场效应管与半导体三极管的比较

合集下载

三极管的特点和场效应管

三极管的特点和场效应管

三极管的特点和场效应管三极管(Transistor)是一种具有放大和开关功能的半导体器件,由二个PN结组成。

它是现代电子技术的基础元器件之一,广泛应用于各种电子设备中。

1.放大功能:三极管可以将微弱的输入信号放大为较大的输出信号。

它通过控制基极电流,实现对集电极电流的放大。

这使得三极管在许多电子设备中起到放大器的作用。

2.开关功能:三极管可以实现电路的开关。

当输入信号使得三极管工作于饱和状态时,可以允许电流通过;当输入信号使得三极管工作于截止状态时,可以阻止电流通过。

这使得三极管在数字电路中起到开关的作用。

3.快速响应速度:三极管具有快速的开关速度和放大速度。

这使得它在高频电路中应用广泛,如射频放大器、电视机、收音机等。

4.小尺寸和轻量级:三极管较小且轻便,容易与其他电子器件集成在一起,实现各种电子设备的小型化。

5.高可靠性:三极管的制造工艺和材料选择使其具备较高的可靠性和稳定性,可以长时间稳定工作。

6.低功耗:三极管的特性使其能够在低功耗条件下工作,这在一些电池供电的设备中尤为重要。

除了三极管,还有另一种重要的半导体器件,即场效应管(Field-Effect Transistor,简称FET)。

场效应管也具有放大和开关功能,但与三极管相比,它具有以下特点:1.输入电阻高:场效应管的输入电阻非常高,几乎没有输入电流。

这使得场效应管可以在高输入阻抗的条件下进行信号放大,可以有效减小电路的负载效应。

2.低功耗:由于场效应管的输入电流非常低,可以在低功耗条件下工作。

这使得场效应管在需要长时间工作且能耗要求低的场合中非常有用。

3.容易控制:场效应管的放大和开关动作都是通过输入电场控制的。

与三极管相比,通过输入电场控制更容易实现。

4.可选择性强:场效应管有多种类型,如MOSFET、JFET等,可以根据需要选择不同类型的场效应管来满足不同需求。

5.输出电阻低:场效应管的输出电阻低,可以有效降低输出电压波动,提升信号质量。

第3讲 半导体三极管和场效应管

第3讲 半导体三极管和场效应管

模 拟 电 子 技 术
3. U(BR)CEO — 基极开路时 C、E 极间反向击穿电压。 间反向击穿电压。 、 ) U(BR)CBO — 发射极开路时 C、B 极间反向击穿电压。 间反向击穿电压。 、 ) U(BR)EBO — 集电极极开路时 E、B 极间反向击穿电压。 间反向击穿电压。 、 ) U(BR)CBO > U(BR)CEO > U(BR)EBO ) ) )
2 4 6
1. 截止区: 截止区: IB ≤ 0 IC = ICEO ≈ 0 条件: 条件:两个结反偏
ICEO
O
IB = 0
8 /V
模 拟 电 子 技 术
4 3 2 1
iC / mA 50 µA 放大区 40 µA 30 µA 20 µA 10 µA 截止区
2 4 6
2. 放大区: 放大区:
N 沟道 JFET
P 沟道 JFET
模 拟 电 子 技 术
二、 MOS 场效应管 一、增强型 N 沟道 MOSFET (Mental Oxide Semi— FET) )
G D B S D
N+
1. 结构与符号
S
N+
G
耗 尽 层
(掺杂浓度低) 掺杂浓度低)
P 型衬底
用金属铝引出 用扩散的方法 在绝缘层上喷金属 在硅片表面生一层 SiO2 和漏极 铝引出栅极 G D 薄制作两个 N 区 源极 S 绝缘层 S — 源极 Source G — 栅极 Gate D — 漏极 Drain
xyz (a)
xyz
图2.3.1
(b)
模 拟 电 子 技 术 提示: 提示: (1)晶体管工作于放大状态的条件:NPN管:VC> )晶体管工作于放大状态的条件: 管 VB>VE,PNP管:VE>VB>VC;( )导通电压:硅管 BE|= ;(2)导通电压:硅管|V 管 0.6~0.7V,硅管 BE|= 0.2~0.3V, ,硅管|V ,

场效应管

场效应管

一、复习引入三极管是电流控制型器件,使用时信号源必须提供一定的电流,因此输入电阻较低,一般在几百~几千欧左右。

场效应管是一种由输入电压控制其输出电流大小的半导体器件,所以是电压控制型器件;使用时不需要信号源提供电流,因此输入电阻很高(最高可达1015Ω),这是场效应最突出的优点;此外,还具有噪声低、热稳定性好、抗辐射能力强、功耗低优点,因此得到了广泛的应用。

