复试材料力学重点知识点总结(二轮主要).pptx
材料力学知识点归纳总结(完整版)
材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
(完整版)材料力学各章重点内容总结
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学知识点总结ppt
3、应变 度量构件一点处的变形程度
平均线应变
B
A s u A s B
线应变 角应变
dy
dx
1-4 杆件变形的基本形式
1、轴向拉伸和压缩
F
FF
F
(a) 轴向拉伸
(b) 轴向压缩
2、剪切
P/2
P/2
P
4、弯曲
M
3、扭转
m
m
M
第二章 轴向拉伸与压缩
2-1 轴向拉压杆举例
曲柄连杆机构连杆
特点: 连杆为直杆 外力大小相等 方向相反沿杆轴 线 杆的变形为轴向 伸长或缩短
1-3 力、应力、应变和位移的基本概念
一、外力
1、按作用方式分
2、按随时间变化分
体积力 表面力
静载荷
动载荷
集中力 分布力 交变载荷
冲击载荷
二、内力
1、定义: 指由外力作用所引起的、物体内相邻部分之 间相互作用力(附加内力)。
2、 内力的求法 —— 截面法 步骤
① 截开
在所求内力的截面处,
m
假想地用截面将杆件
Me2
Me3
ห้องสมุดไป่ตู้Me1
n
Me4
B
C
A
D
Me2
Me3
B
C
解:计算外力偶矩
Me1
n
Me4
A
D
计算 CA 段内任横一截面 2-2 截
面上的扭矩 .假设 T 2为正值. 由平衡方程
Me2
Me3 2
Me1
B C2 A
Me2
Me3 T2 x
结果为负号,说明T 2 应是负值扭矩 同理,在 BC 段内
BC
材料力学复习总结知识点
A、30 B、 35 C、 40 D、 70
基工本字变 形形截面方拉:校(形压核) 主销应力将扭。转两块等弯曲厚度的板连接在一起,上面的板中同时
根据弯矩图判断可能的危险截面为:A和D左截面,可能的危险点为:A截面的上边缘点和D左截面的下边缘点产生最大的拉应力,D左
存在拉应力σ、剪应力τ、挤压应力σ ,比较其数值大小 截已面知的 轴上的边许缘用点剪产应生力最为大[τ]的=压60应MP力a,. 剪变模量为G=80GPa,许用转角为[θ]=20/mb。s
m ax [ ]
二、应力状态
1. 平面应力状态: 解析法(公式)
2. 三向应力状态:
ma x1, ma x1 23
3. 广义胡克定律:
1
1 E
[ 1
( 2
3 )]
2
1 E
[ 2
( 3
1 )]
3
1 E
[ 3
( 1
2 )]
4. 强度理论:建立复杂应力状态下的强度条件
r [] 其中
r1, r2, r3, r4
三、压杆稳定
1. 欧拉公式:
Fcr
2 EI ( l)2
(适用范围:细长杆)
2. 压杆的柔度:
细长杆
P
cr
2E 2
中长杆
0 P
cr ab
长度因数(反应约况 束) 情
l
i
i l
截面形状、大小 杆长
σ σcr=σs
临界应力总图
σs
A
粗短杆
σcr=a−bλ
可得( ) 基本变形 拉(压)
扭转
弯曲
基本变形 拉(压) 扭转
弯曲
材料力学的两项基本任务:
BC杆为正方形截面,边长a=70mm,C端也是球铰。
材料力学知识点总结PPT课件
F
F
1m
F
1m
F/4
FS
M
FSmax= F
Mmax= F/4
注意: FSmax ,Mmax可能位于不同截面, 它们取极值时 F可能位于不同位置。
2.反问题
正问题:已知载荷,结构,求响应; 外力——内力——应力,变形
反问题:已知响应,求载荷。 应力,变形——内力——外力
y
反问题
A
B
x
y=Ax3
(P c)rzcA r 20 18 30 2 .6 1 3 054 k N 0
6分
稳定性校核
nP P cr1 48 5 0 0 2.5 1nw2
结论:压杆的稳定性符合要求。
最新课件
3分
30
四.(15分) 圆截面直角折杆受力如图所示。材料许用应力[ =120MPa,
截面直径d=80mm,试用第三强度理论校核此折杆的强度。
l
已知:挠曲线 y =Ax3 , EI = 常数 求:梁上载荷
分析:1. 反映外力与内力的关系 ——FS , M 与 q 的微分关系 ;
M F S F S q M q
y
反问题
