(完整版)2017年广州中考数学复习-尺规作图知识点与练习

合集下载

优品课件之2017届中考数学尺规作图专题复习导学案

优品课件之2017届中考数学尺规作图专题复习导学案

2017届中考数学尺规作图专题复习导学案2017年中考数学专题练习28《尺规作图》【知识归纳】一)尺规作图 1.定义只用没有刻度的和作图叫做尺规作图. 2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图 1.作一条线段等于已知线段; 2.作一个角等于已知角; 3.作已知角的平分线; 4.过一点作已知直线的垂线; 5.作已知线段的垂直平分线.三)基本作图的应用 1.利用基本作图作三角形 (1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形. 2.与圆有关的尺规作图 (1)过不在同一直线上的三点作圆(即三角形的外接圆). (2)作三角形的内切圆.【基础检测】 1.(2013湖北省咸宁市,1,3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为() A.a=bB.2a+b=�1C.2a�b=1D.2a+b=1 2.(2013福建福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为() A.2.5cm B.3.0cm C.3.5cm D.4.0cm 3. (2016•陕西)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)4.(2016•四川凉山州)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.5.(2016安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.(2016.山东青岛)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.7.(2016•江苏无锡)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC (1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题 1.(2016•山东德州)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为() A.65° B.60° C.55° D.45° 2.(2016河北)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹. 步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H. 下列叙述正确的是()第10题图 A.BH垂直分分线段AD B.AC 平分∠BAD C.S△ABC=BC•AH D.AB=AD 二、填空题 3. (2016•吉林•3分)如图,已知线段AB,分别以点A和点B为圆心,大于 AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB= . 4.(2013四川遂宁,10,4分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。

尺规作图篇(解析版)--中考数学必考考点总结+题型专训

尺规作图篇(解析版)--中考数学必考考点总结+题型专训

专题13尺规作图知识回顾1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。

如图①②连接MN,过MN的直线即为线段的垂直平分线。

如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。

如图①。

②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。

如图②。

即为角的平分线。

③连接OP,OP4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。

5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。

专题练习1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=21ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段FA的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD即为所求;(2)过点O作OH⊥BC于H,连接OB,OC.∵AD是切线,∴OA⊥AD,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2.9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的.(2)求证:四边形AEDF 是菱形.【分析】(1)根据作法得到MN 是线段AD 的垂直平分线;(2)根据垂直平分线的性质则AF =DF ,AE =DE ,进而得出DF ∥AB ,同理DE ∥AF ,于是可判断四边形AEDF 是平行四边形,加上FA =FD ,则可判断四边形AEDF 为菱形.【解答】(1)解:根据作法可知:MN 是线段AD 的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN 是AD 的垂直平分线,∴AF=DF,AE=DE,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵FA=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB 长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。

