一元二次方程的应用“握手”问题》
初三一元二次方程应用题
一、握手问题例:五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?练习、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?例:某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染。
请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?练习:中国内地部分养鸡场突发禽流感疫情,某养鸡场中、一只带病毒的小鸡经过两天的传染后、鸡场共有169只小鸡遭感染患病,在每一天的传染中平均一只鸡传染了几只小鸡?三、增长率问题例:某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)练习1、某工厂一月份生产某种机器100台,计划二、三月份共生产280台。
设二、三月份每月的平均增长率为X,求增长率为多少?2、某市土地沙漠化严重,2005年沙漠化土地面积为100Km2,经过综合治理,希望到2007年沙漠化土地面积降到81 Km2,如果每年治理沙漠化土地的降低百分率相同,求每年的沙漠化土地的降低百分率。
四、利率问题例:某人将2000元按一年定期存银行。
到期后取出1000元,并将剩下的1000元及利息再按一年定期存入银行,到期后取得本息共计1091.8元。
求银行一年定期储蓄的利率是多少?练习:我村2006年的人均收入为1200元,2008年的人均收入为1452元,求人均收入的年平均增长率。
例:某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?练习1、神州行旅行社为吸引市民组团去大纵湖风景区旅游,推出如下收费标准,如果人数不超过25人,人均旅游费用为1 00元,如果人数超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元,某单位组织员工去大纵湖风景区旅游,共支付给神州旅行社旅游费用2700元,请问该单位这次共有多少员工去旅游了。
最新21.3.2一元二次方程应用(握手、比赛问题)ppt课件ppt
典例分析—数字问题
例3. 一个两位数,十位上数字与个位上数
字之和为5;把十位上的数字与个位上数字 互换后再乘以原数得736,求原来两位数.
解:设原来两位数个位上的数字为x,则十位上的 数字为(5-x).
[10(5-x)+x][10x+(5-x)]=736. 整理,得x2-5x+6=0, 解得x1=2,x2=3.
比赛类问题: (1)单循环赛: n ( n 1 )
2
(2)两队之间赛两场: n(n 1)
对应练习
1. 参加一次聚会的每两人都握 了一次手,所有人共握手10次, 有多少人参加聚会?
2. 某班同学在圣诞节期间互 赠礼物182件,求:这个班 级的人数.
对应练习
3. 某校进行乒乓球单循环比 赛,共比赛55场,问:共有 多少名同学参加比赛?
21.3.2一元二次方程应用(握 手、比赛问题)ppt
用适当的方法解方程
每日一练
(1)(χ+2)2-16=0;
(2) χ2-2χ+1=49; (3)(χ-2)2-χ+2=0 (4)(2χ+1)2-χ2=0
(5)(x-1)(x+2)=70
典例分析
例2.要组织一场篮球联赛, 每两队
之间都赛2场,计划安排90场比赛, 应邀请多少个球队参加比赛?
这个故事也告诉了我们一个深刻的道 理:人是可以转变的,只要痛下决心,浪子 也可以回头,有所成就。
思考:你觉得周处改变的原因是什么?
主要原因:有自改意;次要原因:接受 了陆云的劝告。 思考:课文结尾写周处同陆云的谈话, 有什么用意? (1)为了说明周处已有悔改之意。 (2)为了说明周处改过自新的另一点 原因是接受了陆云的劝告。 (3)为了借此讲一个具有普遍意义的 道理。
一元二次方程中握手问题的公式
一元二次方程中握手问题的公式
在数学中,握手问题是一种经典问题,通常涉及到人们在一个房间里互相握手
的情形。
在一元二次方程中,我们可以利用特定的公式来解决这类握手问题。
假设有n个人在一个房间里,他们需要两两握手一次。
我们可以假设每个人都
握手一次,那么第一个人将和剩下的n-1个人握手。
接下来,第二个人将和剩下的
n-2个人握手,以此类推,直到最后一个人剩下0个人需要握手。
现在,我们需要找到一个关于n的方程来表示此问题的解。
假设我们将这个问
题的解表示为S,那么可以得到以下等式:
S = (n-1) + (n-2) + (n-3) + ... + 2 + 1
这个等式右边的部分是一个等差数列,我们可以利用等差数列求和公式来简化它。
等差数列求和公式可以表示为:
Sn = (n/2)(a + an)
其中,Sn表示等差数列的和,a表示首项,an表示末项,n表示项数。
我们知道,对于这个握手问题,首项a是1,项数n是n-1。
将这些值代入上述公式,我们可以得到简化后的等式:
S = (n-1)(1 + (n-2))/2
现在,我们可以用这个公式来计算握手问题的解。
只需要将n的值代入公式中,即可得到握手的次数S。
总结而言,一元二次方程中握手问题的公式为:S = (n-1)(1 + (n-2))/2。
通过计
算这个式子,我们可以得出握手的次数。
这个公式可以帮助我们更快地解决握手问题,无论涉及多少人。
注意:本文章仅为数学问题的讨论,不涉及任何形式的政治观点。
比赛握手问题互赠礼物一元二次方程
解:设应邀请x个球队参加比赛,列式得: 双循环比赛场数 =90
xx 1 90
x2 x 90 0
解得: x1 10 , x2 9 (舍去)
答:应邀请10个球队参加比赛.
生物兴趣小组的同学,将自己收集的标本向本组 其他成员各赠送一件, 全组共互赠了182件, 求 生物兴趣小组有多少个人?
解:设生物兴趣小组有x人,列式得:
xx 1 182
x2 x 182 0
解得: x1 14 , x2 13 (舍去) 答:应邀请10个球队参加比赛.
与比赛问 题一样吗?
1、某小组的同学们每两人都交换一份礼物, 共交换礼物90份,问该小组有多少个人?
2、一小组若干人,新年互送贺卡,若全组 共送贺卡72张,问这个小组共有多少人?
-----比赛握手互赠礼物问题
(一)、创设情景,导入新课
你若和班级所 有同学都握手,你 需握手多少次?
咱班共有x个学生,一个学生去和其余同学 握手. 这个同学要握手 ( x - 1 ) 次.
如果每个学生都去和其余同学握手. 我 们共握手 x( x - 1 ) 次.
