《金属切削基础原理》第12章[磨削]

合集下载

金属切削基本原理

金属切削基本原理
金属切削过程中刀具与工件之间的 相对运动包括主运动、进给运动和 辅助运动。
金属切削包括车削、铣削、刨削、 钻削、磨削等多种加工方式。
金属切削过程中刀具与工件之间的 接触状态包括切削区、过渡区和非 切削区。
切削运动和切削用量
主运动:使工件与刀具产生 相对运动完成切削
切削深度:刀具切入工件的 深度影响切削效率和表面质
金属切削基本原理
汇报人:
目录
添加目录标题
01
金属切削的基本概念
02
切削刀具材料和几何 参数
04
金属切削的工艺参数 选择
05
金属切削的物理本质
03
金属切削的工艺实践
06
添加章节标题
金属切削的基本 概念
金属切削的定义
金属切削是一种通过刀具与工件之 间的相对运动将工件上的多余材料 去除以获得所需形状和尺寸的加工 方法。
切削热和切削温度
切削热:金属切削过程中产生的热量
切削温度:切削过程中刀具和工件的温度
影响因素:切削速度、进给量、刀具材料、工件材料等 切削热和切削温度的关系:切削热是切削温度的主要来源切削温度是切 削热的表现形式
切屑的形成和变形
切削过程:刀具与工件之间的相对运动 切屑的形成:刀具与工件之间的摩擦和剪切作用 切屑的变形:切屑在刀具作用下的塑性变形和断裂 切屑的形状和尺寸:取决于刀具的几何形状和切削条件
添加标题
加工余量:指加工过程中需要去除的材料量影 响加工精度和效率
添加标题
加工余量选择:根据工件材料、加工精度和效 率要求进行选择
添加标题
加工余量和刀具路径规划的优化:通过优化算 法和仿真技术提高加工质量和效率
添加标题
刀具路径规划:指刀具在工件表面移动的轨迹 影响加工质量和效率

金属切削原理的课件

金属切削原理的课件

(2)进给量
进给量是指单位时间内刀具和工件在进给 运动方向上相对位移。 当主运动是回转运动时,进给量指工 件或刀具每回转一周,两者沿进给方向的 相对位移量,单位为mm/r; 当主运动是直线运动时,进给量指刀 具或工件每往复直线运动一次,两者沿进 给方向的相对位移量,单位为mm/str或 mm/单行程; 对于多齿的旋转刀具(如铣刀、 切齿刀),常用每齿进给量 fz,单位为 mm/z或mm/齿。它与进给量f的关系为 f=zfz 进给速度为 vf=fn=zfzn
2)刀刃
①主切削刃 ②副切削刃 前刀面与主后刀面在空间的交线。 前刀面与副后刀面在空间的交线。
3)刀尖
三个刀面在空间的交点,也可理解为主、副切削刃 二条刀刃汇交的一小段切削刃。 在实际应用中,为增加刀尖的强度与耐磨性, 一般在刀尖处磨出直线或圆弧形的过渡刃。
(2)车刀切削部分的主要角度
• 刀具角度是刀具设计、制造、刃磨和测量 时所使用的几何参数,它们是确定刀具切削 部分几何形状(各表面空间位置)的重要参 数。 • 参考系:用于定义和规定刀具角度的各基 准坐标面。 • 参考系:刀具静止参考系和刀具工作参考 系。
(2)切削层公称宽度bD
在给定瞬间,作用于主切 削刃截形上两个极限点间 的距离,在切削层尺寸平 面中测量,单位为mm。
垂直于正在加 工的表面(过渡表 面)度量的切削层 参数。
(3)切削层公称横截面积AD
在给定瞬间,切削层在 切削层尺寸平面里的实 际横截面积, 2 单位为mm 。
上述公式中可看出 hD、bD均与主偏角有 关,但切削层公称横截面积AD只与hD、bD 或f、a p有关。
(一)切削运动
1.零件表面的形成
车外圆面
车成形面
车床上镗孔

金属切削基本知识课件

金属切削基本知识课件
非正常磨损
由于切削参数不当或切削材料中含有杂质等原因,导致刀具快速磨 损或破损。
破损形式
包括崩刃、卷刃和断裂等,可能是由于刀具材料缺陷或使用不当所 致。
03
金属切削过程
切屑的形成与控制
切屑的形成
金属切削过程中,刀具对工件材料施 加压力,使材料发生剪切滑移,形成 切屑。切屑的形状和大小取决于工件 材料、刀具几何形状和切削用量。
金属切削是一种高效、高精度的加工 方式,广泛应用于机械制造、航空航 天、汽车、模具等领域。
金属切削的分类
根据切削方式
01
可分为车削、铣削、钻削、磨削等。
根据切削用量
02
可分为高速切削和低速切削。
根据切削液
03
可分为干切削和湿切削。
金属切削的原理
切削力
在切削过程中,刀具切入工件时产生的切削力, 是切削过程中的主要作用力。
切削热
由于切削过程中摩擦和变形产生的热量,会导致 刀具和工件温度升高。
切屑形成
在切削过程中,多余的金属材料形成切屑,从工 件上切除。
02
金属切削刀具
刀具的种类
车刀
主要用于车削加工,包括外圆 车刀、内圆车刀、端面车刀等

铣刀
用于铣削加工,包括平面铣刀 、圆柱铣刀、键槽铣刀等。
钻头
主要用于钻孔加工,包括直柄 钻头、锥柄钻头等。
磨削加工技术
定义
磨削加工是利用磨床对金属工件进行切削加工的方法。
特点
磨削加工可以获得较高的加工精度和表面质量,适用于各种硬质合 金、淬火钢等高硬度材料的加工。
应用
在机械制造中,磨削加工广泛应用于各种刀具、模具、量具等精密零 件的加工。
06