广东省中考数学考点知识专题讲解与训练27---尺规作图

广东省中考数学考点知识专题讲解与训练27---尺规作图

广东省中考数学考点知识专题讲解与训第27讲尺规作图知识梳理与尺规作图有关的证明与计算5年真题命题点1 基本作图1.(6分)(2019•广东)如图,在△AB C中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹);(2)在(1)的条件下,若ADDB =2,求AEEC的值.解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B,∴DE∥BC,∴AEEC =ADDB=2.2.(6分)(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=12∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE =45°.3.(7分)(2017•广东)如图,在△AB C中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.4.(6分)(2016•广东)如图,已知△AB C中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(2)∵AD=DB,AE=EC,∴DE∥BC,DE=1BC,∵DE=4,∴BC=8.23年模拟1.(2020•罗湖区一模)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,EF长为半径作圆弧,两分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为(B)A.30°B.35°C.70°D.45°2.(2020•大鹏新区一模)如图,在△AB C中,∠B=70°,∠C=30°,分别以点A和点AC的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点C为圆心,大于12D,连接AD,则∠BAD的度数为(C)A.40°B.45°C.50°D.60°3.(2020•恩平市模拟)已知线段a,h,小明用如图所示的方法作△ABC,他的具体作法是:①作射线AM,以点A为圆心,线段a的长为半径画弧,交射线AM于点B;②分别以点A,B为圆心,大于1AB长为半径画弧,两弧交于D,E两点;③作直线DE,交AB2于点F;④以点F为圆心,线段h的长为半径画弧,交直线DE于点C,连接AC,B C.下列关于小明作的△ABC的说法,错误的是(D)A.AF=BF B.∠CAB=∠CBAC.∠ACF=∠BCF D.AB=BCD【解析】由作图可知,DE垂直平分线段AB,∴AF=BF,DE⊥AB,∴CA=CB,∴∠CAB=∠CBA,∠ACF=∠BCF,故A,B,C正确,故选:D.4.(2020•龙华区二模)如图,矩形ABC D中,AD=2,以A为圆心,任意长为半径作MN的长为半径作弧,弧,分别交AB、AD于M、N两点,分别以M、N为圆心,大于12两弧相交于点P,连接AP并延长交CD于点E,以A为圆心,AE为半径作弧,此弧刚好过点B,则CE的长为2√2−2.2√2−2【解析】如图,连接BE,根据作图过程可知:AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是矩形,∴DC∥AB,∠D=90°,∴∠DAE=∠EAB,∴∠EAB=∠AED,∴∠DAE=∠AED,∴DE=AD=2,∴DE=√AD2+DE2=2√2,∴DC=AB=AE=2√2,∴CE=DC﹣DE=2√2−2.故答案为:2√2−2.5.(2020•禅城区二模)如图,点A是∠MON边OM上一点,AE∥ON.(1)尺规作图:作∠MON的角平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)若∠MAE=48°,直接写出∠OBE的大小.解:(1)如图,OB为所作;(2)∵AE∥ON,∴∠MON=∠MAE=48°,∵OB平分∠MON,∴∠NOB=1∠MON=24°,∵AB∥ON,2∴∠OBA=∠NOB=24°,∴∠OBE=180°﹣∠OBA=180°﹣24°=156°.6.(2020•惠来县模拟)如图,已知锐角△ABC,AB>B C.(1)只规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上且BC=BE,请连接DE,求证:∠BED=∠C.(1)解:如图,线段BD即为所求;(2)证明:∵BD平分∠ABC,∴∠EBD=∠CBD,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.7.(2020•梅州模拟)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于点E和点F(保留作图痕迹,不写作法);(2)连接BE、DF,若AB=4,AD=8,求四边形BEDF的周长.解:(1)如图,直线EF即为所求.(2)∵EF垂直平分线段BD,∴BE=ED,BF=DF,∠BEF=∠DEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∴BE=DE=DF=BF,设BE=x,在Rt△BAE中,AB=4,AE=8﹣x,可得42+(8﹣x)2=x2,∴x=5,∴BE+DE+DF+BF=20,∴四边形BEDF的周长为20.8.(2020•南沙区一模)如图,AB为⊙O的直径,点C为弧A B中点,连接AC、B C.(1)利用尺规作图,作出∠BAC的角平分线,分别交BC、⊙O于点D、E,连接BE.(保留作图痕迹,不写作法)(2)若BE=2,求AD的长度.解:(1)如图,AE即为所求;̂=BĈ,(2)∵点C为弧A B中点,∴AC∴AC=BC,∵AB为⊙O的直径,∴∠ACB=90°,延长BE、AC交于点F,由(1)作图可知:∠BAE=∠CAE,∠AEB=90°,∴AE垂直平分BF,∴BF=2BE=4,又∵∠DAC=∠FBC,∠ACD=∠BCF=90°,AC=BC,∴△ACD≌△BCF(ASA),∴AD=BF=4.9.(2020•澄海区一模)如图,在△AB C中,AB=AC,点M在BA的延长线上.(1)按下列要求作图,并在图中标明相应的字母(尺规作图,保留作图痕迹,不要求写作法和证明);①作∠MAC的平分线AN;②在AN上截取AD=BC,连结C D.(2)在(1)的条件下,判断四边形ABCD的形状,并证明你的结论.解:(1)①如图,AN为所求的图形;②如图,AD为所作;(2)四边形ABCD是平行四边形.理由如下:∵AB=AC,∴∠ABC=∠ACB,∵AN平分∠MAC,∴∠CAD=∠MAD,∵∠CAD+∠MAD=∠ABC+∠ACB,∴∠MAD=∠ABC,∴AD∥BC,∵AD=BC,∴四边形ABCD是平行四边形.10.(2020•顺德区四模)如图,点E是▱ABCD对角线BD上的一点.(1)请用尺规作图法,过点E作EG∥CD;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,在直线EG上截取EF=CD且点F在点E的下方,连接AE、BF、CF,若∠ABE+∠BFC=180°,求证:四边形ABFE是菱形(1)解:如图,直线EG即为所求.(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵EF∥CD,EF=CD,∴EF=AB,EF∥AB,∴四边形EFCD,四边形ABFE是平行四边形,∴BD∥CF,∴∠DBF+∠BFC=180°,∵∠ABE+∠BFC=180°,∴∠ABE=∠DBF,∵AB∥EF,∴∠ABE=∠BEF,∴∠BEF=∠EBF,∴FE=FB,∴四边形ABFE是菱形.1 / 11。

中考数学尺规作图知识点总结含中考真题

中考数学尺规作图知识点总结含中考真题

中考数学尺规作图知识点总结含中考真题
尺规作图
1.尺规作图的作图工具限定只用圆规和没有刻度的直尺
2.基本作图
(1)作一条线段等于已知线段,以及线段的和﹑差;
(2)作一个角等于已知角,以及角的和﹑差;
(3)作角的平分线;
(4)作线段的垂直平分线;
(5)过一点作已知直线的垂线.
3.利用基本作图作三角形
(1)已知三边作三角形;
(2)已知两边及其夹角作三角形;
(3)已知两角及其夹边作三角形;
(4)已知底边及底边上的高作等腰三角形;
(5)已知一直角边和斜边作直角三角形.
4.与圆有关的尺规作图
(1)过不在同一直线上的三点作圆(即三角形的外接圆);
(2)作三角形的内切圆;
(3)作圆的内接正方形和正六边形.
5.有关中心对称或轴对称的作图以及设计图案是中考的常见类型6.作图的一般步骤
尺规作图的基本步骤:
(1)已知:写出已知的线段和角,画出图形;
(2)求作:求作什么图形,它符合什么条件,一一具体化;
(3)作法:应用“五种基本作图”,叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹;
(4)证明:为了验证所作图形的正确性,把图作出后,必须再根据已知的定义、公理、定理等,结合作法来证明所作出的图形完全符合题设条件;
(5)讨论:研究是不是在任何已知的条件下都能作出图形;在哪些情况下,问题有一个解、多个解或者没有解;
(6)结论:对所作图形下结论.。

第28讲 尺规作图-中考数学一轮复习知识考点ppt(27张)

第28讲 尺规作图-中考数学一轮复习知识考点ppt(27张)