每两个学生握手一次.现有x个学生,一共
要握手多少次.
xx 1
2
在老师所教的班级中,每两个学生都握手一
次,全班学生一共握手780次,那么谁能计
算出老师所教的班级共有多少名学生?(设
老师所教班级有x个人)
思考:
1、则每个人与
人握手。
2、全班共握手
次(用含有x的
式子表示要组织一场篮球联赛,赛制为单循环形式,即每两队 之间比赛一场,计划安排15场比赛,应邀请多少个球 队参加比赛?
解:设应邀请x个球队参加比赛,列式得: 单循环比赛场数 =15
人教版九年级数学上册说课稿本《一元二次方程 实际问题-握手 贺卡 比赛问题》
人教版九年级数学上册说课稿本《一元二次方程实际问题-握手贺卡比赛问题》一. 教材分析《一元二次方程实际问题-握手贺卡比赛问题》是人教版九年级数学上册的教学内容。
这部分内容主要让学生运用一元二次方程解决实际问题,培养学生的数学应用能力。
教材通过设置握手、贺卡和比赛问题,让学生在解决实际问题的过程中,理解和掌握一元二次方程的解法和应用。
二. 学情分析九年级的学生已经学习了一元二次方程的理论知识,对解一元二次方程的方法有一定的了解。
但学生在解决实际问题时,往往不能将理论知识与实际问题有效结合,对一元二次方程的应用能力较弱。
此外,学生的数学思维能力和解决问题的能力也存在差异,需要在教学中加以关注和引导。
三. 说教学目标1.知识与技能目标:让学生掌握一元二次方程的解法,并能运用一元二次方程解决实际问题。
2.过程与方法目标:通过解决握手、贺卡和比赛问题,培养学生将数学知识应用于实际问题的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生自信心,使学生感受到数学在生活中的重要性。
四. 说教学重难点1.教学重点:一元二次方程的解法及其应用。
2.教学难点:如何将实际问题转化为数学问题,并用一元二次方程解决。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、教学卡片等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过设置一个简单的握手问题,引导学生思考如何用数学知识解决实际问题。
2.知识讲解:讲解一元二次方程的解法,让学生了解并掌握解一元二次方程的方法。
3.案例分析:分析贺卡问题和比赛问题,引导学生将一元二次方程应用于实际问题。
4.实践操作:让学生分组讨论,每组选取一个实际问题,用一元二次方程解决。
5.总结提升:引导学生总结一元二次方程在实际问题中的应用,培养学生的数学应用能力。
6.课后作业:布置相关的实际问题,让学生运用所学知识进行解决。
一元二次方程比赛和握手公式(一)
一元二次方程比赛和握手公式(一)一元二次方程比赛和握手公式一元二次方程的定义•一元二次方程是指形式为ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,且a不等于0。
一元二次方程的解法1.使用求根公式:–若Δ=b^2-4ac大于0,方程有两个不相等的实根;–若Δ等于0,方程有两个相等的实根;–若Δ小于0,方程没有实根。
2.使用因式分解法:–对方程进行因式分解,得到两个一次方程,求解这两个一次方程。
一元二次方程比赛举例考虑以下一元二次方程比赛题目:已知一元二次方程x^2 - 5x + 6 = 0,求方程的解。
解法: 1. 使用求根公式: - 计算Δ的值为:Δ = (-5)^2 - 4 * 1 * 6 = 25 - 24 = 1。
- 由Δ大于0可以知道,方程有两个不相等的实根。
- 利用求根公式,可以得到方程的解为:x_1 = (5 +sqrt(1))/2 = 3,x_2 = (5 - sqrt(1))/2 = 2。
- 因此,方程的解为x = 2或x = 3。
2.使用因式分解法:–对方程进行因式分解,得到(x-2)(x-3) = 0。
–通过观察可以得知,当x-2=0时,方程成立;当x-3=0时,方程也成立。
–因此,方程的解为x = 2或x = 3。
综上所述,对于一元二次方程x^2 - 5x + 6 = 0,方程的解为x = 2或x = 3。
握手公式的定义•握手公式是指用于计算n个人之间握手次数的数学公式。
•假设有n个人,每个人都与其他所有人握过手一次,那么握手次数可以通过握手公式计算而得。
握手公式的计算方法•握手公式可以通过组合数学的知识进行推导:–假设第一个人与其他所有n-1个人握手,此时握手次数为n-1;–第二个人与除了与第一个人握过手的n-2个人握手,此时握手次数为n-2;–以此类推,第i个人与除了与前i-1个人握过手的n-i个人握手,此时握手次数为n-i。
握手公式举例考虑以下握手公式题目:有10个人参加会议,每个人必须与其他所有人握手一次,请计算握手的总次数。
实际问题与一元二次方程(简析版)
实际问题与一元二次方程一、“握手问题”1、节日聚会中,每人都和其他人握手一次,现在有若干人共握手45次,问共有多少人参加聚会?分析:设共有x 人参加聚会,可列方程:45)1(21=-x x 2、某校足球联赛,采用单循环的赛制,一共比赛10场,问一共有多少支球队参加比赛? 分析:设共有x 支球队参加比赛,可列方程:10)1(21=-x x 3、参加商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45分合同,问共有多少家公司参加商品交易会?分析:共有x 家公司参加商品交易会,可列方程:45)1(21=-x x 4、新年到来,几位朋友相互赠送贺卡,共送出贺卡72张,问这群朋友共有几人? 分析:设这群朋友共有x 人,可列方程:72)1(=-x x二、“平均增长率”问题。
1、某电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率. 分析:设平均增长率为x ,可列方程:950)1(200)1(2002002=++++x x2、某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少? 分析:设二月份、三月份生产电视机平均增长的百分率是x 可列方程: 31.3)1()1(12=++++x x3、一只感染病毒的白鼠经过两天传染后发现共有256只小白鼠患病,问在每天的传染中平均一只小白鼠传染多少只白鼠?分析:设平均一只小白鼠传染x 只白鼠,可列方程:256)1(2=+x4、某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.分析:设种存款方式的年利率为x ,利息=本金×利率×存期到期后的本息和=本金+利息=(第一年剩余的1000元+第一年的利息)+第二年的利息 可列方程:1320)20001000(20001000=+++x x x5、两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品的年平均下降额较大?哪种药品的年平均下降率较大? 分析:甲种药品的平均下降额为:1000230005000=-元乙种药品的平均下降额为:1200236006000=-元设甲种药品的平均下降率为x ,乙种药品的平均下降率为y可列方程:3000)1(50002=-x ;3600)1(60002=-y6.一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体xL ,则列出的方程是________ 分析:原有纯药液:63升,容器容积63升第一次操作:倒出纯药液x 升,容器内还有纯药液)63(x -升,溶液浓度%1006363⨯-x第二次操作:倒出纯药液6363xx -⋅升, 容器内还有纯药液63)63(63)63()63(2x x x x -=---升,由此可列方程:2863)63(2=-x三、商品营销问题1、某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,那么商场平均每天可多售出34张.如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的幅度大?(每每问题)分析:设甲种贺年卡每张降价x 元,乙种贺年卡每张降价y 元 每天的盈利=单张贺卡的利润×每天的销量 可列方程:120)1001.0500)(3.0(=⨯+-x x ,120)3425.0200)(75.0(=⨯+-y y2、两年前生产1t 甲种药品的成本是5000元,生产1t 乙种药品的成本是6000元,随着生产技术的进步,现在生产1t 甲种药品的成本是3000元,生产1t 乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?3、新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少? 分析:设甲种冰箱每台定价x 元,则:每台冰箱可盈利)2500(-x 元;比原售价降低)2900(x -元; 实际每天销量比原来增加:4502900⨯-x从而列方程:5000)45029008)(2500(=⨯-+-xx 同理可求出乙种冰箱的定价。
一元二次方程的实际应用-握手和比赛课件
3
变式1:要组织一场篮球联赛, 每两队之间都赛2场(双循环),计划 安排90场比赛,应邀请多少个球队参加比赛?
