第九章 第三节 二项式定理(优秀经典课时作业练习及答案详解)

合集下载

第三节、二项式定理

第三节、二项式定理

(1)通项公式
Tr 1 C n a
r
nr
b
r
在解题时应用较多,因而显得尤其重要,但
要注意,它是(a+b)n的二项展开式的第r+1项,而不是第r项. (2)公式中a和b的位置不能颠倒,它们的指数和一定为n.
1 (3)二项展开式中,二项式系数是指 C n0 , C n , C n2 , ..., C nk , ..., C nn ,
【答案】
C
二项展开式的特殊项及求法
(12分)已知
x 2 1
4
x
n
的展开式前三项中的x的
系数成等差数列. (1)求展开式中所有的x的有理项; (2)该二项展开式中是否存在常数项,若存在,求出 常数项;若不存在,说明理由.
分析 问题(1)中,有理项即x的指数为整数的项.问题(2)
n 0 n 1 n 1
b ... ( 1) C n a
r r
nr
b ...
r
( 1) C n b ,
n n n
这 时 通 项 是 T r 1 ( 1) C n a
r r n 1 1 2 2
nr
b( r 0,1, ..., n ).
r r r n
( 2) x ) 1 C n x C n x ... C n x ... x , (1 这 时 通 项 是 T r 1 C n x( r 0,1, ..., n ).
而某一项的系数除了这些组合数之外还要包括其它的数字,如在
(2 3 x )
8
的展开式中,第5项是 T5 C 84 2 4 (3 x ) 4 , 其二项式系数是而第5 项的系数
4 4 4