按结构的不同,场效应管可分为绝缘栅型场效管(IGFET)和结型场效应管(JFET)两大类,它们都只有一种载流子(多数载流子)参与导电,故又称为单极型三极管。

二、新授(一)N沟道增强型绝缘栅场效应管MOSFET1.结构和符号图1(a)是N沟道增强型绝缘栅场效应管的结构示意图,它以一块掺杂浓度较低的P型硅片作为衬底,利用扩散工艺在P型衬底上面的左右两侧制成两个高掺杂的N 区,并用金属铝在两个N区分别引出电极,分别作为源极s和漏极d ;然后在P型硅片表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏源极之间的绝缘层上再喷一层金属铝作为栅极g,另外在衬底引出衬底引线B(它通常在管内与源极s相连接)。

可见这种管子的栅极与源极、漏极是绝缘的,故称绝缘栅场效应管。

这种管子由金属、氧化物和半导体制成,故称为MOSFET,简称MOS管。

不难理解,P沟道增强型MOS管是在抵掺杂的N型硅片的衬底上扩散两个高掺杂的P区而制成。

(a)N沟道结构示意图(b) N沟道符号(c)P沟道符号图1 N沟道增强型MOS管的结构与符号图1 (b)、(c)分别为N沟道、P沟道增强型MOS管的电路符号。

2.工作原理与特性曲线以N沟道增强型MOS管为例讨论其工作原理。

(1)工作原理工作时,N沟道增强型MOS管的栅源电压u GS和漏源电压u DS均为正向电压。

当u GS=0时,漏极与源极之间无导电沟道,是两个背靠的PN结,故即使加上u DS,也无漏极电流,i D=0,如图2(a)当u GS>0且u DS较小时,在u GS作用下,在栅极下面的二氧化硅层中产生了指向P型衬底,且垂直于衬底的电场,这个电场排斥靠近二氧化硅层的P型衬底中的空穴(多子),同时吸引P型衬底中的电子(少子)向二氧化硅层方向运动。

二极管、三极管与场效应管

二极管、三极管与场效应管

电子元器件知识:二极管、三极管与场效应管。

一、半导体二极管2、半导体二极管的分类分类:a 按材质分:硅二极管和锗二极管;b按用途分:整流二极管,检波二极管,稳压二极管,发光二极管,光电二极管,变容二极管。

3、半导体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的半导体二极管。

4、半导体二极管的导通电压是:a;硅二极管在两极加上电压,并且电压大于0.6V时才能导通,导通后电压保持在0.6-0.8V之间.B;锗二极管在两极加上电压,并且电压大于0.2V时才能导通,导通后电压保持在0.2-0.3V之间.5、半导体二极管主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。

6、半导体二极管可分为整流、检波、发光、光电、变容等作用。

7、半导体二极管的识别方法:a;目视法判断半导体二极管的极性:一般在实物的电路图中可以通过眼睛直接看出半导体二极管的正负极.在实物中如果看到一端有颜色标示的是负极,另外一端是正极.b;用万用表(指针表)判断半导体二极管的极性:通常选用万用表的欧姆档(R﹡100或R﹡1K),然后分别用万用表的两表笔分别出接到二极管的两个极上出,当二极管导通,测的阻值较小(一般几十欧姆至几千欧姆之间),这时黑表笔接的是二极管的正极,红表笔接的是二极管的负极.当测的阻值很大(一般为几百至几千欧姆),这时黑表笔接的是二极管的负极,红表笔接的是二极管的正极.c;测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。

8、变容二极管是根据普通二极管内部“PN结”的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管。

变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高频信号上,并发射出去。

在工作状态,变容二极管调制电压一般加到负极上,使变容二极管的内部结电容容量随调制电压的变化而变化。

三极管_与结型场效应管__概述及解释说明

三极管_与结型场效应管__概述及解释说明

三极管与结型场效应管概述及解释说明1. 引言1.1 概述三极管和结型场效应管是现代电子技术中最常用的两种电子元件。

它们在电子设备中扮演着重要的角色,起到放大、开关和调节电流等功能。

本文将对三极管和结型场效应管进行概述,并比较它们之间的区别和应用范围。

1.2 文章结构本文共分为五个部分:引言、三极管的概述、结型场效应管的概述、三极管与结型场效应管之间的比较以及结论和总结。

在接下来的内容中,我们将详细介绍这些内容以帮助读者更好地理解三极管和结型场效应管。

1.3 目的本文旨在全面介绍三极管和结型场效应管的原理、特点和应用,并通过比较它们之间的差异来帮助读者了解如何选择合适的元件来满足特定的需求。

此外,本文还会展望未来这两种元件在电子领域中可能存在的发展趋势和研究方向。

通过阅读本文,读者将能够对三极管和结型场效应管有更深入的认识,以在实际应用中做出明智的选择和决策。

2. 三极管的概述:2.1 原理及特点:三极管是一种电子器件,由PNP或NPN型晶体管构成。

它的基本原理是通过不同控制信号的变化来改变电流和电压的放大作用。

三极管具有增益高、工作稳定等特点,被广泛应用于放大、开关以及时钟电路等领域。

2.2 三极管的分类:根据结构和工作原理,三极管可分为常规PNP和NPN型三极管、功率三极管以及场效应晶体管。

常规PNP和NPN型三极管中,PNP型在基区加正电压时控制主流进入集电区,而NPN型则是通过负电压控制主流。

功率三极管通常用于高频放大器、发射机及功率放大器等需要处理较大功率信号的场合。

场效应晶体管是另一类重要的三极管类型, 它根据结构和工作原理分为增强型场效应晶体管(n-channel MOSFET)和耗尽型场效应晶体管(p-channel MOSFET)两种。

