(完整版)压缩空气系统设计手册

合集下载

压缩空气处理系统,空气过滤器,压缩空气干燥器,气体净化系统说明书

压缩空气处理系统,空气过滤器,压缩空气干燥器,气体净化系统说明书

Your compressed air - Our know-howcomponents and engineered systems for compressed air and gas treatmentComplete compressed air processing at a glance:Solid particles Pressure dew point Oil/oil vaporMeasured in accordance with ISO 8573-4, ref. conditions 14.5 psi [a] absolute, 68 °F, 0% RHMeasured in accordance with ISO 8573-3Measured in accordance with ISO 8573-2 and ISO 8573-5, ref. conditions 14.5 psi [a] absolute, 68 °F, 0% RH your single source of supply and quality you can rely on.BEKO Technologies, Corp.Social responsibilityIndependenceEmployee-oriented corporate cultureStrong and reliable partner TechnologyleaderEfficient use of resources We set the standard. With our expertise,our experience, and our passion.For more than three decades, BEKO Technologies has beendeveloping, manufacturing and selling high-quality, high-capacity and high-efficiency components and engineered systems for optimal compressed air and gas quality. Today, we offer acomplete range of products for all tasks related to compressed air and gas engineering, transportation, and processing.Judge us by our service and supportFor us, the best measure of all the things we do is the satisfactionof our customers. Your experience and requirements are the impulses that drive our innovations. Therefore, our constant readiness to enter into dialog and business partnership is very important to us. Our worldwide network of subsidiaries and experienced distributors ensure close and individualized customer support in all markets.What counts for us is confidenceReliability and honesty are the basis of a true partnership andrequirements in achieving a shared vision. As an independent company, BEKO Technologies stands for freedom of decision, professionalism, and consistency. We are focused on the concerns of our customers and partners, and are completely committed to achieving success together.Definitive quality products, cost effective, and innovativeConstantly evolving employment conditions and legal requirements create new and increased demands on compressed air and gastechnology. BEKO Technologies transforms these requirements into successful and practical products and system solutions. Thanks to this expertise, we are recognized worldwide as a major innovator in our sector.ProductsSystemsServicesFiltration and Separation with CLEARPOINT ®The CLEARPOINT ® filter technology guarantees low operating costs, long service life, outstanding process reliability, and the safe filtration of aerosols, oil and particles. This comprehensive range of products covers aperformance spectrum from 25 to 21,000 scfm and includes threaded and flanged filters, as well as high-pressure filters up to 7,250 psig.With our innovative eco filter elements and flow optimized, corrosion protected housing construction, CLEARPOINT ® offers safe and reliable filtration and qualitatively better compressed air at significantly reduced operating costs.Filtration done the energy-efficient way CLEARPOINT ®key features:The eco series filter elements of the CLEARPOINT ® offer significant energy savings at maximum filtration performance.Activated carbon adsorbers CLEARPOINT ® V activated carbon adsorbers for top compressed airquality with a low residual oil contentAir Treatment› High-performance filtration; better compressed air quality and significantly reduced operating costs › Improved separation efficiency› High dirt and particulate absorption capacity › Super-low differential pressure› Performance optimized volume flow increase by up to 30% › Tested and validated in accordance with ISO 12500 › Filters also available as water separators: CLEARPOINT ® WRefrigerant Drying with DRYPOINT ® RA and RA Eco SeriesThe operating costs - and not the investment costs - determine the cost efficiency of refrigeration dryers. Using DRYPOINT ® RA these crucialoperating costs can be reduced by half over a 5-year period. The non-cycling DRYPOINT ® RA line is available in two different series to satisfy every level of required performance.DRYPOINT ® RAc Economy Series from 10 to 480 scfm DRYPOINT ® RAx Premium Series from 20 to 10,000 scfmEfficiency pays offDRYPOINT ® RA key features:› Includes the patented Vario Flow hot gas by-pass valve › Compact design with low internal vibration› High efficiency heat exchanger for inlet temperatures up to 160 °F › BEKOMAT ®insideThe DRYPOINT ® RA Eco series takes all of the best features from thestandard RA series and combines them with innovative cycling and variable speed technology resulting in even greater operational cost savings. DRYPOINT ® RA CT with energy saving cold trap cycling technology DRYPOINT ® RA VSD with unique variable speed compressor and fanMaximum efficiency combined with cycling technology DRYPOINT ® RA Eco Series key features: › All new, ground-up controller design› Includes the patented Vario Flow hot gas by-pass valve › Oversized heat exchanger with flow optimized profile › BEKOMAT ® inside› Maximum energy savings through advanced cycling and variablespeed technologyAir TreatmentRefrigerant Drying with DRYPOINT ® RA HT and DRYPOINT ® RS HPDRYPOINT ® RA HT high temperature refrigerant air dryers arespecifically designed to handle the extreme demand of inlet compressed air temperatures up to 210 °F. This level of performance is only possible with the integrated after cooler and filter combination found within the DRYPOINT ® RA HT series dryers.Minimal pressure drop, low operating costs DRYPOINT ® RA HT key features: › Significantly reduced operating costs › High operational reliability› Includes the patented Vario Flow hot gas by-pass valve › BEKOMAT ® inside› Integrated after cooler complete with pre-filtrationWith full counter flow heat exchangers of either copper tube-in-tube or stainless steel / copper brazed plate designs, the DRYPOINT ® RS HP is capable of handling compressed air pressures up to 725 psig all while maintaining tight outlet pressure dew point tolerance.Refrigerant drying for high pressure systems DRYPOINT ® RS HP key features: › Additional stainless steel componentry › Very long service life › Advanced controller› High pressure rated BEKOMAT ® inside › Easy handling and installation ›Available in 17 different model sizesAir TreatmentHeatless Desiccant Drying with DRYPOINT ® XC and DRYPOINT ® AC HPDRYPOINT ® XC desiccant dryers are specifically designed to minimize air loss. With this design, air loss and back pressure are reduced resulting in an operationally efficient dryer. When these features are combined with the self-adjusting demands times of the premium models the result is a dramatically quick economic payback period. The DRYPOINT ® XC line is available in two series to suit every application.DRYPOINT ® XCe Economy Series from 80 to 800 scfm DRYPOINT ® XCp Premium Series from 80 to 2,800 scfmMinimal pressure drop, maximum savings DRYPOINT ® XC key features: › Significantly reduced operating costs › High operational reliability› Electronic control offers operational flexibility› Designed with the user in mind - easy install and simple maintenanceThe DRYPOINT ® AC HP desiccant dryer reliably removes humidity from high-pressure compressed air. Every DRYPOINT ® AC HP unitis individually adjusted to the application conditions and customer requirements and thereby achieves the utmost in performance efficiency.Drying under high pressureDRYPOINT ® AC HP key features: › Full stainless steel construction › Leak free connections› Intelligent, expandable PLC controller › Trouble-free and easy to maintain › Freeze-free purge air›Sized and engineered specifically for your applicationAir TreatmentHeated Desiccant Drying with DRYPOINT ® XF and DRYPOINT ® ACHHeated purge desiccant dryers provide the next level up in terms of energy savings when compared to heatless designs, and the DRYPOINT ® ACH is no exception. The entire design from valves to controller were given careful consideration to not only save money, but to also improve operational reliability.Optimized heated drying systems DRYPOINT ® ACH key features: › Purge efficient design › Fully programmable PLC › Standard cycle failure alarm› Available with or without tower insulation› Demand specific sizing and engineered to your exact specificationsWhen a true system solution that delivers absolute maximumperformance in all areas is required then DRYPOINT ® XF is that solution. Heated, blower operated desiccant dryers are at the top of the range in terms of product longevity, reliability and total energy savings. DRYPOINT ® XFe economy heated blower purge seriesDRYPOINT ® XFi ecoIntelligent heated blower auto-purge seriesWhen maximum efficiency is your goal DRYPOINT ® XF key features: › Auto-purge rate and user modes › Advanced ecointelligent PLC› Up to 90% energy savings compared with a conventional dryer › Available with or without tower insulation›Demand specific sizing and engineered to your exact specificationsDRYPOINT® XFFlowPressureAir TreatmentMembrane Drying with DRYPOINT ® MDe, MDp, and MDiThe DRYPOINT ® MD is a super compact membrane air dryer that dries compressed air or gas stream down to the required dew point while self-adjusting to the ambient conditions. Along with filtration, compressed air drying contributes significantly to the enhancement of process reliability. The DRYPOINT ® MD range is available without filtration as with thestandard series, with an integrated pre-filter in the DRYPOINT ® MDp series, and in the super energy saving, user adjustable MDi configuration.The Perfect OEM SolutionThe DRYPOINT ® MD range is available in a variety of configurations from a membrane bundle without housing, to simple tubular designs, all the way through to custom housing shapes and materials. Being that the technology is 100% engineered and produced by BEKO Technologies means that we can handle your project through the entire project life cycle - from concept to prototyping, from benchmarking to serialized production, we have the optimal solution.A solution for every application DRYPOINT ® MD key features:› Reliable compressed air drying with low purge air demands › Zero electrical consumption and no desiccant › TWIST 45 technology for high efficiency drying› No change in the compressed air composition or temperature › No moving parts and no maintenance› Optimum filtration included directly upstream of DRYPOINT ® MDp › DRYPOINT ®MDi with ecoIntelligent controllerAir TreatmentMeasurement Technology with METPOINT ® InstrumentationIn the field of compressed air, specialized measurement technologyprovides the database used for the successful assessment and assurance of compressed air quality. Continuous monitoring of compressed air parameters offers process safety and the reliable identification of hidden expenses that are driving up costs unnecessarily. Possible overloading (i.e. excessive air velocities) or malfunctions can be detected quickly and reliably and this allows for the most economical optimization of plant components. Moreover, the exact consumption percentages at different stages of production is of great value in making fact-based businessmanagement decisions. The complete METPOINT ® line of monitors, data loggers and sensors let you handle these tasks with ease:A synergistic effectMETPOINT ® key features:› Highly accurate instruments designed for compressed air › Reliable measurements that are independent › Multi-function displays that are easy to use › Completely modular system that expands as needed › Maximum flexibility with stationary and portable devices ›No adjustments necessaryInstrumentationHydrocarbon Measurement Technology with METPOINT ® OCVAt many points in the processing of compressed air, there is therisk of contamination with hydrocarbons, particularly oil. In oil flooded compressors, oil vapor enters the compressed air system as a result of the compression process. Further contamination can occur where oil and grease are employed as lubricants and sealing compounds. Even oil-free compressors are no guarantee for oil-free compressed air, since oil vapor already exists in the air that is drawn into the compressor at the intake. Wherever contaminants may enter a production process, then the company needs to be sure that accurate monitoring is in place to detect even the smallest trace of contamination. The METPOINT ® OCV and OCV compact completely takes over the requirement to constantly monitor your compressed air and performs this task to an accuracy of 0.003 mg/m³. The system ensures that you have contamination-free processes and thereforecontamination-free products.Two devices in oneMETPOINT ® key features: › Worldwide exclusive technology › Exceeds ISO 8573-1 Class 1 standards › Self-adjusting reference air sample› Simplified calibration process eliminates downtime › Network ready with data logging and remote access › Multi-function color touch screen display ›Mobile monitoring system availableInstrumentationOil-free Process Technology with BEKOKAT ®The main source for oil in compressed air is the compressor: some of the compressor oil from oil-lubricated machines always enters the compressed air stream. In order to prevent this, the installation of compressors with oil-free compression is often favored. This is a false sense of security! This compression method prevents additional lubricating oil from entering the compressed air, but, this is by no means a guarantee that the compressed air is free from oil. Hydrocarbons in the ambient air are the reason for this.Hence, compressed air of the highest quality according to ISO 8573-1 can only be guaranteed with oil-free compression combined withsupplementary processing. The BEKOKAT ® offers an ideal system solution for this! In a single process step, the BEKOKAT ® breaks down hydrocarbons inside the compressed air stream. The residual oil content significantly outperforms the requirements of Class 1 according to ISO 8573-1 - proven and certified!Trendsetting catalysis technology BEKOKAT ® key features:› Oil-free and sterile compressed air that is better than ISO 8573-1Class 1 oil content standard› Independent of ambient temperature, air humidity and oil inlet concentration› Clean and environmentally friendly › Partial-load operation is possible›Minimal maintenance with long service intervalsProcess TechnologyCondensate Drainage with BEKOMAT ®Generating compressed air always involves the formation of liquid condensate which, in most cases, contains oil. It is also contaminated with dirt particles which, if not removed, will disperse throughout an entire compressed air network. This is a very common problem and often results in elevated costs, damage and downtime. Using an electronically level-controlled BEKOMAT ® the condensate in the compressed air system is drained automatically. The intelligent electronics preventcompressed air losses and minimize the energy input required. The return-of-investment installing a BEKOMAT solution is usually less than 6 months.Process-safe, reliable and efficient BEKOMAT ® key features:› Unique sensor detects all kinds of condensate › High dirt resistance › Low maintenance › Fully automatic monitoring› Saves energy, costs and lowers CO 2 emissions›Extensive portfolio of custom equipment for special applicationsCondensate TechnologyCondensate Processing with ÖWAMAT ®, QWIK-PURE ® and BEKOSPLIT ®Located directly at the source, oil-water separation is a morecost-effective solution for environmentally compatible condensate management than centralized treatment. The ÖWAMAT ® andQWIK-PURE ® oil-water separators do not generate any energy costs, boast enormous filter service lives and can be retrofitted without problems in older facilities.Sustainability with a savings potentialÖWAMAT ® and QWIK-PURE ® key features:› Processed condensate can be directly introduced into the sewer system as treated wastewater› Easiest handling through cartridge technology › Type approval for compressor condensates› No permit required according to most local laws on water quality › No energy costs under normal conditionsBEKOSPLIT ® emulsion splitting systems reliably and cost-effectively remove oils, water-insoluble organic impurities and solid contaminations from condensate. BEKOSPLIT ® operates with low splitting-agent consumption, longer filter service life and offers electronic monitoring of the operating conditions.Environmentally friendly and cost-effective BEKOSPLIT ® key features:› Economical in consideration of purchase, operation, and maintenance › Reliable, environmentally friendly and easy to use › Type approval according to German standards›No permit required according to most local laws on water qualityCondensate TechnologyReliable|Efficient|Innovative What can we do for you?BEKO TECHNOLOGIES CORP.900 Great Southwest Pkwy SWAtlanta, GA 30336USAPhone + 1 (404) 924-6900。