(完整版)二项式定理典型例题解析.docx

(完整版)二项式定理典型例题解析.docx

二项式定理 概 念 篇【例 1】求二项式 ( a - 2b)4 的展开式 . 分析:直接利用二项式定理展开.解:根据二项式定理得(a - 2b)4=C 04 a 4+C 14 a 3( - 2b)+C 24 a 2(- 2b)2+C 34 a( - 2b)3+C 44 ( -2b) 4=a 4 - 8a 3b+24a 2b 2- 32ab 3 +16b 4.说明:运用二项式定理时要注意对号入座,本题易误把- 2b 中的符号“-”忽略 .【例 2】展开 (2x - 32) 5.2x分析一:直接用二项式定理展开式.解法一: (2x -35 05143233 232332x2) =C 5 (2x) +C 5 (2x) (- 2x 2)+C 5 (2x) (-2x 2 ) +C 5 (2x) (- 2x2) +C 54 (2x)( -3) 4+C 55(-3)52x 22x 2=32x 5- 120x 2+180 - 135 + 405-243x4 7 10 .x 8x 32x分析二:对较繁杂的式子,先化简再用二项式定理展开 .解法二: (2x -35(4x 3 3)5 2x 2) =32x10=110 [ C 05 (4x 3)5+C 15 (4x 3 )4(- 3)+C 52 (4x 3)3(- 3)2+C 35 (4x 3)2(- 3)3+C 45 (4x 3)(- 3)4+32xC 55 (-3) 5]1 10 (1024x 15- 3840x 12+5760x 9-4320x 6+1620x 3- 243)=32x=32x 5- 120x 2+180-135+ 405 - 243 .xx 4 8x 732x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例 3】在 (x - 3 )10 的展开式中, x 6的系数是.解法一:根据二项式定理可知x 6 的系数是 C 104 .解法二: (x - 3 )10 的展开式的通项是r-r(- 3 )r .T r+1=C 10 x 10令 10- r =6,即 r=4,由通项公式可知含 x 6 项为第 5 项,即 T 4+1 =C 104 x 6(- 3 )4=9C 104 x 6.∴ x 6 的系数为 9C 104 .上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6 这一项系数,而不是求含x 6 的二项式系数,所以应是解法二正确.如果问题改为求含 x 6 的二项式系数,解法一就正确了,也即是C 104 . 说明:要注意区分二项式系数与指定某一项的系数的差异 .二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关, 与二项式无关,后者与二 式、二 式的指数及 数均有关.【例 4】已知二 式(3 x - 2)10,3x(1)求其展开式第四 的二 式系数; (2)求其展开式第四 的系数; (3)求其第四 .分析:直接用二 式定理展开式.解: (3 x -210的展开式的通 是Trx10-r- 2r, ,⋯,)=C 10 (3) ( ) (r=0 10).3x3x 1(1)展开式的第 4 的二 式系数C 103 =120.(2)展开式的第 43 72 3的系数 C 103 (-) =- 77760.3(3)展开式的第 4 - 77760( x )7 1,即- 77760x .x 3明:注意把 (3x - 2) 10写成[ 3 x +(-2)] 10,从而凑成二 式定理的形式 .3x3x【例 5】求二 式( x 2+ 1)10 的展开式中的常数 .2 x分析:展开式中第r +1C 10r(x 2 )10-r (21)r ,要使得它是常数 ,必 使“x ”的指x数 零,依据是x 0=1, x ≠ 0.解: 第 r +1 常数 ,1 rr 20 51 r 5 r- rr() =C 10 x( ) (r =0 , 1,⋯, 10),令 20- r=0,得 r=8.T r +1=C 10 (x )2 2x2∴ T 9=C 108( 1)8= 45 .2256∴第 9 常数 ,其45 .256明:二 式的展开式的某一 常数 ,就是 不含 “ 元”,一般采用令通 T r+1中的 元的指数 零的方法求得常数 .【例 6】(1) 求 (1+2x)7 展开式中系数最大 ;(2)求 (1- 2x)7 展开式中系数最大 .分析:利用展开式的通 公式, 可得系数的表达式,列出相 两 系数之 关系的不等式, 而求出其最大 .解: (1) 第 r+1 系数最大, 有C r 7 2r C r 7 1 2r 1,C r 7 2r C r 7 12r 1,7 !2r7 !2r 1,即 r !(7 r ) !(r 1) !(7 r 1) !7 !2r (r7 ! r2r 1, r !(7 r ) !1) !(7 1) !2 1 ,r 16 ,化 得r8 r 解得3又∵ 0≤ r ≤ 7,∴ r=5.71 r2 .r13.r 13∴系数最大T 6=C 75 25x 5=672x 5.(2)解:展开式中共有 8 ,系数最大 必 正 ,即在第一、三、五、七 四 中取得.又因 (1- 2x)7 括号内的两 中后两 系数的 大于前 系数的 ,故系数最大必在中 或偏右,故只需比T 57两 系数的大小即可C 74 ( 2)4C 73 > 1,所以系数和 T. 6( 2) =1C 7 4C 7最大 第五 ,即T 5=560x 4.明:本例中(1) 的解法是求系数最大 的一般解法,(2) 的解法是通 展开式多 分析,使解 程得到 化,比.【例 7】 (1+2x)n 的展开式中第6 与第7 的系数相等,求展开式中二 式系数最大的 和系数最大的 .分析:根据已知条件可求出n ,再根据 n 的奇偶性确定二 式系数最大的 .解: T 6=C n 5 (2x)5, T 7=C n 6 (2x)6,依 意有 C 5n 25=C n 6 26,解得 n=8. (1+2 x)8 的展开式中,二 式系数最大的 T 5=C n 4 (2x)4=1120x 4.C 7r 2rC 7r 1 2r 1 ,第 r +1 系数最大, 有C 7r 2rC 7r 1 2r 1.∴ 5≤ r ≤6.∴ r =5 或 r =6.∴系数最大的 T 6=1792x 5 ,T 7=1792x 6.