A
B
x
y=Ax3
l
2. 反映梁的变形与内力的关系
——挠曲线近似微分方程。
y M EI
MEyI
FS EyI qEIy4
st
Pa W
2分
2H
EI
Kd1
1 st
1
12H P3a
2分
5. 最大动应力 dma xKdst(112P H3aE )W PIa3分
七.简答题 (每小题4分,共16分) 1.选择题:图示圆截面外伸梁材料的[]c和[]t相同,从强度方
“材料力学”重点归纳
“材料力学”重点归纳
第一章静力学基础
掌握:静力学基本概念和定理:力、力偶、平衡力系、等效力系、合力投影定理、合力矩定理、力线平移定理、静力学的基本任务等。
重点掌握:掌握各种力系的简化和平衡方程应用。
了解材料力学的发展沿革,理解本课程的任务、内容、目的。
第二章材料力学绪论
掌握:了解材料力学的基本任务和杆件的基本变形。
重点掌握:材料力学的基本概念:弹性变形、塑性变形、破坏、强度、刚度、稳定性、内力、应力、应变等。
第三章应力分析和应变分析理论
掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应变张量、偏斜应力张量、偏斜应变张量等概念。
应力分析理论、应变分析理论。
重点掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应力分析理论。
第四章固体材料的弹性本构关系和塑性本构关系
掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、主应力空间、屈服函数、常用屈服条件、常用强度理论等。
重点掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、常用屈服条件和强度理论等。
第五章材料力学实验
了解和掌握金属材料单轴拉伸和压缩力学实验的原理和方法。
(完整版)材料力学知识点总结
一、基本变形材料力学总结变形现象: 平面假设: 应变规律: = d ∆l = 常数dx变形现象:平面假设: 应变规律:=d = dx变形现象:平面假设: 应变规律:= y= N =T= T = MyI Z = M max WZ= QS * z I z b = QS max max I bz max W= E (单向应力状态) = G(纯剪应力状态)=⎛ N ⎫≤ []maxA ⎪ ⎝ ⎭max[]=un塑材:u=s 脆材:u =bmax= ⎛ T ⎫ ≤ [] ⎪ ⎝ W t ⎭max弯曲正应力 1. [t ]= [c ]max≤ []2. [t ]≠ [c ] t max ≤ [t ] cmac ≤ [c ]弯曲剪应力=Q max S max ≤ [] max I bz轴向拉压扭转弯曲刚度条=T ⋅180 ≤[]max GIP注意:单位统一ymax≤[y]max≤[]件变形d∆l=N ; ∆L =NLdx EA EAEA—抗拉压刚度=d=Tdx GIZ=TLGIPGI p—抗扭刚度1=M (x)(x) EIy '' =M (x)EIEI—抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩形A=bhbh 3bh 2IZ=12;WZ=6实心圆A= d 24d4d3IP=32;Wt=16d4d3IZ=64;WZ=32空心圆D 2A =(1-2)4d44IP=32(1 -)d 3W =(1 -4)t16d 4I =(1-4)Z64d34WZ=32(1-)其(1)'剪切(1)强度条件:=Q≤[]A—剪切面积A(2)挤压条件:=P bs ≤[]bs A bsJA j—挤压面积矩形:=3Qmax 2 A圆形:=4Qmax 3A环形:= 2Qmax Amax均发生在中性轴上它公(2)GE式2(1 )二、还有:(1)外力偶矩:m = 9549 N (N •m)n(2)薄壁圆管扭转剪应力:=TN—千瓦;n—转/分2r 2t(3)矩形截面杆扭转剪应力:max =Tb2h;=TG b3hDB c AD 'Z ZC c cn n三、截面几何性质(1)平行移轴公式:I =I +a 2A;(2)组合截面:IYZ=IZ Y+abA1.形心:y c∑A i y ci=i =1 ;∑A ii =1∑A i z ciz =i =1∑A ii =12.