中考数学复习指导:勾股定理中的分类讨论

中考数学复习指导:勾股定理中的分类讨论
中考数学复习指导:勾股定理中的分类讨论

勾股定理中的分类讨论

在学习勾股定理时,有时会遇到多种情况,稍不留神就会丢解或造成错解,这就需要我们利用分类讨论思想对各种情况加以分类,并逐类求解,然后综合得解.为帮助同学们解决这类问题,现将勾股定理中需用到分类的问题为同学们分类浅析.

一、按直角边、斜边分类

例1 如果三条线段的长分别为3cm 、x cm 、5cm ,这三条线段恰好能组成一个直角三角形,那么x 等于________.

解:(1)当以3cm 、x cm 为直角边,5cm 为斜边时,有52=32+x 2,x =4;

(2)当3cm 、5cm 均为直角边时,有32+52=x 2,x

因此,x 为4

二、按等腰三角形的腰与底分类

例2 在等腰三角形ABC 中,AB =5cm ,BC =6cm ,则△ABC 的面积为________.

解:(1)当5cm 为腰,6cm 为底时,则AB =AC =5cm ,如图1.过A 点作AD ⊥BC ,所以CD =3,在Rt △ACD 中,AD 2=AC 2-CD 2,所以AD 2=52-32,AD =4,因此S △ABC =12

×6×4=12cm 2. (2)当6cm 为腰,5cm 为底时,则BC =AC =6cm ,如图2.过C 点作CD ⊥AB 于点

D ,所以AD =52,在Rt △ACD 中,CD 2=AC 2-AD 2,所以222562CD ??=- ???

,CD ,

因此1522ABC S =??=△2.

所以△ABC 的面积为12cm 2cm 2. 三、按高的位置分类

例3 在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为________.

解:(1)当△ABC 的高在三角形内时,如图3.由题意可知,BD 2=AB 2-AD 2,所以BD 2=152-122,BD =9,CD 2=AC 2-AD 2,所以CD 2=132-122,CD =5,所以BC =9+5=14,因此△ABC 的周长为9+5+15+13=42.

(2)当△ABC 的高在三角形外时,如图4.由题意可知,BD 2=AB 2-AD 2,所以BD 2=152-122,BD =9,CD 2=AC 2-AD 2,所以CD 2=132-122,CD =5,所以BC =9-5=4,因此△ABC 的周长为4+15+13=32.

综上所述△ABC 的周长为32或42.

四、按展开方式的不同分类

例4 如图5是一个放置雕塑的长方体底座,AB =12米,

BC =2米,BB ′=3米,一只蚂蚁从点A 出发,以2厘米/秒的

速度沿长方体表面爬到C ′至少需( )

A .1105

2分钟 B .5106分钟 C .1132

分钟 D .10分钟 解:2厘米/秒=0.02米/秒.

(1)将正面与右面展开,如图6.

由两点之间,线段最短及勾股定理可知路径一:AC ′2=AC 2+CC ′2=142+32=205;

(2)将左面与上面展开,如图7.

由勾股定理知路径二:AC ′2=AD 2+C ′D 2=152+22=229;

(3)将正面与上面展开,如图8.

勾股定理及常见题型分类

勾股定理及常见题型分类 一、知识要点: 1、勾股定理 2、勾股定理证明方法及勾股树 3、勾股定理逆定理 4、勾股定理常见题型回顾 二、典型题 题型一:“勾股树”及其拓展类型求面积 1. 右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ) A.13 B.26 C.47 D.94 2.如图,直线l 上有三个正方形a,b,c,若a,c 的边长分别为6和8,求b 的面积。 3. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 4、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 S 3 S 2 S 1 甲 乙 图1

5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 题型二:勾股定理与图形问题 1、已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 . 2.如图,求该四边形的面积 3.如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 . 4.某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 . 5.如图是一块地,已知AD=8m ,CD=6m ,∠D=90°,AB=26m ,BC=24m ,求这块地的面积。 题型三:在直角三角形中,已知两边求第三边 A B C D E F G

