平面向量平行的性质、平面向量的数量积及三角函数的恒等变换等知识,考查学生的综合计算能力,属于中档题.18.在ABC V 中,角,,A B C 对应的边分别是,,a b c ,且2cos 2b cC a-=. (1)求A ; (2)若b =cos 3B =,求ABC V 的面积. 【答案】(1)3A π=(2【解析】(1)由正弦定理,将2cos 2b cC a-=进行化简可得1sin cos sin sin 2A C CB +=,将sin sin()B AC =+代入进行化简可得cos A 的值,可得答案; (2)由cos 3B =可得sin B 的值,由直线定理计算出a 的值,同时由sin sin()C A B =+可得sin C 的值,代入1sin 2ABC S ab C =V 可得答案. 【详解】解:(1)因为2cos 2b cC a-=, 由正弦定理,可得2sin sin cos 2sin B C C A -=,即1sin cos sin sin 2A C CB +=.又因为sin sin()B A C =+=sin cos cos sin A C A C +, 所以1sin cos sin 2C A C =. 又因为sin 0C ≠,所以1cos 2A =. 又因为0A π<<,所以3A π=.(2)因为0B π<<,cos 3B =,所以sin 3B ==.由正弦定理,可得sin 3sin 23b ABa ===.又sin sin()sin cos cos sin C A B A B A B =+=+=33163623236+⨯+⨯=. 所以1sin 2ABC S ab C ==△1336233222268++⨯⨯⨯=. 【点睛】本题主要考查利用正弦定理、余弦定理解三角形,及三角函数的恒等变换等知识,注意定理的灵活运用及运算准确.19.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是正方形,,E F 分别为,PA BD 的中点,2PD AD ==.(1)求证://EF 平面PBC ; (2)求二面角D EF P --的正弦值. 【答案】(1)见解析(2)223【解析】(1)连接AC ,易得//EF PC ,由线面平行的判定定理可得//EF 平面PBC ; (2)以D 为坐标原点,,,DA DC DP 所在直线为坐标轴,由空间向量法可得二面角D EF P --的余弦值,可得其二面角D EF P --的正弦值.【详解】证明:(1)连接AC .因为四边形ABCD 为正方形,所以F 也是AC 中点.因为E 为PA 中点,所以//EF PC . 又PC ⊂平面PBC ,EF ⊄平面PBC , 所以//EF 平面PBC .(2)因为PD ⊥底面ABCD ,底面ABCD 是正方形, 所以,,AD CD PD 两两垂直.以D 为坐标原点,,,DA DC DP 所在直线为坐标轴,建立如图所示的空间直角坐标系, 则(0,0,0)D ,(1,0,1)E ,(1,1,0)F ,(0,0,2)P ,所以(1,0,1)DE =u u u r ,(0,1,1)EF =-u u u r ,(1,0,1)PE =-u u u r.设平面DEF 的一个法向量为()111,,m x y z =u r,则11110,0,DE m x z EF m y z ⎧⋅=+=⎪⎨⋅=-=⎪⎩u u u v vu u u v v 令11x =,则111y z ==-, 所以(1,1,1)m =--u r.设平面PEF 的一个法向量为()222,,n x y z =r,则22220,0,PE n x z EF n y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩u u u v vu u u v v ,令21x =,则221y z ==, 所以(1,1,1)n =r.所以1cos ,3m n m n m n⋅〈〉==-⋅u r ru r r ur r ,所以sin ,3m n 〈〉==u r r ,即二面角D EF P --的正弦值为3. 【点睛】本题主要考查线面平行的判定定理及向量法求二面角,考查学生的空间想象能力与运算求解能力.20.2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚,同时带动了垃圾桶的销售.某垃圾桶生产和销售公司通过数据分析,得到如下规律:每月生产x 只垃圾桶的总成本()G x 由固定成本和生产成本组成,其中固定成本为100万元,生产成本为()2150100R x x x =+.(1)写出平均每只垃圾桶所需成本()f x 关于x 的函数解析式,并求该公司每月生产多少只垃圾桶时,可使得平均每只所需成本费用最少?(2)假设该类型垃圾桶产销平衡(即生产的垃圾桶都能卖掉),每只垃圾桶的售价为a元,a 满足(),xa m m n R n=+∈.若当产量为15000只时利润最大,此时每只售价为300元,试求,m n 的值.(利润=销售收入-成本费用)【答案】(1)每只的成本费用为250元.(2)250m =,300n =. 【解析】(1)由题意写出生产成本()G x 的表达式,可得()()f x G x x=,利用基本不等式计算()f x 的最小值,并求出所对应的x 的值;(2)由题意可得利润函数()()g x ax G x =-,结合题意列出方程,可得,m n 的值. 【详解】解:(1)由题意知,生产成本为()21100000050100G x x x =++, 所以()()100000050100G x x x f x x==++.又()100000050100x x f x =++≥50250=, 当且仅当1000000100x x=,即10000x =时,()f x 取得最小值250元. 即该公司生产1万只垃圾桶时,使得每只平均所需成本费用最少,且每只的成本费用为250元.(2)由已知可得,利润()()x ax G x x m n g x ⎛⎫=-=+⎪⎝⎭21100000050100x x ⎛⎫-++ ⎪⎝⎭()211501000000100x m x n ⎛⎫=-+-- ⎪⎝⎭.因为当产量为15000只时利润最大,此时每只售价为300元,所以110,10015000300,5015000,112100n m n m n ⎧⎪⎪-<⎪⎪⎪+=⎨⎪-⎪-=⎪⎛⎫⎪- ⎪⎪⎝⎭⎩解得250m =,300n =. 【点睛】本题主要考查函数模型的实际应用及基本不等式在最值问题的应用,考查学生分析问题和解决实际问题的能力,属于中档题.21.已知数列{}n a 的前n 项和为n S ,且2n S n =,数列{}n b 满足112b a =,且11n n n b a b n++=. (1)求数列{}n a ,{}n b 的通项公式; (2)若11n n n b c a +=-,数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若不等式()112nn n n T λ--<+对一切*n N ∈恒成立,求实数λ的取值范围.【答案】(1)21n a n =-.2nn b =.(2)()2,3-【解析】(1)由1n n n a S S -=-代入计算可得21n a n =-;将21n a n =-代入11n n n b a b n ++=,可得12n nb b +=,可得2n n b =; (2)由11n n n b c a +=-,可得{}n c 的通项公式,由错位相减法可得n T 的值,由()112nn n n T λ--<+,可得()21142nn λ--<-,分n 为偶数与奇数进行讨论,可得实数λ的取值范围.