静矩:S Z =∑A i y ci ;S y =∑A i z ci3.惯性矩:I Z =∑(I Z ) i ;I y =∑(I y ) i四、应力分析:(1)二向应力状态(解析法、图解法)a.解析法: b.应力圆:n σ:拉为“+”,压为“-”xτ:使单元体顺时针转动为“+”x yx y cos 2sin 2α:从x 轴逆时针转到截面的法线为“+”2 2 xx y sin 2cos 22 xtg22xmaxminxx yy2c:适用条件:平衡状态(2)三向应力圆:;; 1 3max 1 min 3 max 2nn2x y22xyxc121223311(3) 广义虎克定律:1(1 (1E 123xE xyz1 ( 1(2E 231yE yzx1(1(3E3 1 2zExy*适用条件:各向同性材料;材料服从虎克定律(4) 常用的二向应力状态 31. 纯剪切应力状态:1,20 ,3x2. 一种常见的二向应力状态:132r 3r 4五、强度理论破坏形式脆性断裂塑性断裂强度理论 第一强度理论(最大拉应力理论)莫尔强度理论 第三强度理论 (最大剪应力理论) 第四强度理论(形状改变比能理论) 破坏主要因素 单元体内的最大拉应力单元体内的最大剪应力单元体内的改变比能破坏条件 1 = bmax =su f = u fs强度条件 1 ≤ [] 1-3≤ []适用条件 脆性材料 脆性材料 塑性材料 塑性材料*相当应力:r,,]r 11r 313r 4222242232r=2+42≤[]=2+32≤[]4r22(M +N ) + 4≤ []r3 =r=(M+N)2+32≤[]WM 2 +T 2r3 =圆截面WM 2 + 0.75T 2r4=(M+N)2 + 4(T)2W Z A W t(M+N)2 + 4(T)2W Z A W t α 中性轴ZMpr3 =≤ []r 4 =≤ []i 2I Z*y =-=-ZAe y e ytg=y=-I ZtgZ I y中性轴Z≤ []Z≤ []A W≤ []P Mmax =±max ±max≤ []sincos( +)W Z W y=max maxM强度条件43=±P ±MA W)I yI Z=M (y c os+z s in公式简图弯扭拉(压)弯扭拉(压)弯斜弯曲类型六、材料的力学性质脆性材料<5%塑性材料≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段b强度指标s ,b e sα塑性指标,tg E七.组合变形只有σs,无σbb剪断断口垂直轴线拉断断口与轴夹角45ºb45º拉断铸铁断口垂直轴线剪断s b 滑移线与轴线45︒,剪45低碳钢扭压拉八、压杆稳定欧拉公式: P=2EI min,=2E,应用范围:线弹性范围,σ<σ ,λ>λcr(l ) 2cr2crpp柔度:=ul;=E;0 =a -s, σib柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:cr =2E2临界应力λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σsλoλPλ稳定校核:安全系数法: n P c rP I n w ,折减系数法:P []A提高杆件稳定性的措施有: 1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学基础知识PPT课件
3
材料力学的建立
强度。(屈服强度,抗拉强度,抗弯强度, 抗剪强度),如钢材Q235,屈服强度为 235MPa
塑性。一般用伸长率或断面收缩率表示。 如Q235伸长率为δ5=21-26
表示轴力沿杆轴变化情况的图线,称为轴力图。 例如上图中的坐标图即为杆的轴力图。
31
4.2轴力与轴力图
例1 图中所示为右端固定梯形杆,承受轴向载荷F1与F2作 用,已知F1=20KN(千牛顿),F2=50KN,试画杆的轴力 图,并求出最大轴力值。
解:(1)计算支反
力
A F1
B F2
设杆右端的支反力为
12
3.3外力与内力
内力与截面法
内力:物体内部的相互作用力。由于载荷作用引起的内力称为附加内 力。简称内力。内力特点:引起变形,传递外力,与外力平衡。 截面法:将杆件假想地切成两部分,以显示内力,称为截面法。
13
3.3外力与内力