上一页 下一页
【思路分析】(1)根据题干要求,可知点E在边BC的垂直平分线上. (2)根据矩形对边平行及等边对等角可得△EBC中其余两角的度数,再根据 三角形内角和定理,即可求得∠BEC的大小.
上一页 下一页
尺规作图题的三种考查类型
1.直接作图:作角的平分线,作线段的垂直平分线,作一个角等于已知角等,直
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
根据以上作图步骤,请你证明∠A′O′B′=∠AOB.
证明:连接C′D′,由作图步骤可知,
O'C' OC,
在△C′O′D′和△COD中,O'D' OD, ∴△C′O′D′≌△COD(SSS)C. 'D' CD,
∴∠C′O′D′=∠COD,即∠A′O′B′=∠AOB.
第七章 图形与变换
第28讲 尺规作图
上一页 下一页
知识点1 尺规作图及其基本步骤 1.定义:只用①___直__尺_____和②___圆__规_____来完成画图,称为尺规作图.
上一页 下一页
2.基本步骤: (1)已知:写出已知的线段和角,画出图形. (2)求作:求作什么图形,使它符合什么条件. (3)作法:运用五种基本尺规作图,保留作图③_痕__迹_______. (4)证明:验证所作图形的正确性. (5)结论:对所作的图形下结论.
上一页 下一页
(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.
(2)线段EF和AC的数量关系为EF=
1 2
AC,位置关系为EF∥AC.
上一页 下一页
上一页 下一页
命题点 尺规作图
1.(随州中考)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,

初中数学尺规作图重要知识点及典型题解析

初中数学尺规作图重要知识点及典型题解析

初中数学尺规作图重要知识点及典型题解析1、尺规作图规范用语第一、、用直尺作图的几何语言有三种,分别为:1、过点x、点x作直线xx;或作直线xx;或作射线xx;2、过两点xx做线段xx;或连结xx:3、延长xx到点x;或延长(反向延长)xx到点x,使xx=xx;或延长xx交xx于点x;第二、用圆规作图的几何语言可总结为四种,分别为:1、在xx上截取xx=xx:2、以点x为圆心,xx的长为半径作圆(或弧);3、以点x为圆心,xx的长为半径作弧,交xx于点x:4、分别以点x、点x为圆心,以xxxx的长为半径作弧,两弧相交于点x、x.2、尺规作图基本步骤当发现作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件:2能根据题目可以画出要求作出的图形,以及可以列出该图形应满足的条件有哪些:3能根据作图的过程写出每一步的操作过程当不要求写作法时,一般会保留作图痕迹应该注意的是,对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法。

3、尺规作图典型题分析典型题1:难度★如图(a),已知∠AOB和点C、D.求作一点M,使点M到∠AOB两边的距离相等,且与C、D组成以CD为底边的等腰三角形.【答案解析】因为到一个角两边距离相等的点在这个角的平分线上;而根据题意,点M应满足条件MC=MD,所以点M又在连结CD所得线段的垂直平分线上.(1)作∠AOB的平分线OG;(2)连结CD,作CD的垂直平分线,交OG于点M,如图(b),M就是所要求作的点.典型题2:难度★如图,桌面上有黑白两球P、Q,试用尺规在边AD上找出一点,使黑球射向这点后反弹,正好击中白球.【答案解析】(1)以P为圆心,适当长为半径作弧,交AD于两点E、F;(2)分别以E、F为圆心,以同样长(即PE)为半径作弧,在AD的另一侧交于点R(即P关于AD的对称点);(3)连结RQ,交AD于点M,M就是所求作的点.典型题3:难度★★如图(a),A、B、C三个城市准备共建一个飞机场,希望机场到B、C两市的距离相等,到较大城市A的距离最近,试确定飞机场的位置.【答案解析】机场到B、C两市的距离相等,则应在线段BC的垂直平分线上;而这条垂直平分线上的点到A的最短距离是点A到这条直线的垂线段的长.(1)连结BC,作线段BC的垂直平分线l;(2)过点A作直线⊥的垂线,垂足P,如图(b),点P就是飞机场的位置典型题4:难度★★如图(a),已知线段a、b和∠AOB,C是边OB上一点,求作点M,使M到OA的距离为a,到点C的距离为b.【答案解析】(1)在OA上任取一点D,过D作OA的垂线l;(2)在⊥上截取DE=DF=a,过E、F作l的垂线l1、l2;(3)以C为圆心,b为半径作弧,与直线l2相交于点M1、M2,如图(b),则点M1、M2都是所要求作的点.典型题5:难度★★如图(a),已知线段a、b,求作△ABC,使BC=a,AB=b,∠C=90°.【答案解析】(1)作线段BC=a;(2)过点C作CD⊥BC;(3)以B为圆心,b为半径作弧,交CD于点A;(4)连结BA,如图(b),△ABC就是所求作的三角形.典型题6:难度★★如图(a),已知线段a,∠a,求作△ABC,使∠C=90°,∠A=∠a,AB=a.【答案解析】(1)作∠DAE=∠a;(2)在AD上截取AB=a;(3)过点B作BC⊥AE于C,如图(b),△ABC即所求作的三角形.典型题7:难度★★已知等腰三角形的底角及底边上的中线,求作这个等腰三角形。

中考第一轮复习尺规作图、视图与投影

中考第一轮复习尺规作图、视图与投影

中考复习之尺规作图、视图与投影一、同步知识梳理尺规作图:广州中考目标要求 1、掌握以下基本作图 作一条线段等于已知线段 作一个角等于已知角 作角的平分线 作线段的垂直平分线2、会利用基本作图,作三角形、圆、以及三角形和圆的组合图形。

3、会写出简单的尺规作图题的已知、求作和作法(不要求证明)。

二、同步题型分析题型1:基本作图(★)例1:已知线段a 、b ,画一条线段,使其等于b a 2+.分析:所要画的线段等于b a 2+,实质上就是b b a ++.解:1.画线段a AB =.2.在AB 的延长线上截取b BC 2=.则线段AC 就是所画的线段. 小结:1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图.(★★)例2:如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于2a -b .解:如图,(1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ;(3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.(★)例3:求作一个角等于已知角∠MON (如图1).图(1) 图(2)解: 如图(2), (1)作射线11M O ;(2)在图(1)上,以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ; (3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ; (4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ; (5)过点D 作射线D O 1.则∠D CO 1就是所要求作的角.(★)例4:已知∠AOB ,求作∠AOB 的平分线OC .解:如图,(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点; (3)作射线OC ,则OC 为∠AOB 的平分线.(★★)例5:如图(1)所示,在图中作出点C ,使得C 是∠MON 平分线上的点,且AC =OC .图(1) 图(2)分析: 由题意知,点C 不仅要在∠MON 的平分线上,且点C 到O 、A 两点的距离要相等,所以点C 应是∠MON 的平分线与线段OA 的垂直平分线的交点. 作法: 如图(2)所示 (1)作∠MON 的平分线OP ;(2)作线段OA 的垂直平分线EF ,交OP 于点C ,则点C 就是所要求作的点.小结:(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等。

【中考数学考点复习】第一节 尺规作图 课件(23张PPT)

【中考数学考点复习】第一节  尺规作图 课件(23张PPT)
段的垂
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线

第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;

4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.