解:设应邀请x个球队参加比赛,列式得:
xx190
x2x900
解得: x1 10 , x2 9 (舍去) 答:应邀请10个球队参加比赛.
双循环比赛场数 =90 双循环比赛的场数=队数乘以队数减1
4
变式2:参加一次聚会的每两人都握了一次手,所有人共握手10次,
有多少人参加聚会?
与比赛问
பைடு நூலகம்
解:设有x人参加聚会,列式得:
题一样吗?
握手次数 =10
握手次数=人数乘以人数减1再除以2
xx1 10
2
x2x200
解得: x1 5 , x2 4 (舍去)
第五步:在检查求得的答数是否符合应用题 的实际意义后,写出答案(及单位名称)。
2
1、要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场, 计划安排15场比赛,应邀请多少个球队参加比赛?
解:设应邀请x个球队参加比赛,列式得:
xx1 15
2
x2x300
解得: x1 6 , x2 5 (舍去) 答:应邀请6个球队参加比赛.
答:应邀请5个球队参加比赛.
5
变式3:生物兴趣小组的同学,将自己收集的标本向本组其他成
员各赠送一件, 全组共互赠了182件, 求生物兴趣小组有多少个
人? 解:设生物兴趣小组有x人,列式得:
与比赛问 题一样吗?
互赠标本数 =182
互赠标本数=人数乘以人数减1
xx1182
x2x1820
解得: x1 14 , x2 13(舍去) 答:应邀请10个球队参加比赛.
握手问题一元二次方程
握手问题常常可以用一元二次方程来解决。
以下是一个常见的握手问题的例子:
在一个聚会上,每个人与其他每个人只握手一次,如果总共发生了56次握手,那么聚会中有多少人?
解题步骤:
设聚会中有x个人。
每个人都会与其他(x-1)个人握手(因为自己不会与自己握手)。
因此,总的握手次数可以表示为x个人每人与(x-1)个人握手的总和,但这样每个握手都被计算了两次(一次从握手的发起者角度,一次从握手的接收者角度),所以需要除以2。
所以,我们可以建立以下一元二次方程:
握手次数 = (x * (x-1)) / 2
根据题目,我们知道握手次数为56,所以我们可以将这个数值代入方程:
56 = (x * (x-1)) / 2
接下来,我们解这个一元二次方程:
112 = x * (x-1)
展开:
112 = x^2 - x
移项,得到一元二次方程的标准形式:
x^2 - x - 112 = 0
这是一个一元二次方程,可以使用求根公式或者因式分解等方式来解。
在这个例子中,我们可以尝试因式分解:
x^2 - x - 112 = (x-16)(x+7) = 0
所以,x = 16 或 x = -7。
由于人数不能为负数,所以聚会中有16人。
新人教版-九年级一元二次方程的应用(2)(握手问题)
九年级一元二次方程的应用(2)1.要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),计划安排15场比赛,应邀请支球队参加比赛.2.一次会议上,每两个参加会议的人都互相握手一次,有人统计一共是握了66次手,则这次会议到会人数是人.3.学校要组织一场篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,应邀请个球队参加比赛.4.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有名.5.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请队参赛.6.一个凸多边形共有35条对角线,它是边形.7.学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了21场比赛,那么有个球队参加了这次比赛.8.一个小组有若干人,新年互送贺年卡,已知全组共送72张贺卡,则这个小组有人.9.在某次聚会上,每两人都握了一次手,所有人共握手36次,参加这次聚会的有人.10.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过人.11.毕业之际,某校九年级数学性趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为人.12.乒乓球锦标赛上,男子单打实行单循环比赛(即每两个运动员都相互交手一次),共进行66场比赛,则参加比赛的运动员共人.13.2013年中国足球超联赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场,已知全年共举行比赛210场,则参加比赛的队伍共有支.14.某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送1件,全组互赠标本共110件,则全组有名学生.15.三(六)班的同学毕业的时候每人都送了其他人一张自己的照片,全班共送了3540张,则三(六)班的人数是.16.如图,是一个简单的数值运算程序.则输入x的值为.17.如图是一张月历表,在此月历表上可以用一个矩形任意圈出2×2个位置上相邻的数(如2,3,9,10).如果圈出的4个数中最大数与最小数的积为128,则这4个数中最小的数是.18.若两数和为﹣7,积为12,则这两个数是和.19.若两个负数的差为4,且它们的积为45,则这两个数中较小的数是.20.已知一个直角三角形的三边是三个连续的偶数,则它的三边为.21.已知两个连续奇数的积是15,则这两个数是.22.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出.23.小明向一些好友发送了一条新年问候的短信,获得信息的人也按小明发送的人数再加1人向外转发,经过两轮短信的发送,共有35人次手机上收到该短信,则小明发送短信给了个好友.24.若两数和为7,积为12,则这两个数是.25.已知两个连续奇数的积是15,则这两个数的和是.26.心理学家发现:学生对概念的接受能力y与提出概念的时间x(分)之间的关系式为y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需分钟.27.某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为.28.小明设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数a2+2b﹣3.例如把(2,﹣5)放入其中,就会得到22+2×(﹣5)﹣3=﹣9,现将实数(m,﹣3m)放入其中,得到实数4,则m=.29.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为.30.已知两个数的差等于2,积等于15,则这两个数中较大的是.2017年08月31日y1的初中数学组卷参考答案与试题解析一.填空题(共30小题)1.要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),计划安排15场比赛,应邀请6支球队参加比赛.【解答】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x﹣1=15,即=15,∴x2﹣x﹣30=0,∴x=6或x=﹣5(不合题意,舍去).即应邀请6个球队参加比赛.故答案为:6.2.一次会议上,每两个参加会议的人都互相握手一次,有人统计一共是握了66次手,则这次会议到会人数是12人.【解答】解:设参加会议有x人,依题意得:x(x﹣1)=66,整理得:x2﹣x﹣132=0解得x1=12,x2=﹣11,(舍去).答:参加这次会议的有12人.3.学校要组织一场篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,应邀请5个球队参加比赛.