2.3 三极管的应用:由于其高度可控性和放大能力,在电子领域中广泛应用。

三极管可作为放大器使用,将弱信号放大到足够的大小以便驱动其他元件。

此外,它们还常用于开关电路中,通过控制输入信号来控制输出电流的通断。

半导体三极管和场效应管(1)

半导体三极管和场效应管(1)
击穿电压。
BUCES——基射极间短路时, 集电极-发射极间的反向击穿电压。 BUEBO——集电极开路时, 发射极-基极间的反向击穿电压, 此
电压一般较小, 仅有几伏左右。 上述电压一般存在如下关系:
BUCBO BUCES BUCEO BU EBO
2.2 单极型半导体三极管
场效应管(简称FET)是利用输入电压产生的电场效应来控制输 出电流的,所以又称之为电压控制型器件。它工作时只有一种载流子 (多数载流子)参与导电,故也叫单极型半导体三极管。因它具有很 高的输入电阻,能满足高内阻信号源对放大电路的要求,所以是较理 想的前置输入级器件。它还具有热稳定性好、功耗低、噪声低、制造 工艺简单、便于集成等优点,因而得到了广泛的应用。
一般硅三极管的穿透电流小于1μA, 在特性曲线上无法 表示出来。锗三极管的穿透电流约几十至几百微安。
当发射结反向偏置时, 发射区不再向基区注入电子, 则三 极管处于截止状态。所以, 在截止区, 三极管的两个结均处
于反向偏置状态。对NPN三极管, UBE<0, UBC<0。
(2) 放大区。
此时发射结正向运用, 集电结反向运用。 在曲线上是
2.37 1.16
1.74
0.983
1.77
2.1.2 三极管的特性曲线
Rc IC +
mA

Rb
IB
A


UCCBiblioteka UBBuBEV -
V UCE -
图 2 – 6 三极管共发射极特性曲线测试电路
1.
当UCE不变时, 输 入回路中的电流IB与 电压UBE之间的关系曲
线称为输入特性, 即
IB / mA
IE/mA 0 0.01 0.57 1.16 1.77 2.37 2.96

常用场效应管与三极管参数

常用场效应管与三极管参数

常用场效应管与三极管参数一、场效应管(MOSFET)场效应管是一种基于场效应原理工作的半导体器件。

它具有高输入阻抗、低输出阻抗和良好的高频响应。

场效应管有N沟道和P沟道两种类型。

常用的N沟道场效应管为N-沟道金属氧化物半导体场效应管(NMOS),而常用的P沟道场效应管为P-沟道金属氧化物半导体场效应管(PMOS)。

1. 阈值电压(Vth)- 阈值电压是场效应管的一个重要参数。

它指的是在场效应管的控制电压达到一定程度时,导电性开始有效的电压。

对于NMOS,控制电压高于阈值电压时,NMOS将开启,并使电流通过。

而对于PMOS,控制电压低于阈值电压时,PMOS将开启,并使电流通过。

2. 饱和电流(IDsat)- 饱和电流是场效应管导通时的最大电流。

当场效应管被完全点通时,达到饱和电流的最大值。

它决定了场效应管的能力和性能。

3. 导通电阻(Ron)- 导通电阻指的是场效应管在线性区域时的等效电阻。

导通电阻越小,线性区域的电流控制能力越强。

4. 最大漏极-源极电压(Vdsmax)- 最大漏极-源极电压是场效应管可以承受的最大电压。

超过这个电压,场效应管可能损坏。

5. 输出电容(Coss)- 输出电容是场效应管的一种内部电容。

它与频率响应和开关速度有关。

较大的输出电容可能导致电压上升和下降的延迟。

6. 开关时间(ton、toff)- 开关时间指场效应管从关闭到打开的时间和从打开到关闭的时间。

开关时间越短,场效应管的开关速度越快。

7.漏极电流-漏极电压特性(Id-Vd)-这个特性曲线描述了场效应管的非线性特性。

在不同的漏极电压下,漏极电流的变化将给出场效应管的工作区域。

二、三极管(BJT)三极管是一种基于电流控制原理工作的半导体器件。

它由基极(B)、发射极(E)和集电极(C)三个区域组成。

常见的三极管有NPN和PNP两种类型。

1.饱和电流增益(β)-饱和电流增益是指集电极电流与基极电流之间的比率。

它决定了三极管的放大能力。

电子管,晶体管,三极管,场效应管,MOS以及CMOS的区别和联系

电子管,晶体管,三极管,场效应管,MOS以及CMOS的区别和联系

电子管,晶体管,三极管,场效应管,MOS以及CMOS的区别和联系
电子管:一种在气密性封闭容器中产生电流传导,利用电场对真空中的电子流的作用以获得信号放大或振
荡的电子器件,常用于早期电子产品中。