中考数学知识点复习:尺规作图全面版

中考数学知识点复习:尺规作图全面版

如何利用尺规作图解决最值问题?
最值问题的求解
最值问题是一类求解最优解的问题,可以利用尺规作图来解决。例如,在几何、代数等领域中,经常需要使用尺规作 图来求解最值问题。
作图方法
利用尺规作图求解最值问题,需要先了解问题的具体内容,然后根据问题内容进行尺规作图。在作图过程中,需要注 意图形绘制的准确性和规范性,以保证求解的准确性。
03
多边形的尺规作图
作已知线段的垂线
01
总结词:通过一个已知点,作 已知线段的垂线,是尺规作图
的基础。
02
详细描述
03
04
1. 分别以线段的两个端点为 圆心,以大于线段的一半为半 径画圆弧,得到两个交点。
2. 连接两个交点,得到的直 线即为已知线段的垂线。
已知二线段平行的垂线段的中垂线
总结词:找到一个已知的平行线段的中垂线,是尺规作 图的进阶技能。
1. 以平行线段的一个端点为圆心,以适当长度为半径画 圆弧,与平行线段相交于两点。
详细描述
2. 连接这两个交点得到的直线即为已知平行线段的中垂 线。
作已知直线的平行线
01
总结词:通过一个已知点,作已知直线的平行线,是尺规作图的基本 技能之一。
02
详细描述
03
1. 以已知点为圆心,以适当长度为半径画圆弧,与直线相交于两点。
04
2. 连接这两个交点得到的直线即为已知直线的平行线。
作已知二线段的中垂线
01 总结词:通过两个已知点,作已知二线段 的中垂线,是尺规作图的高级技能。
02
详细描述
Hale Waihona Puke 031. 以两个已知点为圆心,以适当长度为半 径画圆弧,得到两个交点。
04

中考数学知识点复习:尺规作图全面版本

中考数学知识点复习:尺规作图全面版本
画图时未按照题目要求进行
原因在于学生未仔细审题,忽略了题目中的限制条件,导致画出的 图形不符合题目要求。
尺规作图的难点及解决方法
画等腰三角形
学生难以掌握等腰三角形的画法,解决方法是先画出底边,然后以底边为半径画圆,再画 出两个交点作为三角形的顶点。 Nhomakorabea画垂直平分线
学生难以掌握垂直平分线的画法,解决方法是以给定点为圆心,以给定距离为半径画圆, 再画出与圆相切的直线。
THANKS
感谢观看
作图与证明题
这类题目通常会要求考生 先利用尺规作图,然后进 行证明。
尺规作图与综合题
这类题目通常会要求考生 利用尺规作图解答一个综 合性的问题。
中考中尺规作图的主要考点
角的概念和表示方 法。
垂直的概念和性质 。
直线、射线、线段 的表示方法及其性 质。
角平分线的概念和 性质。
平行线的概念和性 质。
中考中尺规作图的备考策略
画图时忽略了题目中的限制条件
学生在画图时忽略了题目中的限制条件,导致画出的图形不符合题目要求。应对 策略是在画图时仔细审题,严格按照题目中的限制条件进行操作。
05
尺规作图的练习题及解析
基础题练习
巩固基本技能
基础题主要考察学生对尺规作图基本技能的掌握,包括圆 、线段、角等基本几何元素的作图。
练习题目
尺规作图的本质是利用直尺和 圆规的特性,通过一系列的作 图步骤来画出所需的图形。
尺规作图广泛应用于数学、工 程、艺术等领域。
尺规作图的起源和发展
尺规作图的思想起源于古希腊数 学家,如泰勒斯、欧几里得等。
尺规作图在欧几里得的《几何原 本》中得到了系统的阐述和推广

随着数学的发展,尺规作图逐渐 成为一种重要的数学方法,并在 现代数学中得到了深入的研究和

2017年广州中考数学一模尺规作图汇编

2017年广州中考数学一模尺规作图汇编

2017年广州中考数学一模尺规作图汇编例题分析例题1、(白云一模)如图,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点. (1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法); (2)连结EF,EF与BC是什么位置关系?为什么? (3)若四边形BDFE的面积为9,求△ABD的面积.例题2、(从化一模)如图8,△ABC 是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母.(2)在(1)中的图中,若BC=4,∠A=30°,求弧DE 的长.(结果保留π).AC· E例题3、(番禺一模)如图,在△ABC中,AB=AC,AE是高,AF是△ABC外角∠CAD的平分线.(1)用尺规作图:作∠AEC的平分线EN(保留作图痕迹,不写作法和证明);(2)设EN与AF交于点M,判断△AEM的形状,并说明理由.例题4、(海珠一模)如图,在△ABC中,∠C=90°(1)利用尺规作∠B的角平分线交AC于D,以BD为直径作 O交AB于E(保留作图痕迹,不写作法); (2)综合应用:在(1)的条件下,连接DE①求证:CD=DE;②若si nA=35,AC=6,求AD.B C例题5、(花都一模)如图,在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,AD 是∠BAC 的平分线。