【解答】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x﹣1=10,则=10,∴x2﹣x﹣20=0,∴解得:x1=5,x2=﹣4(不合题意,舍去).故答案为:5.4.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有10名.【解答】解:设这次参加聚会的同学有x人,则每人应握(x﹣1)次手,由题意得:x(x﹣1)=45,即:x2﹣x﹣90=0,解得:x1=10,x2=﹣9(不符合题意舍去)故参加这次聚会的同学共有10人.故答案是:10.5.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请8队参赛.【解答】解:∵赛程计划安排7天,每天安排4场比赛,∴共7×4=28场比赛.设比赛组织者应邀请x队参赛,则由题意可列方程为:=28.解得:x1=8,x2=﹣7(舍去),所以比赛组织者应邀请8队参赛.故答案为:8.6.一个凸多边形共有35条对角线,它是十边形.【解答】解:设它是n边形,根据题意得:=35,解得n1=10,n2=﹣7(不符题意,舍去),故它是十边形,故答案为:十.7.学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了21场比赛,那么有7个球队参加了这次比赛.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,x(x﹣1)÷2=21,解得x=7或﹣6(舍去).故应邀请7个球队参加比赛.故答案为:7.8.一个小组有若干人,新年互送贺年卡,已知全组共送72张贺卡,则这个小组有9人.【解答】解:设这小组有x人.由题意得:x(x﹣1)=72,解得x1=9,x2=﹣8(不合题意,舍去).即这个小组有9人.故答案为:9.9.在某次聚会上,每两人都握了一次手,所有人共握手36次,参加这次聚会的有9人.【解答】解:设参加这次聚会的有x人,根据题意列方程得,x(x﹣1)=36,解得x1=9,x2=﹣8(不合题意,舍去);答:参加这次聚会的有9人.故答案为9.10.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过11人.【解答】解:设每轮传染中平均一个人传染x人,由题意得,2+2x+(2+2x)x=288,解得:x1=11,x2=﹣13,答:每轮传染中平均一个人传染了11个人.故答案为:11.11.毕业之际,某校九年级数学性趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为6人.【解答】解:设该兴趣小组的人数为x人.x(x﹣1)=30,解得x1=6,x2=﹣5(不合题意,舍去),故答案是:6.12.乒乓球锦标赛上,男子单打实行单循环比赛(即每两个运动员都相互交手一次),共进行66场比赛,则参加比赛的运动员共12人.【解答】解:设有运动员x人,根据题意得:x(x﹣1)=66,解得:x=12或x=﹣11(舍去)故答案为:12.13.2013年中国足球超联赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场,已知全年共举行比赛210场,则参加比赛的队伍共有15支.【解答】解:设参加比赛的球队共有x支,每一个球队都与剩余的x﹣1队打球,即共打x(x﹣1)场∵每两支球队都要在自己的主场和客场踢一场,即每两支球队相互之间都要比赛两场,∴每两支球队相互之间都要比赛两场,即x(x﹣1)=210,解得:x2﹣x﹣210=0,(x﹣15)(x+14)=0,x1=15.x2=﹣14(负值舍去)故参加比赛的球队共有15支,故答案为:15.14.某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送1件,全组互赠标本共110件,则全组有11名学生.【解答】解:设全组共有x名学生,由题意得x(x﹣1)=110解得:x1=﹣10(不合题意舍去),x2=11,答:全组共有11名学生.故答案为11.15.三(六)班的同学毕业的时候每人都送了其他人一张自己的照片,全班共送了3540张,则三(六)班的人数是60.【解答】解:设三(六)班共有x名学生,根据题意得:x(x﹣1)=3540,解之得x1=60,x2=﹣59(舍去)答:三(六)班共有60名学生.故答案为:60.16.如图,是一个简单的数值运算程序.则输入x的值为或.【解答】解:根据题意得:简单的数值运算程序为:(x﹣1)2×(﹣3)=﹣9,化简得:(x﹣1)2=3,∴x﹣1=±,∴x=1±.故答案为:或.17.如图是一张月历表,在此月历表上可以用一个矩形任意圈出2×2个位置上相邻的数(如2,3,9,10).如果圈出的4个数中最大数与最小数的积为128,则这4个数中最小的数是8.【解答】解:设这4个数中最小数是x,则最大数为:x+8,根据题意可得:x(x+8)=128,整理得:x2+8x﹣128=0,(x﹣8)(x+16)=0,解得:x1=8,x2=﹣16,则这4个数中最小的数是8.故答案为:8.18.若两数和为﹣7,积为12,则这两个数是﹣3和﹣4.【解答】解:设其中的一个数为x,则另一个是﹣7﹣x,根据题意得x(﹣7﹣x)=12,解得x=﹣3或x=﹣4,那么这两个数就应该是﹣3和﹣4.19.若两个负数的差为4,且它们的积为45,则这两个数中较小的数是﹣9.【解答】解:设较小的数为x,根据题意得:x(x+4)=45,解得:x=﹣9,x=5(不合题意,舍去)则这两个数中较小的数是﹣9;答案为:﹣920.已知一个直角三角形的三边是三个连续的偶数,则它的三边为6、8、10.【解答】解:根据连续偶数相差是2,设中间的偶数是x,则另外两个是x﹣2,x+2根据勾股定理,得(x﹣2)2+x2=(x+2)2,x2﹣4x+4+x2=x2+4x+4,x2﹣8x=0,x(x﹣8)=0,解得:x1=8,x2=0(0不符合题意,应舍去),所以它的三边是6,8,10.故答案为:6、8、10.21.已知两个连续奇数的积是15,则这两个数是3和5或﹣3和﹣5.【解答】解:设其中一个奇数为x,则较大的奇数为(x+2),由题意得,x(x+2)=15,解得,x=3或x=﹣5,所以这两个数为3和5或﹣3和﹣5.22.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出3.【解答】解:设每个支干长出x个小分支,根据题意得1+x+x•x=13,整理得x2+x﹣12=0,解得x1=3,x2=﹣4(舍去).即:每个支干长出3个小分支.故答案是:3.23.小明向一些好友发送了一条新年问候的短信,获得信息的人也按小明发送的人数再加1人向外转发,经过两轮短信的发送,共有35人次手机上收到该短信,则小明发送短信给了5个好友.【解答】解:设每轮每人向x人发送短信,依题意得:x+x(x+1)=35,解得:x1=5,x2=﹣7(不合题意,舍去)故答案为:5.24.若两数和为7,积为12,则这两个数是3和4.【解答】解:设其中的一个数为x,则另一个是﹣7﹣x,根据题意得x(7﹣x)=12,解得x=3或x=4,那么这两个数就应该是3和4.故答案是:3和4.25.已知两个连续奇数的积是15,则这两个数的和是3和5或﹣3和﹣5.【解答】解:设其中一个奇数为x,则较大的奇数为(x+2),由题意得,x(x+2)=15,解得,x=3或x=﹣5,故答案是:3和5或﹣3和﹣5.26.心理学家发现:学生对概念的接受能力y与提出概念的时间x(分)之间的关系式为y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需13分钟.【解答】解:把y=59.9代入y=﹣0.1x2+2.6x+43中得:x1=x2=13分钟,即学生对概念的接受能力达到59.9需要13分钟.27.