金属切削加工原理及设备课件幻灯片课件

金属切削加工原理及设备课件幻灯片课件
切削力和切削热是切削过程中的两个重要物理现象,对切削效率和工件质量 有重要影响。
金属切削加工的主要设备与工具
机床
机床是金属切削加工的主要设 备,按工艺特点可分为车床、 铣床、钻床、镗床、磨床等。
刀具
刀具是金属切削加工的重要工具 ,包括车刀、铣刀、钻头、镗刀 、刨刀、磨具等。
量具和夹具
量具用于测量工件尺寸和形状,夹 具则用于工件的装夹和定位,对保 证加工精度和提高生产效率有重要 作用。
金属切削加工的质量控制
质量控制标准
根据机械加工的精度要求,制 定合理的加工工艺流程,并按 照国家或行业标准进行质量检
查。
加工过程控制
通过对加工过程的控制,如刀具 选择、切削液使用、机床调整、 工件装夹等,提高加工精度和表 面质量。
误差控制
针对误差产生的原因,采取相应的 措施,如温度变化、刀具磨损、机 床振动等,减少误差对加工质量的 影响。
进给速度
进给速度指刀具在单位时间内移动的距离。较慢 的进给速度可以减小工件表面的粗糙度,但会降 低生产效率;较快的进给速度可以提生产效率, 但可能会造成工件表面粗糙。
刀具角度
刀具的前角、后角、主偏角、副偏角等角度对切 削力和切削热有着不同的影响。选择合适的刀具 角度可以改善切削条件,提高刀具使用寿命和工 件加工质量。
金属切削加工的工艺流程:毛坯准备、工件安装定位 、刀具准备、切削加工、工件检验和清理等。
下一步的学习展望
深入学习各种金属切削加工设备的原理和特点,以便 更好地选择和应用。
学习金属切削加工的工艺流程和优化方法,以提高生 产效率和降低成本。
学习各种新型的金属切削加工技术,如高速切削、超 精密切削等,以提高加工效率和质量。
金属切削加工原理及设备课件幻 灯片课件

金属切削原理(基本理论)

金属切削原理(基本理论)
切削液中含有活性物质,能迅速渗入加工表面和刀具之间,
减小切屑与刀具前刀面的摩擦,并能降低切削温度,所以不易
产生积屑瘤。
积屑瘤对切削过程的影响
1. 影响刀具耐用度:
积屑瘤包围着切削刃,同时覆盖着一部分前刀面。积屑
瘤相对稳定时,可代替切削刃进行切削。切削刃和前刀面
都得到积屑瘤的保护,减少了刀具的磨损,提高刀具耐用
如铜、20钢、40Cr钢、1Crl8Ni9Ti等,随着工件材料的强
度和硬度的依次增大,摩擦系数μ略有减小;
这是由于在切削速度不变的情况下,材料的硬度、强度
大时,切削温度增高,故摩擦系数下降。
切削厚度ac增加时, μ也略为下降;如20钢的ac从0.
lmm增大到0. 18mm, μ从0 .74降至0 .72。因为ac增加
最后长成积屑瘤。
影响积屑瘤产生的因素:
①工件材料的影响:塑性高的材料,由于切削时塑性
变形较大,加工硬化趋势较强,积屑瘤容易形成;而
脆性材料一般没有塑性变形,并且切屑不在前刀面流
过,因此无积屑瘤产生。
②切削速度主要通过切削温度影响积屑瘤。
低速(Vc<3~5m/min)时,切削温度较低(低于
300℃),切屑流动速度较慢,摩擦力未超过切屑分子的结
工件母体分离,一部分变成切屑,很小一部分留在已加
工表面上。
第Ⅰ变形区
近切削刃处切削层内产生的塑性变形区——剪切滑移变形;
第Ⅱ变形区
与前刀面接触的切屑底层内产生的变形区——挤压变形;
第Ⅲ变形区
近切削刃处已加工表层内产生的变形区——已加工表面变形。
三) 第一变形区内金属的剪切变形
追踪切削层上任一点P,可以观察切屑的变形和形
系数ξ可直观反映切屑的变形程度,并且容易测量。

金属切削原理

金属切削原理

切削时消耗的功率
金属切削原理及其应用
一、切削变形 二、切削力 三、切削热与切削温度 四、刀具磨损与耐用度变化
1.1 金属切削过程的基本规律
一、切削变形 变形Ⅰ,Ⅱ,Ⅲ区, 剪切面间距0.02-0.2mm。
1. 切屑的形成
图为金属切削过程中的滑移线
1.1 金属切削过程的基本规律.
• (1)第一变形区 从OA线开始发生塑性变形,到 OM线金属晶粒的剪切滑移基本完成。OA线和OM 线之间的区域(图中Ⅰ区)称为第一变形区。
碳素钢,合金钢,铜 铝合金; 黄铜,低速切削钢; 铝; 铸鉄,黄铜
图为切屑类型
2. 积屑瘤
图为积屑瘤与切削刃的金 相显微照片
2. 积屑瘤
积屑瘤高度及其实际工作前角
2. 积屑瘤
(1)积屑瘤对切削过程的影响: 1) 积屑瘤包围着切削刃,可以代替前面、后面和切
削刃进行切削,从而保护了刀刃,减少了刀具的磨 损。 2) 积屑瘤使刀具的实际工作前角增大,而且,积屑 瘤越高,实际工作前角越大,刀具越锋利。 3) 积屑瘤前端伸出切削刃外,直接影响加工尺寸精 度。 4) 积屑瘤直接影响工件加工表面的形状精度和表面 粗糙度。
Fx Fxy sin r
3. 影响切削力的因素
3)刀具几何参数对切削力的影响。
c)刃倾角ls 对切削力的影响; ls↑ 背前角gp↑ 侧前角gf↓
Fp↓ Ff↑
3. 影响切削力的因素
3)刀具几何参数对切削力的影响。
d)刀尖圆弧半径r 对切削力的影响;
3. 影响切削力的因素
3)刀具几何参数对切削力的影响。 e)使用切削液 对切削力的影响;
v a 273
f 0.26 0.07
c
0.01