压缩空气系统方案(最终)

压缩空气系统方案(最终)

压缩空气系统方案(最终)一、系统概述压缩空气系统作为工业生产中的重要辅助系统,承担着为各类气动设备提供稳定气源的重要任务。

本方案旨在为您打造一套高效、节能、稳定的压缩空气系统,以满足生产需求,降低运营成本,提高生产效率。

二、系统设计原则1. 安全可靠:确保系统在各种工况下安全稳定运行,降低故障率。

2. 节能高效:选用高效节能的设备,降低能源消耗,提高系统能效。

3. 灵活扩展:充分考虑未来生产需求,预留一定扩展空间,便于系统升级。

4. 易于维护:采用标准化、模块化设计,便于日常维护和故障排查。

三、系统组成1. 空气压缩机:选用螺杆式空气压缩机,具有高效、节能、噪音低等优点。

2. 后处理设备:包括冷冻干燥机、吸附式干燥机、精密过滤器等,确保输出空气质量。

3. 储气罐:用于储存压缩空气,平衡系统压力波动,确保气源稳定。

4. 输气管道:采用优质不锈钢管道,减少气体损耗,降低系统阻力。

5. 控制系统:实现对整个压缩空气系统的实时监控、故障诊断和自动调节。

四、系统配置1. 空气压缩机:根据生产需求,配置相应功率的空气压缩机,确保供气稳定。

2. 后处理设备:根据用气质量要求,配置合适的干燥机和过滤器。

3. 储气罐:根据用气量和压力波动情况,选择合适容积的储气罐。

4. 输气管道:根据车间布局,合理规划管道走向,降低管道阻力。

5. 控制系统:采用智能化控制系统,实现设备联动、故障预警等功能。

五、系统优势1. 节能效果显著:本方案选用的空气压缩机具有较高的能效比,结合优化的系统设计,能够有效降低能耗,为企业节约运营成本。

2. 稳定性高:系统采用高品质组件,保证了长期稳定运行,减少了因设备故障导致的停机时间。

4. 噪音低:选用低噪音空气压缩机,并结合有效的隔音措施,为员工营造一个更舒适的工作环境。

5. 维护成本低:系统采用模块化设计,便于快速更换故障部件,减少维护工作量。

六、实施步骤1. 现场勘查:深入了解企业现有设备、生产需求及现场条件,为系统设计提供依据。

压缩空气站设计手册

压缩空气站设计手册

空压站就是压缩空气站,由空气压缩机、储气罐(分为一级、二级储气罐)、空气处理净化设备、冷干机组成。

压缩空气站在厂(矿)内的布置,应根据以下因素确定经技术经济方案。

气源就是气压传动系统的能源或动力源。

由空气压缩机产生的压缩空气,储存在储气罐中,必须经过降温、净化、减压、稳压等一系列处理,才能供给控制元件(各种阀、逻辑元件等)及执行元件(缸、马达等)使用。

而用过的压缩空气排向大气时会产生噪声,应使用消声器消声,甚至为了环保需要净化处理等。

压缩空气站就是一种气源装置,是气压系统的动力源装置,通常规定:排气量≥6m3/min~12m3/min时,就应独立设置压缩空气站;若排气量<6m3/min,则可将压缩机或气泵安装在系统旁直接为系统供气。

