中国古代数学的主要成就PPT参考
合集下载
中国古代数学ppt课件
评述
1.巴比伦:60进位的分数 2.埃及:单位分数 3.阿拉伯:主分数,单位分数 ——都未能给出行之有效的分数算法
中算分数算法的特点.
1. 除法运算定义分数 2. 分数概念的两重性 运算结果:独立的数; 运算过程:母与子 3 .基本性质 分子、分母同乘不为零的数,其值不变。 4. 通分——“齐同术” 母互乘子谓之齐,母相乘谓之同
初等数学理论的发展 刘徽:《九章算术注》(264AD) 祖冲之:3.1415926<π<3.1415927
刘 徽(造像)
祖冲之(造像)
隋唐:589-960AD
国家数学教育 国子监:明算科 李淳风:编纂“十部算经” 周髀算经、九章算术、海岛算经 缀术(唐朝佚) 数术记遗(南宋补) 孙子算经、张丘建算经、夏侯阳算经 五曹算经、五经算术 缉古算经
2 注释者
刘徽,魏晋间人,263AD年注释《九章算术》 “徽幼习《九章》,长再详览。观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意。是以敢竭顽鲁,采其所见,为之作注。” ——刘徽:《九章算术注》
祖冲之,祖暅:南北朝,圆周率,球体体积公式 李淳风:唐朝,“十部算经”国子监教科书 杨辉:南宋,《详解九章算法》 吴敬:明,《九章算法比类大全》 李潢:清,《九章算术细草图说》 现代:钱宝琮校点《算经十书》 白尚恕《〈九章算术〉注释》《〈九章算术〉今译》 李继闵《〈九章算术〉与刘徽注研究》《〈九章算术〉校证》 《〈九章算术〉导读与译注》 郭书春:汇校《九章算术》 沈康身:《〈九章算术〉导读》
负数是怎样进入数学的?
盈余与不足、收入与支出、增加与减少是负数概念在生活中的实例,教科书在向学生讲授负数是也多循此途。这就产生一种误解:似乎人类正是从这种具有相反意义的量的认识而引进了负数的。 问题:那个文明最早使用负数?
1.巴比伦:60进位的分数 2.埃及:单位分数 3.阿拉伯:主分数,单位分数 ——都未能给出行之有效的分数算法
中算分数算法的特点.
1. 除法运算定义分数 2. 分数概念的两重性 运算结果:独立的数; 运算过程:母与子 3 .基本性质 分子、分母同乘不为零的数,其值不变。 4. 通分——“齐同术” 母互乘子谓之齐,母相乘谓之同
初等数学理论的发展 刘徽:《九章算术注》(264AD) 祖冲之:3.1415926<π<3.1415927
刘 徽(造像)
祖冲之(造像)
隋唐:589-960AD
国家数学教育 国子监:明算科 李淳风:编纂“十部算经” 周髀算经、九章算术、海岛算经 缀术(唐朝佚) 数术记遗(南宋补) 孙子算经、张丘建算经、夏侯阳算经 五曹算经、五经算术 缉古算经
2 注释者
刘徽,魏晋间人,263AD年注释《九章算术》 “徽幼习《九章》,长再详览。观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意。是以敢竭顽鲁,采其所见,为之作注。” ——刘徽:《九章算术注》
祖冲之,祖暅:南北朝,圆周率,球体体积公式 李淳风:唐朝,“十部算经”国子监教科书 杨辉:南宋,《详解九章算法》 吴敬:明,《九章算法比类大全》 李潢:清,《九章算术细草图说》 现代:钱宝琮校点《算经十书》 白尚恕《〈九章算术〉注释》《〈九章算术〉今译》 李继闵《〈九章算术〉与刘徽注研究》《〈九章算术〉校证》 《〈九章算术〉导读与译注》 郭书春:汇校《九章算术》 沈康身:《〈九章算术〉导读》
负数是怎样进入数学的?
盈余与不足、收入与支出、增加与减少是负数概念在生活中的实例,教科书在向学生讲授负数是也多循此途。这就产生一种误解:似乎人类正是从这种具有相反意义的量的认识而引进了负数的。 问题:那个文明最早使用负数?
刘徽数学成就PPT课件
16
.
三、刘徽的重差术
重差术是中国古代的一种重要测量方法,用以测量不 可到达的距离.刘徽对这一理论进行了总结和提高, 写出重差术专著---《海岛算经》(即《重差》).他在 序言中说:“凡望极高、测绝深而兼知其远者必用重 差.”全书只有九道题,但很有代表性.
例如第一题(译为今文):为测量海岛,立两根3丈 高的标杆,前后相距1000步,令后杆与前杆对 齐.从前杆后退123步,人眼着地看岛峰,视线正好 过杆顶.从后杆后退127步,人眼着地看岛峰,视线 也过杆顶.问岛高和岛离杆的距离各是多少?
20
.
2.注意寻求数学内部的联系.刘徽在《九章算术注》 的序言中说:“事类相推,各有攸归,故枝条虽分而 同本干者,知发其一端而已.”不难看出,他的整个 数学研究都贯穿了这一思想.例如,他把许多平面几 何问题归为出入相补,把许多体积公式的推导归为刘 徽原理,把各种比例问题归为今有术,以及用重差术 的一般方法解决各种测量问题,都是这一思想的体 现.
若译成现代数学语言,这两条即:方程个数必须与未 知数个数一致,任意两个方程的系数不能相同或成比 例.
刘徽还认识到,当方程组中方程的个数少于所求物个
数时,方程组的解不唯一;如果是齐次方程组,则方
程组的解可以成比例地扩大或缩小,即“举率以言
8
之”.