应用力系简化理论,将上述分布内力向横截面的形心简化,得
轴力 :Fx沿杆件轴线方向内力分量,产生轴向(伸长,缩短)
C FR
FR,则由整个杆的平 F1
FN1 FN2
FR
衡方程
FN
20kN
ΣFx=0,F2-FR=0 得
+ 0
30kN
FR=F2-F1=50KN-20KN
=30KN
32
4.2轴力与轴力图
(2)分段计算轴力
设AB与BC段的轴力
A
均为拉力,并分别用FN1 F1
与FN2表示,则可知
(完整版)材料力学知识点总结
以家为家,以乡为乡,以国为国,以天下为天下。——《管子·牧民》
六、材料的力学性质
脆性材料 <5%
塑性材料 ≥5% 低碳钢四阶段: (1)弹性阶段
(2) 屈服阶段 (3) 强化阶段 (4) 局部收缩阶段
强度指标 s , b
e
塑性指标 ,
拉
压
α
s
tg
b
E 扭
45
低
碳
钢
滑移线与轴线 45,剪
只有s,无b
( l)2
cr
2
cr p
p
柔度:
ul
;
i
E
;
0
a s b
,
柔度是一个与杆件长度、约束、截面尺寸、形 状有关的数据,λ↑Pcr↓σcr↓
>p——大柔度杆:
cr
2E
2
临界应力
o<<p——中柔度杆:cr=a-b
cr cr=s o
cr=a-b
2E
cr
2
P
<0——小柔度杆:cr=s
P 稳定校核:安全系数法: n cr n ,折减系数法:
材料疲劳极限:材料经无限次应力循环而不发生疲劳破坏的应力极限值——N=107:
1
条件疲劳极限:(有色金属)无水平渐近线:N=(5-7)107 对应的
1
构件疲劳极限:考虑各种因素 0
;
1
0 1
1 k
1 k
6
谋事在人,成事在天!——《增广贤文》
我尽一杯,与君发三愿:一愿世清平,二愿身强健,三愿临老头,数与君相见。——《白居易》
P
[]
P
w
A
I
提高杆件稳定性的措施有:
材料力学知识点总结(重、难点部分)
第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。
(2)理解变形固体的基本假设、条件及其意义。
(3)明确内力的概念、初步掌握用截面法计算内力的方法。
(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。
(5)了解杆件变形的受力和变形特点。
二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。
在外力作用下,构件内部两部分间的附加相互作用力称为内力。
内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。
2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。
截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。
一点处的全应力可以分解为两个应力分量。
垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。
应力单位为Pa 。
1MPa=610Pa, 1GPa=910Pa 。
应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。
3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。
利用截面法求内力的四字口诀为:切、抛、代、平。
一切:在欲求内力的截面处,假想把构件切为两部分。
二抛:抛去一部分,留下一部分作为研究对象。
至于抛去哪一部分,视计算的简便与否而定。
三代:用内力代替抛去部分队保留部分的作用力。
一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。
四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。
4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯弯曲,在梁某段剪力 Q=0 时才发生,平面假设成立。
横力弯曲(剪切弯曲)可以视作剪切与纯弯曲的组合,因剪 应力平行于截面,弯曲正应力垂直于截面,两者正交无直接 联系,所以由纯弯曲推导出的正应力公式可以在剪切弯曲中 使用。 5. 关于横力弯曲时梁截面上剪应力的计算问题