(1)尺规作图:过点D 作DE ⊥AC 于E ; (2)求DE 的长。

例题6、(南沙一模)如图,ABC ∆是直角三角形,︒=∠90ACB 。

(1)动手操作:利用尺规作ABC ∠的平分线,交AC 于点O ,再以O 为圆心,OC 的 长为半径作⊙O (保留作图痕迹,不写作法); (2)综合运用:请根据所作的图,①判断AB 与⊙O 的位置关系,并证明你的结论; ②若8=AC ,31sin =∠OBC ,求OB 的长.例题7、(天河一模)如图,已知线段AE,按照以下要求作图和证明:(1)用尺规作等边△DAE;在AE的延长线上取点C,在AD的(2)延长线上取点B,使得DB=AC,连接BE,BC. 求证:BE=BC.例题8、(增城一模)如图9,在Rt△ABC中,∠C=90°,AD平分∠BAC.(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O(保留作图痕迹,不写作法);(2)试判断直线BC与⊙O的位置关系,并证明你的结论.强化训练1、(二中一模)如图,在ABC ∆中,53AC AB ==、。

广东省2017中考数学第7章尺规作图及图形变换第27节尺规作图复习课件

广东省2017中考数学第7章尺规作图及图形变换第27节尺规作图复习课件

【分析】(1)直接利用关于x轴 对称点的性质得出各对应点位置 进而得出答案; (2)直接利用平移的性质得出 各对应点位置进而得出答案.
Listen attentively
课前预习
【解答】解:(1)如图:△A1B1C1即为所求; (2)如图:△A2B2C2即为所求, 点A2(﹣3,﹣1), B2(0,﹣2), C2(﹣2,﹣4).
Listen attentively
课前预习
6.(2016•临夏州)如图,在平面直角坐标系中, △ABC的顶点A(0,1),B(3,2),C(1,4) 均在正方形网格的格点上. (1)画出△ABC关于x轴的对称图形△A1B1C1; (2)将△A1B1C1沿x轴方向向左平移3个单位后得 到△A2B2C2,写出顶点A2,B2,C2的坐标.
Listen attentively
课前预习
【解答】解:(1)如图所示:
(2)△ADF的形状是等腰直角 三角形. 理由:∵AB=AC,AD⊥BC, ∴∠BAD=∠CAD, ∵AF平分∠EAC, ∴∠EAF=∠FAC, ∵∠FAD=∠FAC+∠DAC= ∠EAC+ ∠BAC = ×180°=90°, 即△ADF是直角三角形,
Listen attentively
课堂精讲
【分析】(1)①利用线段垂直平分线的作法得出即可; ②利用射线的作法得出D点位置;③连接DA、DC即可求 解;(2)利用直角三角形斜边与其边上中线的关系进而 得出AO=CO=BO=DO,进而得出答案.
【解答】解:(1)①②③如图. (2)四边形ABCD是矩形, 理由:∵Rt△ABC中,∠ABC=90°, BO是AC边上的中线, ∴BO= AC, ∵BO=DO,AO=CO, ∴AO=CO=BO=DO, ∴四边形ABCD是矩形.

完整版)中考数学尺规作图专题复习(含答案)

完整版)中考数学尺规作图专题复习(含答案)

完整版)中考数学尺规作图专题复习(含答案)尺规作图是用无刻度的直尺和圆规画图的方法,常见的作图包括线段的垂线、垂直平分线、角平分线、等长线段和等角。

以下是各种作图的具体方法:1.直线垂线的画法:以点C为圆心,任意长为半径画弧交直线与A、B两点,再以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线l两侧于点M、N,连接MN,即可得到所求的垂线。

2.线段垂直平分线的画法:以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线AB两侧于点C、D,连接CD,即可得到线段AB的垂直平分线。

3.角平分线的画法:以角顶点O为圆心,任意长为半径画圆,分别交角两边A、B点,再以A、B为圆心,大于AB的长为半径画圆弧,交点为H,连接OH并延长,即可得到所求的角平分线。

4.等长的线段的画法:直接用圆规量取即可。

5.等角的画法:以O为圆心,任意长为半径画圆,交原角的两边为A、B两点,连接AB;画一条射线l,以上面的半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求。

需要注意的是,直尺主要用于画直线和射线,圆规主要用于截取相等线段和画弧。

在作图时,如果有多个要求,应逐个满足并取公共部分。

例如,对于要求作一个三角形的问题,可以根据三角形全等的基本事实或判定定理来进行作图。

以下是例题解析:例题1:已知线段a,求作△ABC,使AB=BC=AC=a。

作法如下:1.作线段BC=a;2.分别以B、C为圆心,以a半径画弧,两弧交于点A;3.连接AB、AC。

例题2:已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α。

作法如下:1.作∠XXX∠α;2.以点A为圆心,a为半径画弧,分别交射线AM、AN 于点B、C;3.连接B、C。

例题3:已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC。

作法如下:作出AB的垂直平分线,与BC交于点P。

中考数学复习第七章图形与变换第26讲尺规作图

中考数学复习第七章图形与变换第26讲尺规作图

步骤
(1)以点 O 为圆心,任意长为半径作弧,交直线于
作直 过直线上 A,B 两点;
线l 的垂
一点 O 作 直线 l 的
(2)分别以点 A,B 为圆心,以大于12AB 的长为半径
线 垂线 MN 向直线两侧作弧,两弧分别交于点 M,N,作直线
MN,则直线 MN 即为所求垂线
(1)在直线异于点 P 的一侧取点 M;
第一部分 教材同步复习
17
【解答】 (1)如下图;(画法有多种,正确画出一种即可,以下几种画法仅供参
考)
四边形 ABCH 即为所求
四边形 ABDH 即为所求
四边形 ABHJ 即为所求
四边形 ABFH 即为所求
第一部分 教材同步复习
18
(2)如下图.(画法有两种,正确画出其中一种即可)四边形ANDF和四边形ACNF 均为所画的菱形.
∠α 的两边于点 P,Q;
(2)作射线 O′A′;
作一个角∠
(3)以 O′为圆心,OP 长为半径作弧,交 O′A′于
A′O′B′等
于∠α
点 M; (4)以点 M 为圆心,PQ 长为半径作弧交前弧于点 N;
(5)过点 N 作射线 O′B′,∠A′O′B′即为所求