.
对于方程组的性质,刘徽总结出如下诸条:“令每 行为率”,即方程各项成比例地扩大或缩小,不改 变方程组的解;
9
.
3.几何
(1)割圆术 刘徽以前,一般采用周三径一的圆周率,这是很不精
确的.刘徽在《九章算术注》中指出:周三径一的数 据实际是圆内接正六边形周长和直径的比值,不是圆 周与直径的比值.他认为圆内接正多边形的边数越多, 其面积就越接近圆面积.他从这一思想出发,创立了 科学的求圆周率方法---割圆术.具体来说,就是以1 尺为半径作圆,再作圆内接正六边形,然后逐渐倍增 边数,依次算出内接正六边形、正12边形乃至正192 边形的面积.刘徽之所以选半径为1,是为了使圆面 积在数值上等于圆周率,从而简化运算.
.
三、刘徽的重差术
重差术是中国古代的一种重要测量方法,用以测量不 可到达的距离.刘徽对这一理论进行了总结和提高, 写出重差术专著---《海岛算经》(即《重差》).他在 序言中说:“凡望极高、测绝深而兼知其远者必用重 差.”全书只有九道题,但很有代表性.
例如第一题(译为今文):为测量海岛,立两根3丈 高的标杆,前后相距1000步,令后杆与前杆对 齐.从前杆后退123步,人眼着地看岛峰,视线正好 过杆顶.从后杆后退127步,人眼着地看岛峰,视线 也过杆顶.问岛高和岛离杆的距离各是多少?
20
.
2.注意寻求数学内部的联系.刘徽在《九章算术注》 的序言中说:“事类相推,各有攸归,故枝条虽分而 同本干者,知发其一端而已.”不难看出,他的整个 数学研究都贯穿了这一思想.例如,他把许多平面几 何问题归为出入相补,把许多体积公式的推导归为刘 徽原理,把各种比例问题归为今有术,以及用重差术 的一般方法解决各种测量问题,都是这一思想的体 现.
若译成现代数学语言,这两条即:方程个数必须与未 知数个数一致,任意两个方程的系数不能相同或成比 例.
刘徽还认识到,当方程组中方程的个数少于所求物个
数时,方程组的解不唯一;如果是齐次方程组,则方
程组的解可以成比例地扩大或缩小,即“举率以言
8
之”.
.
对于方程组的性质,刘徽总结出如下诸条:“令每 行为率”,即方程各项成比例地扩大或缩小,不改 变方程组的解;
9
.
3.几何
(1)割圆术 刘徽以前,一般采用周三径一的圆周率,这是很不精
确的.刘徽在《九章算术注》中指出:周三径一的数 据实际是圆内接正六边形周长和直径的比值,不是圆 周与直径的比值.他认为圆内接正多边形的边数越多, 其面积就越接近圆面积.他从这一思想出发,创立了 科学的求圆周率方法---割圆术.具体来说,就是以1 尺为半径作圆,再作圆内接正六边形,然后逐渐倍增 边数,依次算出内接正六边形、正12边形乃至正192 边形的面积.刘徽之所以选半径为1,是为了使圆面 积在数值上等于圆周率,从而简化运算.
中国古代数学中的数学文化PPT
书等多种古代珍贵的文献,还有一部数
学著作,据写在一支竹简反面的字迹识 别,这部竹简算书的书名叫?算数书?, 它是中国现存最早的数学专著。经研究 ,它和?九章算术?〔公元1世纪〕有许 多相同之处,体例也是“问题集〞形式 ,大多数题都由问、答、术三局部组成 ,而且有些概念、术语也与?九章算术? 的一样。
先秦时期——中国古代数学的萌芽
2002年湖南龙山里耶战国-秦汉城址考古
• 2002年7月,考古 人员在湖南龙山里
耶战国-秦汉古城 出土了36000余枚 秦简。
先秦时期——中国古代数学的萌芽
秦简 (2002年湖南龙山里耶出土)
• 记录的是秦始皇二十 六年至三十七年〔即
公元前221-前210年 〕的秦朝历史,其中
九九乘法表
• 文学作品中,就有很多“九九〞乘法口诀。 • ?西游记?中,唐僧师徒四人去西天取经,沿途
经历七七四十九劫,九九八十一难。 • ?越王勾践?中,翻过九九八十一座山,渡过八
八六十四条溪,走了七七十九天,终于找到秦 溪山。 • 方言俗语、地方谚语,均能看到乘法表的影子 。 • “六六三十六,阎王接你吃腊肉〞、“不管三七 二十一〞等。
先秦时期——中国古代数学的萌芽
?史记·夏本纪?