金属切削的基本原理

金属切削的基本原理

金属切削的基本原理金属切削的基本原理1. 引言金属切削作为一种重要的制造工艺,在现代工业中得到广泛应用。

了解金属切削的基本原理对于提高生产效率和产品质量至关重要。

本文将深入探讨金属切削的原理和相关概念。

2. 金属切削的定义和概述金属切削是指通过工具在金属材料上切削形成所需形状的制造过程。

这种切削通过将刀具与金属工件相对移动来去除材料,从而实现目标形状。

金属切削常用于车削、铣削、钻削等加工过程中。

3. 切削过程的基本元素金属切削包括以下基本元素:3.1 切削工具切削过程中使用的工具通常由坚固的材料制成,如高速钢、硬质合金等。

切削工具的类型和几何形状根据切削操作的需求而变化,比如刀片、铣刀、钻头等。

3.2 金属工件金属工件是经过切削加工的目标。

它可以是圆柱形、平面形或复杂形状的。

不同材料的切削特性也会影响切削过程的选择和参数设定。

3.3 切削速度切削速度是指工具切削过程中与工件接触部分的相对速度。

合适的切削速度可以提高加工效率和工件表面质量,但过高的切削速度可能导致工具磨损和加工表面粗糙度增加。

3.4 进给速度进给速度是指工具与工件相对运动的速度。

适当的进给速度可以控制切削过程中材料的去除率,同时避免过度磨损和切削力过大。

3.5 切削深度切削深度是指工具进入工件的深度,即每次切削过程中所移除的金属厚度。

切削深度的选择应根据工件的要求、切削力和工具稳定性等因素考虑。

4. 金属切削的力学原理金属切削的力学原理主要涉及三个力:切削力、切向力和主动力。

4.1 切削力切削力是指在金属切削过程中作用在切削工具上的力。

它由切削材料的去除、摩擦和变形引起。

切削力的大小和方向取决于切削工艺参数、切削材料和刀具等。

4.2 切向力切向力是指垂直于切削方向的力。

它使工件保持在切削位置,并防止工件偏离切削方向。

切向力的大小和方向直接影响切削的稳定性和表面质量。

4.3 主动力主动力是指在金属切削过程中将工具向工件施加的力。

它与切削深度和切削速度等直接相关。

《金属切削原理》第12章[磨削]

《金属切削原理》第12章[磨削]