某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为9.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=91,解得:x=9或x=﹣10(不合题意,应舍去);∴x=9;故答案为:928.小明设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数a2+2b﹣3.例如把(2,﹣5)放入其中,就会得到22+2×(﹣5)﹣3=﹣9,现将实数(m,﹣3m)放入其中,得到实数4,则m=7或﹣1.【解答】解:根据题意得,m2+2×(﹣3m)﹣3=4,解得m1=7,m2=﹣1,故答案为:7或﹣1.29.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为6cm,8cm.【解答】解:设一直角边长为xcm,根据勾股定理得:(14﹣x)2+x2=102,解得x1=6,x2=8,故答案为:6cm,8cm.30.已知两个数的差等于2,积等于15,则这两个数中较大的是5.【解答】解:设这两个数中的大数为x,则小数为x﹣2,由题意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴这两个数中较大的数是5,故答案为:5;。
一元二次方程互赠握手问题
一元二次方程互赠握手问题一、握手问题1. 题目示例- 参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?2. 解析- 设参加聚会的有x人。
- 对于每个人来说,他要和除自己之外的(x - 1)个人握手。
- 但是每次握手会被重复计算两次(比如甲和乙握手,计算甲的时候算一次,计算乙的时候又算一次),所以总的握手次数应该是(x(x - 1))/(2)。
- 根据题意,(x(x - 1))/(2)=10。
- 整理方程得x^2-x - 20 = 0。
- 对于一元二次方程ax^2+bx + c = 0(这里a = 1,b=-1,c = - 20),根据求根公式x=frac{-b±√(b^2)-4ac}{2a}。
- 先计算判别式Δ=b^2-4ac=<=ft(-1)^2-4×1×<=ft(-20)=1 + 80 = 81。
- 则x=(1±√(81))/(2)=(1±9)/(2)。
- 解得x_1=5,x_2=-4(人数不能为负数,舍去)。
- 所以有5人参加聚会。
二、互赠礼物问题1. 题目示例- 全班同学互赠贺卡,共赠贺卡1560张,这个班有多少名同学?2. 解析- 设这个班有x名同学。
- 每名同学要给除自己之外的(x - 1)名同学赠送贺卡。
- 那么总共赠送的贺卡数就是x(x - 1)张。
- 根据题意x(x - 1)=1560。
- 整理得x^2-x - 1560 = 0。
- 对于方程x^2-x - 1560 = 0,这里a = 1,b=-1,c=-1560。
- 先计算判别式Δ=b^2-4ac=<=ft(-1)^2-4×1×<=ft(-1560)=1 + 6240 = 6241。
- 由求根公式x=frac{-b±√(b^2)-4ac}{2a},可得x=(1±√(6241))/(2)=(1±79)/(2)。
专题04一元二次方程握手问题、传染问题、平均增长率、图形问题(解析版)
专题04握手问题、传染问题、平均增长率、图形问题【1】握手问题解题技巧:有2种类型(1)重叠类型:n支球队互相之间都要打一场比赛,总共比赛场次为m。
∵1支球队要和剩下的(n-1)支球队比赛,∴1支球队需要比(n-1)场∵存在n支这样的球队,∴比赛场次为:n(n-1)场∵A与B比赛和B与A比赛是同一场比赛,∴上述求法有重叠部分∴m=12n(n−1)(2)不重叠类型:n支球队,每支球队要在主场与所有球队各打一场,总共比赛场次为m。
∵1支球队要和剩下的(n-1)支球队比赛,∴1支球队需要比(n-1)场∵存在n支这样的球队,∴比赛场次为:n(n-1)场∵A与B比赛在A的主场,B与A比赛在B的主场,不是同一场比赛,∴上述求法无重叠∴m=n(n−1)【2】传染问题解题技巧:有2种类型(1)个体传播一轮后,依旧传染。
设a为传播前基础人数,b为传播后的人数,n为传播的轮次,p为传播过程中,平均一人传染的人数。
发现规律:传播人数:b=a(1+p)n,与增长率问题公式一致。
见例1.【3】平均增长率问题解题技巧:设a为增长(下降)基础数量,b为增长(下降)后的数量,n为增长(下降)的次数,p为增长(下降)率。
2a(1±p)a(1±p)p a(1±p)±a(1±p)p=a(1±p)23a(1±p)2a(1±p)2p a(1+p)2±a(1±p)2x=a(1±p)3发现规律:①增长时:b=a(1+p)n;②减少时:b=a(1−p)n注:①本章考察一元二次方程,通常增长(下降)次数n为2;②通常设增长(下降)率为x;③例求解得x=0.1,则表示增长(下降)10%。
【4】图形问题解题技巧:解决面积问题的关键是把实际问题数学化,把实际问题中的已知条件与未知条件归结到某一个几何图形中,然后按照几何图形的面积公式列写等式方程,使问题得以解决。
一元二次方程的应用 经典类型
知识点1握手问题1、某班数学活动小组的同学在一次数学活动中见面握手,已知全组同学共握手21次,则该活动小组共有多少人?2、圣诞节时,一个小组,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,求该小组共有多少人?知识点2传播问题3、、有一个人患了流感,经过两轮传染后有121人患了流感,每轮传染中平均一个人传染了几个人?4、、某种电脑病毒传播非常快.如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染。
请问经过三轮感染后,被感染的电脑有多少台?A. 648B. 716C. 729D. 7425、★某植物的主干长出若干树木的支干,每个枝干又长出同样数目的小分枝,主干枝干的小分支总数是91,每个枝干长出多少小分枝知识点3百分率问题6、甲,乙,丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是()A. 甲B. 乙C. 丙D. 乙或丙7、某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为()A.9.5%B.20%C.10%D.11%8、市人民政府为了解决群众看病难的问题,决定下调药品的价格,某种药品,经过连续两次降价后,由每盒200元调至128元,求这种药品平均每次降价的百分率是多少?知识点4几何问题8、一个多边形有9条对角线,则这个多边形有多少条边()A、6B、7C、8D、910、如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.11、如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是( )A .7mB .8mC .9mD .1Om12、一个凸多边形共有20条对角线,它是几边形?是否存在有18条对角线的多边形?如果存在,它是几边形?如果不存在,说明得出结论的道理。
一元二次方程中握手问题的公式
一元二次方程中握手问题的公式一元二次方程是初中数学中的重要内容,它在实际生活中有着广泛的应用。
而“握手问题”则是一种常见的数学问题,它与一元二次方程密切相关。
本文将针对一元二次方程中握手问题的公式进行详细的探讨和解析。
一、握手问题的背景介绍在一个场合中,当所有人两两握手一次后,共有多少次握手呢?这就是常见的握手问题。
假设在该场合中共有n个人,那么每个人都需要与其他n-1个人握手一次,所以每个人的握手次数为n-1次。