在安装空压站时,有两点需要特别注意:第一点就是空压机,储气罐,干燥机,过滤器,每个设备之间的距离一定要摆放好,空压机与储气罐之间的距离最好不能小于50厘米,储气罐的接法遵循低口进,高口出的原则,储气罐与初级过滤器之间的距离最好不要小于40厘米,初级过滤器与干燥机之间也不要小于40厘米,干燥机与后面的精密过滤器最好也要达到40厘米以上,因为距离太小了,会给以后维修各设备带来麻烦;[3]第二点就是摆放这些设备时,与空压机房四边墙体的直线距离要至少保留100厘米,这也是为以后维修设备方便最起码要留的空间距离,还有空压机房要保持良好的通风,必要时加装排风扇,做的这一切都是为了最大化发挥空压站的作用,最大程度保证空压机的使用寿命。

[3]压缩空气站在厂内的布置,应根据下列因素,经技术经济比较后确定:(1)靠近用气负荷中心,可节省管道,减少压力损失,减少耗电,保证供气压力;(2)压缩空气站用水、用电负荷较大,要考虑供电、供水合理性;(3)有扩建的可能性;(4)避免靠近散发爆炸性、腐蚀性和有毒气体以及粉尘等有害物的场所,并宜位于上述场所全年最小频率风向的下风侧;(5)压缩空气站与有噪声、振动防护要求场所的间距,应符合国家现行的有关标准规范的规定;(6)压缩空气站的朝向,宜使机器问有良好的自然通风,并宜减少西晒;(7)压缩空气储气罐应布置在室外,并宜位于机器间的北面。

压缩空气供气系统节能手册_图文.

压缩空气供气系统节能手册_图文.

压缩空气供气系统节能手册撰写人:庄朝焮财团法人中技社节能技术发展中心目录一、前言 (1二、压缩空气供给系统概论 (2三、压缩空气系统检测 (13四、空气压缩机节能措施 (18五、空气调质设备节能措施 (33六、压缩空气管线节能措施 (40七、编后语 (50八、参与文献 (51一、前言近年来,由于自动化设备在各行各业的普及,而气动设备的安全、洁净、易于控制、取得容易等有利因素,因此被广泛应用于自动化设备上。

但为提供压力、洁净程度适合之压缩空气,各工厂必须安装、配置一压缩空气供给系统;然而对此系统的管理上,由于大部份供气系统除安装压力表外,并无安装其它合适的计量仪表,如流量计、电力瓦时表、温度计等,对于所使用系统之运转状况,如现场实际需求量、实际供气量、压缩机供气效率、现场泄漏量等,无法充份掌握,进而适时的提出各项改善方案,降低压缩空气系统的运转成本。

财团法人中技社节能技术发展中心(以下简称本中心多年来协助政府及产业界推动能源节约工作,有鉴于业者对于压缩空气系统的倚重,但又无法由既有仪表之数据上,得知空气压缩机的日耗电量、产气量、日负载、能源效率、空气管线的泄漏量等更进一步信息,进而分析出系统上的各种问题,并寻求解决之道;为此本中心于多年前,自加拿大引进较为简易之检测技术,经多年来协助业者分析、诊断各种压缩空气系统,前后共检测过数十个工厂上百部各式空气压缩机,协助业者发掘出压缩空气系统使用上的各种问题,并提出各项对策,以供其参考改善。

本手册即将过去几年服务所得之经验加以整理,期望能对业界在压缩空气系统的使用上,有进一步的帮助。

1二、压缩空气供给系统概论压缩空气供给系统所包括之设备有空气压缩机、干燥设备、过滤设备、输送管线等主要组件。

而其中更以空气压缩机为最大能源耗用者,也因此在压缩空气系统的能源节约上,必须要求空气压缩机的高效率运转。

为达此一目的,除对空气压缩机制造销售商所提供之各项描述机台特性之数值有所认识外,另对可供选用之各类型空气压缩机及其特性亦必须有基本的认识。

压缩空气供气系统节能手册

压缩空气供气系统节能手册

壓縮空氣供氣系統節能手冊目錄一、前言 (1)二、壓縮空氣供給系統概論 (2)三、壓縮空氣系統檢測 (13)四、空氣壓縮機節能措施 (18)五、空氣調質設備節能措施 (33)六、壓縮空氣管線節能措施 (40)七、編後語 (50)八、參與文獻 (51)一、前言近年來,由於自動化設備在各行各業的普及,而氣動設備的安全、潔淨、易於控制、取得容易等有利因素,因此被廣泛應用於自動化設備上。

但為提供壓力、潔淨程度適合之壓縮空氣,各工廠必須安裝、配置一壓縮空氣供給系統;然而對此系統的管理上,由於大部份供氣系統除安裝壓力錶外,並無安裝其他合適的計量儀錶,如流量計、電力瓦時錶、溫度計等,對於所使用系統之運轉狀況,如現場實際需求量、實際供氣量、壓縮機供氣效率、現場洩漏量等,無法充份掌握,進而適時的提出各項改善方案,降低壓縮空氣系統的運轉成本。

財團法人中技社節能技術發展中心(以下簡稱本中心)多年來協助政府及產業界推動能源節約工作,有鑒於業者對於壓縮空氣系統的倚重,但又無法由既有儀錶之數據上,得知空氣壓縮機的日耗電量、產氣量、日負載、能源效率、空氣管線的洩漏量等更進一步資訊,進而研判出系統上的各種問題,並尋求解決之道;為此本中心於多年前,自加拿大引進較為簡易之檢測技術,經多年來協助業者分析、診斷各種壓縮空氣系統,前後共檢測過數十個工廠上百部各式空氣壓縮機,協助業者發掘出壓縮空氣系統使用上的各種問題,並提出各項對策,以供其參考改善。