【详解】(1)由已知可得111a S ==.当2n ≥时,2n S n =,21(1)n S n -=-,所以121n n n a S S n -=-=-.显然11a =也满足上式, 所以21n a n =-.因为11n n n b a b n ++=,所以12112n n b n b n+-+==. 又1122b a ==,所以数列{}n b 是首项为2,公比为2的等比数列. 所以2nn b =.(2)由(1)可得112212n n n n n b c a n n-+===-,所以112n n nc -=. 所以21231222n n n T -=++++L , 所以23111231222222n n n n n T --=+++++L , 两式作差,得231111*********n n n n T -=+++++-L 1122212212n n n n n -+=-=-- 所以1242n n n T -+=-.不等式()112n n n n T λ--<+,化为()21142nn λ--<-.当n 为偶数时,则2142n λ-<-.因为数列2142n -⎧⎫-⎨⎬⎩⎭单调递增,所以222min 1144322n --⎛⎫-=-= ⎪⎝⎭. 所以3λ<.当n 为奇数时,即2142n λ--<-,即2142n λ->-.因为2142n -⎧⎫-⎨⎬⎩⎭单调递减,所以212max 1144222n --⎛⎫-=-=- ⎪⎝⎭. 所以2λ>-.综上可得:实数λ的取值范围是()2,3-. 【点睛】本题主要考查等差数列等比数列通项公式的求法、错位相减法求数列的和及数列与不等式的综合,考查学生的运算求解能力,需注意解题方法的积累,属于中档题. 22.已知函数()()e ln 1xa f x x =++.(1)若()f x 在点()()0,0f 处的切线与直线210x y -+=平行,讨论()f x 的单调性; (2)若当[)0,x ∈+∞时,()()()1ln 11a x f x ax ≥-+++恒成立,求实数a 的取值范围.【答案】(1)函数()f x 在()1,-+∞上单调递增.(2)(],2-∞【解析】(1)求出()f x 的导数,求出切线的斜率,由两直线平行可得a 的值,代入()f x 可得其单调性;(2)由()()()1ln 11a x f x ax ≥-+++,可得当[0,)x ∈+∞时,()ln 110x e x ax ++--≥恒成立,设()()ln 11x g x e x ax =++--,对其求导可得()11x g x e a x '=+-+,令()11x h x e x =++,则()()211x h x e x '=-+,对()h x '进行分析可得()0h x '>,()2g x a '≥-,分2a ≤,2a >进行讨论,可得实数a 的取值范围. 【详解】解:(1)由已知得()1xa e x f x =++',则()010a f e a +='+=. 又因为直线210x y -+=的斜率为2, 所以12a +=,解得1a =.所以()()ln 1xf x e x =++,定义域为()1,-+∞.所以()101xe xf x =+>+', 所以函数()f x 在()1,-+∞上单调递增.(2)当[0,)x ∈+∞时,()()()1ln 11a x f x ax ≥-+++恒成立, 即当[0,)x ∈+∞时,()ln 110xe x ax ++--≥恒成立.令()()ln 11xg x e x ax =++--,则()11xg x e a x '=+-+. 令()11xh x e x =++,则()()211x h x e x '=-+.第 21 页 共 21 页 当0x ≥时,e 1x >,()21011x <≤+,所以()0h x '>,所以函数()()0y h x x =≥为增函数.所以()()02h x h ≥=,所以()2g x a '≥-.①当2a ≤时,20a -≥,所以当2a ≤时,()0g x '≥,所以函数()()0y g x x =≥为增函数,所以()()00g x g ≥=,故对0x ∀≥,()()()1ln 11a x f x ax ≥-+++恒成立;②当2a >时,11a ->,当0x ≥时,1011x <≤+, ()11x g x e a x '=+-+1x e a ≤+-, 当()()0,ln 1x a ∈-,知10x e a +-<,即()0g x '<.所以函数()y g x =,()()0,ln 1x a ∈-为减函数.所以当()0ln 1x a <<-时,()()00g x g <=.从而()()()1ln 11a x f x ax <-+++,这与题意不符.综上,实数a 的取值范围为(],2-∞.【点睛】本题主要考查利用导数研究曲线在某点的切线方程、利用导数研究函数的单调性及恒成立的问题,考查了分类讨论的思想,综合性大,属于难题.。
河南省2020—2021学年高三尖子生11月联合诊断性测理科数学答案
理科数学答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本题共4小题,每小题5分,共20分. 14. [][)4,0,e −+∞15. 3 16.23 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.解:(1)()433cos sin +⎪⎭⎫⎝⎛+⋅=πx x x f =43sin 23cos 21sin +⎪⎪⎭⎫ ⎝⎛−x x x ……2分 =43sin 232sin 412+−x x =43432cos 432sin 41+−+x x =⎪⎭⎫⎝⎛+32sin 21πx ……4分 当⎥⎦⎤⎢⎣⎡∈2,0πx 时,⎥⎦⎤⎢⎣⎡∈+34,332πππx , ⎥⎦⎤⎢⎣⎡−∈⎪⎭⎫ ⎝⎛+1,2332sin πx ,()⎥⎦⎤⎢⎣⎡−∈21,43x f .()x f ∴的值域是⎥⎦⎤⎢⎣⎡−21,43.……6分(2)2132sin 214=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛πA A f , ⎪⎭⎫⎝⎛∈2,0πA ,可得3π=A ……8分设x DC =,则x AD 3=,x BD 7=,由余弦定理,()()21232723cos 222=⨯⨯−+=x xx A ,解得1=x 或2=x .……10分又11sin 2422ABC S AB AC A x ∆=⋅⋅=⨯⨯=, ∴ABC ∆的面积为32或34.……12分 18.解:(1)当1=n 时,11=a .当2≥n 时,()()12213211321+⋅−=−+⋅⋅⋅+++−−n n n a n a a a ①,……2分由()12132321+⋅−=+⋅⋅⋅+++nn n na a a a ②,②-①可得:12−⋅=n n n na ,()221≥=−n a n n ,……4分1201==a ,符合12−=n n a . 综上,12−=n n a .……5分(2)()2-111212222112n n n n S ⋅−=++++==−−……7分则⎪⎭⎫⎝⎛−+=−=−1211211221n n n n n S a ,当1≥n 时,有1212−≥−n n 成立, 所以有⎪⎭⎫ ⎝⎛+≤−121121n n n S a 1122n =+……10分 从而21-121-1212212121222211⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅⋅⋅+++≤+⋅⋅⋅++n n n n n n S a S a S a111222nn n ⎛⎫=+−≤+ ⎪⎝⎭,所以,122211+≤+⋅⋅⋅++n S a S a S a n n ,即证.