八年级数学 勾股定理及其常考题型

八年级数学 勾股定理及其常考题型 勾股定理也称毕达哥拉斯定理,文字表述:直角三角形两直角边的平方和等于斜边的平方.结合直角三角形图形,用字母可表示为:2 2 2 a b c +=,如下图,a 、b 为直角边,c 为斜边。 勾股定理揭示了直角三角形三边之间的数量关系,完美地体现了“数形统一”的数学思想,将初中几何与代数很好的联系起来。因此,学好勾股定理这一知识点对于我们解决数学问题有很大的帮助,下面我们具体来看看初中数学有关勾股定理的一些常见题型及其解答方法。 一、边的计算 1、在Rt △ABC 中,∠C =90°,若a =6,b =8,则c = . 解:因为2 2 2 a b c +=,所以c=10。 评论:直接由勾股定理所以得 2、在Rt △ABC 中,∠C =90°,AC =3,BC =4,则斜边上的高CD 的长为( ) A . 125 B . 552 C . 52 D .57 解:由勾股定理知:AB=5,又因为S △ABC = 21AC ×BC=2 1 AB ×CD 即: 21×3×4=21 ×5×CD,所以CD=125 评论:通过勾股定理求出斜边,再利用面桥关系求出斜边上的高。 3、若一直角三角形两边的长为12和5,则第三边的长为( ) A .13 B .13或119 C .13或15 D .15 解:当12对应的边为斜边时,此时由勾股定理得第三边为119

当12对应的边是直角边时,则第三边为斜边,由222 a b c +=得第三边的长为13 评论:勾股定理结合分类讨论思想,学生要注意这类试题的多解性。 4.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121 B 、120 C 、132 D 、不能确定 解:设该Rt △的三边分别为a 、b 、c ,a 、b 为直角边,c 为斜边 由勾股定理知:222a b c +=,即:112+b 2 = c 2 所以(b+c )(c -b )=121 因为b 、c 都为自然数,所以b+c ,c -b ,都为正自然数。 又因为121只有1、11、121这三个正整数因式,所以b+c=121,c -b=1。所以b=60,c=61 评论,本题以直角三角形为载体,同过勾股定理将初中几何知识和代数知识很好地串联起来考察学生的能力。 二、直角三角形的判定 5、 在△ABC 中中,a 、b 、c 为∠A 、∠B 、∠C 的对边,给出如下的命题: ①若∠A :∠B :∠C =1:2:3,则△ABC 为直角三角形;②若∠A =∠C 一∠B ,则△ABC 为直角三角形;③若4 5 c a = ,3 5 b a =,则△ABC 为直角三角形;④若a :b : c =5:3:4,则△ABC 为直角三角形;⑤若(a +c ) (a -c )=b 2,则△ABC 为直角三角形;⑥若(a +c)2=2ac +b 2,则△ABC 为直角三角形;⑦若AB=12,AC=9,B C=15, 则△ABC 为直角 三角形。 上面的命题中正确的有( ) A .6 B .7 C .8 D .9 解:对①,因为三角形内角和为180度,所以∠A+∠B+∠C =180°,因为∠A :∠B :∠C =1:2:3,所以∠C=180°× 2 1 所以∠C=90°则△ABC 为直角三角形,①正确。对②,因为∠A+∠B+∠C =180°,而∠A =∠C 一∠B ,所以∠C 一∠B+∠B+∠C =180°所以∠C=90°,即△ABC 为直角三角形,②正确。对③,设a=5k ,因为45c a = ,3 5 b a =,则c=4k , C 2+b 2 = a 2 所以为△ABC 直角三角形. ③正确,同理易知④正确,对⑤,因为(a + c )(a -c )=b 2 所以a 2 –c 2 = b 2 ,所以△ABC 为直角三角形.⑤正确,对⑥,因为(a +c)2=2ac +b 2,所以a 2 +c 2+2ac=2ac +b 2 所以a 2 +c 2=b 2 正确,对⑦,因为AB=12,AC=9,AC=15,所以AB 2 +AC 2=BC 2所以正确。答案选B 评论:直角三角形的评定可以从角和边两方面来进行,从角来判定需结合三角形内角和定理,从边来判定需结合勾股定理。一般是验证最大边的平方是否等于两小边的平方和。