大禹治水 (公元前21世纪)
先秦时期——中国古代数学的萌芽
• 在殷墟出土的商代甲骨文中, 有一些是记录数字的文字,说 明中国已经使用了完整的十进 制记数,包括从一至十,以及 百、千、万,最大的数字为三 万。这是对世界数学最伟大的 奉献。
殷墟甲骨上数学 (商代, 公元前1400-前1100年 )
• 如图,Plato对等腰直角三 角形作了证明,他把腰上 两个正方形沿对角线切开 ,所得四个全等的等腰直 角三角形可以拼成原三角 形斜边上的正方形。
学著作,据写在一支竹简反面的字迹识 别,这部竹简算书的书名叫?算数书?, 它是中国现存最早的数学专著。经研究 ,它和?九章算术?〔公元1世纪〕有许 多相同之处,体例也是“问题集〞形式 ,大多数题都由问、答、术三局部组成 ,而且有些概念、术语也与?九章算术? 的一样。
先秦时期——中国古代数学的萌芽
2002年湖南龙山里耶战国-秦汉城址考古
• 2002年7月,考古 人员在湖南龙山里
耶战国-秦汉古城 出土了36000余枚 秦简。
先秦时期——中国古代数学的萌芽
秦简 (2002年湖南龙山里耶出土)
• 记录的是秦始皇二十 六年至三十七年〔即
公元前221-前210年 〕的秦朝历史,其中
九九乘法表
• 文学作品中,就有很多“九九〞乘法口诀。 • ?西游记?中,唐僧师徒四人去西天取经,沿途
经历七七四十九劫,九九八十一难。 • ?越王勾践?中,翻过九九八十一座山,渡过八
八六十四条溪,走了七七十九天,终于找到秦 溪山。 • 方言俗语、地方谚语,均能看到乘法表的影子 。 • “六六三十六,阎王接你吃腊肉〞、“不管三七 二十一〞等。
先秦时期——中国古代数学的萌芽
?史记·夏本纪?
大禹治水 (公元前21世纪)
先秦时期——中国古代数学的萌芽
• 在殷墟出土的商代甲骨文中, 有一些是记录数字的文字,说 明中国已经使用了完整的十进 制记数,包括从一至十,以及 百、千、万,最大的数字为三 万。这是对世界数学最伟大的 奉献。
殷墟甲骨上数学 (商代, 公元前1400-前1100年 )
• 如图,Plato对等腰直角三 角形作了证明,他把腰上 两个正方形沿对角线切开 ,所得四个全等的等腰直 角三角形可以拼成原三角 形斜边上的正方形。
中国数学史 ppt课件
中国现存最早的数学书: 《算数书》 (西汉, 约公元前170年, 1983-1984 年 间 湖 北 江 陵张家山出土)
《周髀算经》
《周髀算经》(西汉, 约公元前100年)
数学内容主要有三方面:
复杂的分数乘除运算
勾股定理的普遍形式 (中国最早关于勾股定理的书面记载) 求邪至日者,以日下为 勾,日高为股,勾股各 自乘,并而开方除之, 得邪至日。
徽率157/50即3.14
《九章算术注》
刘徽的割圆术
《九章算术注》
割圆术(6边形)
《九章算术注》
割圆术(12边形)
《九章算术注》
割圆术(24边形)
《九章算术注》
割圆术(48边形)
《九章算术注》
割圆术(96边形)
《缀术》
刘徽的数学思想和方法,到南北朝时期被祖冲之推进和发展
祖冲之(南朝宋、齐, 429-500)
3.中算发展的第三次高峰 数学全盛时期
社会背景
毕升(北宋, 约970-1051)
毕升发明活字印刷术 (1041—1048)
《九章算术》等雕版算书 出版(1084,1212)
促进了数学著作的保存与 流传
贾宪三角
(北宋,公元11世纪上半叶)
贾宪三角
贾宪:《黄帝九章算术细草》(约1050)
发明“增乘开方法”:
中国传统数学的形成与兴盛: 1世纪——14世纪
将中国传统数学分成3个阶段: ➢《》与《九章算术》 ➢ 刘徽与祖冲之
这分别反映了中国传统数学发展的3次高峰。
1
中国传统数学的发展
《周髀算经》与《九章算术》 刘徽与祖冲之 宋元数学
1.中算发展的第一次高峰
数学体系的形成
秦汉时期:形成中国传统数学体系 《算数书》
《周髀算经》
《周髀算经》(西汉, 约公元前100年)
数学内容主要有三方面:
复杂的分数乘除运算
勾股定理的普遍形式 (中国最早关于勾股定理的书面记载) 求邪至日者,以日下为 勾,日高为股,勾股各 自乘,并而开方除之, 得邪至日。
徽率157/50即3.14
《九章算术注》
刘徽的割圆术
《九章算术注》
割圆术(6边形)
《九章算术注》
割圆术(12边形)
《九章算术注》
割圆术(24边形)
《九章算术注》
割圆术(48边形)
《九章算术注》
割圆术(96边形)
《缀术》
刘徽的数学思想和方法,到南北朝时期被祖冲之推进和发展
祖冲之(南朝宋、齐, 429-500)
3.中算发展的第三次高峰 数学全盛时期
社会背景
毕升(北宋, 约970-1051)
毕升发明活字印刷术 (1041—1048)
《九章算术》等雕版算书 出版(1084,1212)
促进了数学著作的保存与 流传
贾宪三角
(北宋,公元11世纪上半叶)
贾宪三角
贾宪:《黄帝九章算术细草》(约1050)
发明“增乘开方法”:
中国传统数学的形成与兴盛: 1世纪——14世纪
将中国传统数学分成3个阶段: ➢《》与《九章算术》 ➢ 刘徽与祖冲之
这分别反映了中国传统数学发展的3次高峰。
1
中国传统数学的发展
《周髀算经》与《九章算术》 刘徽与祖冲之 宋元数学
1.中算发展的第一次高峰
数学体系的形成