本手冊即將過去幾年服務所得之經驗加以整理,期望能對業界在壓縮空氣系統的使用上,有進一步的助益。

1二、壓縮空氣供給系統概論壓縮空氣供給系統所包括之設備有空氣壓縮機、乾燥設備、過濾設備、輸送管線等主要元件。

而其中更以空氣壓縮機為最大能源耗用者,也因此在壓縮空氣系統的能源節約上,必須要求空氣壓縮機的高效率運轉。

為達此一目的,除對空氣壓縮機製造銷售商所提供之各項描述機台特性之數值有所認識外,另對可供選用之各類型空氣壓縮機及其特性亦必須有基本的認識。

Asahi America Air-Pro 压缩空气管道系统说明书

Asahi America Air-Pro 压缩空气管道系统说明书

IntroductionAir-Pro® is a thermoplastic compressed air piping system made from a specially formulated polyethylene (PE) material. Since its introduction to the US market in 1992, there have been over 5,000 successful installations of the product currently still in operation. Applications range from aboveground and below ground, indoors and outdoors, harsh, corrosive chemicals, marine salt-air environments, and a variety of manufacturing plants and workshops.Safety is a primary concern with compressed air and gas applications. Stored energy that is inherent in these types of systems can be harmful or fatal to personnel or destructive to equipment if the piping system is not manufactured, designed, installed, tested, operated, and maintained properly. Air-Pro® is specifically formulated to provide safe transport of compressed air with a minimum expected useful life of 50 years.Air-Pro® compressed air piping system is currently backed by a 10 year warranty. For full details on warranty information, please visit our website at https:///support/warranty-policy.IntroductionAir-Pro® at a bleach plant without corrosion.Air-Pro® in a buried application.Air-Pro® at a fertilizermanufacturing facilitycovered in chemical dust.VERSATILITY OF THE AIR-PRO® PIPING SYSTEMSystem Overview04-2021Welding MethodsSYSTEM BENEFITS• Corrosion resistant: no rusting, scaling, orpitting, clean air delivery• Smooth inner wall: low pressure drop, efficient(m) (3). The blue color is the ANSI/OSHA schematiccolor for compressed air pipelines.SYSTEM SAFETYAir-Pro® over-pressurized ductile failure duringburst test (pressure > 800psi)Product Guide & Installation Manual at for acomprehensive discussion of the Air-Pro® product line.PRESSURE RATINGComponents shall be pressure rated in accordance with ISO9080 for hydrostatic design basis. This pipe is to be utilized for compressed air and other inert gases. The pressure ratings are based on an overall safety factor of 2. Consult long form Air-Pro®specification or page 9 of this catalog for pressure ratings with a different service life or temperature.RESISTANCE TO UV SUNLIGHTmaterial is UV stabilized and can be installed aboveground, either indoors or outdoors. In outdoor applications, Air-Pro® that is exposed to direct sunlight is subject to inconsequential oxidation on the surface of the pipe. This can be avoided by providing a covering for the pipe and fittings (either a wrap or paint), or it can be ignored. If left alone, the oxidized surface provides a built-in UV blocker, which does not affect long-term performance of the system, including weldability.ID of corrodedpipe sampleID of Air-Pro®The primary determining factors for proper Air-Pro® pipe sizing are:• Total required flow for the system (CFM)• Operating supply pressures at points-of-use• Length of pipe runs• Number and types of fittings• Future expansionThe following CFM chart may be used for quick reference to determine the proper size of Air-Pro® pipe for given applications:CFM Chart - Air-Pro®Pressure (psi)1/2" - 4" SDR 7.4 Pipe6" - 12" SDR 11 Pipe 1/2"3/4"1"1-1/4"1-1/2"2"3"4"6”8"10"12"405919346211730652519983649668512492 5071224437914938966925434644850815901 60814295296181474814309656561036219365 7010173462114214560962365866821224122876 80112039711312476471112422677191414226429 90132245811492817351263480087681606330018 100142550901673158241415537998251800133669 11016285610018534991315685963108921995437290 120173061110204383100317236551119662192340969 130193367120222418109418797143130482390444672 140203672130241453118520367739141362589848398 150223878140259488127721938338152312790452146 16023418415027852313692352----17025448916129755914622511----18026479517131659415552671----190285010118133563016492832----200305310619135466617432993----Calculations are based on a 1.5% pressure drop for 100 feet of Air-Pro® pipeCFM Piping System DesignTheoretical full internal vacuum at sea level is 29.92” Hg or -14.7psi, but this is rarely seen in practice due to limitations of vacuum pumps and related equipment. In practice, most vacuum systems can achieve up to about 98% of full vacuum. In general, Air-Pro®’s external or negative pressure rating is much higher than theoretical full vacuum. This is important because there may be other variables besides internal vacuum that could contribute to negative pressure on the hoop stress of the pipes. As with all unreinforced thermoplastic pipe systems, both positive and negative pressure ratings decrease as temperatures rise. When designing vacuum systems with Air-Pro®, the highest possible temperature the pipes will be exposed to along with desired useful service life should be considered.VACUUM APPLICATIONSTemperature ° F (° C)Expected Useful Life(Years)Air-Pro® Permissible External (Negative) Pressure (-psi) SDR 7.4SDR 1168 (20)118034 1013323 251201986 (30)115328 1011318 2510616104 (40)112019 1010014 259313122 (50)110014 108611Permissible operating pressure for A ir-Pro® piping system is based on years of operation and temperature. This table is for compressed air with a combined safety factor of 2.0.EXPECTED USEFUL LIFEOperatingTemperature ° F (° C)Service Time (Years)Permissible Working Pressure(psi)SDR 7.4SDR 1114 (-10)5022414450 (10)5026917268 (20)5022614586 (30)50192123104 (40)50165106122 (50)1014995140 (60)511070NOTE: Temperatures below 50° F (10° C) and above 68° F (20° C) decrease pressure ratingApplicationsWhen choosing support spacing for Air-Pro ®, the temperatures the piping system will be subjected to should be considered. The chart below lists support spacing at various temperatures that the pipe will experience. The highest temperature that pipes will be exposed to should always be considered. The chart below represents deflection less than or equal to 0.20”, which is most often adopted because there appears to be no visible sag between supports at or below this deflection.SUPPORT SPACINGSize68° F (20° C)86° F (30° C)104° F (40° C)122° F (50° C)140° F (60° C)OD (inch)OD (mm)1/22031312823203/425363331312813241413636311-1/44048464141361-1/250565648464126366645956482-1/27574716661563908479746964411092898479716160115107102979082001281231181131051025014614113312811812315161156151143131AIR-PRO ® SUPPORT SPACING (INCH)MAXIMUM AND MINIMUM DEPTH OF COVER REQUIRING NO CALCULATIONSPE100 MULTIPLICATION FACTOR BENDING RADIUSAir-Pro ® may be installed to effect a change of direction without use of fittings:Air-Pro ® SDR Minimum Depth ofCover - With H-20Load (Feet)Minimum Depth of Cover - Without H-20 Load (Feet)Maximum Depth of Cover (Feet)7.43225113225Installation Temperature° F (° C)PE100SDR 7.4 - 1786 (30)2068 (20)2050 (10)3532 (0)50AWWA M-55 Design Window - PPI PE Handbook “Design of PE Piping Systems” Chapter 6, page193, table 3.1Supports and Spacing DesignIf fittings or flanges are installed in the bending area, a minimumbending radius of da x 100 must not be exceededOPTION 2Fixed Point Fixed PointFixed PointLoose PointFixed PointSOCKET FUSION WELDING EQUIPMENTHand Socket 2 Tool•ELECTROFUSION WELDINGELECTROFUSION WELDING EQUIPMENTFor 6” and larger material, use the Field 6, 10, or 12 tool. Consult for details.The molten area increases and heat is transferred to the surface of the pipe, which in turn begins to melt.BUTT WELDING EQUIPMENT• 20-110mm (1/2” - 4”)Miniplast ®• 50-160mm (1-1/2” - 6”)Maxiplast ®Joining Methodsdownloads found at https:///category/air-pro.S (in)K (in)t (in)5.007.00 5.005.007.00 4.005.007.00 5.00 https:///category/air-proDimensional Guide。

压缩气体设计手册

压缩气体设计手册

压缩气体设计手册引言压缩气体在众多工业领域中扮演着重要角色,它们被广泛应用于能源生产、制造业、航空航天、医疗设备、石油化工等行业中。

压缩气体的设计和使用需要严谨的技术和安全知识。

本手册将为您介绍压缩气体的基本原理、常用设备、安全措施以及设计过程中的注意事项。

一、压缩气体的基本原理1.1 压缩气体的概念压缩气体是指通过增加气体的压力将气体体积缩小的过程。

当气体的压力增加时,气体分子之间的相互作用力增强,使得气体分子更加接近,从而减小了气体的体积。

1.2 压缩气体的物理特性压缩气体具有以下一些物理特性:•压力:指气体分子对单位面积的撞击力,常用单位为帕斯卡(Pa)或psi (磅力/平方英寸)。

•温度:影响气体分子的平均运动速度,常用单位为摄氏度(℃)或华氏度(℉)。

•体积:气体占据的空间大小,可用单位为立方米(m³)或立方英尺(ft³)来表示。

二、压缩气体的设备2.1 压缩机压缩机是将气体压缩的主要设备,它通过旋转、活塞往复等方式将气体的压力增加。

常见的压缩机包括离心式压缩机、螺杆式压缩机和往复式压缩机。

选择适合的压缩机类型需要根据压缩气体的特性和使用需求来进行。

2.2 冷却装置在压缩气体的过程中,气体的温度会上升,为了确保设备的安全可靠运行,需要使用冷却装置对气体进行冷却。

常见的冷却装置有风冷式冷却器和水冷式冷却器,根据具体需求选择合适的冷却方式。

2.3 储气罐储气罐用于存储压缩气体,以满足系统的气体需求。

储气罐需要经过合理的设计,以确保其具有足够的容积和强度,同时还需要考虑安全阀、排水等附属设备的安装。

三、压缩气体的安全措施3.1 压缩气体的安全性评估在设计压缩气体系统时,需要进行安全性评估,包括确定系统的最大压力和温度,结构的强度和稳定性等。

通过综合考虑这些因素,可以确保系统在设计、制造和使用过程中的安全性。

3.2 安全操作规程对于使用压缩气体的场所和设备,需要制定相应的安全操作规程,包括气体泄漏检测、火源控制、防爆设备等。

(完整版)压缩空气系统设计手册

(完整版)压缩空气系统设计手册

(完整版)压缩空⽓系统设计⼿册压缩空⽓中⽔分的含量及影响( )⼀般⼤⽓中的⽔份皆呈⽓态,不易觉察其存在,若经空⽓压缩机压缩及管路冷却后,则会凝结成⽔滴。

[例如]在⼤⽓温度30℃,相对温度75℃状况下,⼀台空⽓压缩机,吐出量为3m3/min,⼯作压⼒为0.7Mpa,运转24⼩时压缩空⽓中约含有100升的⽔份。

压缩空⽓系统中⽔分的影响:⼀、压缩空⽓管路快速腐蚀,压降增加;设定压⼒提⾼1kgf/cm2G,动⼒输出增加5%-7%,或减少排⽓量6%-8%。

⼆、设备严重故障,增加维修保养费⽤;1.腐蚀零件。

2.阻塞⽓控仪器。

3.降低⽓动⼯具的效率。

三、破坏产品品质,产品不良率提⾼;1.应⽤产品清洁时,造成湿⽓污染。

2.应⽤喷漆涂装时,影响产品品质。

四、影响⽣产流程,⽣产能量降低;1.粉体输送时,易阻塞管线。

2.⽓动设备故障,⽽停⼯。

----冲刷掉⽓动⼯具,电机和⽓缸中的润滑油,增加磨损并缩短寿命,提⾼维护成本----使⽓动阀门和控制仪器失灵,影响可靠操作,效率降低----影响油漆和整饰作业质量----引起系统中的⾦属装置腐蚀⽣锈,影响其寿命,并可导致过度压降----⽓流分配成本提⾼(需倾斜管道,设置U形管和滴⽔管)----在冰冻季节,⽔⽓凝结后会使管道及附件冻结⽽损害,或增加⽓流阻⼒,产⽣误动压缩空⽓中油的危害:在⼀些要求⽐较严格的地⽅,⽐如⽓动控制系统中,⼀滴油能改变⽓孔的状况,使原本正常的⾃动运⾏的⽣产线瘫痪。