……12分19.解:(1)连接DB ,在ABD ∆中,3cos 2222=∠⋅−+=DAB AB AD AB AD BD , 则3=BD .所以,222AB BD AD =+,即 2π=∠ADB ,DB AD ⊥.……2分又因为平面ABCD ⊥平面ABE ,平面ABCD 平面ABE AB =,且AB EB ⊥,所以⊥EB 平面ABCD .……3分因为⊂AD 平面ABCD ,所以AD EB ⊥.……4分由DB AD ⊥,AD EB ⊥,B EB DB = ,且⊂BE DB ,平面DBE , 所以有⊥AD 平面DBE ……5分因为⊂DE 平面DBE ,所以DE AD ⊥,又因为BC AD //,所以DE BC ⊥.…6分 (2)解法一:过C 点作CG AB ⊥交AB 的延长线于G ,连接EG ,//,,33AD BC DAB CBG ππ∠=∴∠=,由90CGB ∠=,可得:31sin 6023,cos 6021,22CG BC BG BC =⋅=⨯==⋅=⨯=901=∠=EBG ,BE ,EG ∴=平面ABCD ⊥平面ABE , 面ABCD 面ABE =AB , AB CG ⊥,∴CG ABE ⊥面,又EG ⊂平面ABE ,CG EG ∴⊥22290,5CGE CE CG GE ∴∠=∴=+=5=∴CE ,由(1)可知,DE AD ⊥,4222=−=∴AD AE DE ,即2=DE ,由(1)可知,⊥AD 平面DBE ,所以AD BD ⊥,BD ∴=BC AD // , BC BD ∴⊥2227,CD BD BC ∴=+=即7=CD ,可知:222cos 2DC CE DE DCE DC CE +−∠===⋅, 351935161sin =−=∠DCE , 21935195721sin 21=⨯⨯⨯=∠⨯⨯⨯=∆DCE CE DC S DCE .……9分 3312323131C =⨯⨯⨯=⨯⋅=∆−BE S V D B BCD E 由等体积:CDE B BCD E V V −−=,所以,=33,代入:h ⋅⋅=2193133, 解得1932=h ,设直线BC 与平面DCE 所成角为θ,则sin 19h BC θ===.……12分解法二:以B 为原点,分别以BE BA ,所在直线为y x ,轴,过B 作垂线为z 轴,建立空间直角坐标系B xyz −.过点C 作CG AB ⊥交AB 的延长线于点G ,过点D 作DF AB ⊥交AB 于点F ,//BC,3AD CBG DAB π∴∠=∠=,又1,2AD BC ==,sin1sin 2323DF CG ππ∴=⨯==⨯=,1cos 1,cos 21323AF BG ππ=⨯==⨯=,h S CDE ⨯⋅∆31又132,2,22AB BF AB AF =∴=−=−=(3,,0,,22C D ⎛⎫∴− ⎪ ⎪⎝⎭又()()()2,0,0,0,0,0,0,1,0A B E .()(531,1,3,,0,,22EC DC BC ⎛⎫∴=−−=−=− ⎪ ⎪⎝⎭.……8分设平面DCE 的法向量为()z y x n ,,=,由,00⎪⎩⎪⎨⎧=⋅=⋅n DC n EC 有⎪⎩⎪⎨⎧=+−=+−−0232503z x z y x ,令3=z , 则⎪⎭⎫⎝⎛=3,512,53n ……10分设直线BC与平面DCE 所成角为θ,则sin cos =192n BC θn,BC n BC⋅===⋅⨯,即直线BC 与平面DCE 所成角的正弦值为1957.……12分 20.解:(1)由已知可知直线AB 的斜率必存在,设直线AB 的斜率为k (0k ≠),抛物线x y 42=的焦点()0,1F ,则()1−=x k :y l AB与抛物线相联立,()()0421422222=++−⇒⎩⎨⎧−==k x k x k x k y x y设()()2211,,,y x B y x A ,则⎪⎩⎪⎨⎧=⋅+=+142212221x x k k x x221442kx x AB +=++=……2分, 同理,244CD k =+,则四边形ACBD 的面积为()(),32228128141142121S 2222=+≥⎪⎭⎫ ⎝⎛++=+⋅⎪⎭⎫ ⎝⎛+⋅=⋅=k k k k CD AB 当且仅当1±=k 时,四边形ACBD 的面积的最小值为32……4分 (2)设点()()()()()()()()02,,02,,02,,02,4424332322221121<><>t t t D t t t C t t t B t t t A ,则43212,2t t k t t k CD AB +=+=.,考虑到点()B F A ,0,1,共线,则12221121−=+⇒=t tt t k k AF AB ,从而121−=t t ……6分 同理143−=t t .由于CD AB ⊥,从而,1224321−=+⋅+=⋅t t t t k k CD AB 故()().44321−=++t t t t 由于直线()12:43−+=x t t y CD ,则点⎪⎪⎭⎫ ⎝⎛+−−434,1t t N ,由于.42143t t t t +=+− 故()21,1t t N +−.……8分由于()12111212121211111112t t t t t t t t t t t k AN=++=+−=++−=,从而直线AN 的方程为()121121t t x t y +−=,即111y x t t =+,从而点Q 的横坐标为21t x Q −=. 由此211t FQ +=.又()1211121122222t t t t t t y y B A +=+=−=−,从而()()()222211111121111022AQB A B t t t S FQ y y t t t ∆+++=⋅−=⨯=>.……10分12211−=t t k AF由于()113112141122112121t t t t t t t t S ΔAQB++=++=+=,令()1131112t t t t f ++=,则()()()21212121214121211'113123123t t t t t t t t t f +−=−+=−+=, 可知()1t f 在⎪⎪⎭⎫⎝⎛+∞,33上单调递增,在⎪⎪⎭⎫⎝⎛330,上单调递减, 所以,当且仅当331=t 时,AQB ∆面积的最小值为9316……12分 21.解: (1)设()()()112ln 12ln 111>+−+=+−+−−=−x x x e x x x x f x h x()211'−+=∴−x e x h x ,()21''1x e x h x −=∴−1>x 110,121<<>∴−x e x ()0121''>−=∴−xe x h x ……2分 ()x h '∴在()+∞,1上单调递增,又()01'=h 1>∴x 时,()x h '()01'=>h ……4分()12ln 1+−+=−x x e x h x 在()+∞,1上单调递增,又()01=h 1>∴x 时,()()01=>h x h故当1>x 时,()12ln 11−+−>−−x x x x f , ∴()()132ln 112+−>−−−x x x x x f …6分(2) ()()2121+−=x a xe x g x∴()()()()()a e x x a e x x g xx−+=+−+=111'当0=a 时,易知函数()x g 只有一个零点,不符合题意:……7分当0<a 时,在()1,−∞−上,()0'<x g ,()x g 单调递减;在()+∞−,1上,()0'>x g ,()x g 单调递增;又()011<−=−eg ,且()021>−=a e g 不妨取4−<b 且()a b −<ln 时,()()()02122112122ln >⎪⎭⎫ ⎝⎛++−=+−>−b b a b a be b g a ()[]+∞→−∞→x g x ,或者考虑:当,所以函数()x g 有两个零点,0a ∴<符合题意.