第十二章磨削磨削用于加工坚硬材料及精加工、半精加工内圆磨削外圆磨削平面磨削普通平面磨削圆台平面磨削超精磨削加工第一节砂轮的特性及选择砂轮由磨料、结合剂、气孔组成特性由磨料、粒度、结合剂、硬度、组织决定一、磨料分为天然磨料和人造磨料人造磨料氧化物系刚玉系(Al2O3)碳化物系碳化硅系碳化硼系超硬材料系人造金刚石系立方氮化硼系二、粒度表示磨粒颗粒尺寸的大小>63μm号数为通过筛网的孔数/英寸(25.4mm)机械筛分一般磨粒<63μm号数为最大尺寸微米数(W)显微镜分析法微细磨粒精磨细粒降低粗糙度粗磨粗粒提高生产率高速时、接触面积大时粗粒防烧伤软韧金属粗粒防糊塞硬脆金属细粒提高生产率国标用磨粒最大尺寸方向上的尺寸来表示三、结合剂作用:将磨料结合在一起,使砂轮具有必要的强度和形状1、陶瓷结合剂(A)常用由黏土等陶瓷材料配成特点:粘结强度高、耐热、耐酸、耐水、气孔率大、成本低、生产率高、脆、不能承受侧向弯扭力2、树脂结合剂(S)切断、开槽酚醛树脂、环氧树脂特点:强度高、弹性好、耐热性差、易自砺、气孔率小、易糊塞、磨损快、易失廓形、与碱性物质易反应、不易长期存放3、橡胶结合剂(X)薄砂轮、切断、开槽、无心磨导轮人造橡胶特点:弹性好、强度好、气孔小、耐热性差、生产率低4、金属结合剂(Q)磨硬质合金、玻璃、宝石、半导体材料青铜结合剂(制作金刚石砂轮)特点:强度高、自砺性差、形面成型性好、有一定韧性四、硬度在磨削力作用下,磨粒从砂轮表面脱落的难易程度分为超软、软、中软、中、中硬、硬、超硬工件材料硬砂轮软些防烧伤工件材料软砂轮硬些充分发挥磨粒作用接触面积大软砂轮精度、成形磨削硬砂轮保持廓形粒度号大软砂轮防糊塞有色金属、橡胶、树脂软砂轮防糊塞五、组织磨粒、气孔、结合剂体积的比例关系分为:紧密(0~3)、中等(4~7)、疏松(8~14)(磨粒占砂轮体积%↘)气孔、孔穴开式(与大气连通)占大部分,影响较大闭式(与大气不连通)尺寸小、影响小开式空洞型蜂窝型前两种构成砂轮内部主要的冷却通道管道型5~50μm六、砂轮的型号标注形状、尺寸、磨料、粒度号、硬度、组织号、结合剂、允许最高圆周线速度P300x30x75WA60L6V35外径300,厚30,内径75第二节磨削运动一、磨削运动1、主运动砂轮外圆线速度m/s2、径向进给运动进给量fr 工件相对砂轮径向移动的距离间歇进给mm/st 单行程mm/dst 双行程连续进给mm/s3、轴向进给运动进给量fa 工件相对砂轮轴向的进给运动圆磨mm/r平磨mm/ 行程4、工件速度vw线速度m/s 二、磨削金属切除率ZQ=Q/B=1000·vw·fr ·fa/B mm^3/(s ·mm)ZQ:单位砂轮宽度切除率Q:每秒金属切除量用以表示生产率B:砂轮宽度三、砂轮与工件加工表面接触弧长lc =sqrt(fr ·d0)影响参加磨削磨粒数目及磨粒负荷,容屑,冷却条件四、砂轮等效直径将外圆(内圆)砂轮直径换算成接触弧长相等的假想平面磨削的砂轮直径结论:对砂轮耐用度影响内圆>平面>外圆第三节磨削的过程一、单个磨粒的磨削过程磨粒的模型锐利120°圆锥钝化半球实际磨粒:大的负前角,大的切削刃钝圆半径滑擦、耕犁、切削滑擦:(不切削,不刻划)产生高温,引起烧伤裂纹耕犁:(划出痕迹)磨粒钝或切削厚度小于临界厚度,工件材料挤向两侧隆起切削:切削厚度大于临界厚度,形成切屑v↑→隆起↓(线性)塑性变形速度<磨削速度二、磨削的特点1、精度高、表面粗糙度小高速、小切深、机床刚性2、径向分力Fn较大多磨粒切削3、磨削温度高磨粒角度差、挤压和摩擦、砂轮导热差4、砂轮的自砺作用三、磨削的阶段1、初磨阶段实际磨深小于径向进给量2、稳定阶段实际磨深等于径向进给量3、清磨阶段实际磨深趋向于0 提高生产率缩短1、2提高质量保证3第四节磨削力及磨削功率一、磨削力的特征分解成三个分力Ft 切向力Fn 法向力Fa 轴向力特征:1、单位切削力k 很大磨粒几何形状的随机性和参数的不合理性7000~20000kgf/mm^2 其他切削方式k<700kgf/mm^22、Fn值最大Fn/Ft 通常2.0 ~2.5工件塑性↓、硬度↑→Fn/Ft ↑ 切深小,砂轮严重磨损Fn/Ft 可达5~103、磨削力随磨削阶段变化初磨、稳定、光磨二、磨削力及磨削功率摩擦耗能占相当大的比例(70~80%)切向力(N):Ft =9.81·(CF·(vw·fr ·B/v)+ μ·Fn) 径向力(N):Fn=9.81·CF·(vw·fr ·B/v) ·tan( α) ·(π/2) vw:工件速度v:砂轮速度fr :径向进给量B:磨削宽度CF:切除单位体积切屑所需的能kgf/mm^2μ:工件-砂轮摩擦系数α:假设粒度为圆锥时的锥顶半角磨削功率P=Ft ·v/1000 Kw理论公式精度不高,常用实验测定(顶尖上安装应变片)第五节磨削温度耕犁、滑擦和形成切屑的能量全部转化成热,大部分传入工件一、磨削温度砂轮磨削区温度θA:砂轮与工件接触区的平均温度影响:烧伤、裂纹的产生磨粒磨削点温度θdot :磨粒切削刃与切屑接触部分的温度温度最高处,是磨削热的主要来源影响:表面质量、磨粒磨损、切屑熔着工件温升:影响:工件尺寸、形状精度受影响二、影响磨削温度的因素切削液为降温的主要途径1、工件速度对磨粒磨削点温度的影响大于砂轮速度vw↑→acgmax↑→F↑→θdot↑大v↑→acgmax↓→θdot↑小→摩擦热↑↗acgmax:单个磨粒最大切削厚度mm假设:磨粒前后对齐,均匀分不在砂轮表面平面磨:acgmax=(2·vw·fa/(v ·m·B))sqrt(fr/dt)外圆磨:acgmax=(2·vw·fa/(v ·m·B))sqrt((fr/dt)+(fr/dw))dt :砂轮直径m:每毫米周长磨粒数用于定性分析2、径向进给量Frfr ↑→acgmax↑→θdot↑fr ↑→接触区↑→同时参加切削磨粒数↑→θA↑3、其他因素fa ↑→θdot↑、θA↑ 工件材料硬度↑、强度、↑韧性↑→θdot↑、θA↑θA↑→工件温升↑vw↑→被磨削点与砂轮接触时间↓→工件温升↗三、磨削温度的测量(热电偶)第六节砂轮的磨损及表面形貌一、砂轮的磨损类型磨耗磨损磨粒磨损破碎磨损磨粒或结合剂破碎(取决于磨削力与磨粒、结合剂强度)破碎磨损消耗砂轮多磨耗磨损通过磨削力影响破碎磨损阶段初期磨损磨粒破碎磨损(个别磨粒受力大,磨粒内部应力与裂纹)二期磨损磨耗磨损三期磨损结合剂破碎磨损二、砂轮的耐用度T 砂轮相邻两次修整期间的加工时间s各因素通过平均切削厚度来影响T经验公式:T=6.67·(dw^0.6) ·km·kt/(10000 ·(vw·fa ·fr)^2)dw:工件直径kt :砂轮直径修正系数km:工件材料修正系数粗磨时间常用单位时间内磨除金属体积与砂轮磨耗体积之比来选择砂轮三、砂轮的修整作用去除钝化磨粒或糊塞住的磨粒,使新磨粒露出来增加有效切削刃,提高加工表面质量工具单颗金刚石、单排金刚石、碳化硅修整轮、电镀人造金刚石滚轮、硬质合金挤压轮等使用单颗金刚石:导程小于等于磨粒平均直径,每颗磨粒都能修整深度小于等于磨粒平均直径,提高砂轮寿命四、表面形貌单位面积上磨粒数目越多→acgmax↓→磨粒受力↓→磨粒寿命↑→T↑磨粒高度分布越均匀→粗糙度↓磨粒间距均匀性越好→粗糙度↓第七节磨削表面质量与磨削精度一、表面粗糙度比普通切削小小于Ra2 ~4μmvw↓、v↑、R工↑、R砂↑、细粒度→粗糙度↓细粒度→m↑→粗糙度↓B↑→acgmax↓→粗糙度↓磨粒等高性好→粗糙度↓二、机械性能1、金相组织变化烧伤:C↑、合金元素↑→导热性↓→易烧伤高温合金↑→磨削功率↑→θA↑→易烧伤影响:破坏工件表层组织,产生裂纹,影响耐磨性和寿命2、残余应力原因:相变引起金相组织体积变化温度引起热胀冷缩和塑性变形的综合结果光磨10次残余应力减少2~3 倍光磨15次残余应力减少4~5 倍fa ↓、fr ↓→拉应力↓3、磨削裂纹磨削速度垂直方向上的裂纹(局部高温急冷造成热应力)三、磨削精度1、磨床与工件的弹性变形2、磨床与工件的热变形3、砂轮磨损导致形状尺寸变化3、磨床与工件振动研磨加工是应用较广的一种光整加工。