晶体管(transistor):一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。

晶体管作为一种可变开关,基于输入的电压,控制流出的电流,因此晶体管可做为电流的开关,和一般机械开关(如Relay、switch)不同处在于晶体管是利用电讯号来控制,而且开关速度可以非常
之快,在实验室中的切换速度可达100GHz以上。

电子管与晶体管代表了电子元器件发展过程中的两个阶段:电子管——晶体管——集成电路。

电子管可分为电子二极管,电子三极管等,晶体管也分为半导体二极管,半导体三极管等。

三极管:半导体三极管的简称,是一种电流控制型半导体器件,由多子和少子同时参与导电,也称双极型
晶体管(BJT)或晶体三极管。

场效应管(FET):Field Effect Transistor,一种电压控制型半导体器件,由多数载流子参与导电,也称为单极
型晶体管。

MOS:场效应管的一种。

CMOS:互补金属氧化物半导体,是一种类似MOS管设计结构的多MOS结构组成的电路,是一种由无数
电子元件组成的储存介质。

场效应管和三极管的异同

场效应管和三极管的异同

场效应管和三极管的异同1.引言1.1 概述概述:场效应管和三极管是现代电子器件中常用的两种晶体管。

它们都是半导体器件,具有放大、开关、调节电流等功能。

虽然场效应管和三极管都属于晶体管的范畴,但它们在结构、工作原理和特性等方面存在一定的不同。

场效应管,又称为晶体管的一种,是一种基于电场调控电流的半导体器件。

场效应管的主要组成部分包括栅极、源极和漏极。

通过在栅极上施加电压来改变栅极和漏极之间的电场强度,从而控制漏极电流的大小。

场效应管具有高输入阻抗、低噪声、低功耗等优点,在许多应用中得到了广泛的应用。

而三极管是另一种常见的晶体管类型,也被称为双向晶体管。

它由三个掺杂不同的半导体材料层叠而成,主要包括基极、发射极和集电极。

通过控制基极电流来控制发射极和集电极之间的电流放大倍数。

三极管具有高电流放大倍数、可靠性高等特点,被广泛应用于放大、开关和稳压等电路。

在工作原理上,场效应管是通过改变栅极电压来调节漏极-源极之间的电流,而三极管则是通过调节基极电流来控制发射极-集电极之间的电流。

由于两者的工作原理不同,它们的特性表现也有所区别。

总结起来,场效应管和三极管在结构、工作原理和特性等方面存在明显的差异。

场效应管主要通过改变电场来调节电流,而三极管则是通过改变电流来实现电流放大。

尽管存在差异,但它们都是现代电子器件中不可或缺的重要组成部分,两者在电子领域中都有着广泛的应用。

在接下来的章节中,我们将更加深入地探讨场效应管和三极管的工作原理、特性以及它们在实际应用中的优劣势。

1.2 文章结构文章结构:本文主要围绕场效应管和三极管展开讨论,分为引言、正文和结论三个部分。

引言部分首先对场效应管和三极管进行了概述,介绍了它们的基本特点和在电子学中的应用。

接着,介绍了本文的结构以及各个部分的内容和目的。

正文部分分为两个小节,分别讨论了场效应管和三极管的特点和工作原理。

在场效应管部分,我们将重点探讨了它的两个要点。

第一个要点将介绍场效应管的基本结构和工作原理,包括栅极、漏极和源极的作用以及通过改变栅极电压控制漏电流。

场效应管的问题点解答

场效应管的问题点解答

场效应管的问题点解答1 场效应管的性能与双极型三极管比较具有哪些特点?答:场效应管是另一种半导体放大器件。

在场效应管中只是多子参与导电,故称为单极型三极管;而普通三极管参与导电的,既有多数载流子,又有少数载流子,故称为双极型三极管。

由于少数载流子的浓度易受温度的影响,因此,在温度稳定性、低噪声等方面前者优于后者。

2.双极型三极管是电流控制器件,通过控制基极电流到达控制输出电流的目的。

因此,基极总有一定的电流,故三极管的输人电阻较低;场效应管是电压控制器件,其输出电流决定于栅源极之间的电压,栅极基本上不取电流,因此,它的输入电阻很高,可达109~1014Ω。