秦汉时期:形成中国传统数学体系 《算数书》
中国古代数学史ppt
“割
的
圆术”和求积理论。
数
割圆术的要旨是用圆内接正多 边形去逐步逼近圆。刘徽从圆
学
内接正六边形出发将边数逐次
成 就
加倍,计算每次得到的正多边 形周长和面积。他指出:“割 之弥细,所失弥少,割之又割,
以至于不可割,则与圆合体而
无所失矣。”
割圆术的基本原理
设圆面积为S0、半径为 r、 圆内接正n边形边长为 ln 、
•《九章算术》标志着中 国传统数学的知识体系 已初步形成。代表了中 国传统数学体系和思想 方法的特点:注重实际 问题的数值计算方法, 缺少抽象的理论和逻辑 系统性,使用算筹,形 成世界上独有的计算工 具和程序化计算方法
刘徽,公元3世纪魏晋时人,
刘
于公元263年撰《九章算注》。 该书包含了刘徽本人的许多创
的骨架加上汉代的皮肉。”
《周髀算经》主要是以文字形式叙述 了勾股算法。中国古代最先完成勾股 定理证明的数学家是三国时期的赵爽 (公元3世纪)。赵爽为《周髀算经》 作注时,所作的“勾股圆方图注”中 给出了“弦图”,相当于运用面积的 出入相补证明了勾股定理。
《九章算术》成书于公元前后,
是我国最重要、影响最深远的
一本数学著作。后世不少人,
如刘徽、祖冲之、李淳风等人
九
均对《九章算术》作过注。特
章
别是刘徽的注,加进了不少自
算
己的精辟见解,阐述了重要的
术
数学理论。《九章算术注》是 《九章算术》得以流芳百世的
重要补充和媒介。
日本数学家小苍金之助把《九
章算术》说成是中国的《几何
原本》。吴文俊教授也认为,
《九章算术》和刘徽的《九章
禾一秉,实三十九斗;上禾二
秉,中禾三秉,下禾一秉,实
的
圆术”和求积理论。
数
割圆术的要旨是用圆内接正多 边形去逐步逼近圆。刘徽从圆
学
内接正六边形出发将边数逐次
成 就
加倍,计算每次得到的正多边 形周长和面积。他指出:“割 之弥细,所失弥少,割之又割,
以至于不可割,则与圆合体而
无所失矣。”
割圆术的基本原理
设圆面积为S0、半径为 r、 圆内接正n边形边长为 ln 、
•《九章算术》标志着中 国传统数学的知识体系 已初步形成。代表了中 国传统数学体系和思想 方法的特点:注重实际 问题的数值计算方法, 缺少抽象的理论和逻辑 系统性,使用算筹,形 成世界上独有的计算工 具和程序化计算方法
刘徽,公元3世纪魏晋时人,
刘
于公元263年撰《九章算注》。 该书包含了刘徽本人的许多创
的骨架加上汉代的皮肉。”
《周髀算经》主要是以文字形式叙述 了勾股算法。中国古代最先完成勾股 定理证明的数学家是三国时期的赵爽 (公元3世纪)。赵爽为《周髀算经》 作注时,所作的“勾股圆方图注”中 给出了“弦图”,相当于运用面积的 出入相补证明了勾股定理。
《九章算术》成书于公元前后,
是我国最重要、影响最深远的
一本数学著作。后世不少人,
如刘徽、祖冲之、李淳风等人
九
均对《九章算术》作过注。特
章
别是刘徽的注,加进了不少自
算
己的精辟见解,阐述了重要的
术
数学理论。《九章算术注》是 《九章算术》得以流芳百世的
重要补充和媒介。
日本数学家小苍金之助把《九
章算术》说成是中国的《几何
原本》。吴文俊教授也认为,
《九章算术》和刘徽的《九章
禾一秉,实三十九斗;上禾二
秉,中禾三秉,下禾一秉,实
中国古代数学史PPT课件
第六章“均输”讲述纳税和运输 方面的计算问题,实际上是比较 复杂的比例计算问题。
第七章“盈不足”讲述算术中盈 亏问题的解法。盈不足术实际上 是一种线性插值法。该方法通过 丝绸之路传入阿拉伯国家,受到 特别重视,被称为“契丹算法”。 后来传入欧洲,13世纪意大利数 学家斐波那契的《算经》一书中 专门有一章讲“契丹算法”。
第二章“粟米”讲述有关粮食交换 中的比例问题。书中的“今有术” 给出比例式中已知三数求第四数的 方法,欧洲迟至15世纪才出现。
第三章“衰分”讲述配分比例和等 差、等比等问题。
第四章“少广”讲述由田亩面积求 边长,由球体积求经长的算法,这 是世界上最早的多位数开平方、开 立方法则的记载。
今有积五万五千二百二十五步, 问为方几何?答曰:二百三十 五步。
周长为 Ln、面积为 Sn 。将边
数加倍后,得到圆内接正2n边
形,其边长、周长、面积分别
记为 l2n , L2n , S 2n 。 刘徽首先指出,由 ln 及勾股 定理可求出 l2n
其次知道了圆内接正n 边形的
一本数学著作。后世不少人,
如刘徽、祖冲之、李淳风等人
九
均对《九章算术》作过注。特
章
别是刘徽的注,加进了不少自
算 术
己的精辟见解,阐述了重要的 数学理论。《九章算术注》是 《九章算术》得以流芳百世的
重要补充和媒介。
日本数学家小苍金之助把《九
章算术》说成是中国的《几何
原本》。吴文俊教授也认为,
《九章算术》和刘徽的《九章
中国古代数学的主要成就
《周髀算经》是我国最早的天
文著作,系统地记载了周秦以Leabharlann 来适应天文需要而逐步积累的
周
科技成果。该书的主要内容是
中国古代数学ppt课件
第四章 源远流长、成就卓著的 中国古代数学
中国是世界上最古老的文明发源地之一.中 国古代数学作为中国文化的一个重要组成 部分,由于其自身的渊源,形成了与西方迥然 不同的风格.
`.