金属切削基本原理机械制造技术基础幻灯片PPT

金属切削基本原理机械制造技术基础幻灯片PPT
第Ⅱ变形区的影响。
)
➢剪 切 角 越 小 、 前 角 越
小,剪切变形量越大
φ
G
OH
γ0 相对滑移系数
Φ-0
φ
90-φ φ
7 .
2.1.1 切屑的形成与切削变形

点 在高温高压作用下,切屑底层与前刀面发生沾接,切屑
与前刀面之间既有外摩擦,也有内摩擦。
➢ 粘结区:高温高压使切屑底 层软化,粘嵌在前刀面高低不
力力
种 类 及
◆ 残余张应力: 易使加工表面产生裂纹,降低零件疲劳强度
影 ◆ 残余压应力:

有利于提高零件疲劳强度
◆ 残余应力分布不均:
会使工件发生变形,影响形状和尺寸精度
9 .
2.1.1 切屑的形成与切削变形
23
残 余 应 力
◆ 热塑变形效应:表层张应力,里层压应力
◆ 里层金属弹性恢复:若里层金属产生拉伸变形,则弹性 恢复后表层得到压应力,里层为张应力
刀 具
➢前角增大,刀具容易切入工件,剪切角增大,切削力减小。 加工塑性大的材料时,增大前角则总切削力明显减小;而加工
几 脆性材料时,增大前角对减小总切削力的作用不显著。
何 ➢负倒棱提高了正前角刀具的刃口强度,但同时也增加了负倒 角 棱前角(负前角)参加切削的比例,负前角的绝对值越大,切削 度 变形程度越大,所以切削力越大。
平的凹坑中,形成长度为lfi的
粘接区。切屑的粘接层与上层 金属之间产生相对滑移,其间 的摩擦属于内摩擦。
➢ 滑动区:切屑在脱离前刀面 之前,与前刀面只在一些突出 点接触,切屑与前刀面之间的 摩擦属于外摩擦。
lfi
lfo
切屑与前刀面的摩擦
8积 .屑
2.1.1 切屑的形成与切削变形

《金属切削原理》课件

《金属切削原理》课件

金属切削在机械制造中的应用
加工精度:金属切削可以精确地加工出各种形状和尺寸的零件 加工效率:金属切削可以提高生产效率,缩短生产周期 加工范围:金属切削可以加工各种金属材料,包括钢、铝、铜等 加工质量:金属切削可以保证加工质量,提高产品的可靠性和耐用性
金属切削在航空航天领域的应用
飞机制造:金属 切削用于制造飞 机机身、机翼、 发动机等部件
新材料硬度 高,耐磨性 好,对刀具 寿命和加工 效率产生影 响
新材料热导 率低,切削 过程中热量 难以散发, 对刀具和工 件产生影响
新材料化学 活性强,易 与刀具材料 发生化学反 应,影响刀 具寿命和加 工质量
新材料加工 难度大,对 刀具材料和 加工工艺提 出更高要求
新材料加工 过程中产生 的废料处理 问题,对环 保和资源利 用提出挑战
切削热的ห้องสมุดไป่ตู้生与散失
切削热的产生:刀具与工件之间的摩擦和剪切作用 切削热的散失:通过刀具、工件和切屑的传导、对流和辐射等方式 切削热的影响:影响刀具寿命、工件加工精度和表面质量 切削热的控制:通过优化刀具材料、切削参数和冷却方式等手段
切削表面的形成与变化
切削过程:刀具与工件之间的相对运动 切削力:刀具与工件之间的相互作用力 切削温度:刀具与工件之间的摩擦热 切削表面:刀具与工件之间的接触面
火箭制造:金属 切削用于制造火 箭发动机、燃料 箱、控制系统等 部件
卫星制造:金属 切削用于制造卫 星外壳、太阳能 电池板、天线等 部件
空间站制造:金 属切削用于制造 空间站外壳、太 阳能电池板、生 命支持系统等部 件
金属切削在汽车工业领域的应用
汽车零部件制造:金属切削用于生产汽车发动机、变速箱、底盘等零部件 汽车车身制造:金属切削用于生产汽车车身、车门、车窗等车身部件 汽车模具制造:金属切削用于生产汽车模具,如冲压模具、注塑模具等 汽车维修与保养:金属切削用于汽车维修与保养,如更换损坏的零部件、修复车身损伤等

机械制造技术基础金属切削原理

机械制造技术基础金属切削原理

机械制造技术基础金属切削原理金属切削是机械加工中常见的一种工艺,广泛应用于机械制造领域。

金属切削的原理主要包括金属材料的切削力、金属切削的切削速度和金属切削的切削温度等方面。

本文将以机械制造技术基础为主题,详细介绍金属切削的原理。

一、金属切削的切削力在金属切削过程中,切削力是指作用在切削刃上的力。

切削力是切削过程中最重要的性能之一,它直接影响到加工精度、表面质量和切削工具的寿命。

切削力的大小与切削深度、进给量、切削速度、切削力角等因素有关。

1.切削深度:切削深度是指切削刀具与原材料表面的距离。

切削深度的增大会使得切削力增大,但是切削力增加并不是线性关系,切削深度较小时,切削力随着切削深度的增大呈线性增大;切削深度较大时,切削力随着切削深度的增大呈指数增大。