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

(完整)勾股定理试题分类

(完整)勾股定理试题分类 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)勾股定理试题分类)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)勾股定理试题分类的全部内容。

《数学》八年级下册 第十七章 勾 股 定 理 【题型一】勾股定理的验证与证明 1.如图,每个小正方形的边长是1,图中三个正方形的面积分别是 S 1、S 2、S 3,则它们的面积关系是 ,直角△ABC 的三边的关系是 . 得出 S 1+S 2=S 3,从而得到:AB 2+BC 2=AC 2 . 2。如图,每个小正方形的边长是1,图中三个正方形的面积分别 是S 1、S 2、S 3,则它们的面积关系是 ,直角△ABC 的三边的关系是 . 参考答案:对于S 3显然用数方格的方法不合适,利用“相减法” 或“相 加法"用面积公式计算三个正方形面积,得出 S 1+S 2=S 3,从而得到:AB 2+BC 2=AC 2 。 3。如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定 理吗? 参考答案:由S 大正方形=4S Rt△+S 小正方形,得 c 2=4×ab+(b -a )2 ∴a 2+b 2=c 2 。 4.如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定 理吗? 参考答案:由S 大正方形=4S Rt△+S 小正方形,得 (a+b )2 =4×ab+c 2 ∴a 2+b 2=c 2 . 5.如图,已知∠A =∠B =90°且△AED≌△BCE ,A 、E 、B 在同一直线上。根据此图证明勾股定理. 1 21 2 B A B A a

直角三角形中的分类讨论

直角三角形中的分类讨论预习作业 1、在二次函数y=-x2+2x+3的图象与x轴交于A点和B点(点B 在x轴的正半轴上),与y轴交于C点,在该二次函数的图象上是否存在点P(点P与B,C 不重合),使得△PBC是以BC为一条直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请你说明理由。 2、已知一次函数y=2x+4和反比例函数y=的图象交于A、B两点,与x轴交于C点,在x轴上找点E,使△ACE为直角三角形.求点E的坐标 3、已知抛物线y=ax2+bx+c经过点A(-1,0),B(3,0),C(0,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

直角三角形中的分类讨论 主备:张琳 组长:张琳 审核: 时间: 学习目标:1、能够说出直角三角形分类的原因和依据。 2、能够在坐标系中准确运用分类的方法,利用相似三角形或勾股定理建立方程 求点的坐标。 例题: 如图,四边形AOBC 为矩形,点C 的坐标为(30 ,6),P 为OB 的中 点,在线段AC 上找一点Q ,若△OPQ 为直角三角形,求点Q 的坐标 针对训练: 直线2743+=x y 与抛物线2 17 4132--=x x y 交于A (—2 ,2 )、B ( 6 ,8 ) 两点。问:在x 轴上是否存在点P ,使△PAB 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由 (拓展)如图,抛物线21392 2 y x x =--与x 轴交于A 、B 两点,与y 轴交于点C , 联结BC 、AC .(1)求AB 和OC 的长; (2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作BC 的平行线交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围; (3)在(2)的条件下,联结CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).

勾股定理常见题型

专题一:勾股定理与面积 知识点精讲: 类型一“勾股树”及其拓展类型求面积 典型例题: 1.如图(16),大正方形的面积可以表示为,又可以表示为,由此可得等量关系______________________,整理后可得:___________. 2.图中字母所代表的正方形的面积为144的选项为( ) 3.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则大正方形与小正方形的面积差是() A.9 B.36 C.27 D.34 4.如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3=________. 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=() A.25 B.31 C.32 D.40 6.如图,已知在Rt ABC △中,? = ∠90 ACB,4 AB=,分别以AC,BC为直径作半圆,面积分别记为1S,2S, 则 12 S S +的值等于________ 7.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积是________.8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( ) A.2 B.4 C.8 D.16 a a a a b b b b c c c c 图(16) 8 6 C B A

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

————————————————————————————————作者:————————————————————————————————日期: ?

勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

勾股定理 分类练习题

勾股定理常考习题 勾股定理的直接应用: 1、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :21 2、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为 ( ) A :3 B :4 C :5 D :7 3.在平面直角坐标系中,已知点P 的坐标是(3,4),点Q 的坐标是 (7,8),则线段PQ 的长为_____. 4、 若直角三角形两直角边的比是3:4,斜边长是20,求此 直角三角形的面积是_________. 5、直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积是___________. 6、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。 7.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______. 8.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______. 9.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______. 10、若等腰三角形的腰长为10,底边长为12,则底边上的高为( ) A 、6 B 、7 C 、8 D 、9 11.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41 (C)24 (D)24或7 12.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 13. 等边三角形的边长为2,它的面积是___________ 14、若直角三角形的三边长分别是n+1,n+2,n+3,则n____________。 15.在数轴上画出表示10-及13的点. 16、如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少? 17.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( ). (A)4 (B)6 (C)8 (D)102 18.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4, S 2=8,则AB 的长为_________. 18题图 19题图 20题图 19.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( ). (A)150cm 2 (B)200cm 2 (C)225cm 2 (D)无法计算 20.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形 的边长是______. 21.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3, 水平放置的4个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______. 方程思想的应用: 1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°, , 求、、的值。 2.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长. 3.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长. 4. 如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。 (1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长 5. 如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积 典型几何题 1.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,求BC 的长. 2.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长. 3.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2, CD =2,AD =3,求四边形ABCD 的面积. 4.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长. 5、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6, AC=8, 求AB 、CD 的长 6.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE = CB 4 1 ,求证:AF ⊥FE . 7.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点, AD =5,BE =102求AB 的长.

浙江地区2018中考数学试题分类汇编考点22勾股定理含解析

2018中考数学试题分类汇编:考点22 勾股定理 一.选择题(共7小题) 1.(2018?滨州)在直角三角形中,若勾为3,股为4,则弦为() A.5 B.6 C.7 D.8 【分析】直接根据勾股定理求解即可. 【解答】解:∵在直角三角形中,勾为3,股为4, ∴弦为=5. 故选:A. 2.(2018?枣庄)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为() A.B.C.D. 【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案. 【解答】解:过点F作FG⊥AB于点G, ∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°, ∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°, ∵AF平分∠CAB, ∴∠CAF=∠FAD, ∴∠CFA=∠AED=∠CEF, ∴CE=CF, ∵AF平分∠CAB,∠ACF=∠AGF=90°, ∴FC=FG, ∵∠B=∠B,∠FGB=∠ACB=90°, ∴△BFG∽△BAC,

∴=, ∵AC=3,AB=5,∠ACB=90°, ∴BC=4, ∴=, ∵FC=FG, ∴=, 解得:FC=, 即CE的长为. 故选:A. 3.(2018?泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为() A.9 B.6 C.4 D.3 【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【解答】解:由题意可知:中间小正方形的边长为:a﹣b, ∵每一个直角三角形的面积为: ab=×8=4, ∴4×ab+(a﹣b)2=25, ∴(a﹣b)2=25﹣16=9, ∴a﹣b=3, 故选:D.

勾股定理典型题总结(较难)

勾股定理 一.勾股定理证明与拓展 模型一 . 图中三个正方形面积关系 思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系? 例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 . 变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.