……9分当0>a 时,由()()()01'=−+=a e x x g x得1−=x 或a x ln =(i )当1ln −=a 即ea 1=时,在()+∞∞−,上,()0'≥x g 成立, 故()x g 在()+∞∞−,上单调递增,所以函数()x g 至多有一个零点,不符合题意.……10分 (ii )当1ln −<a 即ea 10<<时,在()a ln ,∞−和()+∞−,1上,()0'>x g ,()x g 单调递 增;在()1,ln −a 上,()0'<x g ,()x g 单调递减:又()011<−=−eg , 且()()()01ln 211ln 21ln ln 22<+−=+−=a a a a a a a g , 所以函数()x g 至多有一个零点()x g ,不符合题意.……11分 (iii )当ea a 11ln >−>即时,在()1,−∞−和()+∞,ln a 上()0'>x g ,()x g 单调递增; 在()a ln ,1−上()0'<x g ,()g x 单调递减又()011<−=−eg ,所以函数()x g 至多有一个零点,不符合题意. 综上所述,实数a 的取值范围是()0,∞−.……12分(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:极坐标与参数方程](10分)解: (1)22sin2,02cos2====ππy x ,∴P 的直角坐标为()2,0P ……2分 由⎩⎨⎧==ϕϕsin 2cos 3y x ,得2sin 3cos y ,x ==ϕϕ .∴曲线C 的普通方程为14922=+y x ……4分(2)将⎪⎪⎩⎪⎪⎨⎧+=−=ty t x 22222代入14922=+y x 36222922422=⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛−⇒t t , 化简得21336360t t +−=……6分 设A ,B 对应的参数分别为21,t t , 则1336,13362121−=⋅−=+t t t t ……8分 ∵P 点在直线l 上,∴()13221213364133642212212121=⨯+⎪⎭⎫⎝⎛=−+=−=+=+t t t t t t t t PB PA……10分23.[选修4—5:不等式选讲](10分)解:(1)0,,>c b a ,336316332abc abc c b a ≥⇒≥++∴……2分162131613=⎪⎭⎫ ⎝⎛≤∴abc ……4分当且仅当3132===c b a ,即91,61,31===c b a 时,abc 取到最大值为1621……5分 (2)013132>−−=+∴=++b a c b c b a ,()()()414114141141341−−−++=−−+−−−++=−−+++=++++∴ba b a b a b a b a b a b a b a c b b a b a ……7分()()[]()5114141411≥+−−+++−−=−⎪⎭⎫ ⎝⎛−−++−−++=b a b a b a b a b a b a b a b a ……9分 当且仅当()b a b a +=−−21,即31=+b a 时, ()cb b a b a 341++++取得最小值为5……10分.。
河南省部分学校2024-2025学年高三上学期11月月考数学试题含答案
高三数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数,三角函数、三角恒等变换,解三角形、平面向量.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数tan y x =的值域可以表示为()A.{tan }xy x =∣ B.{tan }yy x =∣C.{(,)tan }x y y x =∣D.{tan }y x =【答案】B 【解析】【分析】根据函数的值域是指函数值组成的集合,即可判断.【详解】因函数的值域是指函数值组成的集合,故对于函数tan y x =,其值域可表示为:{tan }yy x =∣.故选:B.2.若“sin 2θ=-”是“tan 1θ=”的充分条件,则θ是()A .第四象限角B.第三象限角C.第二象限角D.第一象限角【答案】B 【解析】【分析】根据角θ的正切值与正弦值的正负判断象限即可.【详解】由题可知,sin 02θ=-<,则θ是第三象限角或第四象限角;又要得到tan 10θ=>,故θ是第三象限角.故选:B3.下列命题正确的是()A.x ∃∈R ,20x <B.(0,4)x ∀∈,20log 2x <<C.(0,)x ∃∈+∞,132x x< D.π0,2x ⎛⎫∃∈ ⎪⎝⎭,4sin cos x x =【答案】C 【解析】【分析】对于选项A:利用指数函数的值域即可判断;对于选项B:利用对数函数的单调性求出值域即可判断;对于选项C:采用特殊值法,令14x =即可判断;对于选项D:令4sin cos 2sin 2y x x x ==,结合三角函数的值域求解验证即可.【详解】对于选项A:因为指数函数2x y =的值域为0,+∞,故x ∀∈R ,20x >,故选项A 错误;对于选项B:因为对数函数2log y x =在(0,4)x ∈上单调递增,所以当(0,4)x ∈时,()2log ,2y x ∞=∈-,故选项B 错误;对于选项C:令14x =,则311464⎛⎫= ⎪⎝⎭,121142⎛⎫= ⎪⎝⎭,显然11642<,故(0,)x ∃∈+∞,使得132x x <成立,故选项C 正确;对于选项D:结合题意可得:令4sin cos 2sin 2y x x x ==,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以()20,πx ∈,所以(]2sin 20,2y x =∈,2>,故不存在π0,2x ⎛⎫∈ ⎪⎝⎭,使得4sin cos x x =,故选项D 错误.故选:C.4.函数24()f x x x =-的大致图象是()A. B.C.D.【答案】C 【解析】【分析】先确定函数的奇偶性,排除两选项,再根据特殊点的函数值的正负,选出正确答案.【详解】函数24y x x =-是偶函数,图象关于y 轴对称,排出选项A 、B ;再取特殊值12x =和2x =,可得函数的大致图象为C ,故选:C .5.已知向量1e ,2e 满足121e e == ,120e e ⋅= ,则向量1e 与12e e -的夹角为()A.45︒B.60︒C.120︒D.135︒【答案】A 【解析】【分析】利用向量夹角的计算公式计算即可.【详解】由题可知()21121121e e e e e e ⋅-=-⋅=,12e e -==,121e e == 所以()1121121122cos ,2e e e e e e e e e ⋅--===-故向量1e 与12e e -的夹角为45︒故选:A 6.已知5πtan 210α+=,则4π5tan 5α-=()A.125 B.125-C.43D.43-【答案】C 【解析】【分析】先确定两个角的关系,然后利用三角恒等变换公式求解即可.