然而,由于每次握手都同时给两个人增加了一次握手次数,因此整个场合中的握手次数将是每个人握手次数的总和的一半。
二、握手问题的数学建模为了更方便地解决握手问题,我们可以采用一元二次方程来进行数学建模。
假设握手问题中共有n个人,每个人都与其他人握手一次。
那么整个场合中的握手次数可以表示为:S = 1 + 2 + 3 + ... + (n-1) (式1)其中,S表示握手总次数,等号右边的表达式为每个人握手的次数逐个相加的结果。
三、一元二次方程的求解为了解决式1中的求和问题,我们可以利用一元二次方程的求解公式。
将式1中的求和表达式进行变形,得到:S = (n-1) + (n-2) + (n-3) + ... + 1 (式2)假设式1和式2中的S值相等,我们将它们相加,得到:2S = n + n + n + ... + n (式3)式3中的n出现了n-1次,所以2S可以简化为:2S = n(n-1) (式4)将式4两边同时除以2,可得:S = n(n-1)/2 (式5)四、握手问题的公式解释通过推导,我们发现握手问题的总次数S可以用一元二次方程的形式表示为n(n-1)/2。
其中,n代表场合中的人数。
这个公式可以直接计算出握手问题的答案,省去了逐个相加的麻烦过程。
五、握手问题的实际应用握手问题的公式在实际生活中有着广泛的应用。
例如,有一间教室里有20个人,他们相互之间握手一次,那么握手次数可以通过公式计算得到:S = 20(20-1)/2 = 190故该教室中共有190次握手。
一元二次方程方程专项训练------握手、打比赛问题答案
一元二次方程方程专项训练------握手、打比赛问题答案W1.参加一次聚会的每两个人都握了一次手,所有人共握手21次,共有多少人参加聚会?【解答】解:设有x 人参加聚会,根据题意得:x (x ﹣1)=2×21,解得:x 1=7,x 2=﹣6(舍去). 答:有7人参加聚会.W2.某校要组织“风华杯”篮球赛,赛制为单循环形式(每两队之间都赛一场).(1)如果有4支球队参加比赛,那么共进行 6 场比赛;(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?【解答】解:(1)12×4×3=6(场).故答案为:6. (2)设有x 支球队参加比赛,依题意,得:12x (x ﹣1)=36,解得:x 1=9,x 2=﹣8(不合题意,舍去). 答:如果全校一共进行36场比赛,那么有9支球队参加比赛.W3.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?【分析】(1)设每轮传染中平均每个人传染了x 个人,根据一人患病后经过两轮传染后共有256人患病,即可得出关于x 的一元二次方程,解之即可得出结论;(2)根据经过三轮传染后患病人数=经过两轮传染后患病人数×(1+15),即可求出结论.【解答】解:(1)设每轮传染中平均每个人传染了x 个人,依题意,得:1+x +x (1+x )=256,解得:x 1=15,x 2=﹣17(不合题意,舍去).答:每轮传染中平均每个人传染了15个人.(2)256×(1+15)=4096(人).答:按照这样的传染速度,第三轮传染后,共有4096人患病. W4.某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有81个人被感染.(1)请你用学过的知识分析,每轮感染中平均一个人会感染几个人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?【解答】解:(1)设每轮感染中平均一个人会感染x 个人,依题意,得:1+x +x (1+x )=81,解得:x 1=8,x 2=﹣10(不合题意,舍去).答:每轮感染中平均一个人会感染8个人.(2)81×(1+8)=729(人),729>700.答:若病毒得不到有效控制,3轮感染后,被感染的人会超过700人.W5.一个QQ 群里共有x 个好友,每个好友都分别给其他好友发了一条消息,这样一共产生756条消息,有多少个好友?【解答】解:(1)由题意可得:x (x ﹣1)=756;整理得:x 2﹣x ﹣756=0,x 1=28,x 2=﹣27(舍去) W6.(1)参加一次聚会的每两人都握了一次手,所有人共握手66次,有多少人参加聚会?【解答】解:(1)设有x 人参加聚会,根据题意得:x(x−1)2=66;(2)要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛?【解答】设共有x 个队参赛,由题意得:12x (x ﹣1)=28; (3)初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?【解答】设共有学生x 人.则x (x ﹣1)=90.W7.某市要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛.(1)应该邀请多少支球队参加比赛?(2)若某支球队参加3场后,因故不参与以后比赛,问实际共比赛多少场?【解答】解:(1)设应该邀请x 支球队参加比赛,依题意,得:12x (x ﹣1)=15,解得:x 1=6,x 2=﹣5(不合题意,舍去).答:应该邀请6支球队参加 (2)3+12×5×4=13(场).答:实际共比赛13场.W8.某校薛老师所带班级的全体学生每两人都握一次手,共握手1540次,求薛老师所带班级的学生人数.【解答】解:设薛老师所带班级有x 人,依题意,得:12x (x ﹣1)=1540,整理,得:x 2﹣x ﹣3080=0, 解得:x 1=56,x 2=﹣55(不合题意,舍去).答:薛老师所带班级有56人.W9.元旦来临,全班每一个同学都将自己制作的贺年卡向其他同学各送一张以表示纪念,如果全班有x名学生,则送了多少张贺年卡?(用含x 的代数式表示)【解答】解:∵全班有x 名同学,∴每名同学要送出(x ﹣1)张;又∵全班每一个同学都将自己制作的贺年卡向其他同学各送一张,∴总共送的张数应该是x (x ﹣1).。
一元二次方程应用题典型题型归纳 (1)
一元二次方程应用题典型题型归纳(一)传播与握手问题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。
2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。
5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学6.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人7.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为元,求2、3月份价格的平均增长率。
4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率5. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了万元,求这两个月的平均增长率.(三)商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x 的关系式分别为R=500+30X,P=170—2X。
实际问题与一元二次方程(三)握手类型问题(课件)数学九年级上册(人教版)
解:设中国队在本届世界杯比赛中连胜x场,
列方程得: 1 x x+1 66
2
x2 +x 132 0
解得: x1 11, x2 12 (舍去) 答:连胜11场比赛.
例4.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一 条航线,一共开辟了10条航线,则这个航空公司共有几个飞机场?