2.进给量:进给量是指切削刀具在单位时间内与工件的相对运动位移,通常用每转进给量表示。

进给量的增大会使得切削力增加,但是这种关系是线性关系。

3.切削速度:切削速度是指切削刀具与工件相对运动的速度。

切削速度的增大会使得切削力增加,但是这种关系并不是线性关系,一般呈现出二次方的增长。

4.切削力角:切削力角是指切削刃与切削面之间的夹角。

切削力角的大小主要取决于材料的性质,一般情况下切削硬材料时,切削力角偏大,切削软材料时,切削力角偏小。

二、金属切削的切削速度切削速度是指切削刀具与工件之间相对运动的速度。

切削速度对于金属切削的性能和加工效果具有重要影响。

切削速度的选择要根据切削材料的硬度、材料的大面积、工件的形状和工件表面的粗糙度等因素来进行选择。

1.切削硬度:切削硬度越大,切削速度越低。

这是由于硬度大的材料在切削过程中会提供更大的阻力,增加切削过程中所需的能量。

2.材料的大面积:当切削材料的大面积增大时,切削速度应适当降低,以避免因切削速度过高导致的工件变形、断裂等问题。

3.工件的形状:工件形状的不同会导致切削刃与工件之间的接触面积不一样,从而影响切削力的大小。

金属切削原理PPT全套课件

金属切削原理PPT全套课件

实际上,除了由上述切削平面和基面组成的 参考平面系以外,还应该有一个平面作为标注和 测量刀具前,后刀面角度用的 “测量平面”。通 常根据刃磨和测量的需要与方便,可以选用不同 的平面作为测量平面。在刀刃上同一选定点测量 其角度时,如果测量平面选得不同,刀具角度的 大小也就不同。
测量平面和参考平面系就组成了所谓的刀具 标注角度参考系。目前各个国家由于选用的测量 平面不同,所以采用的刀具标注角度参考系也不 完全同意。现在以常用的外圆车刀为例,来说明 几种不同的刀具标注角度参考系。
三 切削用量
所谓切削用量是指切削速度,进给量和背吃 刀量三者的总称。它们分别定义如下:
1. 切削速度v 它是切削加工时,刀刃上选
定点相对于工件的主运动的速度.刀刃上各点的 切削速度可能是不同的。
当主运动为旋转运动时,刀具或工件最大直 径处的切削速度由下式确定:
式中 d——完成主运动的刀具或工件的最大直径 (mm);
度参考平面的切削平面和基面定义如下:
1. 切削平面是通过刀刃上选定点,切于工 件过渡表面的平面。在切削平面内包含有刀刃在 该定点的切线,和由主运动与进给运动合成的切 削运动向量(简称合成切削运动向量)。
2. 基面是通过刀刃上选定点,垂直于该点 合成切削运动向量的平面。显然,刀刃上同一点 的基面和切削平面是相互垂直的。
在基本技能方面,应具有根据加工条件合理 选择刀具材料,刀具几何参数的能力;应具有根 据加工条件,和用资料,手册及公式,计算切削 力和切削功率的能力;应具有根据加工条件,从 最大生产率或最低加工成本出发,合理选择切削
用量的能力;应初步具有利用常用仪器设备进行 切削变形,切削力,切削温度,刀具磨损和砂轮 磨损等测试的技能,并具有对实验数据进行处理 和分析的能力。