【详解】由题可知,5π4π52π105αα+-⨯+=25π2tan5π4410tan 25π101431tan 10ααα++⎛⎫⨯===- ⎪+-⎝⎭-所以有4π55π5π4tan tan π2tan 2510103ααα-++⎛⎫⎛⎫=-⨯=-⨯= ⎪ ⎪⎝⎭⎝⎭故选:C7.已知0a >,0b >,9a b +=,则36a ba+的最小值为()A.8B.9C.12D.16【答案】A 【解析】【分析】我们观察形式,显然分式的分子和分母同时有变量,所以令()364a b =+代入化简,然后利用基本不等式求解即可.【详解】43644448b a b a a a b b a a b a +=+=++≥+=+当且仅当4b aa b=,9a b +=,即26a b ==时等号成立;故选:A8.若0x ∀>,()()()21ln 10x ax ax ---≥,则a =()A.B.C.D.【答案】D 【解析】【分析】先将两个乘积看做两个函数()21,ln 1y x ax y ax =--=-,易知要使0x ∀>时,()21(ln 1)0xax ax ---≥,则需要两函数()21,ln 1y x ax y ax =--=-同号,所以我们需要去找他们零点,0x >时零点相同,然后求解参数a 即可.【详解】由题易知0a >,当ex a=时,()ln 10ax -=;由对数函数的性质可知,当e 0,x a ⎛⎫∈ ⎪⎝⎭时,()ln 10ax -<;当e ,x a ∞⎛⎫∈+ ⎪⎝⎭时,()ln 10ax ->;显然函数21y x ax =--有两个根12,x x ,不妨令12x x <,则120x x <<由二次函数的图像可知,()20,x x ∈时,210x ax --<;()2,x x ∞∈+时,210x ax -->故要使()()()21ln 10x ax ax ---≥恒成立,则2ex a=所以有2e e 10aa a ⎛⎫-⨯-= ⎪⎝⎭,解得a =故选:D【点睛】关键点点睛:当两个式子相乘大于等于零时,两个式子必定同为负或者同为正,或者有一个为零.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数sin()()2x f x -=,则()A.()f x 的值域为1,22⎡⎤⎢⎥⎣⎦B.()f x 为奇函数C.()f x 在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增 D.()f x 的最小正周期为2π【答案】AD 【解析】【分析】对于选项A:利用换元()sin t x =-,再结合指数函数的单调性即可求出值域;对于选项B:利用奇偶性的定义说明即可;对于选项C :结合复合函数的单调性即可判断;对于选项D :借助三角函数的周期,以及周期函数的定义即可判断.【详解】对于选项A:由sin()()2x f x -=,令()sin t x =-,则2t y =,[]1,1t ∈-,因为2t y =在[]1,1t ∈-上单调递增,所以12,22ty ⎡⎤=∈⎢⎥⎣⎦,故选项A 正确;对于选项B:由sin()()2x f x -=可知(),x ∞∞∈-+,对任意的(),x ∞∞-∈-+,因为sin ()2x f x -=,而sin ()2x f x -=,易验证()(),f x f x -≠-故()f x 不是奇函数,故选项B 错误;对于选项C :结合选项A 可知()sin t x =-在ππ,22⎡⎤-⎢⎥⎣⎦单调递减,而2t y =在定义域上单调递增,由复合函数的单调性可得sin()()2x f x -=在ππ,22⎡⎤-⎢⎥⎣⎦单调递减,故选项C 错误;对于选项D :因为()sin t x =-的最小正周期为2πT =,所以sin(2π)sin()(2π)22()x x f f x x ---==+=,所以()f x 的最小正周期为2π,故选项D 正确.故选:AD.10.国庆节期间,甲、乙两商场举行优惠促销活动,甲商场采用购买所有商品一律“打八四折”的促销策略,乙商场采用“购物每满200元送40元”的促销策略.某顾客计划消费(0)x x >元,并且要利用商场的优惠活动,使消费更低一些,则()A.当0200x <<时,应进甲商场购物B.当200300x ≤<时,应进乙商场购物C.当400500x ≤<时,应进乙商场购物D.当500x >时,应进甲商场购物【答案】AC 【解析】【分析】分别计算不同选项两个商场的优惠判断即可.【详解】当0200x <<时,甲商场的费用为0.84x ,乙商场的费用为x ,0.84x x >,故应进甲商场,所以选项A 正确;当200300x ≤<时,甲商场的费用为0.84x ,乙商场的费用为40x -,400.840.1640x x x --=-,因为200250x ≤<,所以80.16400x -≤-<,400.84x x -<,进入乙商场,当250300x ≤<故400.84x x ->应进甲商场,所以选项B 错误;当400500x ≤<时,甲商场的费用为0.84x ,乙商场的费用为80x -800.840.1680x x x --=-,因为400500x ≤<,所以160.16800x -≤-<故800.84x x -<,所以应进乙商场,所以选项C 正确;假设消费了600,则在甲商场的费用为6000.84504⨯=,在乙商场的费用为600120480-=,所以乙商场费用低,故在乙商场购物,故选项D 错误.故选:AC11.已知函数()f x 满足:①x ∀,R y ∈,()[()]y f xy f x =;②(2)1f ->,则()A.(0)0f = B.()()()f x y f x f y +=⋅C.()f x 在R 上是减函数 D.[1,3]x ∀∈,()2(3)1f x kx f x -⋅-≥,则3k ≥【答案】BCD 【解析】【分析】取2,0x y =-=可求(0)f ,判断A ,取12,2x y =-=-证明()011f <<,取1x =可得()[(1)]y f y f =,由此可得()[(1)]x f x f =,结合指数运算性质和指数函数性质判断BC ,选项D 的条件可转化为当[1,3]x ∈,31x k x+-≤恒成立,结合函数性质求结论.【详解】因为x ∀,R y ∈,()[()]y f xy f x =,(2)1f ->取2,0x y =-=可得01(0)[(2)]f f =-=,A 错误;取12,2x y =-=-可得12(1)[(2)]f f -=-,又(2)1f ->,所以()011f <<,取1x =可得,()[(1)]y f y f =,所以()[(1)]x f x f =,其中()011f <<,所以()()()()()()111x yx yf x y f f f f x f y ++===,B 正确,由指数函数性质可得()[(1)]x f x f =,其中()011f <<在R 上单调递减,所以()f x 在R 上是减函数,C 正确;不等式()2(3)1f x kx f x -⋅-≥可化为()()()23111xkxx f f f --≥,所以230x kx x -+-≤,由已知对于[1,3]x ∀∈,230x kx x -+-≤恒成立,所以当[1,3]x ∈,31x k x+-≤恒成立,故max31x k x ⎛⎫+-≤ ⎪⎝⎭,其中[1,3]x ∈,因为函数1y x =+,3y x=-在[]1,3上都单调递增,所以31x x+-在[1,3]上的最大值为3,所以3k ≥,D 正确;故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()1ln(2)f x x =-+,则曲线()y f x =在点(1,(1))f --处的切线方程为______.