有时,油还会将⽓动阀门的密封圈和柱要胀⼤,造成操作迟缓,严重的甚⾄堵塞,在由空⽓完成的⼯序中,如吹形件,油还会造成产品外形缺陷或外表污染。

* 油污的主要来源由于⼤部分压缩空⽓系统都使⽤油润滑式压缩机,该机在⼯作中将油汽化成油滴。

它们以两种⽅式形成:⼀种是由于活塞压缩或叶⽚旋转的剪切作⽤产⽣的所谓“分散型液滴”,其直径在1-50um。

另⼀种是在润滑油冷却⾼温的机体时,汽化形成的“冷凝型液滴”,其直径⼀般⼩于1um,这种冷凝油滴通常占油污重量超过50%,占全部油污实际颗粒数量超过99%。

压缩空气系统设计手册汇编

压缩空气系统设计手册汇编

压缩空气中水分的含量及影响( )一般大气中的水份皆呈气态,不易觉察其存在,若经空气压缩机压缩及管路冷却后,则会凝结成水滴。

[例如]在大气温度30℃,相对温度75℃状况下,一台空气压缩机,吐出量为3m3/min,工作压力为0.7Mpa,运转24小时压缩空气中约含有100升的水份。

压缩空气系统中水分的影响:一、压缩空气管路快速腐蚀,压降增加;设定压力提高1kgf/cm2G,动力输出增加5%-7%,或减少排气量6%-8%。

二、设备严重故障,增加维修保养费用;1.腐蚀零件。

2.阻塞气控仪器。

3.降低气动工具的效率。

三、破坏产品品质,产品不良率提高;1.应用产品清洁时,造成湿气污染。

2.应用喷漆涂装时,影响产品品质。

四、影响生产流程,生产能量降低;1.粉体输送时,易阻塞管线。

2.气动设备故障,而停工。

----冲刷掉气动工具,电机和气缸中的润滑油,增加磨损并缩短寿命,提高维护成本----使气动阀门和控制仪器失灵,影响可靠操作,效率降低----影响油漆和整饰作业质量----引起系统中的金属装置腐蚀生锈,影响其寿命,并可导致过度压降----气流分配成本提高(需倾斜管道,设置U形管和滴水管)----在冰冻季节,水气凝结后会使管道及附件冻结而损害,或增加气流阻力,产生误动压缩空气中油的危害:在一些要求比较严格的地方,比如气动控制系统中,一滴油能改变气孔的状况,使原本正常的自动运行的生产线瘫痪。

有时,油还会将气动阀门的密封圈和柱要胀大,造成操作迟缓,严重的甚至堵塞,在由空气完成的工序中,如吹形件,油还会造成产品外形缺陷或外表污染。

* 油污的主要来源由于大部分压缩空气系统都使用油润滑式压缩机,该机在工作中将油汽化成油滴。

它们以两种方式形成:一种是由于活塞压缩或叶片旋转的剪切作用产生的所谓“分散型液滴”,其直径在1-50um。

另一种是在润滑油冷却高温的机体时,汽化形成的“冷凝型液滴”,其直径一般小于1um,这种冷凝油滴通常占油污重量超过50%,占全部油污实际颗粒数量超过99%。

压缩空气站设计手册

压缩空气站设计手册

压缩空气站设计手册空压机站:空压站就是压缩空气站,由空气压缩机、储气罐(分为一级、二级储气罐)、空气处理净化设备、冷干机组成。

现行建筑设计规范大全:《现行建筑设计规范大全》是2009年11月1日由中国建筑工业出版社出版的图书,作者是中国建筑工业出版社。

内容简介:《现行建筑设计规范大全》、《现行建筑结构规范大全》、《现行建筑施工规范大全》缩印本(以下简称《大全》),自1994年3月出版以来,深受广大建筑设计、结构设计、工程施工人员的欢迎。

但是,随着科研、设计、施工、管理实践中客观情况的变化,国家工程建设标准主管部门不断地进行标准规范制订、修订和废止的工作。

为了适应这种变化,我社将根据工程建设标准的变更情况,适时地对《大全》缩印本进行调整、补充,以飨读者。

鉴于上述宗旨,我社近期组织编辑力量,全面梳理现行工程建设国家标准和行业标准,参照工程建设标准体系,结合专业特点,并在认真调查研究和广泛征求读者意见的基础上,对设计、结构、施工三本《大全》的2005年修订缩印版进行了调整、补充。

新版《大全》重新划分了章节并进行科学排序,更加方便读者检索使用。

《现行建筑设计规范大全》共收录标准规范142本。

《现行建筑结构规范大全》共收录标准规范99本。

《现行建筑施工规范大全》共收录标准规范163本。

为使广大读者更好地理解规范条文,我社同时推出与三本《大全》配套的《条文说明大全》。

因早期曾有少量的标准未编写过条文说明,为便于读者对照查阅,《条文说明大全》中仍保留了《大全》的目录,对于没有条文说明的标准,目录中标为“无”。

需要特别说明的是,由于标准规范处在一个动态变化的过程中,而且出版社受出版发行规律的限制,不可能在每次重印时对《大全》进行修订,所以在全面修订前,《大全》中有可能出现某些标准规范没有替换和修订的情况。

为使广大读者放心地使用《大全》,我社在网上提供查询服务,读者可登录我社网站查询相关标准规范的制订、全面修订、局部修订等信息。

压缩空气站设计手册

压缩空气站设计手册

压缩空气站设计手册压缩空气站设计手册压缩空气站设计规范对压缩空气管道的要求(1)压缩空气管道应满足用户对压缩空气流量、压力及品质的要求。

其敷设方式的选择,应根据当地的地形、地质、水文及气象等条件经技术经济比较确定。

炎热地区和温暖地区的厂(矿)区压缩空气管道,宜采用架空敷设。

严寒地区的厂(矿)区压缩空气管道,宜与热力管道共沟或埋地敷设。

寒冷地区和严寒地区的压缩空气管道架空敷设时,应采取防冻措施。

(2)输送饱和压缩空气的管道,应设置能排放管道系统内积存油水的装置。

设有坡度的管道,其坡度不宜小于0.002。

(3)压缩空气管道材料,宜采用碳素钢管。

对于水蒸气含量小于7.98rag,尘粒小于0.5肛m的干燥和净化压缩空气管道,可采用不锈钢管。

(4)对于水蒸气含量小于7.98mg,尘粒小于0.5“m的干燥和净化压缩空气管道的切断阀门,宜采用不锈钢球阀或不锈钢波纹管阀,厂(矿)区架空压缩空气管道,应考虑热补偿。

(5)压缩空气管道的连接,除设备、阀门等处用法兰或螺纹连接外,其他部位,宜采用焊接。

输送干燥和净化压缩空气的管道连接,应符合GB50073--2001《洁净厂房设计规范》的有关规定。

(6)压缩空气管道在用气建筑物人口处,应设置切断阀门、压力表和流量计。

对输送饱和压缩空气的管道,应设置油水分离器。

对压缩空气负荷波动较大或要求供气压力稳定的用户,宜就近设置储气罐或其他稳压装置。

(7)车间架空压缩空气管道,宜沿墙和柱子敷设。

其高度不应妨碍交通运输,并应便于检修。

压缩空气管道需防雷接地时,应按GB50057--1994《建筑防雷设计规范》执行。

(8)埋地敷渗的压缩空气管道,应根据土壤的腐蚀性作相应的防腐处理。

厂(矿)区输送饱和压缩空气的埋地管道,宜敷设在冰冻线以下。

厂(矿)区埋地压缩空气管道穿过铁路或道路时:其交叉角不宜小于45。

,管顶距铁路轨面不宜小于1.2m;距道路路面不宜小于0.7m。

厂(矿)区埋地敷设的压缩空气管道,穿过铁路或不便开挖的道路时,应设套管。

压缩气体设计手册

压缩气体设计手册

压缩气体设计手册压缩气体设计手册是一个专门针对压缩气体系统设计的指南手册,它提供了一系列的设计原则和最佳实践,旨在帮助工程师们设计出安全可靠、高效节能的气体压缩系统。