1
华夏民族的远古历史至少可追溯到公 元前3000年的炎帝部落和黄帝部落。 初期的部落联盟中产生了尧、舜这样 的军事领袖,舜禅让位于禹后,禹建 立了中国历史上第一个王朝—夏朝。 商王汤推翻夏王桀后建立商朝,直到 周武王灭纣建立周朝。经过东周以及 西周的春秋战国时期,秦王赢政征服 列国,开辟了中国长达两千多年的中 央高度集权制的封建专制政治格局。 2
4
中国的数学发展史可分为
秦以前:数学知识的早期积累
秦
汉:系统数学理论的奠定
晋
唐:数学理论的充实
宋
元:数学理论的发展
明
清:传统数学的沉寂和复苏
5
将理论体系形成之前的历史阶段称为 数学知识的早期积累阶段。这一时期 的中国数学大致包括:数字和记数方 法、筹算术、数概念的扩展、图形知 识、定义与命题等。这五个方面后来 以数与形两条认识渠道得到充实和发 展
25
4.2.2 《九章算术》
《算术》包括了四大算法系统和两大求 积公式系统。四大算法系统是分数算法 、一般比率算法、组合比率算法、开方 算法;两大求积公式系统是面积公式系 统和体积公式系统
26
4.2.2 《九章算术》
例说《算术》的成就: 1.各种比例问题
27
28
4.2.2 《九章算术》
例说《算术》的成就: 2.几何成就
23
4.2.2 《九章算术》
《算术》的体系是中国数学理论体系的 典型代表。这个体系的基本结构是:以 题解为中心,在题解中给出算法,根据 算法组建理论体系。即以题解为中心的 算法体系。
中国是世界上最古老的文明发源地之一.中 国古代数学作为中国文化的一个重要组成 部分,由于其自身的渊源,形成了与西方迥然 不同的风格.
`.
1
华夏民族的远古历史至少可追溯到公 元前3000年的炎帝部落和黄帝部落。 初期的部落联盟中产生了尧、舜这样 的军事领袖,舜禅让位于禹后,禹建 立了中国历史上第一个王朝—夏朝。 商王汤推翻夏王桀后建立商朝,直到 周武王灭纣建立周朝。经过东周以及 西周的春秋战国时期,秦王赢政征服 列国,开辟了中国长达两千多年的中 央高度集权制的封建专制政治格局。 2
4
中国的数学发展史可分为
秦以前:数学知识的早期积累
秦
汉:系统数学理论的奠定
晋
唐:数学理论的充实
宋
元:数学理论的发展
明
清:传统数学的沉寂和复苏
5
将理论体系形成之前的历史阶段称为 数学知识的早期积累阶段。这一时期 的中国数学大致包括:数字和记数方 法、筹算术、数概念的扩展、图形知 识、定义与命题等。这五个方面后来 以数与形两条认识渠道得到充实和发 展
25
4.2.2 《九章算术》
《算术》包括了四大算法系统和两大求 积公式系统。四大算法系统是分数算法 、一般比率算法、组合比率算法、开方 算法;两大求积公式系统是面积公式系 统和体积公式系统
26
4.2.2 《九章算术》
例说《算术》的成就: 1.各种比例问题
27
28
4.2.2 《九章算术》
例说《算术》的成就: 2.几何成就
23
4.2.2 《九章算术》
《算术》的体系是中国数学理论体系的 典型代表。这个体系的基本结构是:以 题解为中心,在题解中给出算法,根据 算法组建理论体系。即以题解为中心的 算法体系。
中国古代数学史 ppt课件
刘徽,他继承和发展了战国时期名家和墨家的思想,主张对一些数学 名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进 行“析理”,才能使数学著作简明严密。他的《九章算术》注不仅是 对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在 论述的过程中有很大的发展。
刘徽从率(后称为比)的定义出发论述了分数运算和今有术的道理,并 推广今有术得到合比定理,他根据率、线性方程组和正负数的定义阐明方 程组解法中消元的道理,指出方程式个数少于未知数个数时,方程组的解 只能是一个比值;在一个方程式中,正与负可以同时变号;减法消元和加 法消元可以统一为一种方法。
《周礼》中的六艺 礼—礼节。五礼者,吉、凶、宾、军、嘉也。 乐—音乐。六乐 :云门、大咸、大韶、大夏、大镬、大武 射—射箭技术。五射:白矢、参连、剡注、襄尺、井仪 御—驾驶马车的技术。鸣和鸾、逐水车、过君表、舞交衢、逐禽左 书—文学。六书:象形 、指事、会意、形声、转注、假借 数—算术与数论知识
几何学 《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发 现,故又有称之为商高定理。 商高曰:……折矩以为勾广三、股修田,径隅五…”
中国数学的兴起—原始社会至西周的数学
1.圆形观念的形成与规矩准绳
人类在与自然接触的过程中认识了圆,古代用规画圆,用矩画方
2.十进位制计数法的形成与算筹的创造
十进位制计数法最早出现于殷商的甲骨文,在春秋时期已经相当的完善
3.数学形成一门学科
春秋,九九表和整数乘除法则已出现
中国传统数学框架的确立——春秋至东汉中期的数学
竹简著作《算数书》抄写于西汉初年(约公元前2世纪),成 书时间应更早,是一部比较完整的,也是目前可以见到的中 国最早的数学专著。全书采用问题集形式,共有69个小标 题,,71条相当抽象的公式,近百道数学问题及其解法,内 容包括整数和分数四则运算、比例问题、面积和体积问题等 等。