【答案】0x y +=【解析】【分析】利用导数的几何意义求出切线斜率,然后代入点斜式直线方程即可求解切线.【详解】由题可知,()12f x x =-+',()11f -=,所以切线斜率()11k f =-=-',故切线方程为()110y x x y -=-+⇒+=.故答案为:0x y +=13.已知函数()cos (0)f x x ωω=>,若π2f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在区间(0,π)内仅有两个零点,则ω的值是__________.【答案】2【解析】【分析】根据偶函数的性质,求得2k ω=,Z k ∈,再结合余弦函数的零点,列出不等式,即可求解.【详解】πππcos cos 222f x x x ωωω⎛⎫⎛⎫⎛⎫+=+=+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为偶函数,所以ππ2k ω⋅=,Z k ∈,得2k ω=,Z k ∈,当∈0,π时,()0,πx ωω∈,()f x 在区间(0,π)内仅有两个零点,所以3π5ππ22ω<≤,解得:3522w <£,所以2ω=.故答案为:214.若ABC V 内一点P 满足PAB PBC PCA α∠=∠=∠=,则称P 为ABC V 的布洛卡点,α为布洛卡角.三角形的布洛卡点是法国数学家和数学教育家克洛尔于1816年首次发现,1875年被法国军官布洛卡重新发现,并用他的名字命名.如图,在ABC V 中,AB AC =,3cos 5BAC ∠=,若P 为ABC V 的布洛卡点,且2PA =,则BC 的长为______.【解析】【分析】利用三角恒等变换、正弦定理、余弦定理等知识进行分析,先求得sin α,进而求得a ,也即是BC .【详解】213cos 2cos 125BAC BAC ⎛⎫∠=∠-= ⎪⎝⎭,所以BAC ∠为锐角,12BAC ∠为锐角,所以11cos ,sin 2525BAC BAC ⎛⎫⎛⎫∠=∠== ⎪ ⎪⎝⎭⎝⎭.由于AB AC =,所以A ABC CB =∠∠,设ABC ACB θ∠=∠=,则2πBAC θ∠+=,ππ11cos cos cos sin 22225BAC BAC BAC θ-∠⎛⎫⎛⎫⎛⎫==-=∠= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,θ为锐角,则sin 5θ==.由于,BAP CBP ABP BCP θα∠=∠∠=∠=-,所以ABP BCP ,所以AB AP BPBC BP PC==①,在PBC △中,由正弦定理得()()()sin sin sin sin πBP BC BC PCθαθααθα===----,所以()sin sin BP PC θαα-=,所以()sin sin AB BP BC PC θαα-==,即()sin sin c a θαα-=,由正弦定理得sin sin cos cos sin sin cos sin sin tan ACB BAC θαθαθθαα∠-==-∠,即2525554tan 55α=-,解得4tan 7α=,则α为锐角,由22sin 4tan cos 7sin cos 1ααααα⎧==⎪⎨⎪+=⎩解得sin αα==,在三角形ABC 中,由余弦定理得222222342cos 2255a b c bc A b b b =+-=-⨯=,所以225,42b a b ==,在三角形ACP 中,由正弦定理得()()sin sin sin πAP AC ACBAC BAC ααα==∠--∠-,所以22445a=,解得a BC ==.【点睛】易错点睛:锐角与边长关系的判断:在判断三角形的角是否为锐角时,容易出现符号错误或判断失误.因此,在涉及角度大小的判断时,需特别注意各个角的定义和所使用定理的适用范围.正弦定理和余弦定理的符号处理:在使用正弦定理和余弦定理时,符号的处理必须谨慎,特别是在涉及平方根和正负符号的时候,需确保没有遗漏或误用.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭.(1)求A ;(2)若O 为ABC V 的外心,D 为边BC 的中点,且1OD =,求ABC V 周长的最大值.【答案】(1)π3(2)【解析】【分析】(1)由正弦定理结合三角恒等变换进行化简即可求解;(2)利用向量表示出1122OD OB OC =+uuu r uu u r uuu r,由余弦定理结合基本不等式、三角形周长公式即可求解.【小问1详解】由已知π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭及正弦定理得:312sin sin cos sin sin 22A C C B C ⎛⎫+=+ ⎪ ⎪⎝⎭,由()()sin sin πsin sin cos cos sin B A C A C A C A C ⎡⎤=-+=+=+⎣⎦得:sin sin cos sin cos cos sin sin A C A C A C A C C +=++,sin cos sin sin A C A C C =+,又sin 0C ≠,cos 1A A =+,即π2sin 16A ⎛⎫-= ⎪⎝⎭,因为()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ,66A -=解得π3A =.【小问2详解】因为O 为ABC V 的外心,且由上问知π3A =,所以2π23BOC A ∠=∠=,设OB OC R ==(R 为ABC V 的外接圆半径),因为D 为边BC 的中点,且1OD =,所以在OBC △中易得:1122OD OB OC =+uuu r uu u r uuu r,所以2221112πcos 4423OD OB OC OB OC =++ ,即22211121cos 4423πR R R =++,解得:2R =,在OBC △中由余弦定理可得:2222π2cos123BC OB OC OB OC =+-=,解得BC a ==在ABC V 中由余弦定理可得:()2222π2cos3123a b c bc b c bc =+-=+-=,由基本不等式22b c bc +⎛⎫≤ ⎪⎝⎭可得:()223122b c b c +⎛⎫+-≤ ⎪⎝⎭,当且仅当b c =时等号成立,所以()21124b c +≤,即b c +≤.所以ABC V 周长ABC C a b c =++≤+=V当且仅当b c ==时等号成立.故ABC V 周长的最大值为16.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且tan tan tan tan 1B C B C ++=,1b =,c =.(1)求a ;(2)如图,D 是ABC V 外一点(D 与A 在直线BC 的两侧),且AC CD ⊥,45CBD ∠= ,求四边形ABDC 的面积.【答案】(15(2)136【解析】【分析】(1)首先根据两角和的正切公式求()tan B C +,即求角A ,再根据余弦定理求解;(2)根据诱导公式求解sin BCD ∠,以及两角和的三角函数求sin D ,再根据正弦定理求BD ,最后根据面积公式,即可求解.