本文将从以下三个方面来介绍压缩气体设计手册:一、设计原则压缩气体设计手册的设计原则主要包括两个方面:一是系统可靠性,二是节能高效。

在设计系统时,必须确保系统的稳定性和可靠性,这包括选择适当的设备和材料、正确的安装和维护等方面。

另外,为了提高气体压缩系统的效率,需要采用先进的技术和设计方案,避免不必要的漏气和能量损失。

二、设计流程压缩气体设计手册的设计流程主要包括以下几个步骤:1.需求分析。

首先需要对系统的要求进行分析,确定气体种类、压力、流量等参数,以及系统的应用场景和环境条件。

2.材料选择。

在进行系统设计之前,需要进行适当的材料选择,特别是选择合适的管道材料和阀门材料,以确保系统的稳定和可靠。

3.设计方案。

根据系统要求和材料选择,设计出合适的系统方案,包括压缩机、管路、阀门等。

4.装置调试。

在系统安装之后,需要进行适当的调试和测试,以确保系统的运行稳定和安全可靠。

三、应用案例下面以一个典型的气体压缩系统为例,来介绍压缩气体设计手册的应用。

某厂家需要设计一个工业压缩空气系统,以满足生产线的用气需求。

根据设计手册的原则和流程,设计师进行了如下的设计:1.需求分析。

生产线对压缩空气的要求为5立方米/分钟,压力为0.8MPa,系统的环境温度为20℃。

2.材料选择。

根据要求和环境条件,选择了316不锈钢和牛顿PPH管道,优选了 Parker 润滑油和带变频控制器的压缩机。

3.设计方案。

设计方案包括了压缩机、气体过滤器、干燥器、空气储罐、管路和阀门等。

其中,空气储罐的大小为20立方米,以满足需求峰值。

4.装置调试。

在系统安装后,进行了调试和测试,以确保系统的稳定性和可靠性。

通过以上设计,这个气体压缩系统达到了技术要求,并且具有高效、节能、低噪音等优点。

压缩空气系统设计方案

压缩空气系统设计方案

压缩空气系统设计方案压缩空气系统设计方案1 概述1.1 压缩空气系统简介本压缩空气系统主要是作为制剂车间(固体制剂、提取车间和凝胶剂、栓剂车间)生产工艺的辅助设备,为车间提供符合生产工艺要求的压缩空气,压缩空气系统由压缩机、电动机、压力开关、单向阀、储气罐、压力表、自动排水器、安全阀、主管道过滤器等组成。

1.2 压缩空气设备基本情况1.3 净化压缩空气处理流程图1.4 压缩空气系统的主要技术参数2 目的2.1 确定压缩空气系统的技术指标、型号及设计符合规范要求;对压缩空气系统及管路分配系统的安装过程、安装条件进行检查,安装后进行试运行,以证明设备性能够达到设计要求及规定的技术指标。

2.2 为达到上述确认目的,特制订本确认方案,对压缩空气系统进行确认。

确认过程应严格按照本方案规定的内容进行,若因特殊原因确需变更时,应填写确认方案变更申请及批准书,报确认领导小组批准。

2.3 确认过程应严格按照本方案规定的内容进行,若因特殊原因确需变更时,应填写确认方案修改申请表,报验证委员会批准。

3 范围适用于空气压缩机系统的设计确认、安装确认、运行确认和性能确认。

4 依据4.1 《药品生产质量管理规范》(2010年修订);4.2 《中国药典》(2010年版);4.3 压缩空气系统操作及设备说明书等技术资料;4.4 《药品生产确认指南》(2003);4.5 《新版GMP实施指南》;4.6 《确认管理规程》;4.7 《压缩空气站设计规范》(GB50029-2003)。

5 可接受标准5.1 系统设置符合《用户需求书》中的要求;5.2 安装、运行符合设备说明书等技术资料的范围;5.3 性能确认能够持续符合标准。

6 职责6.1 确认小组组成公司成立设备确认(确认)小组,负责所有设备确认工作的领导和组织,负责审批设备确认方案和报告、发放合格证书。

设备确认(确认)小组负责设备确认项目的确认方案起草、实施、组织与协调,负责确认结果记录与评定,负责完成确认报告。

压缩空气供气系统节能手册.

压缩空气供气系统节能手册.

壓縮空氣供氣系統節能手冊六、壓縮空氣管線節能措施由空氣壓縮機壓縮送出之空氣必須藉由配管輸送至現場用氣設備,而配管的設計或施工不良,將會產生以下的問題:1.壓力降變大,流量不足2.凝結水無法排出3.氣壓設備作動不良,產品品質不穩定4.保養及檢修困難對於壓降變大,流量不足之問題點,一般之原因在於輸送管線設計不當或隨著工廠的擴增,既有管線的管徑不足,流速過快造成壓降變大。

6.1、設計不當圖6.1所示為一最簡單且最為常見之壓縮空氣管線配管方式,在此一型式下,如果配管管徑選擇不良,當每一工作站皆在消耗氣體時,則管路下游的工作站將得不到適當的操作壓力及足夠的氣量。

又當某一工作站之用氣量突然增加時,則管路下游的壓降將急速增加。

因此,以此方式設計、配置之管線並不是一良好的壓縮空氣管線。

圖6.1、直線式配管為改善直線配管之缺點,當現場空間許可時,應儘可能採用環狀配管,如此之方式對於某一工作站用氣量突然增加時,可由雙方向急速補充氣體,使壓降減至最小程度。

因此為得到較穩定(穩定之壓力及穩定之氣量)之壓縮空氣供給,宜採用此種配管方式。

圖6.2、環狀配管40除以上兩種配管方式外,空氣壓縮機的安裝位置將使得以上之配管方式延伸成四種,見圖6.3,其分別為(A)單供應端環狀管線(B)多供應端環狀管線(C)單供應端直線管線(D)多供應端直線管線對於無空氣壓縮機連鎖控制的情況下,機台在以上各種配置下之能源耗用,依效率的良否而言,依次為最佳--(A)單供應端環狀管線佳-----(C)單供應端直線管線良-----(B)多供應端環狀管線普通--(D)多供應端直線管線由以上可歸結出單供應端管線較之多供應端管線空氣壓縮機的能源使用效率為高,其主要原因在於採用多供應端的系統,由於管線壓損造成空氣壓縮機無法在用氣量減少時,適時感測出並進行機台的卸載或停機,而是一直處於低負載的狀況下運轉;而在第四章的空氣壓縮機能源效率檢討中已提到空氣壓縮機的低負載即代表能源使用效率不良。

压缩空气供气系统节能手册

压缩空气供气系统节能手册

壓縮空氣供氣系統節能手冊三、壓縮空氣系統檢測為瞭解壓縮空氣系統的現況,包括能源使用效率、洩漏量、壓力降等,因此對於此系統必須定期進行檢測作業及檢討,方可使此一系統在最佳能源效率下運轉。

在空氣壓縮機的能源使用效率檢測上,主要之測試項目為空氣壓縮機產氣量及耗電量,常用之表示單位為CFM/HP或CMM/HP等;例如一30HP之空氣壓縮機額定產氣量為 3.6CMM,其額定效率為0.12CMM/HP或4.24CFM/HP;但在實際情況下,一般並無法運轉於此效率下,特別是一經長時間運轉或維修後之空氣壓縮機,其能源效率極有可能比額定數值小相當可觀之量,如其降低至新機效率值(假設新機時之效率值為3.8CFM/HP)的一半時,對一30HP之空氣壓縮機而言,全年產出相同量壓縮空氣之成本即高出一倍,對於一30HP 空氣壓縮機,全年全載運轉之時間為8000小時,假設平均電費為2元/KWH,則此機台全年之用電成本為35.8萬元;30HP ×0.746KW/HP ×8000HR/年×2元/KWH=358080元/年當以上述一半效率之機台運轉時,則需兩台方可滿足所需,其用電成本將大幅上升至71.6萬元/年,此運轉成本差距已足夠新購一台常用之有油30HP機台。

藉由以上之說明,顯示出空氣壓縮機使用者瞭解運轉能源效率的重要性,但對於此效率數值的取得,一般並無法從既存之各項保養記錄資料上直接得到,而必須加裝額外的檢測儀錶方可得之。

對於此效率檢測,一般而言應每一年或兩年對所使用之空氣壓縮機作一次效率測試;另在空氣壓縮機維修後,特別是壓縮機體的維修後,也應要求13維修廠商提供效率數據。

3.1、空氣壓縮機效率測試方法為得到以上表示空氣壓縮機效率之各項數據,在進行檢測時,必須同步取得空氣壓縮機運轉時之產氣量(進氣量),以CFM或CMM表示,及空氣壓縮機用電資料,以KW或HP表示。