变式2:如图,四边形ABCD 中,AD ∥BC ,∠ABC +∠DCB =90°,且BC =2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为S 1、S 2、S 3,若S 1=3,S 3=9,求S 2. (变式2) (变式3) 变式3:如图,Rt △ABC 的面积为10cm 2 ,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 . (难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB = 90°,以△ABC 的各边为边作三个正方形,点 G 落在 HI 上,若 AC +BC =6,空白部分面积为 10.5,则阴影部分面积 模型二 外弦图 D C B A 内弦图 G F E H 例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为 13,每个直角三角形两直角边的和是5。求中间小正方形的面积为__________;

勾股定理常见题型

1 .如图(16),大正方形的面积可以表示为 ,又可以表示为 ,由此可得等量关系 ABCD 正方形EFGH .ACB=90 , AB=4,分别以AC , BC 为直径作半圆,面积分别记为 专题一:勾股定理与面积 知识点精讲: 类型一 “勾股树”及其拓展类型求面积 典型例题: 3 .“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角 边的长分别是3和6,则大正方形与小正方形的面积差是 ( ) 4 .如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形 正方形MNKT 勺面积分别为 S 、S 2、S.若正方形EFGH 勺边长为2,贝U S + S 2+ S 3 = _____________________________________ . 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知 Si = 4, S 2= 9, S 3 = 8, S= 10,则S =( ) A. 25 B . 31 C . 32 D . 40 7?如图,已知直角厶ABC 的两直角边分别为 6, 8,分别以其三边为直径作半圆, 则图中阴影部分的面积是 ____________ 8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形, 然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为 64,则正方形⑤的面积 _________________________ ,整理后可得: _______________ C 6 .如图,已知在Rt A ABC 中, C 6 8 ①

勾股定理典型分类练习题

勾股定理典型分类练习题 题型一:直接考查勾股定理 例1.在ABC C ∠=?. ?中,90 ⑴已知6 BC=.求AB的长 AC=,8 ⑵已知17 AC=,求BC的长 AB=,15 变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC 是等腰三角形。 变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗? 题型二:利用勾股定理测量长度 例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0. 5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.

题型三:勾股定理和逆定理并用 例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 那么 △DEF 是直角三角形吗?为什么 题型四:旋转中的勾股定理的运用: 例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能及 △ACP ′重合,若AP=3,求PP ′的长。 变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长. 分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形. 题型五:翻折问题 例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长. P A P C B

新人教版八年级数学下册勾股定理典型例题归类总结

勾股定理典型例题归类总结 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 跟踪练习: 1.在ABC ?中,90C ∠=?. (1)若a=5,b=12,则c= ; (2)若a:b=3:4,c =15,则a = ,b = . (3)若∠A=30°,BC=2,则A B= ,AC= . 2. 在Rt △A BC中,∠C =90°,∠A,∠B,∠C 分别对的边为a ,b ,c,则下列结论正确的是( ) A、 B 、 C 、 D 、 3.一个直角三角形的三边为三个连续偶数,则它的三边长分别为( ) A 、2、4、6 B 、4、6、8 C 、6、8、10 D 、3、4、5 4.等腰直角三角形的直角边为2,则斜边的长为( ) A 、 B 、 C 、1 D 、2 5.已知等边三角形的边长为2cm ,则等边三角形的面积为( ) A 、 B 、 C 、1 D 、 6.已知直角三角形的两边为2和3,则第三边的长为___________. 7.如图,∠AC B=∠ABD=90°,AC=2,BC=1,,则BD=___________.? 8.已知△ABC 中,AB=AC=10,BD 是A C边上的高线,CD=2,那么BD 等于( ) A 、4 B、6 C、8 D、 9.已知R t△ABC 的周长为,其中斜边,求这个三角形的面积。 10. 如果把勾股定理的边的平方理解为正方形的面积,那么从面积的角度来说,勾股定理可以推广. (1)如图,以Rt △ABC 的三边长为边作三个等边三角形,则这三个等边三角形的面积1S 、2S 、3S 之间有何关系?并说明理由。 (2)如图,以Rt△A BC 的三边长为直径作三个半圆,则这三个半圆的面积1S 、2S 、3S 之间有何关系? (3)如果将上图中的斜边上的半圆沿斜边翻折180°,请探讨两个阴影部分的面积之和与直角三角形的面积之间的关系,并说明理由。(此阴影部分在数学史上称为“希波克拉底月牙”)