刘徽从率(后称为比)的定义出发论述了分数运算和今有术的道理,并 推广今有术得到合比定理,他根据率、线性方程组和正负数的定义阐明方 程组解法中消元的道理,指出方程式个数少于未知数个数时,方程组的解 只能是一个比值;在一个方程式中,正与负可以同时变号;减法消元和加 法消元可以统一为一种方法。
《周礼》中的六艺 礼—礼节。五礼者,吉、凶、宾、军、嘉也。 乐—音乐。六乐 :云门、大咸、大韶、大夏、大镬、大武 射—射箭技术。五射:白矢、参连、剡注、襄尺、井仪 御—驾驶马车的技术。鸣和鸾、逐水车、过君表、舞交衢、逐禽左 书—文学。六书:象形 、指事、会意、形声、转注、假借 数—算术与数论知识
几何学 《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发 现,故又有称之为商高定理。 商高曰:……折矩以为勾广三、股修田,径隅五…”
中国数学的兴起—原始社会至西周的数学
1.圆形观念的形成与规矩准绳
人类在与自然接触的过程中认识了圆,古代用规画圆,用矩画方
2.十进位制计数法的形成与算筹的创造
十进位制计数法最早出现于殷商的甲骨文,在春秋时期已经相当的完善
3.数学形成一门学科
春秋,九九表和整数乘除法则已出现
中国传统数学框架的确立——春秋至东汉中期的数学
竹简著作《算数书》抄写于西汉初年(约公元前2世纪),成 书时间应更早,是一部比较完整的,也是目前可以见到的中 国最早的数学专著。全书采用问题集形式,共有69个小标 题,,71条相当抽象的公式,近百道数学问题及其解法,内 容包括整数和分数四则运算、比例问题、面积和体积问题等 等。
中国古代数学史ppt课件
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
• 中国古代的筹算表现为算法的形式,而具有模式 化、程序化的特征。中国的筹算不用运算符号, 无须保留运算的中间过程,只要求通过筹式的逐 步变换而最终获得问题的解答。因此,中国古算 中的“术”,都是用一套一套的“程序语言”所 描写的程序化算法,并且中算家经常将其依据的 算理蕴涵于演算的步骤之中,起到“不言而喻, 不证自明”的作用。可以说“寓理于算”是古代 筹算在表现形式上的又一特点。
《九章算术》注
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
• 东晋以后,祖冲之父子,把传统数学大大向前推 进了一步。他们的数学工作主要有:
• 计算出圆周率在3.1415926~3.1415927之间;
• 提出祖暅原理。“幂势既同则积不容异”,即等 高的两立体,若其任意高处的水平截面积相等, 则这两立体体积相等,这就是著名的祖暅公理。 祖暅应用这个公理,解决了刘徽尚未解决的球体 积公式
秦九韶
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
• 名家的命题论述了有限长度可分割成一个无 穷序列,墨家的命题则指出了这种无限分割 的变化和结果。名家和墨家的数学定义和数 学命题的讨论,对中国古代数学理论的发展 是很有意义的。。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求得牟合方盖的体积,然后利用刘 徽的结果,得到了球体积公式。
祖暅还明确总结出了“幂势既 同,则积不容异”这样一条求 积原理。该原理现被称为“祖 暅原理”。事实上,刘徽也使 用过这一原理,只是未能将其 概括为一般形式。这一原理在 西方被称为卡瓦列里原理,但 他17世纪前叶才提出,比祖暅
迟了1100多年。
[鸡兔同笼]今有雉兔同笼,上
有三十五头,下有九十四足。
问雉、兔各几何?答曰:雉二
十三,兔一十二。
孙
术曰:上置头,下置足,半其
子
足,以头除足,以足除头,即
算
得。
经
[物不知数]今有物,不知其数。
三三数之,剩二;五五数之剩
三;七七数之,剩二。问物几
何?答曰:二十三。
明代数学家程大位的《算法统
宗》中所载的“孙子歌”以诗
弦 图
《九章算术》成书于公元前后,
是我国最重要、影响最深远的
一本数学著作。后世不少人,
如刘徽、祖冲之、李淳风等人
九
均对《九章算术》作过注。特
章
别是刘徽的注,加进了不少自
算 术
己的精辟见解,阐述了重要的
数学理论。《九章算术注》是 《九章算术》得以流芳百世的
重要补充和媒介。
日本数学家小苍金之助把《九
元
《详解九章算法》(杨辉)、
数
《益古演段》(李冶)和《四
学
元玉鉴》(朱世杰)等
问题:求满足的
N r 1 ( m o d p 1 ) r 2 ( m o d p 2 ) ...... r n ( m o d p n )
大
最小自然数N。
衍
◆设 M pi, Mi M/ pi
总
求乘率 M
i
使
MiMi 1(modpi)
是把《周髀算经》看作具有周
代的骨架加上汉代的皮肉。”
昔者周公问于商高曰:“窃闻
于大夫善数也,请问古者包牺
立周天历度,夫天不可阶而升,
地不可得尺寸而度,请问数安
勾
从出?”商高曰:“数之法出
股
于圆方,圆出于方,方出于矩,
定 理
矩出于九九八十一。故折矩, 以为勾广三,股修四,径隅 五。”