明: (1)求二 式系数最大的 , 根据二 式系数的性 ,n 奇数 中 两 的二式系数最大; n 偶数 ,中 一 的二 式系数最大 .(2) 求展开式中系数最大 与求二 式系数最大 是不同的,需根据各 系数的正、化情况,一般采用列不等式,再解不等式的方法求得.用 篇【例 8】若 n ∈N * , (2 +1)n= nnn 、 n ∈Z) ,b n 的()2 a +b (abA. 一定是奇数B. 一定是偶数C.与 b n 的奇偶性相反D.与 a 有相同的奇偶性分析一:形如二 式定理可以展开后考 .解法一:由 ( 2 +1)n =n n ,知 n n2 ) n2 a +b 2 a +b =(1+=C n 0 +C 1n 2 +C n 2 ( 2 )2+C n 3 ( 2 )3+ ⋯ +C n n (2 )n .∴ b n =1+C 2n ( 2 )2+C 4n ( 2 )4+ ⋯∴ b n 奇数 . 答案: A分析二: 的答案是唯一的,因此可以用特殊 法 .解法二: n ∈ N * ,取 n=1 , (2 +1) 1=( 2 +1) ,有 b 1=1 奇数 .取 n=2 , ( 2 +1)2=2 2 +5,有 b 2=5 奇数 .答案: A【例 9】若将 (x+y+z)10 展开 多 式, 合并同 后它的 数()A.11B.33C.55D.66分析: (x+y+z)10 看作二 式[( x y)10z ] 展开 .解:我 把 x+y+z 看成 (x+y)+z ,按二 式将其展开,共有11“ ”,即 (x+y+z)10=10[( x10k10-k ky) z ] =C 10 (x+y) z .k 0,由于“和”中各 z 的指数各不相同,因此再将各个二 式(x+y) 10-k 展开,不同的乘 C 10k (x+y)10-k z k (k=0, 1,⋯, 10)展开后,都不会出 同 .下面,再分 考 每一个乘C 10k (x+y)10-k z k (k=0 , 1,⋯, 10).其中每一个乘 展开后的 数由(x+y)10-k 决定,而且各 中 x 和 y 的指数都不相同,也不会出 同 .故原式展开后的 数11+10+9+⋯ +1=66.答案: D明:化三 式 二 式是解决三 式 的常用方法 .【例 10】求 (| x | +1- 2)3 展开式中的常数 .| x |分析:把原式 形 二 式定理 准形状 .解:∵ (| x | + 1- 2)3=(| x | - 1)6,| x || x |∴展开式的通 是T r+1=C 6r ( | x | )6-r (- 1 )r =(- 1)r C 6r ( | x | )6- 2r .| x |若 T r+1 常数 , 6- 2r =0, r =3.∴展开式的第 4 常数 ,即 T 4=-C 36 =- 20.明: 某些不是二 式,但又可化 二 式的 目,可先化 二 式,再求解 .【例 11】求 ( x - 3 x )9 展开式中的有理 .分析:展开式中的有理 ,就是通 公式中x 的指数 整数的.1127 r解:∵ T r+1=C 9r (x 2 )9-r (- x 3 )r =(- 1)r C 9r x6.令 27r∈ Z ,即 4+3r∈ Z ,且 r=0 , 1, 2,⋯, 9.66∴ r=3 或 r =9.当 r=3 , 27 r =4, T 4=(- 1)3C 39 x 4=- 84x 4. 6当 r=9 ,27 r=3, T 10=( - 1)9C 99 x 3=-x 3.6∴ ( x - 3 x )9的展开式中的有理 是第 4 - 84x 4,第 10 - x 3.明:利用二 展开式的通 T r +1 可求展开式中某些特定 .【例 12】若 (3x - 1)77 7 6 61=a x +a x + ⋯ +a x+a ,求(1)a 1 +a 2 ⋯+a 7; (2)a 1 +a 3 +a 5+a 7;0 2 4 6(3)a +a +a +a .分析:所求 果与各 系数有关可以考 用“特殊 ”法,整体解决 .解: (1)令 x=0, a 0=- 1,令 x=1 , a 7+a 6+ ⋯ +a 1+a 0=27=128.①∴ a 1+a 2+⋯ +a 7=129.(2)令 x=- 1, a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=( -4) 7.②由(1) ( 2)得: a 1+a 3+a 5+a 7= 1[ 128- (- 4)7] =8256.22(3)由 (1) (2) 得 a 0 +a 2+a 4+a 6 = 1 [ 128+(-4) 7] =- 8128.2 2明: (1)本解法根据 恒等式特点来用“特殊 ”法, 是一种重要的方法,它用于恒等式 .(2)一般地, 于多 式g(x)=( px+q)n =a 0+a 1x+a 2x 2+a 3x 3+a 4x 4 +a 5x 5+a 6x 6+a 7x 7, g(x)各 的系数和g(1),g(x)的奇数 的系数和1[ g(1)+ g(- 1)],g(x)的偶数 的系数和1[ g(1)22- g (- 1)] .【例 13】 明下列各式(1)1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n =3n ;(2)(C 0n )2+(C 1n ) 2+ ⋯ +(C n n )2=C n 2 n ;(3)C 1n +2C 2n +3C 3n + ⋯ +nC n n =n2n -1.分析: (1)(2) 与二 式定理的形式有相同之 可以用二 式定理,形如数列求和,因此可以研究它的通 求 律 .明: (1)在二 展开式 (a+b)n =C 0n a n +C 1n a n -1b+C 2n a n -2b 2+ ⋯ +C n n 1 ab n -1+C n n b n 中,令 a=1, b=2,得 (1+2) n =1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n ,即1 2+ ⋯ +2n -1n 1 n n =3n.1+2C n +4C nC n +2 C n(2)(1+ x)n (1+x)n =(1+ x) 2n ,12r12r2n.