用时,任一截面的转角和挠度可根据线性关系的叠加原理,等于 荷载单独作用时该截面的转角或挠度的代数和。
四. 应力状态分析
1.单向拉伸和压缩 应力状态划分为单向、二向和三向应力状态。是根据一
点的三个主应力的情况而确定的。
学海无 涯
复试面试材力重点总结
一. 材料力学的一些基本概念
1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。
2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的 ① 无分布荷载的梁段,剪力为常数,弯矩为斜直线;Q>0, M图有正斜率(﹨);Q<0,有负斜率(/); ② 有分布荷载的梁段(设为常数),剪力图为一斜直线,弯 矩图为抛物线;q<0,Q图有负斜率(﹨),M图下凹(︶) ; q>0,Q图有正斜率(/),M图上凸(︵);
布的假设。要注意有不同的受剪截面:
6
学海无涯
a.单面受剪: 受剪面积是铆钉杆的横截面积;
b.双面受剪: 受剪面积有两个:考虑整体结构,受剪面积为2倍销钉
截面积;运用截面法,外力一分为二,受剪面积为销钉截面 积。
c.圆柱面受剪:
受剪面积以冲头直径d为直径,冲板厚度 t 为高的圆柱
面面积。 3. 关于扭转
压应力 正应力拉应力
1
学海无 涯
线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系
虎克定律;剪切虎克定律:
拉压虎克定律:线段的拉伸或压缩。
E
—
—l
Pl EA
剪切虎克定律:两线段 夹角的变化。 Gr
适用条件:应力~应变是线性关系:材料比例极限以内。
3) 虚分布荷载 qx 的单位与实梁弯矩 M x 单位相同 若为KN m,虚剪力的单位则为 KN m2 ,虚弯矩的单
位是 KN m3 4) 由于实梁弯矩图多为三角形、矩形、二次抛物线和三次
抛物线等。计算时需要这些图形的面积和形心位置。
13
学海无 涯
叠加法求梁的转角和挠度: 各荷载对梁的变形的影响是独立的。当梁同时受n种荷载作
1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学
分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8.
材料力学中的平面假设
寻找应力的分布规律,通过对变形实验的观察、分析、
推论确定理论根据。
1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力 处处相等。
积分。但由剪应力互等定理,考虑微梁段左、右内力的平衡,
可以得出:
QZS* Izb
剪应力在横截面上沿高度的变化规律就体现在静矩
S
* z
上,
S
* z
总是正的。
剪应力公式及其假设:
a.矩形截面 假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q 的方向一致; 假设2:横截面上同一层高上的剪应力相等。 剪应力公式:
5. 材料的力学性能(拉压):
一张σ-ε图,两个塑性指标δ、ψ ,三个应力特征点:
p、 s、 b ,四个变化阶段:弹性阶段、屈服阶段、强化 阶 段、颈缩阶段。
拉压弹性模量E,剪切弹性模量G,泊松比v, G
E (21 V)
塑性材料与脆性材料的比较:
变形
强度
抗冲击 应力集中
塑性 材料流动、断裂变形明显 拉压 s 的基本相同 较好地承受冲击 不敏感
⑦ 指定截面上的剪力等于前一截面的剪力与该两截面间分
布荷载图面积值的和;指定截面积上的弯矩等于前一截面的 弯矩与该两截面间剪力图面积值的和。
共轭梁法求梁的转角和挠度: 要领和注意事项:
1) 首先根据实梁的支承情况,确定虚梁的支承情况 2) 绘出实梁的弯矩图,作为虚梁的分布荷载图。特别注意:实
梁的弯矩为正时,虚分布荷载方向向上;反之,则向下。
一端,外力的符号同剪力符号规定,其他外力与其同向 则同号,反向则异号;
11
学海无涯
4) 弯矩等于脱离体上的外力、外力偶对截面形心截面形心 的力矩的代数和。外力矩及外力偶的符号依弯矩符号 规 则确定。
梁内力及内力图的解题步骤:
1) 建立坐标,求约束反力;