图示
第一部分 教材同步复习
9
五种尺规作图
第一部分 教材同步复习
5
(4)如图,以AB为直径的⊙O交△ABC的BC,AC边于D,E两点, 在图中仅以没有刻度的直尺画出三角形的三条高.(简单叙述你的画 法)
解 : 如 图 , 连 接 AD , BE 交 于 点 G , 连 接 CG 并 延 长 交 AB 于 F.AD,BE,CF即为△ABC的高.
第一部分 教材同步复习

中考数学考点一遍过考点20尺规作图含解析

中考数学考点一遍过考点20尺规作图含解析

考点20 尺规作图一、尺规作图1.尺规作图的定义在几何里,把限制用没有刻度的直尺和圆规来画图称为尺规作图.2.五种根本作图〔1〕作一条线段等于线段;〔2〕作一个角等于角;〔3〕作一个角的均分线;〔4〕作一条线段的垂直均分线;〔5〕过一点作直线的垂线.3.依照根本作图作三角形〔1〕三角形的三边,求作三角形;〔2〕三角形的两边及其夹角,求作三角形;〔3〕三角形的两角及其夹边,求作三角形;〔4〕三角形的两角及其中一角的对边,求作三角形;〔5〕直角三角形素来角边和斜边,求作直角三角形.4.与圆有关的尺规作图〔1〕过不在同素来线上的三点作圆〔即三角形的外接圆〕;〔2〕作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常有种类.6.作图题的一般步骤〔1〕;〔2〕求作;〔3〕解析;〔4〕作法;〔5〕证明;〔6〕谈论.其中步骤〔3〕〔4〕〔5〕〔6〕一般不作要求,但作图中必然要保存作图印迹.二、尺规作图的方法1.尺规作图的要点〔1〕先解析题目,读懂题意,判断题目要求作什么;〔2〕读懂题意后,再运用几种根本作图方法解决问题.2.依照条件作等腰三角形或直角三角形求作三角形的要点是确定三角形的三个极点,作图依照是三角形全等的判断,常借助根本作图来完成,如作直角三角形就先作一个直角.考向一根本作图1.最根本、最常用的尺规作图,平时称为根本作图.2.根本作图有五种:〔1〕作一条线段等于线段;〔2〕作一个角等于角;〔3〕作一个角的均分线;〔4〕作一条线段的垂直均分线;〔5〕过一点作直线的垂线.典例 1 如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长〔大于12AB〕为半径作弧,两弧订交于点M和N,作直线M N交AB于点D,交BC于点E,连接C D,以下结论错误的选项是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】 D【解析】∵M N为A B的垂直均分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴C D=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.应选D.典例 2 如图,∠MAN,点B在射线A M上.〔1〕尺规作图:①在A N上取一点C,使BC=BA;②作∠MBC的均分线BD,〔保存作图印迹,不写作法〕〔2〕在〔1〕的条件下,求证:BD∥AN.【解析】〔1〕①以B点为圆心,B A长为半径画弧交AN于C点;如图,点C即为所求作;②利用根本作图作B D均分∠MBC;如图,B D即为所求作;〔2〕先利用等腰三角形的性质得∠A=∠BCA,再利用角均分线的定义获取∠MBD=∠CBD,尔后依照三角形外角性质可得∠MBD=∠A,最后利用平行线的判断获取结论.∵AB=AC,∴∠A=∠BCA,∵BD均分∠MBC,∴∠MB=D∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.1.依照以以下图中尺规作图的印迹,可判断A D必然为三角形的A.角均分线B.中线C.高线D.都有可能2.〔1〕请你用尺规作图,作A D均分∠BAC,交B C于点D〔要求:保存作图印迹〕;〔2〕∠ADC的度数.考向二复杂作图利用五种根本作图作较复杂图形.典例2如图,在同一平面内四个点A,B,C,D.〔1〕利用尺规,按下面的要求作图.要求:不写画法,保存作图印迹,不用写结论.①作射线AC;②连接AB,BC,BD,线段B D与射线AC订交于点O;③在线段AC上作一条线段C F,使C F=AC–BD.〔2〕观察〔1〕题获取的图形,我们发现线段AB+BC>AC,得出这个结论的依照是__________.【答案】见解析.【解析】〔1〕①以以下图,射线A C即为所求;②以以下图,线段AB,BC,BD即为所求;③以以下图,线段CF即为所求;〔2〕依照两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与三角形一模一样的三角形来.比方给定一个△ABC,能够这样来画:先作一条与AB相等的线段A′B′,尔后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和的△ABC一模一样了.请你依照上面的作法画一个与给定的三角形一模一样的三角形来.〔请保存作图印迹〕1.依照条件作吻合条件的三角形,在作图过程中主要依照是A.用尺规作一条线段等于线段B.用尺规作一个角等于角C.用尺规作一条线段等于线段和作一个角等于角D.不能够确定2.以下作图属于尺规作图的是A.画线段MN=3 cmB.用量角器画出∠AOB的均分线C.用三角尺作过点A垂直于直线l 的直线D.∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,钝角△ABC,依以下步骤尺规作图,并保存作图印迹.步骤1:以C为圆心,C A为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.以下表达正确的选项是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B PA aO QP NM O N M B P A尺规作图【知识回顾】1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、六种基本作图:1、作一条线段等于已知线段;2、作已知线段的垂直平分线;3、作已知角的角平分线;4、作一个角等于已知角;5、过直线外一点作已知直线的垂线;6、过直线上一点作已知直线的垂线;(1)题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB ,使AB = a . 作法:(1) 作射线AP ;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点(作已知线段的垂直平分线)已知:如图,线段MN.求作:点O ,使MO=NO (即O 是MN 的中点). 作法:(1)分别以M 、N 为圆心,大于 的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .则点O 就是所求作的MN的中点。