∴ (1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )(1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )=(1+ x)而 Cn 是 (1+ x)2n 的展开式中 x n 的系数,由多 式的恒等定理,得2nC 0n C n n +C 1n C n n 1 + ⋯ +C 1n C n n 1 +C n n C 0n =C n 2n . ∵ C m n =C n n m , 0≤ m ≤ n ,∴ (C n 0 )2+(C 1n )2+ ⋯ +(C n n )2=C 2n n .(3) 法一:令 S=C 1n +2C n 2 +3C n 3 + ⋯ +nC n n . ①令 S=C 1n +2C n 2 + ⋯ +(n - 1)C n n 1 +nC n n =nC n n +(n - 1)C n n 1 + ⋯ +2C n 2 +C 1n=nC n n +(n - 1)C 1n + ⋯ +2C n n 2 +C n n 1 .②由① +②得 2S=nC 1n +nC n2 +nC n3 + ⋯ +nC n n =n(C n n +C 1n +C n2 +C n3+ ⋯ +C n n ) 0123n=n(C n+C n +C n +C n + ⋯ +C n )=n2n.∴ S=n2n-1,即 C 1n +2C n2 +3C 3n + ⋯ +nC n n =n2n-1.法二:察通:kC n k =k n n( n1) !nC n k11 .k ! (n k) !(k1)! (n k) !∴原式 =nC +C n n11 )= n2n-1,12即C n +2C n0121 +nC3+⋯n 101231 +⋯n 1 +nC n 1+nC n n 1+nC n 1=n(C n 1+C n 1+C n 1 +C n 3⋯n n-1+3C n ++nC n =n2 .明:解法二中 kC n k =nC n k11可作性住 .【例 14】求 1.9975精确到 0.001的近似 .分析:准确使用二式定理把 1.997 拆成二之和形式如 1.997=2- 0.003.解: 1.9975=(2- 0.003)5=25- C 15 240.003+C 52 230.0032- C 35 220.0033+⋯≈32-0.24+0.00072 ≈ 31.761.明:利用二式定理行近似算,关是确定展开式中的保留,使其足近似算的精确度 .【例 15】求: 5151-1 能被 7 整除 .分析:了在展开式中出7 的倍数,把51 拆成 7 的倍数与其他数的和(或差 )的形式.明: 5151-1=(49+2) 51-1=C 051 4951+C 151 49502+ ⋯ +C 5051 49· 250+C 5151 251- 1,易知除 C 5151 251- 1 以外各都能被7 整除 .又 251- 1=(2 3)17- 1=(7+1) 17- 1=C0717+C1716+⋯+C167+C17-171717171=7(C 170 716+C 171 715+⋯ +C 1716 ).然能被 7 整除,所以5151- 1 能被 7 整除 .明:利用二式定量明有关多式(数 )的整除,关是将所多式通恒等形二式形式,使其展开后的各均含有除式.新篇【例 16】已知 (x lgx+1) n的展开式的最后三系数之和22,中一20000. 求 x.分析:本看似繁,但只要按二式定理准确表达出来,不求解!解:由已知 C n n +C n n 1 +C n n 2 =22,即 n2+n- 42=0. 又 n∈ N*,∴ n=6.T4中一, T4=C 3lg x 3,即 (xlgx 3lg x=10. 6(x ) =20000)=1000. x两取常用数,有1 lg2x=1, lgx=± 1,∴ x=10 或 x= .10明:当目中已知二展开式的某些或某几之的关系,常利用二式通公式,根据已知条件列出等式或不等式行求解.【例 17】 f(x)=(1+ x)m+(1+ x)n(m, n∈ N* ),若其展开式中关于x 的一次的系数和11, m,n 何,含 x2的系数取最小?并求个最小.分析:根据已知条件得到x2的系数是关于 x 的二次表达式,然后利用二次函数性探最小 .解: C 1m +C 1n =n+m=11. C m2+C n 2 =1(m2-m+n2- n)=m2n211 ,22∵ n∈N *,∴ n=6 或 5, m=5 或 6 , x 2 系数最小,最小 25.明:本 是一道关于二次函数与 合的 合 .【例 18】若 (x+ 1- 2)n 的展开式的常数 -20,求 n.x分析: 中 x ≠ 0,当 x > 0 ,把三 式 (x+1- 2)n化 ( x -1)2n ;当 x < 0 ,xx同理 (x+1-2) n nx - 1 2 n x 的 指数 零, 而解出 n.x=(- 1) () .然后写出通 ,令含x解:当 x > 0 , ( x+ 1- 2)n =(x -1 )2n ,xx其通 T r+1=C 2n r( x )2n -r (-1)r =(- 1)r C 2r n ( x )2n -2r .x令 2n - 2r=0 ,得 n=r ,∴展开式的常数 (- 1)r C 2n n ;当 x < 0 , (x+ 1-2) n =(- 1)n(x -1)2n .同理可得,展开式的常数 (- 1)r C 2n n .xx无 哪一种情况,常数 均 (- 1)r C 2n n .令 (- 1)r C 2n n =20.以 n=1,2, 3,⋯,逐个代入,得n=3.明:本 易忽略x < 0 的情况 .【例 19】利用二 式定理 明(2 n -1 2.) <n31分析:2 不易从二 展开式中得到,可以考 其倒数n 1 .n 12明:欲 (2)n -1 < 21成立,只需 (3)n -1<n1成立 .3n22而 ( 3)n - 1=(1+ 1)n - 1=C n1 +C1n 11+C n 21 ( 1)2+ ⋯ +C n n 11 (1)n -122222=1+ n 1 21 2⋯n 1 1) n -12+C n1 () ++C n 1 (22>n 1.2明:本 目的 明 程中将( 3)n -1化 (1+ 1)n -1,然后利用二 式定理展开式是解2 2决本 的关 .【例 20】求 : 2≤ (1+1) n < 3(n ∈N * ).n1 n 与二 式定理 构相似,用二 式定理展开后分析.分析: (1+)n明:当 n=1 , (1+ 1)n =2.n当 n ≥2 , (1+ 1)n=1+C 1n n又C n k ( 1 )k = n(n 1) (nnk ! n k1 +C n2 1 + ⋯ +C n n ( 1 )n =1+1+C n 2 1 + ⋯ +C n n ( 1 )n> 2.n n 2 n n 2n k 1) ≤ 1 ,k !