人教版八年级下学期《勾股定理》知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , 221 4()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为 221 422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三: 1 ()() 2 S a b a b =+?+梯形, 211 2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的 数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=?, 则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理试题分类

勾股定理试题分类 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《数学》八年级下册第十七章 勾股定理 【题型一】勾股定理的验证与证明 1.如图,每个小正方形的边长是1,图中三个正方形的面积分别是S1、 S2、S3,则它们的面积关系是,直角△ABC的三边的关系是. 参考答案:用数方格的方法或用面积公式计算三个正方形面积,得出S1+S2=S3,从而得到:AB2+BC2=AC2. 2.如图,每个小正方形的边长是1,图中三个正方形的面积分别是S1、 S2、S3,则它们的面积关系是,直角△ABC的三边的关系是. 参考答案:对于S3显然用数方格的方法不合适,利用“相减法”或“相加法”用面积公式计算三个正方形面积,得出 S1+S2=S3,从而得到:AB2+BC2=AC2. 3.如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定理吗 参考答案:由S大正方形=4S Rt△+S小正方形,得 c2=4× 1 2 ab+(b-a)2 ∴a2+b2=c2. 4.如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定理吗 参考答案:由S大正方形=4S Rt△+S小正方形,得 (a+b)2=4× 1 2 ab+c2 ∴a2+b2=c2. 5.如图,已知∠A=∠B=90°且△AED≌△BCE,A、E、B在同一直线上.根据此图证明勾股定理. 参考答案:先证明△DCE是等腰直角三角形,再根据梯形面积为三个三角形面积之和得 1 2(a+b)2=2× 1 2 ab+ 1 2 c2, ∴a2+b2=c2. 6.如图,一个直立的火柴盒倒下来就可以证明勾股定理,请你根据图形,设计一种证明方法. 参考答案:方法类似第5题. 7.(2011温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1—1).图1—2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图1—2中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是 . 参考答案:10 3 8.(2010 湖北孝感)[问题情境 ] B A a 图2 图1 c b a

8.D专题 勾股定理与分类讨论

专题 勾股定理与分类讨论 【方法规律】在涉及到等腰三角形、直角三角形及三角形的面积、高等问题时往往需要分类讨论. 一、锐角、钝角不明时需分类讨论 1. 在△ABC 中,AB =AC =5,S △ABC =7.5,求BC 的长. 【解答】(1)当△ABC 为锐角三角形时,过B 作BD ⊥AC 于点D ,S △ABC =12·AC ·BD =7.5.∴BD =3. 在Rt △ABD 中,AD =52-32=4.∴=1. 在Rt △中,BC =32+12=10. (2) 当△ABC 为钝角三角形时,同理可得=310. 2. 在△ABC 中,AB =15,AC =13,AD 为△ABC 的高,AD =12,求BC . 【解答】(1)当AD 在△ABC 内部时,如图,易知BD =9,CD =5,∴BC =14. (2) 当AD 在△ABC 外部时,如图,同样可知BD =9,CD =5,∴BC =4. 二、腰和底不明时需分类讨论 3. 如图,在△ABC 中,∠ACB =90°,AC =6,BC =8,点D 为AC 上一点,且△ABD 是等腰三角形,求△AB D 的周长. 【解答】分三种情况: ①图1中,当AB =AD 时,周长为20+45; ②图2中,当AB =BD 时,周长为32;

③图3中,当AD =BD 时,CD =x ,x 2+82=(x +6)2,x =73,周长为803. 三、直角边、斜边不明时需分类讨论 4.已知直角三角形两边长分别为2和3,则第三边的长为___________. 【解答】13或 5 5. 如图,在△ABC 中,∠ACB =90°,AC =4,BC =2,以AB 为边向外作等腰直角△ABD ,求CD 的长. 【】分三种情况: ①图1中,当BD 为斜边时,过点D 作DE ⊥AC 于E ,△ABC ≌△DAE ,易求CD =213; ②图2中,当AD 为斜边时,过点D 作DE ⊥BC 于E ,△ABC ≌△BDE ,易求CD =210; ③图3中,当AB 为斜边时,过点D 作DE ⊥BC 于E ,过点A 作AF ⊥DE 于F ,△BED ≌△DFA , 设DF =BE =x ,则DE =4-x ,易求BD =22AB =10.∴x 2+(4-x )2=(10)2,x =1,∴CD =3 2.