补充知识点:三角形的外接圆,圆心位于该三角形任意两边的垂直平分线的交点处.(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:(1)以O 为圆心,任意长度为半径画弧,分别交OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

补充知识点:三角形的内切圆的圆心位于三角形任意两角的角平分线的交点处.③②①P BB A P(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB作法:(1)作射线O ’A ’;(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’;(5)连接O ’N ’并延长到B ’。

则∠A ’O ’B ’就是所求作的角。

(6)题目五:经过直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P 。

求作:直线CD ,使CD 经过点P ,且CD ⊥AB 。

作法:(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;(2)分别以M 、N 圆心,大于MN 21长度的一半为半径画弧,两弧交于点Q ; (3)过P 、Q 作直线CD 。

则直线CD 就是所求作的直线。

补充知识点:该方法也可用于以已知直线为对称轴作直线外一点的对称点(5)题目六:经过直线上一点做已知直线的垂线。

已知:如图,P 是直线AB 上一点。

求作:直线CD ,是CD 经过点P ,且CD ⊥AB 。

作法:(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ; (2)分别以M 、N 为圆心,大于MN 21的长为半径画弧,两弧交于点Q ; (3)过D 、Q 作直线CD 。

则直线CD 是求作的直线。

ca bmnm3、三种三角形作图(5)题目七:已知三边作三角形。

已知:如图,线段a ,b ,c.求作:△ABC ,使AB = c ,AC = b ,BC = a.作法:(1) 作线段AB = c ;(2) 以A 为圆心,以b 为半径作弧,以B 为圆心,以a 为半径作弧与 前弧相交于C ; (3) 连接AC ,BC 。

则△ABC 就是所求作的三角形。

题目八:已知两边及夹角作三角形。

已知:如图,线段m ,n, ∠α.求作:△ABC ,使∠A=∠α,AB=m ,AC=n. 作法:(1) 作∠A=∠α;(2) 在AB 上截取AB=m ,AC=n ; (3) 连接BC 。

则△ABC 就是所求作的三角形。

题目九:已知两角及夹边作三角形。

已知:如图,∠α,∠β,线段m .求作:△ABC ,使∠A=∠α,∠B=∠β,AB=m. 作法:(1) 作线段AB=m ; (2) 在AB 的同旁作∠A=∠α,作∠B=∠β, ∠A 与∠B 的另一边相交于C 。

则△ABC 就是所求作的图形(三角形)。

第1题图D CB A【真题实训】1、(2016海珠一模)如图,四边形ABCD是平行四边形.利用尺规作∠ABC的平分线BE,交AD于E(保留作图痕迹,不写作法);作图原理:_________2、(2015越秀一模)如图,△ABC是直角三角形,∠ACB=90°.动手操作:利用尺规作∠ABC的平分线,交AC于点O,再以O为圆心,OC的长为半径作⊙O(保留作图痕迹,不写作法);作图原理:_________3、(2016番禺一模)已知:如图,在Rt△ ABC中,∠ C=90°,∠ BAC的角平分线AD交BC边于D.以AB边上一点O为圆心,过A、D两点作⊙ O(不写作法,保留作图痕迹)作图原理:_________4、(2016天河一模)如图,在Rt△ABC中,∠BAC=90°,AB=AC.利用尺规,以AB 为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)作图原理:_________5、(2016白云一模)如图:△ABC中,∠C=45°,点D在AC上,且∠ADB=60°,AB为△BCD外接圆的切线.用尺规作出△BCD的外接圆(保留作图痕迹,可不写作法);作图原理:_________6、(2016从化一模)如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);作图原理:_________7、(2014越秀一模)如图,已知□ABCD.作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);第7题图作图原理:_________8、(2015海珠一模)如图,在△ABC中,AB=BC,点E在边AB上,EF⊥AC于F.尺规作图:过点A作AD⊥BC于点D(保留作图痕迹,不写作法)作图原理:_________第8题图9、(2016越秀一模)如图,等腰三角形ABC 中,AC=BC , 动手操作:利用尺规作以BC 为直径的⊙O ,⊙O 交AB 于点D , ⊙O 交AC 于点E ,并且过点D 作DF ⊥AC 交AC 于点F .作图原理:_________10、(2014广州中考)如图,ABC 中,45AB AC ==动手操作:利用尺规作以AC 为直径的⊙O ,并标出⊙O 与AB 的交点D , 与BC 的交点E (保留作图痕迹,不写作法).作图原理:_________11、(2013广州中考)已知四边形ABCD 是平行四边形(如图), 把△ABD 沿对角线BD 翻折180°得到△A ˊBD.利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法)作图原理:_________12、(2015广州中考)如图,AC 是⊙ O 的直径,点B 在⊙ O 上,∠ ACB=30°利用尺规作∠ ABC 的平分线BD ,交AC 于点E ,交⊙ O 于点D ,连接CD (保留作图痕迹,不写作法)作图原理:_________第10题CBAAD图9BC13、(2016广州中考)如图,利用尺规,在△ ABC的边AC上方作∠ CAE=∠ ACB,在射线AE上截取AD=BC,连接CD(尺规作图要求保留作图痕迹,不写作法)作图原理:_________14.(2016花都一模)在△ABF中,C为AF上一点且AB=AC.尺规作图:作出以AB为直径的⊙O,⊙O分别交AC、BC于点D、E,在图上标出D、E,在图上标出D、E(保留作图痕迹,不写作法).作图原理:_________15、(2014海珠一模)如图圆O内接三角形ABC∆.把ABC∆以点O为旋转中心,顺时针方向旋转BOA∠的度数得到EAF∆.利用尺规作出EAF∆(要求保留作图痕迹,不写作法)作图原理:_________OABCA【拓展练习】1、如图:107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论)2、三条公路两两相交,交点分别为A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况?用尺规作图作出所有可能的加油站地址。