所以 (1+ 1)n≤ 2+1+ 1 + ⋯ + 1< 2+1 + 1 + ⋯ + 1n2 !3 !n!1 2 2 3 ( n 1) n=2+(1 -1)+(1 - 1 )+ ⋯ +( 1 - 1)22 3 n 1 n=3- 1< 3.n上有 2≤ (1+1)n < 3.n明:在此不等式的 明中,利用二 式定理将二 式展开,再采用放 法和其他有关知 ,将不等式 明到底 .【例 21】求 : 于n ∈N *, (1+ 1) n< (1+ 1)n+1 .nn 1分析: 构都是二 式的形式,因此研究二 展开式的通 是常用方法 .明: (1+1) n展开式的通 Tr1A n rnr+1 =C n n r=r ! n r= 1 n(n 1)(n 2) (n r 1)r ! n r=1 (1-12 r 1 ).r !)(1 -)⋯ (1-nnn(1+1 )n+1展开式的通 T ′ r+1=C n r11 1) r =A n r 1 rn 1( n r !(n 1)=1 n(n 1)(n 2) (n r1)r !n r= 1 (1- 1 )(1- 2)⋯ (1-r1 ).r !n 1n 1n1由二 式展开式的通 可明 地看出 T r+1< T ′ r+1所以 (1+ 1 )n< (1+1)n+1nn 1明:本 的两个二 式中的两 均 正 ,且有一 相同. 明 ,根据 特点,采用比 通 大小的方法完成本 明.【例 22】 a 、 b 、c 是互不相等的正数,且a 、b 、c 成等差数列, n ∈ N * ,求 : a n +c n>2b n .分析: 中 未出 二 式定理的形式,但可以根据a 、b 、c 成等差数列 造条件使用二 式定理 .明: 公差d , a=b - d , c=b+d.a n +c n - 2b n =(b - d)n +( b+d)n - 2b nn1n - 12n - 2 2nn n1n - 12n - 22n=[ b - C n b d+C n bd + ⋯ +(- 1) d ]+[ b +C n bd+C n bd + ⋯ +d ]明:由 a 、 b 、 c 成等差,公差 d ,可得 a=b - d , c=b+d , 就 利用二 式定理 明此 造了可能性 . 即(b - d)n +(b+d) n > 2b n ,然后用作差法改(b - d)n +( b+d)n- 2b n > 0.【例 23】求 (1+2x - 3x 2)6 的展开式中x 5 的系数 .分析:先将 1+2x - 3x 2 分解因式, 把三 式化 两个二 式的 , 即(1+2 x - 3x 2)6 =(1+3x)6 (1- x)6.然后分 写出两个二 式展开式的通 ,研究乘x 5 的系数, 可得到解决.解:原式 =(1+3 x)6(1 -x)6,其中 (1+3x)6 展开式之通T k+1=C k 6 3k x k , (1- x)6 展开式之通 T r+1=C r 6 (- x)r .原式 =(1+3x) 6(1- x)6 展开式的通C 6k C 6r (- 1)r 3k x k+r .要使 k+r =5,又∵ k ∈ {0 , 1, 2, 3, 4, 5, 6} , r ∈{0 , 1,2, 3, 4, 5, 6} ,必k 0, 或 k 1, 或 k 2, 或 k 3, 或 k 4, 或 k 5,r 5r4r 3r2r 1r 0 .故 x 5 系数 C 60 30C 65 (- 1)5+C 16 31 C 64 (- 1)4+C 62 32C 63 ( - 1)3+C 63 33C 62 (- 1)4+C 64 34C 16(- 1)+C 65 35 C 60 (- 1)0=- 168.明:根据不同的 构特征灵活运用二 式定理是本 的关.【例 24】 (2004年全国必修 + 修 1)(x -1)6 展开式中的常数 ()xA.15B.- 15C.20D.- 203r3解析: Trr6-r - rrr 32x) =(- 1) C2,当 r=2 ,3-2=15.r +1=(- 1)C 6 (xxr=0 ,T 3=( -1) C62答案: A【例 25】 (2004 年江 )(2x+ x )4 的展开式中 x 3 的系数是 ()A.6B.12C.24D.48解析:T r +12 rr rx ) 4-r (2x) r =( -1) r r r 2,当 r =2 ,2+ r3- 22=24.=(- 1) C 4 (2 C 4 x2 =3 ,T =( 2) C 4答案: C【例 26】 (2004年福建理 )若 (1- 2x )9展开式的第3288, lim 1 1+ ⋯ +1( +2n)nxxx的 是 ()A.2B.11D.2C.52解析: T r+1=( -1) r C r 9 (2 x )r =(-1) r C r 9 2xr ,当 r =2 , T 3=(- 1)2C 92 22x =288.∴ x= 3.21 112 ∴ lim3 =2.( + 2 + ⋯+n)= nxxx123答案: A【例 27】 (2004 年福建文 )已知 (x - a)8 展开式中常数1120,其中 数 a 是常数,x展开式中各 系数的和是( )A.28B.38C.1 或 38D.1 或 28解析: Tr+1=( -1) rr8 -ra r rr8-2r,当 r=4 , T4 4 =1120,∴ a=± 2.C x() =(- a)C x=(- a) Cx∴有函数 f(x)=(x - a)8.令 x=1, f(1)=1 或 38.x答案: C【 例 28 】(2004 年 天 津 ) 若 (1 - 2x)20040 12 22004 2004=a +a x+a x + ⋯ +ax(x ∈ R) , (a +a )+( a +a)+0 10 2(a 0+a 3)+ ⋯ +(a 0+a 2004)= .(用数字作答 )解析:在函数 f(x)=(1 - 2x)2004中, f(0)= a 0 0 1 2+ ⋯ +a 2004,=1, f(1)=a +a +a=1 (a 0+a 1 )+(a 0+a 2)+( a 0 +a 3 )+⋯+( a 0 +a 2004) =2004a 0 +a 1+a 2+ ⋯ +a 2004=2003a 0 +a 0+a 1+a 2+ ⋯ +a 2004 =2003f(0)+ f(1) =2004.答案: 2004。