2) 划分内力方程区段;
3) 依内力方程规律写出内力方程;
脆性 无流动、脆断
仅适用承压
非常敏感
6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经 济性矛盾的关键。过小,使构件安全性下降;过大,浪
2
学海无 涯
费材料。
许用应力:极限应力除以安全系数。
塑性材料
s
ns
0 s
脆性材料
b
nb
0 b
7. 材料力学的研究方法
9
学海无涯
三.梁的内力方程,内力图,挠度,转角 遵守材料力学中对剪力 Q 和弯矩 M 的符号规定。
在梁的横截面上,总是假定内力方向与规定方向一 致,从统一的坐标原点出发划分梁的区间,且把梁的
坐标原点放在梁的左端(或右端),使后一段的弯矩
方程中总包括前面各段。
均布荷载 q、剪力Q、弯矩M、转角θ、挠度 y 间的
4) 运用分布荷载q、剪力Q、弯矩M的关系作内力图;
关系:
Qdd2xM2 Q
dQ
dx
qx, d qxdx
D
C
c
dM Qx
dx
MD MC dQxd x c
规定:①荷载的符号规定:分布荷载集度 q 向上为正;
②坐标轴指向规定:梁左端为原点,x 轴向右为正。
剪力图和弯矩图的规定:剪力图的 Q 轴向上为正,弯矩图
内力
应力= 截面几何性质
对扭转的最大应力:截面几何性质取抗扭截面模量W p
I max
对弯曲的最大应力:截面几何性质取抗弯截面模量 W Z
IZ ymax
4. 四种基本变形的变形公式,都可写成:
内力长度 变形= 刚度
因剪切变形为实用计算方法,不考虑计算变形。
2
弯曲变形的曲率
(1x)
dy dx2
,一段长为
关系:
由:
EI d y2 dx2
M dx dM Q ,
dQ q dx
有 EI dx3 dx dQ3(y x)dM
EI d 4y q(x) dx4
设坐标原点在左端,则有:
q:
d 4y EI dx4
q,
q
为常值
Q
:
EI
d3 y dx3
qx A
M
EI
d2y dx2
q 2
x2
Ax
B
EI dy q x3 A x2 Bx C dx 6 2
③ Q=0的截面,弯矩可为极值;
12
学海无涯
④ 集中力作用处,剪力图有突变,突变值为集中力之值,
此处弯矩图的斜率也突变,弯矩图有尖角;
⑤ 集中力偶作用处,剪力图无变化,弯矩图有突变,突变
值为力偶之矩;
⑥ 在剪力为零,剪力改变符号,和集中力偶作用的截面(
包 括梁固定端截面),确定最大弯矩( M
);
max
y EI y q x4 A x3 B x2 Cx D
24 6 2
其中A、B、C、D四个积分常数由边界条件确定。
例如,如图示悬臂梁:
10
学海无 涯
则边界条件为:
Q |x 0 0 A 0
M |x 0 0 B 0
|xl
0
C
q l3 6
y
|xl
0
D
q 8
l4
EI y q x 4 ql3 x ql 4
2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过 一个角度。横截面上正应力为零。
3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的 纵向纤维;正应力成线性分布规律。
3
学海无涯
9 小变形和叠加原理 小变形:
① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。
l
的纯弯曲梁有:
l Mxl (x) EIz
补充与说明:
1、关于“拉伸与压缩” 指简单拉伸与简单压缩,即拉力或压力与杆的轴线重
合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲
的组合变形问题;杆的压缩问题,要注意它的长细比 (柔
度)。这里的简单压缩是指“小柔度压缩问题”。
2、关于“剪切” 实用性的强度计算法,作了剪应力在受剪截面上均匀分
24
6
8
y
ql 4
x0 8EI
截面法求内力方程: 内力是梁截面位置的函数,内力方程是分段函数,它们
以集中力偶的作用点,分布的起始、终止点为分段点; 1) 在集中力作用处,剪力发生突变,变化值即集中力值
, 而弯矩不变; 2) 在集中力偶作用处,剪力不变,弯矩发生突变,变化
值 即集中力偶值; 3) 剪力等于脱离梁段上外力的代数和。脱离体截面以外另