在空氣壓縮機產氣量的量測方面,本中心採用孔口組流量計,其量測時安裝於壓縮空氣出口上,藉由其檢測所得數據,按本中心多年來之量測經驗,其誤差值在5%以內。

压缩空气系统操作指导书

压缩空气系统操作指导书

1、2号机组压缩空气系统启、停操作指导书1空压机控制面板说明1.1监控器的功能监控器通过液晶显示器(LCD),可以显示机组的温度、压力、运行时间及工作状态。

操作人员可以通过监控器面板上的键盘来控制压缩机,设定控制参数,还能选择显示所需的参数。

系统图上的指示灯反映各显示参数所在的位置。

灯光闪烁表示报警,操作人员必须熟悉监控器面板上各种标记的含义;对面板上显示的参数和信号应能作出正确的判断。

1.2键盘的功能“O”停机——手动停机和清除故障信号。

“I”持续运行——在无故障信号的情况下起动机组。

如机组正在运行,能清除故障信号。

自动——在无故障信号的情况下起动机组,同时,选择自动运行模式。

显示——显示压力,温度及其它状态参数(1.8.3节状态显示)。

编程——进入编程模式,可修改某些控制参数的设定值(见参数设定节)。

向上箭头——在状态显示模式下用于更改所显示的参数,在参设定模式下用于增加参数的设定值。

向下箭头、指示灯测试——在状态显示模式下用于更改所显示的参数。

在参数设定模式下用于减小参数的设定值。

在缺省模式下用于测试各指示灯。

按下该键后,所有正常的指示灯都应亮三秒钟。

1.3状态显示在缺省的情况下,显示器上显示二排数据,上面一排表示系统的状态,下面一排表示管线压力(P2)和排气温度(T1)。

以下是可能显示的系统状态。

(参数的单位:温度为℃,压力为bar)。

※停机(STOP)——机组停止运行。

※待机(STANDBY)——机组暂时停止运行。

在停电或卸载计时器动作的情况下,机组进入待机状态。

注意,在该状态下的机组,随时都可能再起动。

※起动(STARTING)——机组正在起动。

※卸载(OFF LOAD)——机组处于卸载状态。

※加载(ON LOAD)——机组处于加载状态。

※满载(FULL LOAD)——机组满载运行。

该状态仅在联机控制时才会显示。

※遥控停机(RTM STOP)——机组停止运行。

当遥控起动触点闭合后,机组将重新起动。

500立方米每小时空气压缩机设计说明书

500立方米每小时空气压缩机设计说明书

一摘要 (3)一、前言 (4)二、空气压缩机结构组成 (5)1、冷却与润滑系统 (5)2、分离系统 (6)3、控制与安全保护系统 (6)4、微电脑操作系统 (7)三、压缩机的分类 (9)3.1、喷油螺杆空气压缩机 (9)3.2、喷油螺杆制冷压缩机 (9)3.3、喷油螺杆工艺压缩机 (10)3.4、干式螺杆压缩机 (10)3.5、喷水螺杆压缩机 (10)3.6、其他机械 (11)四、压缩机的特点 (11)五、空压机的原理与控制 (12)5.1、螺杆空气压缩机工作原理: (13)5.2、空气压缩机的电器控制部分: (13)六、空气压缩机的工作过程 (14)6.1、吸气阶段 (15)6.2、压缩阶段 (15)6.3、排气阶段 (15)七、双螺杆空压机的工作流程 (15)八、空气压缩机的维护与保养 (17)8.1、油管路 (18)8.2、油过滤器 (18)8.3、油气分离器滤芯 (18)8.4、冷却润滑油 (18)8.5、保护性停机系统 (19)8.6、空气滤清器滤芯 (19)8.7、油冷却器、后冷却器: (20)8.8、带轮部件 (20)8.9、电气线路 (21)九、故障诊断及应急处理 (21)9.1进行任何维护前必须切断主电源。

(22)十、设备的安装方法 (25)10.1、安装新风包: (26)10.2、安装风机底盘: (26)10.3、安装风机本体: (26)10.4、寸管路。

(26)10.5、制作安装出风管路: (26)10.6、安装启动器与断路器 (26)10.7、安装高低压线路: (27)10.8、安装微机保护装置 (27)10.9、安装微机保护电源线 (27)10.10、安装控制线路: (27)十一、煤矿井下空气压缩机检查一览表检查类型 (27)十二、关于井下使用移动式空气压缩机的安全措施 (28)十三、经济与社会效益分析 (30)十四、节能经济分析 (31)14.1 运用节能型主机 (31)14.2 卓越的主机设计 (31)14.3 高效的节能控制系统 (31)14.4 Intellisys 智能控制器全权掌握压缩空气的排气量 (32)14.5 适合在高温环境下运行3 (32)14.6 振动噪音小 (32)14.7 润滑油使用寿命长 (32)14.8 使用高效电机 (32)14.9 真空接触器替代真空断路器 (33)十五、压缩机的发展方向 (34)十六、结论 (35)十七、致谢 (36)十八、参考文献 (37)一摘要空气压缩机是喷油单级双螺杆压缩机,分为单空气压缩机及双空气压缩机,采用高效带轮传动,带动主机转动进行空气压缩,通过喷油对主机内的压缩空气进行冷却,主机排出的空气和油混合气体经过粗、精两道分离,将压缩空气中的油分离出来,最后得到洁净的压缩空气。

压缩空气供气系统节能手册-25976讲课讲稿

压缩空气供气系统节能手册-25976讲课讲稿

压缩空气供气系统节能手册-25976壓縮空氣供氣系統節能手冊六、壓縮空氣管線節能措施由空氣壓縮機壓縮送出之空氣必須藉由配管輸送至現場用氣設備,而配管的設計或施工不良,將會產生以下的問題:1.壓力降變大,流量不足2.凝結水無法排出3.氣壓設備作動不良,產品品質不穩定4.保養及檢修困難對於壓降變大,流量不足之問題點,一般之原因在於輸送管線設計不當或隨著工廠的擴增,既有管線的管徑不足,流速過快造成壓降變大。

6.1、設計不當圖6.1所示為一最簡單且最為常見之壓縮空氣管線配管方式,在此一型式下,如果配管管徑選擇不良,當每一工作站皆在消耗氣體時,則管路下游的工作站將得不到適當的操作壓力及足夠的氣量。

又當某一工作站之用氣量突然增加時,則管路下游的壓降將急速增加。

因此,以此方式設計、配置之管線並不是一良好的壓縮空氣管線。

圖6.1、直線式配管為改善直線配管之缺點,當現場空間許可時,應儘可能採用環狀配管,如此之方式對於某一工作站用氣量突然增加時,可由雙方向急速補充氣體,使壓降減至最小程度。

因此為得到較穩定(穩定之壓力及穩定之氣量)之壓縮空氣供給,宜採用此種配管方式。

圖6.2、環狀配管40除以上兩種配管方式外,空氣壓縮機的安裝位置將使得以上之配管方式延伸成四種,見圖6.3,其分別為(A)單供應端環狀管線(B)多供應端環狀管線(C)單供應端直線管線(D)多供應端直線管線對於無空氣壓縮機連鎖控制的情況下,機台在以上各種配置下之能源耗用,依效率的良否而言,依次為最佳--(A)單供應端環狀管線佳-----(C)單供應端直線管線良-----(B)多供應端環狀管線普通--(D)多供應端直線管線由以上可歸結出單供應端管線較之多供應端管線空氣壓縮機的能源41使用效率為高,其主要原因在於採用多供應端的系統,由於管線壓損造成空氣壓縮機無法在用氣量減少時,適時感測出並進行機台的卸載或停機,而是一直處於低負載的狀況下運轉;而在第四章的空氣壓縮機能源效率檢討中已提到空氣壓縮機的低負載即代表能源使用效率不良。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压缩空气中水分的含量及影响( )一般大气中的水份皆呈气态,不易觉察其存在,若经空气压缩机压缩及管路冷却后,则会凝结成水滴。

[例如]在大气温度30℃,相对温度75℃状况下,一台空气压缩机,吐出量为3m3/min,工作压力为0.7Mpa,运转24小时压缩空气中约含有100升的水份。

压缩空气系统中水分的影响:一、压缩空气管路快速腐蚀,压降增加;设定压力提高1kgf/cm2G,动力输出增加5%-7%,或减少排气量6%-8%。

二、设备严重故障,增加维修保养费用;1.腐蚀零件。

2.阻塞气控仪器。

3.降低气动工具的效率。

三、破坏产品品质,产品不良率提高;1.应用产品清洁时,造成湿气污染。

2.应用喷漆涂装时,影响产品品质。

四、影响生产流程,生产能量降低;1.粉体输送时,易阻塞管线。

2.气动设备故障,而停工。

----冲刷掉气动工具,电机和气缸中的润滑油,增加磨损并缩短寿命,提高维护成本----使气动阀门和控制仪器失灵,影响可靠操作,效率降低----影响油漆和整饰作业质量----引起系统中的金属装置腐蚀生锈,影响其寿命,并可导致过度压降----气流分配成本提高(需倾斜管道,设置U形管和滴水管)----在冰冻季节,水气凝结后会使管道及附件冻结而损害,或增加气流阻力,产生误动压缩空气中油的危害:在一些要求比较严格的地方,比如气动控制系统中,一滴油能改变气孔的状况,使原本正常的自动运行的生产线瘫痪。