《二项式定理》知识点总结+典型例题+练习(含答案)

《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 .【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e 1⎰=nx x )(3-2x 66e111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( ) (A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dx π=-⎰8822108)1(x a x a x a a kx ++++=-K 1238a a a a +++⋅⋅⋅+=0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰,令得:,即 再令得:,即 所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r??54﹣r=1×6×25=150,19、设,则 . 【答案】【解析】, 所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则( )(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯K 01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =45672533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A1 B .或1 C .2或 D . 【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B . 24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-。

二项式定理习题(带答案)

二项式定理习题(带答案)

(A)-540
(B)-162
(C)162
(D)540
33、A 解析:令 x=1,得 2n=64,得 n=6.设常数项为 Tr+1= Cr6(3 )6-r·(- )r
=Cr636-r·(-1)r·x3-r 令 3-r=0 得 r=3.∴常数项 T4=-540.
36、在
的二项展开式中,若只有 的系数最大,则
6、C7、C8、A9、A
16、3.若
的展开式中 的系数是(
A.14 )A
B.-14
B
C
C.42 D
D.-42
17、在
的展开式中 的系数是 ( )A.-14 B.14 C.-28 D.28
16、B 解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含 x5 的项为 x·C x4+(-1)C x5=14x5,∴x5 的系数是 14,故选 B. 17、B 解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含 x5 的项为 x·C x4+(-1)C x5=14x5,∴x5 的系数是 14,故选 B.
(3)二项式系数的和:
C
0 n
C1 nCຫໍສະໝຸດ 2 nCk n
C
n n
2n
奇数项的二项式系数的和等于偶数项的二项式系数和.即
C0n +C2n +
=C1n +C3n +
=2n-1
对称性 (2)二项式系数的三个性质 增减性和最值
二项式系数和
基本题型
(一)通项公式的应用
1、 (2x 1 )6 的展开式中第三项的二项式系数为________;第三项的系数为_______; x

二项式定理经典题型及详细答案

二项式定理经典题型及详细答案

二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。

2016高中数学人教A版选修131《二项式定理》课时作业

2016高中数学人教A版选修131《二项式定理》课时作业

【与名师对话]2015-2016学年高中数学1、3、1二项式定理课时作业新人教A版选修2-3一、选择题1、化简(x-l) *4-4 (-Y-1)‘+6(JV-1)2+4(Ar-1) + 1得()A^ x B、(X— 1)sC、(x+1) *D、x解析:原式=(*一1 + 1)'=/、故选A、答案:A2、6+2),的展开式共有12项,则m等于()A、9B、10C、11D、8解析:•・•(+)"的展开式共有”+1项,而(x+2)"的展开式共有12项,・・・”=11、故选C、答案:C3、(1-i) “(i为虚数单位)的二项展开式中第七项为()A、一210B、210C、-120iD、-210i解析:由通项公式得%=C:。

・(一i) J-C错误! = 一210、答案:A4、若C错误!x+C错误!f+・・・+C错误X能被7整除则X, m的值可能为()A、x=5, n=5B、x=5,刀=4C、.v=4, n=4D、x=4, n=3解析:C错误!x+C错误!「+…+C错误!“= (1 +0"— 1,检验得B正确、答案:B5、在H1+.Y) e的展开式中,含空项的系数为()A、30B、20C、15D、10解析:只需求(l+x)6的展开式中含f项的系数即可,而含空项的系数为015,故选C、答案:C6、若(1 +错误!)'=a+漏误!(a, 为有理数),则a+b等于()A、45B、55D、80C、70解析:由二项式立理得(1 +错误!)5 = 1 + C错误!•错谋!+C错谋!•(错谋!F + C 错误!・(错误!)'+C错误!・(错误!)'+C错误!・(错误!)'= 1 + 5 错误J+20+20错误!+20+4 错误!=41+29 错误!,即a=41, 6=29,所以a+£>=70、答案:C二、填空题7、若£0,设错误!'的展开式中的第三项为M第四项为N、则“+用的最小值为、解析:?;=C错谋!•错谋!'错课!〜错視!x,错误!•错误广・错误!—错误!,故J/+.Z错误! +错误!22错误!=错误!、答案:错误!8、已知2X10“+a (OWa〈11)能被11整除,则实数a的值为___________ 、解析:根据题意,由于2X10lo+a=2X(ll-l) '°+a,由于2X10+ (0Wa<ll)能被11整除,根据二项式泄理展开式可知,2X(11 — 1)'。