金属切削资料课件

金属切削资料课件

正确使用切削液可以减少刀具消耗和换刀 次数,降低废品率,从而降低生产成本。
04
金属切削机床
机床类型与布局
总结词
机床类型与布局概述
详细描述
金属切削机床根据加工需求和工艺特点有多种类型,如车床、铣床、磨床等。不 同类型的机床布局也各有特点,如卧式车床、立式车床、龙门式铣床等。了解机 床类型与布局有助于更好地选择和使用机床。
对工件性能的影响
表面粗糙度对工件的耐磨性、疲劳强 度、配合性质、抗腐蚀性等都有影响 。
刀具的几何形状、切削参数、切削液 、工件材料等都会影响表面粗糙度。
刀具寿命
刀具寿命定义
刀具寿命是指在正常工作条件下 ,刀具从开始使用到磨损、断裂 或出现严重刀具破损所经过的时
间。
影响因素
刀具材料、刀具几何参数、切削参 数、冷却与润滑等都会影响刀具寿 命。
05
金属切削加工工艺
粗加工与精加工
粗加工
去除大部分的加工余量,为后续精加 工提供基础。
精加工
进一步提高工件的尺寸、形状和位置 精度,满足产品要求。
切削用量的选择
切削速度
根据刀具材料、工件材料 和加工要求选择合适的切 削速度。
进给量
根据切削深度和表面粗糙 度要求,选择合适的进给 量。
切削深度
根据工件材料、刀具材料 和加工要求,选择合适的 切削深度。
切削液的功能
切削液的主要功能包括冷却、润滑、 清洗和防锈。它能够有效地降低切削 过程中的温度,减少刀具磨损,清除 切屑,并防止金属生锈。
切削液的选用Βιβλιοθήκη 管理选择依据选择切削液时,需要考虑加工材料的性质、切削条件、刀具材料以及工件加工 精度等因素。
切削液的管理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章磨削磨削用于加工坚硬材料及精加工、半精加工内圆磨削外圆磨削平面磨削普通平面磨削圆台平面磨削超精磨削加工第一节砂轮的特性及选择砂轮由磨料、结合剂、气孔组成特性由磨料、粒度、结合剂、硬度、组织决定一、磨料分为天然磨料和人造磨料人造磨料氧化物系刚玉系(Al2O3)碳化物系碳化硅系碳化硼系超硬材料系人造金刚石系立方氮化硼系二、粒度表示磨粒颗粒尺寸的大小>63µm号数为通过筛网的孔数/英寸(25.4mm)机械筛分一般磨粒<63µm号数为最大尺寸微米数(W)显微镜分析法微细磨粒精磨细粒降低粗糙度粗磨粗粒提高生产率高速时、接触面积大时粗粒防烧伤软韧金属粗粒防糊塞硬脆金属细粒提高生产率国标用磨粒最大尺寸方向上的尺寸来表示三、结合剂作用:将磨料结合在一起,使砂轮具有必要的强度和形状1、陶瓷结合剂(A)常用由黏土等陶瓷材料配成特点:粘结强度高、耐热、耐酸、耐水、气孔率大、成本低、生产率高、脆、不能承受侧向弯扭力2、树脂结合剂(S)切断、开槽酚醛树脂、环氧树脂特点:强度高、弹性好、耐热性差、易自砺、气孔率小、易糊塞、磨损快、易失廓形、与碱性物质易反应、不易长期存放3、橡胶结合剂(X)薄砂轮、切断、开槽、无心磨导轮人造橡胶特点:弹性好、强度好、气孔小、耐热性差、生产率低4、金属结合剂(Q)磨硬质合金、玻璃、宝石、半导体材料青铜结合剂(制作金刚石砂轮)特点:强度高、自砺性差、形面成型性好、有一定韧性四、硬度在磨削力作用下,磨粒从砂轮表面脱落的难易程度分为超软、软、中软、中、中硬、硬、超硬工件材料硬砂轮软些防烧伤工件材料软砂轮硬些充分发挥磨粒作用接触面积大软砂轮精度、成形磨削硬砂轮保持廓形粒度号大软砂轮防糊塞有色金属、橡胶、树脂软砂轮防糊塞五、组织磨粒、气孔、结合剂体积的比例关系分为:紧密(0~3)、中等(4~7)、疏松(8~14)(磨粒占砂轮体积%↘)气孔、孔穴开式(与大气连通)占大部分,影响较大闭式(与大气不连通)尺寸小、影响小开式空洞型蜂窝型前两种构成砂轮内部主要的冷却通道管道型5~50µm六、砂轮的型号标注形状、尺寸、磨料、粒度号、硬度、组织号、结合剂、允许最高圆周线速度P300x30x75WA60L6V35外径300,厚30,内径75第二节磨削运动一、磨削运动1、主运动砂轮外圆线速度 m/s2、径向进给运动进给量fr 工件相对砂轮径向移动的距离间歇进给 mm/st 单行程mm/dst 双行程连续进给 mm/s3、轴向进给运动进给量fa 工件相对砂轮轴向的进给运动圆磨 mm/r平磨 mm/行程4、工件速度vw线速度 m/s二、磨削金属切除率ZQ=Q/B=1000·vw·fr·fa/B mm^3/(s·mm)ZQ:单位砂轮宽度切除率Q:每秒金属切除量用以表示生产率B:砂轮宽度三、砂轮与工件加工表面接触弧长lc=sqrt(fr·d0)影响参加磨削磨粒数目及磨粒负荷,容屑,冷却条件四、砂轮等效直径将外圆(内圆)砂轮直径换算成接触弧长相等的假想平面磨削的砂轮直径结论:对砂轮耐用度影响内圆>平面>外圆第三节磨削的过程一、单个磨粒的磨削过程磨粒的模型锐利120°圆锥钝化半球实际磨粒:大的负前角,大的切削刃钝圆半径滑擦、耕犁、切削滑擦:(不切削,不刻划)产生高温,引起烧伤裂纹耕犁:(划出痕迹)磨粒钝或切削厚度小于临界厚度,工件材料挤向两侧隆起切削:切削厚度大于临界厚度,形成切屑v↑→隆起↓(线性)塑性变形速度<磨削速度二、磨削的特点1、精度高、表面粗糙度小高速、小切深、机床刚性2、径向分力Fn较大多磨粒切削3、磨削温度高磨粒角度差、挤压和摩擦、砂轮导热差4、砂轮的自砺作用三、磨削的阶段1、初磨阶段实际磨深小于径向进给量2、稳定阶段实际磨深等于径向进给量3、清磨阶段实际磨深趋向于0提高生产率缩短1、2提高质量保证3第四节磨削力及磨削功率一、磨削力的特征分解成三个分力Ft切向力 Fn法向力 Fa轴向力特征:1、单位切削力k很大磨粒几何形状的随机性和参数的不合理性7000~20000kgf/mm^2 其他切削方式k<700kgf/mm^22、Fn值最大Fn/Ft 通常2.0~2.5工件塑性↓、硬度↑→Fn/Ft↑切深小,砂轮严重磨损 Fn/Ft 可达5~103、磨削力随磨削阶段变化初磨、稳定、光磨二、磨削力及磨削功率摩擦耗能占相当大的比例(70~80%)切向力(N):Ft=9.81·(CF·(vw·fr·B/v)+µ·Fn)径向力(N):Fn=9.81·CF·(vw·fr·B/v)·tan(α)·(π/2) vw:工件速度v:砂轮速度fr:径向进给量B:磨削宽度CF:切除单位体积切屑所需的能 kgf/mm^2µ:工件-砂轮摩擦系数α:假设粒度为圆锥时的锥顶半角磨削功率P=Ft·v/1000 Kw理论公式精度不高,常用实验测定(顶尖上安装应变片)第五节磨削温度耕犁、滑擦和形成切屑的能量全部转化成热,大部分传入工件一、磨削温度砂轮磨削区温度θA:砂轮与工件接触区的平均温度影响:烧伤、裂纹的产生磨粒磨削点温度θdot:磨粒切削刃与切屑接触部分的温度温度最高处,是磨削热的主要来源影响:表面质量、磨粒磨损、切屑熔着工件温升:影响:工件尺寸、形状精度受影响二、影响磨削温度的因素切削液为降温的主要途径1、工件速度对磨粒磨削点温度的影响大于砂轮速度vw↑→acgmax↑→F↑→θdot↑大v↑→acgmax↓→θdot↑小→摩擦热↑↗acgmax:单个磨粒最大切削厚度 mm假设:磨粒前后对齐,均匀分不在砂轮表面平面磨:acgmax=(2·vw·fa/(v·m·B))sqrt(fr/dt)外圆磨:acgmax=(2·vw·fa/(v·m·B))sqrt((fr/dt)+(fr/dw))dt:砂轮直径m:每毫米周长磨粒数用于定性分析2、径向进给量Frfr↑→acgmax↑→θdot↑fr↑→接触区↑→同时参加切削磨粒数↑→θA↑3、其他因素fa↑→θdot↑、θA↑工件材料硬度↑、强度、↑韧性↑→θdot↑、θA↑θA↑→工件温升↑vw↑→被磨削点与砂轮接触时间↓→工件温升↗三、磨削温度的测量(热电偶)第六节砂轮的磨损及表面形貌一、砂轮的磨损类型磨耗磨损磨粒磨损破碎磨损磨粒或结合剂破碎(取决于磨削力与磨粒、结合剂强度)破碎磨损消耗砂轮多磨耗磨损通过磨削力影响破碎磨损阶段初期磨损磨粒破碎磨损(个别磨粒受力大,磨粒内部应力与裂纹)二期磨损磨耗磨损三期磨损结合剂破碎磨损二、砂轮的耐用度T砂轮相邻两次修整期间的加工时间 s各因素通过平均切削厚度来影响T经验公式:T=6.67·(dw^0.6)·km·kt/(10000·(vw·fa·fr)^2)dw:工件直径kt:砂轮直径修正系数km:工件材料修正系数粗磨时间常用单位时间内磨除金属体积与砂轮磨耗体积之比来选择砂轮三、砂轮的修整作用去除钝化磨粒或糊塞住的磨粒,使新磨粒露出来增加有效切削刃,提高加工表面质量工具单颗金刚石、单排金刚石、碳化硅修整轮、电镀人造金刚石滚轮、硬质合金挤压轮等使用单颗金刚石:导程小于等于磨粒平均直径,每颗磨粒都能修整深度小于等于磨粒平均直径,提高砂轮寿命四、表面形貌单位面积上磨粒数目越多→acgmax↓→磨粒受力↓→磨粒寿命↑→T↑磨粒高度分布越均匀→粗糙度↓磨粒间距均匀性越好→粗糙度↓第七节磨削表面质量与磨削精度一、表面粗糙度比普通切削小小于 Ra2~4µmvw↓、v↑、R工↑、R砂↑、细粒度→粗糙度↓细粒度→m↑→粗糙度↓B↑→acgmax↓→粗糙度↓磨粒等高性好→粗糙度↓二、机械性能1、金相组织变化烧伤:C↑、合金元素↑→导热性↓→易烧伤高温合金↑→磨削功率↑→θA↑→易烧伤影响:破坏工件表层组织,产生裂纹,影响耐磨性和寿命2、残余应力原因:相变引起金相组织体积变化温度引起热胀冷缩和塑性变形的综合结果光磨10次残余应力减少2~3倍光磨15次残余应力减少4~5倍fa↓、fr↓→拉应力↓3、磨削裂纹磨削速度垂直方向上的裂纹(局部高温急冷造成热应力)三、磨削精度1、磨床与工件的弹性变形2、磨床与工件的热变形3、砂轮磨损导致形状尺寸变化3、磨床与工件振动研磨加工是应用较广的一种光整加工。