有时,油还会将气动阀门的密封圈和柱要胀大,造成操作迟缓,严重的甚至堵塞,在由空气完成的工序中,如吹形件,油还会造成产品外形缺陷或外表污染。

* 油污的主要来源由于大部分压缩空气系统都使用油润滑式压缩机,该机在工作中将油汽化成油滴。

它们以两种方式形成:一种是由于活塞压缩或叶片旋转的剪切作用产生的所谓“分散型液滴”,其直径在1-50um。

另一种是在润滑油冷却高温的机体时,汽化形成的“冷凝型液滴”,其直径一般小于1um,这种冷凝油滴通常占油污重量超过50%,占全部油污实际颗粒数量超过99%。

* 无油压缩机是否含油污在最理想的工作状态下,此类压缩机也会产生不少于0.5ppm W/W的碳氢化合物,即按100scfm气量计,每月产生的汽化冷凝液也超过15ml.氧化铝和分子筛的比较( )吸附剂特性氧化铝分子筛价格较低较高平均再生气量15%20~25%吸附特性相对湿度较高,吸附能力越强,效果越好相对湿度与吸附能力变化不大露点温度10min=-40℃4 min=-70℃-70℃再生特性相对湿度越低,再生风量越少,效果越好相对湿度越低,再生风量须较大,效果不佳使用寿命最少三年相同操作成本由于再生风量较小,故操作成本较低再生风量较大,操作成本较高吸附剂需求量较少较多耐热度低高(≤ 320℃)粒径 (mm)Φ3~5(4Å)Φ3~5(4Å)堆密度(g/ml)0.7>0.65静态吸附(%wt)10%相对湿度≥660%相对湿度≥1660%相对湿度≥18100%相对湿度≥32比表面积(m3/g)≥300>300孔容积(ml/g)≥0.38≥0.38磨耗(%wt)≤0.4≤0.38抗压强度(N)≥80≥70比较说明:①比表面积及孔容积较大者吸得较多。

②堆密度说明在相同的吸附工况下,较大者的吸附床层的容积可以较小。

③静态吸附量在相对湿度为60%时,大者可以减少吸附床层的容积。

④磨耗率较低者或抗压强度较大者使用寿命较长。

比较结论:优劣互见!请根据所需露点要求选择合适吸附剂种类!注:①压力强度(硬度)易会随着特殊添加剂而改变。

②氧化铝:吸得多,吸不干;分子筛:吸得少,吸得干。

故露要求较严格时下层70%采用氧化铝,上层30%采用分子筛。

③PSA(压转式)多采用氧化铝,TSA(热转式)多采用分子筛<<返回气压力露点参数及压缩空气质量等级( )◆ISO8573.1质量等级质量等级固体杂质(最大颗粒尺寸)μ最大压力露点°C(°F)含油量(油滴、油雾、油蒸汽)ppm w/w (mg/m3)1 0.1 -70(-94) 0.008(0.01)2 1 -40(-40) 0.08(0.1)3 5 -20(-4) 0.8(1)4 15 3(37.4) 4(5)5 40 7(44.6) 21(25)6 10(50)◆大气露点与压力露点相互对应数据由大气露点查相应压力下的压力露点大气露点°C空气压力MPa(绝压)0.1013 0.4 0.5 0.6 0.7 0.8 0.9 1.0-100 -100 -93 -91.8 -90.8 -90 -89.3 -88.6 -88 -90 -90 -82.2 -81.5 -79.7 -78.8 -78 -77.2 -76.6 -80 -80 -71.3 -69.8 -68.6 -67.5 -66.6 -65.8 -65 -70 -70 -61.7 -58.7 -57.3 -56.1 -55.1 -54.2 -53.4 -60 -60 -49.4 -47.2 -46 -44.7 -43.5 -42.5 -41.6 -50 -50 -38.3 -36.3 -34.6 -33.2 -31.9 -30.8 -29.8 -40 -40 -27.2 -25 -23.3 -21.6 -20.2 -19 -17.9 -30 -30 -16.1 -13.6 -11.6 -9.9 -8.1 -7 - 5.7 -20 -20 -4.8 -2.2 0 2.2 4 5.7 7.2 -10 -10 7.3 10.6 13.4 15.8 17.9 19.8 21.5 0 0 20.5 24.2 27.2 29.9 32.2 34.3 36.2 10 10 32.3 36.3 39.7 42.4 45.2 47.5 49.6压力露点°C空气压力MPa(绝压)0.4 0.5 0.6 0.7 0.8 0.9 1.0-70 -78.8 -80.2 -81.3 -82.2 -83 -83.7 -84.3 -60 -69.7 -71.2 -72.4 -73.4 -74.3 -75 -75.7 -50 -60.6 -62.2 -63.6 -64.7 -65.6 -66.4 -67.1 -40 -51.6 -53.3 -54.7 -55.9 -56.9 -57.8 -58.6 -30 -42.5 -44.4 -46 -47.3 -48.4 -49.3 -50.2 -20 -33.6 -35.6 -37.3 -38.7 -39.8 -40.9 -41.8 -10 -24.6 -26.8 -28.6 -30.1 -31.4 -32.5 -33.50 -15.7 -18.1 -20 -21.6 -23 -24.2 -25.210 -7.7 -9.5 -12.5 -14.2 -15.7 -16.9 -18压力换算表及压力比较表( )◆压力换算表(kg/cm2-mmHg) kg/cm20.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 mmHg73.6 147.1 220.7 294.2 367.8 441.3 514.9 588.4kg/cm20.9 1.0 1.2 1.4 1.5 1.6 1.8 2.0 mmHg662.0 735.6 882.7 1029.8 1103.3 1176.9 1324.0 1471.1(psi-mmHg)psi 1 2 3 4 5 6 7 mmHg51.7 103.4 155.1 206.9 258.6 310.3 362.0psi8 9 10 15 20 25 30 mmHg413.7 465.4 517.1 775.7 1034.3 1292.9 1551.4◆压力比较表MPa kg/cm2psi bar atm mHg inHg mAg ftAq1 10.20 145.0 10.0 9.87 7.50 295.3 102.0 334.6 0.098 1 14.2 0.98 0.97 0.74 29.0 10.0 32.80.1 1.02 14.5 1 0.99 0.75 29.5 10.2 33.5 0.101 1.03 14.7 1.01 1 0.76 29.9 10.3 33.9 0.133 1.36 19.3 1.33 1.32 1 39.4 13.6 44.6 0.0034 0.035 0.49 0.034 0.033 0.025 1 0.35 1.13 0.0098 0.10 1.42 0.098 0.097 0.074 2.90 1 3.28 0.0030 0.030 0.43 0.030 0.029 0.022 0.88 0.30 1缩空气净化系统配置方案( )常规压缩空气系统配置一般保护性用途空气品质符合ISO8573.1:质量等级2.-.4·去除大量水份和固态杂质·一般保护性用途·其他高效率过滤器A级之前置过滤器·冷冻式干燥机必备之前后置过滤器空气品质符合ISO8573.1:质量等级1.-.2·可取代无油式空压机·高品质空气源。

·吸附式干燥机必备之前后置过滤器。

· H级活性碳过滤之前置过滤无油空气源器。

低露点系统空气品质符合ISO8573.1:质量等级1.4.1压力露点可达 +2°C。

·无油无水高质量空气源。

·冷冻式干燥机前后置过滤器标准配备。

·活性碳过滤器为选择性或特殊配备空气品质符合ISO8573.1:质量等级1.-.2·可取代无油式空压机·高品质空气源。

·吸附式干燥机必备之前后置过滤器。

· H级活性碳过滤之前置过滤器。

无油空气源食品饮料级压缩空气系统配置图说明:1.蒸汽过滤器由下方和主管路相连2.安装后先不要装过滤器通风24小时后(同时轻敲管道以让碰头碎碴落下)再装上滤芯,灭菌后使用。

3.出口温度须降到35℃以下,以免油份变成油蒸气,不利达到无油状态。

压缩空气中油的危害:在一些要求比较严格的地方,比如气动控制系统中,一滴油能改变气孔的状况,使原本正常的自动运行的生产线瘫痪。

有时,油还会将气动阀门的密封圈和柱要胀大,造成操作迟缓,严重的甚至堵塞,在由空气完成的工序中,如吹形件,油还会造成产品外形缺陷或外表污染。

* 油污的主要来源由于大部分压缩空气系统都使用油润滑式压缩机,该机在工作中将油汽化成油滴。

它们以两种方式形成:一种是由于活塞压缩或叶片旋转的剪切作用产生的所谓“分散型液滴”,其直径在1-50um。

另一种是在润滑油冷却高温的机体时,汽化形成的“冷凝型液滴”,其直径一般小于1um,这种冷凝油滴通常占油污重量超过50%,占全部油污实际颗粒数量超过99%。

相关文档
最新文档