二项式定理练习题及答案解析

二项式定理练习题及答案解析

二项式定理练习题及答案解析一、选择题1.二项式(a+b)2n的展开式的项数是()A.2n B.2n+1C.2n-1D.2(n+1)[答案] B2.(x-y)n的二项展开式中,第r项的系数是()A.Crn B.Cr+1nC.Cr-1n D.(-1)r-1Cr-1n[答案] D3.在(x-3)10的展开式中,x6的系数是()A.-27C610 B.27C410C.-9C610 D.9C410[答案] D[解析]∵Tr+1=Cr10x10-r(-3)r.令10-r=6,解得r=4.∴系数为(-3)4C410=9C410.4.(2010•全国Ⅰ理,5)(1+2x)3(1-3x)5的展开式中x的系数是() A.-4 B.-2C.2 D.4[答案] C[解析](1+2x)3(1-3x)5=(1+6x+12x+8xx)(1-3x)5,故(1+2x)3(1-3x)5的展开式中含x的项为1×C35(-3x)3+12xC05=-10x+12x=2x,所以x的系数为2.5.在2x3+1x2n(n∈N*)的展开式中,若存在常数项,则n的最小值是()A.3 B.5C.8 D.10[答案] B[解析]Tr+1=Crn(2x3)n-r1x2r=2n-r•Crnx3n-5r.令3n-5r=0,∵0≤r≤n,r、n∈Z.∴n的最小值为5.6.在(1-x3)(1+x)10的展开式中x5的系数是()A.-297 B.-252C.297 D.207[答案] D[解析]x5应是(1+x)10中含x5项与含x2项.∴其系数为C510+C210(-1)=207.7.(2009•北京)在x2-1xn的展开式中,常数项为15,则n的一个值可以是()A.3 B.4C.5 D.6[答案] D[解析]通项Tr+1=Cr10(x2)n-r(-1x)r=(-1)rCrnx2n-3r,常数项是15,则2n=3r,且Crn=15,验证n=6时,r=4合题意,故选D.8.(2010•陕西理,4)(x+ax)5(x∈R)展开式中x3的系数为10,则实数a等于()A.-1 B.12C.1 D.2[答案] D[解析]Cr5•xr(ax)5-r=Cr5•a5-rx2r-5,令2r-5=3,∴r=4,由C45•a=10,得a=2.9.若(1+2x)6的展开式中的第2项大于它的相邻两项,则x的取值范围是()A.112<x<15B.16<x<15C.112<x<23D.16<x<25[答案] A[解析]由T2>T1T2>T3得C162x>1C162x>C26(2x)2∴112<x<15. 10.在32x-1220的展开式中,系数是有理数的项共有()A.4项B.5项C.6项D.7项[答案] A[解析]Tr+1=Cr20(32x)20-r-12r=-22r•(32)20-rCr20•x20-r,∵系数为有理数,∴(2)r与220-r3均为有理数,∴r能被2整除,且20-r能被3整除,故r为偶数,20-r是3的倍数,0≤r≤20.∴r=2,8,14,20.二、填空题11.(1+x+x2)•(1-x)10的展开式中,x5的系数为____________.[答案]-16212.(1+x)2(1-x)5的展开式中x3的系数为________.[答案] 5[解析]解法一:先变形(1+x)2(1-x)5=(1-x)3•(1-x2)2=(1-x)3(1+x4-2x2),展开式中x3的系数为-1+(-2)•C13(-1)=5;解法二:C35(-1)3+C12•C25(-1)2+C22C15(-1)=5.13.若x2+1ax6的二项展开式中x3的系数为52,则a=________(用数字作答).[答案] 2[解析]C36(x2)3•1ax3=20a3x3=52x3,∴a=2.14.(2010•辽宁理,13)(1+x+x2)(x-1x)6的展开式中的常数项为________.[答案]-5[解析](1+x+x2)x-1x6=x-1x6+xx-1x6+x2x-1x6,∴要找出x-1x6中的常数项,1x项的系数,1x2项的系数,Tr+1=Cr6x6-r(-1)rx-r=Cr6(-1)rx6-2r,令6-2r=0,∴r=3,令6-2r=-1,无解.令6-2r=-2,∴r=4.∴常数项为-C36+C46=-5.三、解答题15.求二项式(a+2b)4的展开式.[解析]根据二项式定理(a+b)n=C0nan+C1nan-1b+…+Cknan-kbk+…+Cnnbnn得(a+2b)4=C04a4+C14a3(2b)+C24a2(2b)2+C34a(2b)3+C44(2b)4=a4+8a3b+24a2b2+32ab3+16b4.16.m、n∈N*,f(x)=(1+x)m+(1+x)n展开式中x的系数为19,求x2的系数的最小值及此时展开式中x7的系数.[解析]由题设m+n=19,∵m,n∈N*.∴m=1n=18,m=2n=17,…,m=18n=1.x2的系数C2m+C2n=12(m2-m)+12(n2-n)=m2-19m+171.∴当m=9或10时,x2的系数取最小值81,此时x7的系数为C79+C710=156.17.已知在(3x-123x)n的展开式中,第6项为常数项.(1)求n;(2)求含x2的项的系数;(3)求展开式中所有的有理项.[解析](1)Tr+1=Crn•(3x)n-r•(-123x)r=Crn•(x13)n-r•(-12•x-13)r=(-12)r•Crn•xn-2r3.∵第6项为常数项,∴r=5时有n-2r3=0,∴n=10.(2)令n-2r3=2,得r=12(n-6)=2,∴所求的系数为C210(-12)2=454.(3)根据通项公式,由题意得:10-2r3∈Z0≤r≤10r∈Z令10-2r3=k(k∈Z),则10-2r=3k,即r=10-3k2=5-32k.∵r∈Z,∴k应为偶数,∴k可取2,0,-2,∴r=2,5,8,∴第3项、第6项与第9项为有理项.它们分别为C210•(-12)2•x2,C510(-12)5,C810•(-12)8•x-2.18.若x+124xn展开式中前三项系数成等差数列.求:展开式中系数最大的项.[解析]通项为:Tr+1=Crn•(x)n-r•124xr.由已知条件知:C0n+C2n•122=2C1n•12,解得:n=8.记第r项的系数为tr,设第k项系数最大,则有:tk≥tk+1且tk≥tk-1.又tr=Cr-18•2-r+1,于是有:Ck-18•2-k+1≥Ck8•2-kCk-18•2-k+1≥Ck-28•2-k+2即8!(k-1)!•(9-k)!×2≥8!k!(8-k)!,8!(k-1)!•(9-k)!≥8!(k-2)!•(10-k)!×2.∴29-k≥1k,1k-1≥210-k.解得3≤k≤4.∴系数最大项为第3项T3=7•x35和第4项T4=7•x74.。