高输入电阻是场效应管的突出优点。

3.场效应管的漏极和源极可以互换,耗尽型绝缘栅管的栅极电压可正可负,灵活性比双极型三极管强。

4 场效应管和三极管都可以用于放大或作可控开关。

但场效应管还可以作为压控电阻使用,可以在微电流、低电压条件下工作。

且便于集成。

在大规模和超大规模集成电路中应用极为广泛。

2 场效应管的伏安特性如何表示?试以N沟道结型场效应管为例,说明场效应管的输出特性曲线与双极型三极管的输出特性有和区别?答:场效应管的伏安特性用输出特性(又称漏极特性)Id=f(Vds)|Vgs=常数和转移特性Id=f(Vgs)|Vds=常数表示。

它们都反映了场效应管工作的同一物理过程,转移特性可以直接从输出特性上用作图法?一对应地求出。

N沟道结型场效应管的输出特性曲线与双极型三极管的输出特性相比有类似之处,但有区别,详见表 1.3.2。

3 何为场效应管的开启电压Vt和夹断电压Vp? 在图1.3.3(a)和(b)所示场效应管的输出特性曲线上如何确定其值?答:对于增强型绝缘栅型场效应管(MOSFET),在Vgs=0时不存在导电沟道,只有当Vgs达到开启电压Vt时才有漏极电流Id。

因此,在输出特性中, Id大于或等于零(即开始出现Id)时所对应的Vgs值即为开启电压计。

三极管及场效应管原理及参数

三极管及场效应管原理及参数

晶体三极管一、三极管的电流放大原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。

而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。

图1、晶体三极管(NPN)的结构图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b 和集电极。

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。

在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。

由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。

三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。

电路中三极管、场效应管放大功能的区别

电路中三极管、场效应管放大功能的区别

电路中三极管、场效应管放大功能的区别
三极管和场效应管都是常见的放大器件,但它们的工作原理和放大功能有所区别。

1. 工作原理:
三极管是一种双极型半导体器件,通过控制少数载流子对多数载流子的注入和流动,实现电流放大。

三极管的放大功能依赖于基极电流控制集电极电流的特性。

场效应管是一种单极型半导体器件,通过控制栅极电压调节通道中的电子浓度和电导率,实现电流放大。

场效应管的放大功能依赖于栅极电压控制漏极电流的特性。

2. 调节方式:
三极管中,放大比例通常是通过改变基极电流实现的。

基极电流的小幅度变化能够导致较大范围的集电极电流变化,实现对信号的放大。

场效应管中,放大比例主要是通过改变栅极电压实现的。

栅极电压的变化会调节漏极电流,从而实现对信号的放大。

3. 运行电压:
三极管通常需要一个较高的工作电压,如数十伏甚至上百伏的电压,以使其工作在适当的工作区间。

场效应管相比之下,通常可以在较低的电压下工作。

4. 输入电阻:
三极管的输入电阻较低,对输入信号的衰减较小,适用于输入信号比较弱的情况。

场效应管的输入电阻较高,对输入信号的影响较小,适用于输入信号比较强的情况。

总的来说,三极管和场效应管在放大功能上虽然有所区别,但它们都可以实现电流或电压的放大。

具体使用哪种放大器件,需要根据具体的应用和设计要求来选择。

场效应管与三极管

场效应管与三极管

场效应管 与 三极管场效应管是在三极管的基础上而开发出来的。

三极管通过电流的大小控制输出,输入要消耗功率。

场效应管是通过输入电压控制输出,不消耗功率。

场效应管和三极管的区别是电压和电流控制,但这都是相对的。

电压控制的也需要电流,电流控制的也需要电压,只是相对要小而已。

就其性能而言,场效应管要明显优于普通三极管,不管是频率还是散热要求,只要电路设计合理,采用场效应管会明显提升整体性能。

1、三极管是双极型管子,即管子工作时内部由空穴和自由电子两种载流子参与。

场效应管是单极型管子,即管子工作时要么只有空穴,要么只有自由电子参与导电,只有一种载流子;2、三极管属于电流控制器件,有输入电流才会有输出电流;场效应管属于电压控制器件,没有输入电流也会有输出电流;3、三极管输入阻抗小,场效应管输入阻抗大;4、有些场效应管源极和漏极可以互换,三极管集电极和发射极不可以互换;5、场效应管的频率特性不如三极管;6、场效应管的噪声系数小,适用于低噪声放大器的前置级;7、如果希望信号源电流小应该选用场效应管,反之则选用三极管更为合适。

场效应管是场效应晶体管(Field Effect Transistor,FET)的简称。

它属于电压控制型半导体器件,具有输入电阻高、噪声小、功耗低、没有二次击穿现象、安全工作区域宽、受温度和辐射影响小等优点,特别适用于高灵敏度和低噪声的电路,现已成为普通晶体管的强大竞争者。