加工后精度可达IT5级,表面粗糙度可达Ra0.1~0.006μm。

既可加工金属材料,也可以加工非金属材料。

研磨加工时,在研具和工件表面间存在分散的细粒度砂粒(磨料和研磨剂)在两者之间施加一定的压力,并使其产生复杂的相对运动,这样经过砂粒的磨削和研磨剂的化学、物理作用,在工件表面上去掉极薄的一层,获得很高的精度和较小的表面粗糙度。

研磨的方法按研磨剂的使用条件分以下三类:1.干研磨研磨时只需在研具表面涂以少量的润滑附加剂。

如图8-12a所示。

砂粒在研磨过程中基本固定在研具上,它的磨削作用以滑动磨削为主。

这种方法生产率不高,但可达到很高的加工精度和较小的表面粗糙度值(Ra0.02~0.01μm)。

2.湿研磨在研磨过程中将研磨剂涂在研具上,用分散的砂粒进行研磨。

研磨剂中除砂粒外还有煤油、机油、油酸、硬脂酸等物质。

在研磨过程中,部分砂粒存在于研具与工件之间,如图8-12b所示。

此时砂粒以滚动磨削为主,生产率高,表面粗糙度Ra0.04~0.02μm,一般作粗加工用,但加工表面一般无光泽。

3.软磨粒研磨在研磨过程中,用氧化铬作磨料的研磨剂涂在研具的工作表面,由于磨料比研具和工件软,因此研磨过程中磨料悬浮于工件与研具之间,主要利用研磨剂与工件表面的化学作用,产生很软的一层氧化膜,凸点处的薄膜很容易被磨料磨去。

此种方法能得到极细的表面粗糙度(Ra0.02~0.01μm)。

刮研平面用于未淬火的工件,它可使两个平面之间达到紧密接触,能获得较高的形状和位置精度,加工精度可达IT7级以上,表面粗糙度值Ra0.8~0.1μm。

刮研后的平面能形成具有润滑油膜的滑动面,因此能减少相对运动表面间的磨损和增强零件接合面间的接触刚度。

刮研表面质量是用单位面积上接触点的数目来评定的,粗刮为1~2点/cm2,半精刮为2~3点/cm2,精刮为3~4点/cm2。

刮研劳动强度大,生产率低;但刮研所需设备简单,生产准备时间短,刮研力小,发热小,变形小,加工精度和表面质量高。

此法常用于单件小批生产及维修工作中。

相关文档
最新文档