《周髀算经》中荣方与陈子的
中国古代数学的主要成就
《周髀(音同“币”)算经》是我
国最早的天文著作,系统地记
载了周秦以来适应天文需要而
周
逐步积累的科技成果。该书的
髀
主要内容是周代传下来的有关 测天量地的理论和方法。
算 经
《周髀算经》也是中国最古的 算书,成书确切年代没有定论,
一般认为在公元前2、3世纪。
李约瑟认为:“最妥善的办法
史料上没有关于祖冲之推算圆周
率方法的记载,一般认为是沿用
了刘徽的“割圆术”。刘徽用
“割圆术”从圆内接正六边形出 发,算到圆内接正192边形,得到 圆周率约为3.14124,如果用这一 方法算到圆内接正24576边形,便
得到圆周率在3.1415926和 3.1415927之间。祖冲之在圆周率
的计算方面领先于西方近千年。 为了纪念祖冲之的贡献,20世纪
数
则总数
章算术》说成是中国的《几何
原本》。吴文俊教授也认为,
《九章算术》和刘徽的《九章
九
算术注》,在数学的发展历史
章
中具有崇高的地位,足可与希
算
腊的《几何原本》东西辉映,
术
各具特色。
《九章算术》全书共分9章,
246道题,体例采用问题集形
式。
刘徽,公元3世纪魏晋时人,
刘
于公元263年撰《九章算术 注》。该书包含了刘徽本人的
冲
公府参军,都是地位不高的小官,
之
但他却成为历代为数不多能名列正 史的数学家之一。
的
祖冲之最大的数学成就是对圆周率
数
的精确计算。得出了圆周率的上限
学
3.1415927(盈数),下限 3.1415926(肭数)。另外还得出了
成
圆周率的两个分数形式的近似值约
就
率22/7,和密率(祖率)355/113。
出于官方数学教育的需要,唐
高宗亲自下令对以前的数学著
作进行整理。公元656年由李
淳风负责编定了算经十书:
算
《周髀算经》、《九章算术》、
经
《孙子算经》、《五曹算经》、
十 书
《张邱建算经》、《夏候阳算 经》、《缉古算经》、《海岛 算经》、《五经算术》和《缀
术》,后因《缀术》失传,而
以《数术记遗》替代。
歌形式介绍了物不知数问题的
解法:“三人同行七十稀,五
孙
树梅花廿一枝,七子团圆整半 月,除百零五便得知。”
子 歌
这一问题的解法后经秦九韶推
广到一般情形,被称为“孙子
定理”,又称为“中国剩余定
理”。
宋元时期(960-1368)的杰出
数学家秦九韶、杨辉、李冶、 朱世杰被称为“宋元四大家”。
宋
宋元时期的数学代表著作有 《数书九章》(秦九韶)、
的日本天文学家将自己发现的一 颗行星以祖冲之的名字命名。
从东汉以来,有关球体积的计算公 式,经过张衡、刘徽等人的努力, 最后由祖冲之和他的儿子祖暅完成, 成为中国数学史上的一件大事。祖 氏父子的这一成就,被唐代李淳风 记录在自己的《九章算术注》中, 才使人们得以了解其具体的研究方
法。祖氏父子利用“两等高几何体, 若在任意同一高度上的截面积均相 等,则它们的体积相等”这一原理,
一段对话中,则包含了勾股定
勾
理的一般形式。
股
陈子曰:“若求邪至日者,以
定
日下为勾,日高为故,勾、股
理
各自乘,并而开方除之,得邪 至日,…”
《周髀算经》主要是以文字形式叙述 了勾股算法。中国古代最先完成勾股
定理证明的数学家是三国时期的赵爽
(公元3世纪)。赵爽为《周髀算经》 作注时,所作的“勾股圆方图注”中 给出了“弦图”,相当于运用面积的 出入相补证明了勾股定理。
刘徽的面积、体积理论建立在一 条简单而又基本的原理之上,这
就是“出入相补原理”:一个几 何图形被分成若干部分后,面积 或体积的总和保持不变。刘徽利
用这条原理成功地证明了《九章 算术》中的许多面积公式。
祖冲之(公元429—500)活跃于南
祖
朝宋、齐时代,出生于历法世家, 本人做过南徐州(镇江)从事史和
徽
许多创造,其中最突出的成就
的
是“割圆术”和求积理论。
数
割圆术的要旨是用圆内接正多 边形去逐步逼近圆。刘徽从圆
学
内接正六边形出发将边数逐次
成 就
加倍,计算每次得到的正多边 形周长和面积。他指出:“割 之弥细,所失弥少,割之又割,
以至于不可割,则与圆合体而
无所失矣。”
刘徽用“割圆术”从圆内接正六 边形出发,算到圆内接正192边形, 得到圆周率约为3.14124,其精确 到小数点后两位的近似值 3.14=157/50,被称为“徽率”。
祖暅还明确总结出了“幂势既 同,则积不容异”这样一条求 积原理。该原理现被称为“祖 暅原理”。事实上,刘徽也使 用过这一原理,只是未能将其 概括为一般形式。这一原理在 西方被称为卡瓦列里原理,但 他17世纪前叶才提出,比祖暅
迟了1100多年。
[鸡兔同笼]今有雉兔同笼,上
有三十五头,下有九十四足。
问雉、兔各几何?答曰:雉二
十三,兔一十二。
孙
术曰:上置头,下置足,半其
子
足,以头除足,以足除头,即
算
得。
经
[物不知数]今有物,不知其数。
三三数之,剩二;五五数之剩
三;七七数之,剩二。问物几
何?答曰:二十三。
明代数学家程大位的《算法统
宗》中所载的“孙子歌”以诗
弦 图
《九章算术》成书于公元前后,
是我国最重要、影响最深远的
一本数学著作。后世不少人,
如刘徽、祖冲之、李淳风等人
九
均对《九章算术》作过注。特
章
别是刘徽的注,加进了不少自