普通晶体管(三极管)是一种电流控制元件,工作时,多数载流子和少数载流子都参与运行,所以被称为双极型晶体管;而场效应管(FET)是一种电压控制器件(改变其栅源电压就可以改变其漏极电流),工作时,只有一种载流子参与导电,因此它是单极型晶体管。

场效应管和三极管一样都能实现信号的控制和放大,但由于他们构造和工作原理截然不同,所以二者的差异很大。

在某些特殊应用方面,场效应管优于三极管,是三极管无法替代的,三极管与场效应管区别见下表。

第4讲晶体三极管及场效应管

第4讲晶体三极管及场效应管

2. 绝缘栅型场效应管
增强型管
大到一定 值才开启
高掺杂 耗尽层 空穴
衬底 SiO2绝缘层
反型层
uGS增大,反型层(导电沟道)将变厚变长。当 反型层将两个N区相接时,形成导电沟道。
动画演示
增强型MOS管uDS对iD的影响
刚出现夹断
iD随uDS的增 大而增大,可
uGD=UGS(th), 预夹断
变电阻区
夹断 电压
在恒流区iD时 ID, O(UuGGSS(th)1)2 式中 IDO为uGS2UGS(t时 h) 的 iD
3. 场效应管的分类 工作在恒流区时g-s、d-s间的电压极性
结型PN沟 沟道 道((uuGGS> S<00, ,uuDDS< S>00)) 场效应管 绝缘栅型 耗 增尽 强型 型 PPN N沟 沟 沟 沟道 道 道 道((((uuuuG GG GSS< 极 SS> 极00, 性 , 性uu任 D任 DS< S> 意 意 00)u)u, , DDS< S>00))


低频跨导:
夹断区(截止区)
iD几乎仅决 定于uGS
击 穿 区
夹断电压
gm
iD uGS
UDS常量
不同型号的管子UGS(off)、IDSS 将不同。
动画演示Байду номын сангаас
(1)可变电阻区
i
是uDS较小,管子尚未预夹断时
的工作区域。虚线为不同uGS是预夹
断点的轨迹,故虚线上各点
uGD=UGS(off),则虚线上各点对应的 uDS=uGS-UGS(off)。
uDS的增大几乎全部用 来克服夹断区的电阻
iD几乎仅仅 受控于uGS,恒 流区
用场效应管组成放大电路时应使之工作在恒流区。N 沟道增强型MOS管工作在恒流区的条件是什么?

场效应管与三极管的比较

场效应管与三极管的比较
值将减小很多。
6.场效应管的噪声系数很小,在低噪声放大电路的输入级及要求信噪比较高的电路中要选用场效应管。
7.场效应管和三极管均可组成各种放大电路和开关电路,但由于前者制造工艺简单,且具有耗电少,热稳定性好,工作电源电压范围宽等优点,因而被广泛用于大规模和超大规模集成电路中。
总起来说,在设计场效应管电路时需要考虑的更多Байду номын сангаас比如由于其输入阻抗高,就必须要考虑电路的抗干扰性能,正是因为输入阻抗太高所以小小的一点干扰即可造成mos管的一个动作,还有就是场效应管无法做到像三极管那么高的电压,当然现在的三极管和场效应管复合型器件IGBT已经能做到很高的电压了,mos管由于其特性比较适合做开关用,在低功耗产品中比三极管有优势。
1.场效应管的源极S、栅极G、漏极D分别对应于三极管的发射极E、基极B、集电极C,它们的作用相似。
2.场效应管是电压控制电流器件,由VGS控制iD,其放大系数gm一般较小,因此场效应管的放大能力较差;三极管是电流控制电流器件,由iB(或iE)控制iC。驱动能力强。
3.场效应管栅极几乎不取电流(ig>>0);而三极管工作时基极总要吸取一定的电流。因此场效应管的输入电阻比三极管的输入电阻高。
4.场效应管只有多子参与导电;三极管有多子和少子两种载流子参与导电,因少子浓度受温度、辐射等因素影响较大,所以场效应管比三极管的温度稳定性好、抗辐射能力强。在环境条件(温度等)变化很大的情况下应选用场效应管。
5.场效应管在源极未与衬底连在一起时,源极和漏极可以互换使用,且特性变化不大;而三极管的集电极与发射极互换使用时,其特性差异很大, b

场效应管和三极管

场效应管和三极管

一、三极管是电流控制器件,场效应管是电压控制器件。

二、三极管是双极性器件,场效应管是单极性器件。

三、场效应管受外界温度、辐射影响较小,因此场效应管比三极管更稳定。

四、三极管适用于分立元件的电路,而场效应管更适用于集成电路。

五、三极管的输入电阻比场效应管要小。

六、三极管的噪声系数比场效应管要大。

三极管和场效应管的主要区别在于三极管的放大或者开关功能依赖基极的电流分量。

场效应管的放大和开关功能依赖于栅极的电压分量。

其他还有开关时间特性的区别,一般晶体三极管大电流的开关速度远比不上场效应管。

场效应管和三极管输入电阻有差异。

.场效应管是单极;三极管是双极。

场效应管是电压控制电流源,控制电压和电流属于不同的支路,因而电压的求解一般不难(有时是与受控电流有关的表达式),进而根据漏极电流表达式来求出电流值,然后进行模型分析,求出跨导和输出电阻。