__x__x___1_ _场比赛.
解:设应邀请x个球队参加比赛,列方程得:
x x 1 552
x2 x 552 0
解得: x1 24, x2 23(舍去) 答:有24个球队参加比赛.
例3.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环 比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜 成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世 界杯比赛中连胜多少场比赛? 此问题与哪种模型相同?
【分析】设共有x个飞机场,每个飞机场都要 此问题与哪种模型相同? 与其余的飞机场开辟一条航行,但两个飞机 场之间只开通一条航线. 解:设共有x个飞机场,列方程得:
1 x x-1 10
2
x2 x 20 0
解得: x1 5, x2 4 (舍去) 答:这个航空公司共有5个飞机场.
1.距考试还有20天的时间,为鼓舞干劲,老师要求班上每一名同学要给同组
思考下列问题:
1.如果班级共有x个学生,一个学生去和其余同学握手. 这个同学 要握手_(_x__-__1__)次.
2.如果每个学生都去和其余同学握手. 我们共握手_x_(__x__-__1_)_次.
x x 1
3.每两个学生握手一次,现有x个学生一共要握手____2___次.
初三上册一元二次方程应用题练习题
一元二次方程应用题一、握手问题:1、参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x 人参加同学聚会,列方程得 .2、九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x 名同学,依题意,可列出的方程是( ).A .(1)240x x +=B .(1)240x x -=C .2(1)240x x +=D .1(1)2402x x += 3、一个小组有若干人,每个同学都将自己的贺卡向全组其他同学各送一张,若全组共送贺卡72张,则这个小组共( ).A .12人B .18人C .9人D .10人4、参加一次聚会的每两人都握手一次手,若所有人共握手10次,则有多少人参加聚会?二、病毒传染问题:1、有一人患了流感,经过两轮传染后共有144人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,三轮传染后,患流感的有多少人?2、有一人患了流感,经过两轮传染后共有121人患了流感,设每轮传染中平均一个人传染了x 个人,则可列方程( ).A .(1)121x x x ++=B .1(1)121x x ++=C .2(1)121x +=D .(1)121x x +=3、流感是一种传染性极高的疾病,我们要加强预防和治疗.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为.三、百分率问题:1、某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.2、某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是().A.2x x5050(1)50(1)182++++= 50(1)182x+=B.2 C.50(12)182++++=x x+=D.5050(1)50(12)182x3、利华机械厂四月份生产零件50万个,若五、六月份平均每月的增长率是20%,则第二季度共生产零件().A.100万个B.160万个C.180万个D.182万个4、某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x,则可列方程.5、某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为多少?6、某钢铁厂去年1月某种钢的产量为5000吨,3月上升到7200吨,这两个月平均每月增长的百分率是多少?四、面积问题:1、在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是24500cm ,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .21308750x x +-=B .2651250x x +-=C .2651250x x -+=D .21301250x x --= 2、如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽. 如果设小路宽为x ,根据题意,所列方程正确的是( ).A .(32)(20)540x x ++=B .(32)(20)540x x --=C .(32)(20)540x x +-=D .(32)(20)54x x -+=3、如图,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,则所截去小正方形的边长是 cm .4、如图所示,一个农户用24m 长的篱笆围成一排一面靠墙、大小相等且彼此相连的三个矩形鸡舍,要使三个鸡舍的总面积为236m .如果设每个鸡舍的长为x m ,根据题意列出的方程是 .5、如图所示,在宽为20m,长为32m的矩形地面上,修筑同样宽的三条道路,(互相垂直),余下部分作为耕地,若耕地面积为2570m,则修建道路的宽为多少m?五、利润问题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫的单价每降一元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要盈利1200元,衬衫的单价应降多少元?2、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的关系式;(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,则销售单价应定为多少?3、某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,设该商场决定把售价上涨(020)<<元.x x(1)售价上涨x元后,该商场平均每月可售出个台灯(用含x的代数式表示);(2)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?这时应进台灯多少个?六、其它:1、一个多边形有20条对角线,则这个多边形的边数是().A.6B.7C.8D.92、一个直角三角形的两条直角边相差3cm,面积是29cm,求较长的直角边.3、相邻两个偶数的积是168,求这两个偶数.4、一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是多少?。
一元二次方程应用握手问题 送卡片问题 数论问题专练教师版