勾股定理题型总结83533

勾股定理知识技能和题型归纳(一)——知识技能 一、本章知识内容归纳 1、勾股定理——揭示的是平面几何图形本身所蕴含的代数关系。 (1)重视勾股定理的叙述形式: ①直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积. ②直角三角形斜边长度的平方,等于两个直角边长度平方之和. 从这两种形式来看,有“形的勾股定理”和“数的勾股定理”之分。 (2)定理的作用: ①已知直角三角形的两边,求第三边。 ②证明三角形中的某些线段的平方关系。 ③作长为n 的线段。(利用勾股定理探究长度为,3,2……的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。) 2、勾股定理的逆定理 (1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。 (2)逆定理的作用:判定一个三角形是否为直角三角形。 (3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。要注意叙述及书写格式。运用勾股定理的逆定理的步骤如下: ①首先确定最大的边(如c ) ②验证2 2 b a +与2 c 是否具有相等关系: 若2 2 2 c b a =+,则△ABC 是以∠C 为90°的直角三角形。 若2 2 2 c b a ≠+,则△ABC 不是直角三角形。 补充知识: 当222c b a >+时,则是锐角三角形;当2 22c b a <+时,则是钝角三角形。 (4)通过总结归纳,记住一些常用的勾股数。如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;……以及这些数组的倍数组成的数组。 勾股数组的一般规律: ① 丢番图发现的:式子n m n m mn n m >+-(,2,2 2 2 2 的正整数) ② 毕达哥拉斯发现的:122,22,122 2 ++++n n n n n (1>n 的整数) ③ 柏拉图发现的:1,1,222 +-n n n (1>n 的整数)

勾股定理分类题型全

勾股定理分类题型全

勾股定理分类题型全 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

一、证明方法 1 3 半3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3 ,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、在直线l 上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、 S S S S S S 341234、,则+++=_____________。 5、如图17-3-7是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2,则最大的正方形E 的面积_______. 6、以某直角三角形三边分别作三个正方形,其中两个正方形的面积分别为25和12,则第三个正方形的面积为___________________. 7、如图,∠B =∠D =90°,∠A =60°,AB =4,CD =2. 求四边形ABCD 的面积. C. 5 53 D. 554 c A B b b b a b A E B D

10、如图,四边形ABCD 中,AD =1cm ,BC =2cm ,AB =2cm ,CD =3cm ,且 ∠ABC =90度,求四边形ABCD 的面积 11、三角形ABC 中,AB=5,AC=3,BC 边上的中线AD=2,求三角形ABC 的面积 三、在直角三角形中,求相关量 1在Rt △ABC 中,∠C=90°,AB=10,AC=6,则BC 的长为___________ 2、已知直角三角形的两边长为 3、2,则另一条边长的平方是_________ 3、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的__________. 4、在Rt △ABC 中,∠C=90° ①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________; ④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=____________________ 5、一个直角三角形的三边长的平方和为200,则斜边长为___________; 6、斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 ______________. 7、如图AB=BC=CD=DE=1,AB ⊥BC,AC ⊥CD,AD ⊥DE,则AE 的长为________ 四、勾股数的应用、利用勾股定理逆定理判断三角形的形状 1、下列各组数据中的三个数,可作为三边长构成直角三角形的是( ) A. 4,5,6 B. 2,3,4 C. 11,12,13 D. 8,15,17 2、若线段a ,b ,c 组成直角三角形,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶7 3、下面的三角形中: ①△ABC 中,∠C=∠A -∠B ; ②△ABC 中,∠A :∠B :∠C=1:2:3;

相关文档
最新文档