【小问1详解】由条件可知,tan tan 1tan tan +=-B C B C ,所以()tan tan tan 11tan tan B CB C B C++==-,所以45B C += ,即135A = ,所以2cos 2A =-,则22222cos 1221252a b c bc A ⎛=+-=+-⨯⨯-= ⎪⎝⎭,所以5a =;【小问2详解】15225cos 5215ACB ∠==⨯⨯,()25sin sin 90cos 5BCD ACB ACB ∠=-∠=∠=,5cos 5BCD ∠=,()()sin sin 45sin cos 225510D BCD BCD BCD ⎛=∠+=∠+∠=⨯+= ⎝⎭ ,BCD △中,sin sin BC BD D BCD =∠,即sin sin 3BC BCD BD D ⋅∠==,所以15sin 4523BCD S BC BD =⨯⨯= ,11sin13522ABC S AC AB =⋅⋅= ,所以四边形ABDC 的面积为5113326+=.17.已知平面向量(,)m a b = ,(sin ,cos )n x x ωω=,且2m n = ,其中0a >,0ω>.设点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象(()f x 的部分图象如图所示)上.(1)求a ,b ,ω的值;(2)若()G x y ,是()y f x =图象上的一点,则1(2,)2K x y 是函数()y g x =图象上的相应的点,求()g x 在[0,π]上的单调递减区间.【答案】(1)a =1b =,2ω=;(2)π[,π]3【解析】【分析】(1)由2m n =得2=,利用向量数量积计算公式和辅助角公式化简得()2sin()f x x ωϕ=+,根据题设条件列出三角方程组,结合图象即可求出a ,b ,ω的值;(2)由题意中点的变换求得π()sin(6g x x =+,利用正弦函数的图象特点即可求得()g x 在[0,π]上的单调递减区间.【小问1详解】因(,)m a b = ,(sin ,cos )n x x ωω=,由2m n =2=,由()(,)(sin ,cos )f x m n a b x x ωω=⋅=⋅sin cos )2sin()a x b x x x ωωωϕωϕ=+=+=+,其中tan b aϕ=,因点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象上,则有,2sin 111πsin()012ϕωϕ=⎧⎪⎨+=⎪⎩①②,结合图象,由①可得πZ π2,6k k ϕ=+∈,将其代入②式,可得11πππ,Z 126n n ω+=∈,即212,Z 1111n n ω=-+∈,(*)由图知,该函数的周期T 满足311π412T T <<,即3π11π2π212ωω<<又0ω>,则有18241111ω<<,由(*)可得2ω=,故π()2sin(2)6f x x =+.由320b a a ⎧=⎪=⎪>⎩解得,1a b ⎧=⎪⎨=⎪⎩,故a =1b =,2ω=;【小问2详解】不妨记12,2x x y y ''==,则,22x x y y ''==,因()G x y ,是()y f x =图象上的一点,即得π22sin()6y x ''=+,即πsin(6y x ''=+,又因1(2,)2K x y 是函数()y g x =图象上的相应的点,故有π()sin()6g x x =+.由ππ3π2π2π,Z 262k x k k +≤+≤+∈,可得π4π2π2π,Z 33k x k k +≤≤+∈,因[0,π]x ∈,故得ππ3x ≤≤.()g x 在[0,π]上的单调递减区间为π[,π]3.18.已知函数()2()e xf x x mx n =++,m ,n ∈R .(1)当24m n =时,求()f x 的最小值;(2)当2m =-时,讨论()f x 的单调性;(3)当0m n ==时,证明:0x ∀>,()ln 1f x x >+.【答案】(1)0(2)答案见解析(3)证明见解析【解析】【分析】(1)利用求导判断函数的单调性,即得函数的极小值即最小值;(2)利用求导,就导函数中的参数进行分类,分别讨论导函数的符号,即得函数的单调性;(3)将待证不等式2e ln 1xx x >+等价转化为3e ln 1x x x x +>,设3e ln 1(),()x x g x h x x x+==,依题意,只需证在0x >时,min max ()()g x h x >成立,分别求m m ax in (),()h x g x 即可得证.【小问1详解】当24m n =时,22()()e 4x m f x x mx =++,22()[(2)2()e ()2)e 42x x m f x x m x m m m x x '=+++=++++,由()0f x '>,可得22m x <--或2mx >-,由()0f x '<,可得222m m x --<<-,即()f x 在(,2)2m -∞--和(,)2m -+∞上单调递增;在(2,)22m m---上单调递减,x →-∞时,()0f x →,x →+∞时,()f x →+∞,故2mx =-时,()f x 取得极小值也即最小值,为()02m f -=.【小问2详解】当2m =-时,()2()2e xf x x x n =-+,函数的定义域为R ,()2(e 2)xx f x n =+-',当2n ≥时,()0f x '≥恒成立,故()f x 在R 上为增函数;当2n <时,由()0f x '=,可得x =,故当x <x >时,()0f x '>;即()f x 在(,∞-和)∞+上单调递增;当x <<()0f x '<,即()f x 在(上单调递减.综上,当2n ≥时,()f x 在R 上为增函数;当2n <时,()f x在(,∞-和)∞+上单调递增,在(上单调递减.【小问3详解】当0m n ==时,2()e x f x x =,要证0x ∀>,()ln 1f x x >+,只需证2e ln 1x x x >+,即证3e ln 1x x x x+>在(0,)+∞上恒成立.设3e ln 1(),()x x g x h x x x+==,依题意,只需证在0x >时,min max ()()g x h x >.因e ()=x g x x ,2(1)e ()xx g x x-'=,由()0g x '<,可得01x <<,由()0g x '>,可得1x >,故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,则()g x 在1x =时取得极小值也是最小值,为(1)e g =;因3ln 1()x h x x+=,423ln ()x h x x --'=,由()0h x '=,可得23x e -=,由()0h x '<,可得23x e->,由()0h x '>,可得230x e -<<,故()h x 在23(0,e)-上单调递增,在23(e ,)-+∞上单调递减,则()h x 在23x e -=时取得极大值也是最大值,为22332323ln e ()3e1e (e )h ---==+.因2e e 3>,即min max ()()g x h x >在(0,)+∞上成立,故得证.即0x ∀>,()ln 1f x x >+.【点睛】方法点睛:本题主要考查利用导数求函数的最值、证明不等式恒成立等知识点,属于较难题.证明不等式型如()()f x g x >的恒成立问题,一般方法有:(1)构造函数法:即直接构造()()()F x f x g x =-,证明min ()0F x >;(2)比较最值法:即证明min max ()()f x g x >即可;(3)等价转化法:即将待证不等式左右两边同除以一个式子,使得左右函数的最值可比较.19.