一元二次方程应用握手问题送卡片问题数论问题专练教师版命题人:潘五洲一、1. 【题文】某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为(??)A.x(x+1)=1035 B.x(x-1)=1035C.x(x+1)=1035 D.x(x-1)=1035答案:【答案】B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1035.故选B考点:由实际问题抽象出一元二次方程.2. 【题文】摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是()A.B.C.D.答案:【答案】B.【解析】试题分析:设全组有名同学,则每名同学所赠的标本为:()件,那么名同学共赠:件,所以,.故选B.考点:由实际问题抽象出一元二次方程.3. 【题文】有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为(?).A.8人B.9人C.10人D.11人答案:【答案】B【解析】试题分析:设每轮传染中平均一个人传染的人数为x人,第一轮过后有(1+x)个人感染,第二轮过后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,,解得x=9或-11, x=-11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.故选B.考点:一元二次方程的应用.4. 【题文】要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()A.B.C.D.答案:【答案】B.【解析】试题分析:每支球队都需要与其他球队赛()场,但2队之间只有1场比赛,所以可列方程为:.故选B.考点:由实际问题抽象出一元二次方程.5. 若一个数和它的一半的平方和等于5,则这个数是( )A.2 ?B.-2 ?C.2或-2 ?D.以上都不对答案:思路解析:依据条件列方程即可求解.设这个数为x,可列方程x 2 +( ) 2 =5.解得x=±2.答案:C6. 若某三个连续偶数的平方和等于56,则这三个数是( )A.2、4、6 ?B.4、6、8C.-6、-4、-2或2、4、6 ?D.-8、-6、-4或4、6、8答案:思路解析:设中间的偶数为x,然后列方程得(x-2) 2 +x 2 +(x+2) 2 =56.解得x=±4,所以这三个数分别为-6、-4、-2或2、4、6,由于此题为选择题也可以直接验证选项.答案:C7. 两个正数的差是2,它们的平方和是52,则这两个数是( )A.2和4 ?B.6和8C.4和6 ?D.8和10答案:思路解析:常规题型可直接列方程求解.设较小的正数为x,较大的为x+2,则x 2 +(x+2) 2 =52,x 1 =4,x 2 =-6(舍去).故所求的两个正数为4,6.答案:C8. 如果两个连续偶数的积为288,那么这两个数的和等于( )A.34 ?B.-34 ??C.35或-35 ??D.34或-34答案:思路解析:两个连续偶数差2,设较小的数为x,较大的为x+2,则(x+2)x=288.解方程即可.答案:D二、填空题9. 【题文】要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x各队参赛,可列出的方程为_________ .答案:【答案】x(x-1)=28.【解析】试题分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.试题解析:每支球队都需要与其他球队赛(x-1)场,但2队之间只有1场比赛,所以可列方程为:x(x-1)=28.考点:由实际问题抽象出一元二次方程.10. 【题文】若两数和为-7,积为12,则这两个数是 ? .答案:【答案】3和4【解析】试题分析:设其中的一个数为x,则另一个是7x,根据“积为12”可得x(7x)=12,解方程即可求解.设其中的一个数为x,则另一个是7x,根据题意得x(7x)=12,解得x=3或x=4,那么这两个数就应该是3和4.考点:一元二次方程的应用.11. 【题文】在一次同学聚会时,大家一见面就相互握手。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实际问题与一元二次方程(握手问题)》教学设计
特克斯县初级中学岳永超
教学内容
本节课主要学习建立一元二次方程的数学模型解决握手问题。
教学目标
知识技能:
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
过程与方法:
1、经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
2、通过解决握手问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.
情感态度与价值观:
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣。
重点:列一元二次方程解有关握手问题的应用题
难点:发现握手问题中的等量关系
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
一、复习引入
【问题】:某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?
【思考】
列方程解应用题的基本步骤有哪些?应注意什么?
【活动方略】
教师演示课件,给出题目,学生口答,老师点评。
【设计意图】
复习列方程一次方程解应用题,为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.
二、探索新知
【问题情境】几个老同学参加一次聚会,每两人都握了一次手,所有人共握手10次,有多少人参加聚会?
(1)本题中有哪些数量关系?
(2)如何理解“每两人都握了一次手”?
(3)如何利用已知的数量关系选取未知数并列出方程?
(4)能否把方程列得更简单,怎样理解?
(5)解方程并得出结论,对比几种方法各有什么特点?
【解答】
设有x个人,则每个人就要握(x-1)次、x个人就要握x(x-1)次,总体重复一次,于是可列方程:
【思考】
【活动方略】
教师提出问题
学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.
【设计意图】
使学生通过多种方法解握手问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.
三、反馈练习
1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是()
A.x(x+1)=182 B.x(x-1)=182
C.2x(x+1)=182 D.x(1-x)=182×2
2.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共().
A.12人 B.18人 C.9人 D.10人
【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对所学知识的掌握情况.
四、应用拓展
例1:参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?
例2:学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?
【分析】
(1)两题中有哪些数量关系?
(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?
(3)对比两题,它们有什么联系与区别?
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
进一步提升学生在活动1中的学习效果,使学生充分体会传播问题,培养学生对传播问题的解题能力。
五、小结作业
1.问题:
通过本课的学习,大家有什么新的收获和体会?
本节课应掌握:
用“握手问题”建立数学模型,并利用它解决一些具体问题。
2.作业:教材P53,习题22.3第1、2、6题,P58,复习题22第6题。
【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程。
学生独立完成作业,教师批改、总结。
【设计意图】通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。