而三极管要先建立模型,然后进行电路分析,求解过程特别是计算很复杂,容易出错;总体而言,场效应管的分析要比三极管简单一些。

三.极管和场效应管的比较可以归纳以下几点:1)、在三极管中,空穴和自由电子都参与导电,称为双极型器件,用BJT表示;而场效应管只有多子导电,称为单极型器件,用FET表示。

由于多子浓度不受外界温度、光照、辐射的影响,在环境变化剧烈的条件下,选用FET比较合适。

这也就是我们通常所说的场效应管比较稳定的原因。

2)、在放大状态工作时,三极管发射结正偏,有基极电流,为电流控制器件,相应的输入电阻较小,约103Ω;FET在放大状态工作时无栅极电流,为电压控制器件,输入电阻很大,JFET的输入电阻大于107Ω,MOS管的输入电阻大于109Ω。

3)、场效应管的源极和漏极在结构上对称,可以互换使用(但应注意,有时厂家已将MOS管的源极与衬底在管内已经短接,使用时就不能互换)。

对耗尽型MOS管的VGS可正、可负、可为零,使用时比较灵活。

三极管的集电极和发射极一般不能互换使用。

MOS管与三极管的区别 作用 特性 参数 选用注意与事项

MOS管与三极管的区别 作用 特性 参数 选用注意与事项

MOS管与TVS管综合信息三极管和MOS管的区别MOS管的特性、工作原理,与真空电子管类似:栅极没有电流,即没有输入电流,具有高输入阻抗;漏极电流由栅极电压控制,是电压控制器件……半导体三极管是两个P-N结组成,由基极电流来控制集电极电流,是一个电流控制器件;基极输入的是电流,输入阻抗低,需要输入功率……工作性质:1、三极管用电流控制,MOS管属于电压控制,2、成本问题:三极管便宜,mos管贵。

3、功耗问题:三极管损耗大。

4、驱动能力:mos管常用来电源开关,以及大电流地方开关电路。

实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。

MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。

一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管四、场效应管的作用1、场效应管可应用于放大。

由于场效应管放大器的输进阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。

2、场效应管很高的输进阻抗非常适合作阻抗变换。

常用于多级放大器的输进级作阻抗变换。

3、场效应管可以用作可变电阻。

4、场效应管可以方便地用作恒流源。

5、场效应管可以用作电子开关。

MOS集成电路)极易被静电击穿,使用时应留意以下规则:(1). MOS器件出厂时通常装在玄色的导电泡沫塑料袋中,切勿自行随便拿个塑料袋装。

也可用细铜线把各个引脚连接在一起,或用锡纸包装(2).取出的MOS器件不能在塑料板上滑动,应用金属盘来盛放待用器件。

(3). 焊接用的电烙铁必须良好接地。

(4). 在焊接前应把电路板的电源线与地线短接,再MOS器件焊接完成后在分开。

(5). MOS器件各引脚的焊接顺序是漏极、源极、栅极。

拆机时顺序相反。

(6).电路板在装机之前,要用接地的线夹子往碰一下机器的各接线端子,再把电路板接上往。

(7). MOS场效应晶体管的栅极在答应条件下,最好接进保护二极管。

在检验电路时应留意查证原有的保护二极管是否损坏实际上说电流控制慢,电压控制快这种理解是不对的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科技信息SCIENCEINFORMATION2007年第11期
场效应管与半导体三极管的比较
齐浩李晓利
(郑州职业技术学院河南郑州
450121)
摘要:本文对场效应管与半导体三极管在结构、符号、性能、实际应用等方面做了详细的阐述,两种管子是不能混用的。

关键词:场效应管;三极管;电流控制型器件;电压控制型器件;输入阻抗;集成;稳定性;放大能力场效应晶体管简称场效应管。

它的外型与半导体三极管相似,并兼有半导体三极管体积小,耗电省等特点。

半导体三极管是通过控制基极电流来控制集电极电流的一种电流控制型器件,输入阻抗较低;场效应管是利用输入电压产生的电场效应来控制输出电流的一种它
具有输入阻抗高,热稳定性好,便于集成化等优点而得到广泛应用。