3、过点C 作一条线平行于AB 。

4、如图,平行四边形纸条ABCD 中,E 、F 分别是边AD 、BC 的中点。

张老师请同学们将纸条的下半部分平行四边形ABEF 沿EF 翻折,得到一个V 字形图案。

请你在原图中画出翻折后的图形平行四边形A1B1FE ;(用尺规作图,不写画法,保留作图痕迹)。

B O AB5、如图,已知方格纸中的每个小方格都是全等的正方形,∠AOB画在方格纸上,请用利用格点和直尺(无刻度)作出∠AOB的平分线。

6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案,图中AB为直径,O为圆心(要求用尺规作图,保留作图痕迹)。

7、已知线段AB和CD,如下图,求作一线段,使它的长度等于AB+2CD.8、如图,已知∠A、∠B,求作一个角,使它等于∠A-∠B.9、如图,画一个等腰△ABC,使得底边BC=a,它的高AD=ha10、如图,有A,B,C三个村庄,现要修建一所希望小学,•使三个村庄到学校的距离相等,学校的地址应选在什么地方?请你在图中画出学校的位置并说明理由(•保留作图痕迹).11、如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..BA .12、如图,A为∠MON内一点,试在OM、ON边上分别作出一点B、C,使△ABC的周长最小.13、如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求点M、N,使PM+PN+NQ最短.AMQPBOA尺规作图练习参考答案【真题实训】参考答案1、作图原理:作已知角的的角平分线.图略.2、作图原理:作已知角的角平分线3、作图原理:作已知线段的垂直平分线.4、作图原理:作已知线段的垂直平分线.第2题图第3题图第4题图5、作图原理:作已知线段的垂直平分线. 图略.6、作图原理:作已知线段的垂直平分线.7、作图原理:作一条线段等于已知线段8、作图原理:过直线外一点作已知直线的垂线.,图略9、作图原理:作已知线段的垂直平分线.、过直线外一点作已知直线的垂线.第6题图第7题图第9题图10、作图原理:作已知线段的垂直平分线.图略11、本题有两种解答方法EODCBA方法一:作图原理:作一个角等于已知角; 作法:①作∠A ′BD=∠ABD ,②以B 为圆心,AB 长为半径画弧,交BA ′于点A ′, ③连接BA ′,DA ′, 则△A ′BD 即为所求;方法二:作图原理:过直线外一点作已知直线的垂线(以BD 为对称轴作A 点的对称点E ),作法与图略.12、作图原理:作已知角的角平分线作法:①以点B 为圆心,以任意长为半径画弧,两弧交角ABC两边于点M ,N ;②分别以点M ,N 为圆心,以大于MN 的长度为半径画弧,两弧交于一点;③作射线BE 交AC 与E ,交⊙ O 于点D ,则线段BD 为△ ABC 的角平分线;13、作图原理:作一个角等于已知角;作一条线段等于已知线段14、作图原理:作已知线段的垂直平分线,图略作法:作AB 的垂直平分线交AB 于O ,以O 为圆心,OA 为半径作圆,⊙O 即为所求;15、作图原理:作一条线段等于已知线段【拓展练习】参考答案1. 使P 到OA 、OB 的距离相等,P 在角AOB 的平分线上,且PC=PD ,则P 又在CD 的垂直平分线上;作CD 垂直平分线交角AOB 平分线P 点DKFEO ABC作法:分别以C、D为圆心,大于CD/2半径在CD两侧做圆弧,连接圆弧交点并延长,以O为圆心任意半径长做圆弧交OA、OB于2点,再分别以这两点为圆心,相同半径(大于两点连线长度的一半)做圆弧,连接O到交点并适当延长,和CD垂直平分线的交点即P点2.如图所示:(1)作出△ABC两内角的平分线,其交点为O1;(2)分别作出△ABC两外角平分线,其交点分别为O2,O3,O4,故满足条件的修建点有四处,即O1,O2,O3,O4.3.过C点作AB的垂线l,再过C点作l的垂线即可4.解:(1)如图所示,①以点E为圆心,分别以AE、BE长为半径化弧;②以点F为圆心,分别以BF、BE为半径化弧,与前两弧分别相交于A′,B′两点,连接A′B′,A′E,B′F 即可;5.略6.作法:分别以A、B为圆心,以AO(或BO)的长为半径画弧,分别交半圆于点M、N;连接OM、ON即可.7.作直线l,在直线上任取一点e,顺次截取线段,分别等于AB、CD、CD即可.8.如图所示,上面两角为已知角,AB=A'B'=A''B'',BC=B'C',CD=C'D',则∠CAB=∠a,∠CAD=∠b,∴∠BAD=∠a-∠b,就是所画的角9.设A,B,C为顶点构建三角形,作任意两边的中垂线,交于点O,O点即是学校的位置.理由:线段垂直平分线上的点到两顶点的距离相等,由作图可知,OA=OB,OB=OC,∴OA=OC,则学校建在O处,三个村庄到学校的距离相等.10.(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等知,作出AB的中垂线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP是最小的.第(1)小题第(2)小题11.①分别作点A关于OM,ON的对称点A′,A″;②连接A′、A″,分别交OM,ON于点B、点C,则点B、点C即为所求12. 作点Q'与点Q关于线OB对称,连接点P、Q‘交OB于点N;再作PM垂直于OA于点M,此时的PM+PN+NQ最小.。

相关文档
最新文档