已知非零向量(,)a m n =,(,)b p q = ,a ,b 均用有向线段表示,现定义一个新的向量c 以及向量间的一种运算“※”:(,)c a b mp nq mq np ==-+※.(1)证明:c 是这样一个向量:其模是a 的模的 b 倍,方向为将a绕起点逆时针方向旋转β角(β为x 轴正方向沿逆时针方向旋转到b所成的角,且02πβ≤<),并举一个具体的例子说明之;(2)如图1,分别以ABC V 的边AB ,AC 为一边向ABC V 外作ABD △和ACE △,使π2BAD CAE ∠=∠=,(01)AD AEAB ACλλ==<<.设线段DE 的中点为G ,证明:AG BC ⊥;(3)如图2,设(3,0)A -,圆22:4O x y +=,B 是圆O 上一动点,以AB 为边作等边ABC V (A ,B ,C 三点按逆时针排列),求||OC 的最大值.【答案】(1)证明见解析.(2)证明见解析.(3)5.【解析】【分析】(1)根据圆的参数方程设定,a b 的坐标,再依据题意证明即可;(2)依据新定义把,AG BC的坐标表示出来再运算证明即可;(3)掌握平面向量的模的运算和三角函数的最值求法即可解答.【小问1详解】证明:设(,)(cos ,sin ),(,)(cos ,sin )a m n r r b p q R R ααββ====(0,0,,r R αβ>>分别为x 轴正方向逆时针到,a b所成的角,且,[0,2)αβπ∈),则cos cos sin sin cos()mp nq Rr Rr Rr αβαβαβ-=-=+,cos sin sin cos sin()mq np Rr Rr Rr αβαβαβ+=+=+,于是cos()sin((,))Rr a b Rr c αβαβ=++=※,即c Rr a b ==⨯,x 轴正方向逆时针到c 所成的角为αβ+.故:c 是这样一个向量:把a的模变为原来的 b 倍,并按逆时针方向旋转β角(β为x 轴正方向逆时针到b所成的角,且02πβ≤<).例如,1(,),22a b == ,则111,1222((0,2)2c a b ⨯+=== ※,1,2a b == ,a 与x 轴正方向的夹角为π3,b 与x 轴正方向的夹角为6π,将a的模变为原来的2倍,并按逆时针旋转π6,即可得c .【小问2详解】证明:记(,),(,)AB m n AC p q ==,根据新定义,可得()3π3πcos ,sin ,22AD AB n m λλλ⎛⎫==- ⎪⎝⎭ ※,同理(cos ,sin )(,)22q p A AE C ππλλλ==- ※,所以1()()()()222n q p m AG A AD E λλ--=+= ,而(,)BC AC AB p m q n =-=--,所以1[()()()()]02AG BC p m n q q n p m λλ⋅=--+--= ,故:AG BC ⊥.【小问3详解】解:设(,)B u v ,则224,(3,)u v AB u v +==+,())3ππ13cos ,sin 3,,,33222222u u v AC AB u v λ⎛⎫⎛++⎛⎫==+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭※※,所以333(3)33333(3,0)(,)(,)222222u u v u v OC OA AC ++--++=+=-+-+=,所以OC ===.设2cos ,2sin (02)u v θθθπ==≤<,则OC == ,当πsin 16θ⎛⎫+= ⎪⎝⎭,即π3θ=时,max 5OC = .【点睛】此题考查了圆的参数方程;平面向量数量积的性质,以及三角函数最值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届河南省名校联盟高三11月教学质量检测数学
(理)试题
一、单选题
1.已知集合{|20}A x x =-<,2{|20}B x x x =--<,则A B =( )
A .()2-∞,
B .()1-∞,
C .(21)-,
D .(12)-,
【答案】D
【解析】先求出集合={|12}B x x -<<,再与集合A 求交,
【详解】
本题主要考查集合的运算和一元二次不等式的解法.
因为{|20}={|2}A x x x x =-<<,
2{|20}B x x x =--<={|12}x x -<<,
所以{|12}B x x A -<<⋂=.
故选:D
【点睛】
本题考查解二次不等式,考查集合的交集。
属于基础题.
2.复平面内表示复数1212i
z i -+=的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
【答案】C
【解析】直接利用复数代数形式的乘除运算化简,再求出z 的坐标得答案.
【详解】 因为2
12i (12i)34
i 12i (12i)(12i)55z --===--++-, 所以复数1212i
z i -=+所对应的复平面内的点为34,55Z ⎛⎫
-- ⎪⎝⎭,位于第三象限.
故选:C .
【点睛】
本题主要考查复数的几何意义,复数的运算,属于基础题.
3.设两个单位向量a b ,的夹角为
23π,则34a b +=( )
A .1
B C D .7 【答案】B 【解析】由222349+24+16a b a a b b +=⋅,然后用数量积的定义,将a b ,的模长和夹角代入即可求解.
【详解】 2222349+24+16=9+24cos
16133
a b a a b b π+=⋅+=, 即3413a b +=.
故选:B
【点睛】 本题考查向量的模长,向量的数量积的运算,属于基础题.
4.设有不同的直线a ,b 和不同的平面α,β,给出下列四个命题:
①若//a α,//b α,则//a b ;
②若//a α,//a β,则//αβ;
③若a α⊥,b α⊥,则//a b ;
④若a α⊥,a β⊥,则//αβ.
其中正确的个数是( )
A .1
B .2
C .3
D .4
【答案】B
【解析】利用空间中线线、线面、面面间的位置关系判断求解即可.
【详解】
对于①,若a ∥α,b ∥α,则直线a 和直线b 可以相交也可以异面,故①错误;
对于②,若a∥α,a∥β,则平面a和平面β可以相交,故②错误;
对于③,若a⊥α,b⊥α,则根据线面垂直性质定理,a∥b,故③正确;
对于④,若a⊥α,a⊥β,则α∥β成立;
故选:B.
【点睛】
本题考查命题真假的判断,考查推理判断能力,是基础题,解题时要认真审题,注意空间思维能力的培养.
5.如图是某市10月1日至14日的空气质量指数趋势图,空气质量指数越小表示空气质量越好,空气质量指数小于100表示空气质量优良,下列叙述中不正确的是()
A.这14天中有7天空气质量优良
B.这14天中空气质量指数的中位数是103
C.从10月11日到10月14日,空气质量越来越好
D.连续三天中空气质量指数方差最大的是10月5日至10月7日
【答案】B
【解析】根据题目给出的折线图的信息对选项进行逐一判断即可得到答案.
【详解】
这14天中空气质量指数小于100的有7天,所以这14天中有7天空气质量优良,故选项A正确;
这14天中空气质量指数的中位数是86121
103.5
2
+
=,故选项B不正确;
从10月11日到10月14日,空气质量指数越来越小,所以空气质量越来越好,故。