场效应管与半导体三极管虽然都是具有受控作用的半导体器件,但在某些方面两者却表现出较大的差异。

第一,场效应管与半导体三极管在机构和分类方面是不同的。

半导体三极管按极性分为NPN型和PNP型,不论是什么极性的,
半导体三极管的结构都可用六个字概括,即三区、三极、两结。

三区指
发射区、基区、集电区;三极指发射极、
基极、集电极;两结指发射结和集电结。

其实,半导体三极管就是由两个PN结构成,然后分别从三个区引出三个电极,最后再加以密封就成了。

国产的三极管的型号由五部分组成,如3DG130C。

半导体三极管的符号如下图所示:
根据电场对导电沟道控制方法的不同,场效应管可分为结型和绝
缘栅型两种。

结型场效应管是利用PN结反向电压对耗尽层厚度的控制,来改变导电沟道的宽窄,从而控制漏极电流的大小;而绝缘栅型场效应管则是利用栅源电压的大小来控制沟道厚度,以达到控制漏极电流的目的。

结型场效应管又可分为N沟道结型场效应管和P沟道结型场效应管;绝缘栅型场效应管的栅极与源极和漏极之间是完全绝缘的,目前应用最广泛的绝缘栅型场效应管是金属—氧化物—半导体场效应管,简称MOS管,它分为N沟道增强型场效应管、N沟道耗尽型场效应管、P沟道增强型场效应管、P沟道耗尽型场效应管。

场效应管的型号为3DJ,3DO,CS等后加序号和规格号表示。

场效应管的图形符号如下图所示:
第二,场效应管与半导体三极管的工作原理不同。

场效应管中是多数载流子导电,或是电子,或是空穴,即只有一种极性的载流子,所以又称为单极型晶体管。

而半导体三极管靠自由电子和空穴两种载流子导电,称为双极型晶体管。

场效应管的工作原理以N沟道结型场效应管为例,当栅极与源极之间加上一反向偏置电压时,耗尽层厚度增加,这时,导电沟道变窄,沟道电阻增加,漏极电流减小;反之,反向偏置电压减小时,耗尽层
变薄,导电沟道变宽,沟道电阻减小,漏极电流增大。

因此,结型场效应管处在放大状态时,应控制PN结反向偏置状态。

在漏极电压一定时,栅极与源极之间的电压的变化就可以控制漏极电流的变化,若在漏极端再增加一个电阻,那么这个电阻就可以将漏极电流的变化转化为电压的变化。

在模拟电子技术中,半导体三极管主要工作在放大状态。

电流放大作用是三极管的主要特征,要使半导体三极管具有正常的电流放大作用,必须在其发射结上加正向偏置电压,在集电结上加反向偏置电压。

半导体三极管处在放大状态时,集电极电流受基极电流的控制,基极电流改变时,集电极电流也随着改变,集电极电流与集电极电压基本无关。

第三,两者在实际应用方面有差异。

目前,绝缘栅型场效应管应用最广泛,所以在这里主要介绍绝缘栅
型场效应管与半导体三极管的区别。

绝缘栅型场效应管以下简称MOSFET,半导体三极管简称三极管。

1.MOSFET温度稳定性好,而三极管受温度影响较大,因此环境温度变化较的场合下,采用MOSFET更合适。

2.用来放大信号时,三极管输入端的发射结为正向偏置,输入阻抗较小。

而MOSFET输入阻抗极高,因此MOSFET放大级对前级的放大能力影响极小。

3.MOSFET的输入电阻极高,所以一旦栅极上感应少量电荷,就很难泄放掉。

MOSFET绝缘层很薄,极间电容很小,当带电物体靠近栅极时,感应少量电荷就会产生很高的电压,将绝缘层击穿,损害MOS管。

因此使用MOS管时要特别小心。

尤其是焊接MOS管时,电烙铁外壳要良好接地。

管子存放时,应使MOS管栅极与源极短接,避免栅极悬空。

4.三极管由于发射区和集电区结构上的不对称,所以正常使用时,发射极和集电极是不能互换的。

而MOSFET在结构上是对称的,所以源极和漏极可以互换使用。

但要注意,分立的MOSFET,有时已将衬底和源极在管内短接,源极和漏极就不能互换使用了。

5.场效应管放大电路最大最突出的特点是,共源、
共漏和共栅电路的输入电阻高于相应的共发射极、共集电极和共基极电路的输入电
阻。

此外,场效应管还有噪声低、
温度稳定性好、抗辐射能力强等优于三极管的特点,而且便于集成。

场效应管的噪声系数很小,在低噪声放大电路的输入级及要求信噪比较高的电路中要选用场效应管。

必须指出,由于场效应管的低频跨导一般比较小,所以场效应管的放大能力比三极管差,因而共源电路的电压增益往往小于共发射极电路的电压增益。

另外,由于MOS管的栅源极之间的等效电容只有几皮法———几十皮法,而栅源电阻又很大,若有感应电荷,则不易释放,从而形成高压,
以至于栅源极之间的绝缘层击穿,造成管子永久性损坏。

故使用时应注意保护。

参考文献
[1]《
电子技术基础》张龙兴主编.[2]《
电子技术基础》诸林裕主编.●

○科教视野○40。

相关文档
最新文档