算 术
己的精辟见解,阐述了重要的
数学理论。《九章算术注》是 《九章算术》得以流芳百世的
重要补充和媒介。
日本数学家小苍金之助把《九
元
《详解九章算法》(杨辉)、
数
《益古演段》(李冶)和《四
学
元玉鉴》(朱世杰)等
问题:求满足的
N r 1 ( m o d p 1 ) r 2 ( m o d p 2 ) ...... r n ( m o d p n )
大
最小自然数N。
衍
◆设 M pi, Mi M/ pi
总
求乘率 M
i
使
MiMi 1(modpi)
是把《周髀算经》看作具有周
代的骨架加上汉代的皮肉。”
昔者周公问于商高曰:“窃闻
于大夫善数也,请问古者包牺
立周天历度,夫天不可阶而升,
地不可得尺寸而度,请问数安
勾
从出?”商高曰:“数之法出
股
于圆方,圆出于方,方出于矩,
定 理
矩出于九九八十一。故折矩, 以为勾广三,股修四,径隅 五。”
《周髀算经》中荣方与陈子的
中国古代数学的主要成就
《周髀(音同“币”)算经》是我
国最早的天文著作,系统地记
载了周秦以来适应天文需要而
周
逐步积累的科技成果。该书的
髀
主要内容是周代传下来的有关 测天量地的理论和方法。
算 经
《周髀算经》也是中国最古的 算书,成书确切年代没有定论,
一般认为在公元前2、3世纪。
李约瑟认为:“最妥善的办法
史料上没有关于祖冲之推算圆周
率方法的记载,一般认为是沿用
了刘徽的“割圆术”。刘徽用
“割圆术”从圆内接正六边形出 发,算到圆内接正192边形,得到 圆周率约为3.14124,如果用这一 方法算到圆内接正24576边形,便
得到圆周率在3.1415926和 3.1415927之间。祖冲之在圆周率
的计算方面领先于西方近千年。 为了纪念祖冲之的贡献,20世纪
数
则总数
章算术》说成是中国的《几何
原本》。吴文俊教授也认为,
《九章算术》和刘徽的《九章
九
算术注》,在数学的发展历史
章
中具有崇高的地位,足可与希
算
腊的《几何原本》东西辉映,
术
各具特色。
《九章算术》全书共分9章,
246道题,体例采用问题集形
式。
刘徽,公元3世纪魏晋时人,
刘
于公元263年撰《九章算术 注》。该书包含了刘徽本人的
冲
公府参军,都是地位不高的小官,
之
但他却成为历代为数不多能名列正 史的数学家之一。
的
祖冲之最大的数学成就是对圆周率
数
的精确计算。得出了圆周率的上限
学
3.1415927(盈数),下限 3.1415926(肭数)。另外还得出了
成
圆周率的两个分数形式的近似值约
就
率22/7,和密率(祖率)355/113。
出于官方数学教育的需要,唐
高宗亲自下令对以前的数学著
作进行整理。公元656年由李
淳风负责编定了算经十书:
算
《周髀算经》、《九章算术》、
经
《孙子算经》、《五曹算经》、
十 书
《张邱建算经》、《夏候阳算 经》、《缉古算经》、《海岛 算经》、《五经算术》和《缀
术》,后因《缀术》失传,而
以《数术记遗》替代。
歌形式介绍了物不知数问题的
解法:“三人同行七十稀,五
孙
树梅花廿一枝,七子团圆整半 月,除百零五便得知。”
子 歌
这一问题的解法后经秦九韶推
广到一般情形,被称为“孙子
定理”,又称为“中国剩余定
理”。
宋元时期(960-1368)的杰出
数学家秦九韶、杨辉、李冶、 朱世杰被称为“宋元四大家”。
宋
宋元时期的数学代表著作有 《数书九章》(秦九韶)、
的日本天文学家将自己发现的一 颗行星以祖冲之的名字命名。
从东汉以来,有关球体积的计算公 式,经过张衡、刘徽等人的努力, 最后由祖冲之和他的儿子祖暅完成, 成为中国数学史上的一件大事。祖 氏父子的这一成就,被唐代李淳风 记录在自己的《九章算术注》中, 才使人们得以了解其具体的研究方
法。祖氏父子利用“两等高几何体, 若在任意同一高度上的截面积均相 等,则它们的体积相等”这一原理,
一段对话中,则包含了勾股定
勾
理的一般形式。
股
陈子曰:“若求邪至日者,以
定
日下为勾,日高为故,勾、股
理
各自乘,并而开方除之,得邪 至日,…”
《周髀算经》主要是以文字形式叙述 了勾股算法。中国古代最先完成勾股
定理证明的数学家是三国时期的赵爽
(公元3世纪)。赵爽为《周髀算经》 作注时,所作的“勾股圆方图注”中 给出了“弦图”,相当于运用面积的 出入相补证明了勾股定理。
刘徽的面积、体积理论建立在一 条简单而又基本的原理之上,这
就是“出入相补原理”:一个几 何图形被分成若干部分后,面积 或体积的总和保持不变。刘徽利
用这条原理成功地证明了《九章 算术》中的许多面积公式。
祖冲之(公元429—500)活跃于南
祖
朝宋、齐时代,出生于历法世家, 本人做过南徐州(镇江)从事史和
徽
许多创造,其中最突出的成就
的
是“割圆术”和求积理论。
数
割圆术的要旨是用圆内接正多 边形去逐步逼近圆。刘徽从圆
学
内接正六边形出发将边数逐次
成 就
加倍,计算每次得到的正多边 形周长和面积。他指出:“割 之弥细,所失弥少,割之又割,
以至于不可割,则与圆合体而
无所失矣。”
刘徽用“割圆术”从圆内接正六 边形出发,算到圆内接正192边形, 得到圆周率约为3.14124,其精确 到小数点后两位的近似值 3.14=157/50,被称为“徽率”。