6.3 二项式定理(解析版)人教版高中数学精讲精练选择性必修三

6.3 二项式定理(解析版)人教版高中数学精讲精练选择性必修三

6.3二项式定理考法一二项式的展开式【例1-1】(2023上·高二课时练习)求411x ⎛⎫⎪⎝⎭+的展开式.【答案】答案见解析【解析】4123404132231404444411111C 1C 1C C 1C 1111x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎭⎝⎝⎭⎝⎭23446411x x x x =++++.【例1-2】(2023·黑龙江)()12312C 4C 8C 2C nnn n n n -+-++-= ().A .1B .-1C .(-1)nD .3n【答案】C【解析】原式=()()()()()()0120122222121n n nn n n n n -+-+-++-=-=-C C C C L .故选:C.【一隅三反】1.(2023·甘肃)若对x ∀∈R ,()()()()()()55432252102102521ax b x x x x x +=+-+++-+++-恒成立,其中,a b ∈R ,则a b +=()A .1-B .0C .2D .3【答案】C【解析】由()()()()()()()543255252102102521211x x x x x x x +-+++-+++-=+-=+,得()()551ax b x +=+,所以1a b ==,2a b +=.故选:C.2.(2023·安徽安庆)如果12212C 2C 2C 2187n n n n n ++++= ,则22223C C C n +++=.【答案】56【解析】依题意,1220012212C 2C 2C 2C 2C 2C 2C n n n n n n n n n n n+++++++=+ ()1232187nn =+==,解得7n =,222322237337C C C C C C =++++++ 32232224475567C C C C C C C =+++=+++ 322323667778C C C C C C 87656321⨯⨯=====⨯⨯+++.故答案为:563.(2023·高二课时练习)(1)求4⎛⎫ ⎪⎝⎭的展开式(2)求()()55211x x x -++的展开式;(3)化简()()()()()5432151********x x x x x -+-+-+-+-.【答案】(1)221218110854x x x x-+-+(2)答案见解析;(3)51x -【解析】(1)()4442131x x ⎛⎫⎫==- ⎪⎪⎝⎭⎭()()()()()()()()432234012344444421C 3C 31C 31C 31C 1x x x x x⎡⎤=+⋅-+⋅-+⋅-+-⎣⎦()432218110854121x x x x x=-+-+221218110854x x x x =-+-+.(2)()()()5555223(1)1(1)11x x x x x x x -++-++⎦=⎣-⎡⎤=()()()()()123405314323332341355555C 1C 1C 1C 1C 1x x x x x =⨯⨯⨯+⨯+⨯-+-+---()55035C 1x+⨯-3691215151010 5x x x x x =-+-+-.(3)原式0514********555555C (1)C (1)C (1)C (1)C (1)C (1)1x x x x x x =-+-+-+-+-+--55[(1)1]11x x =-+-=-.考法二二项式指定项的系数【例2-1】(2024·四川绵阳)51x ⎫-⎪⎭的展开式中,x 的系数为()A .5-B .10-C .5D .10【答案】A【解析】51x ⎫⎪⎭的展开式的通项为53521551C (1)C rr r r r rr T x x --+⎛⎫=⋅⎭⋅-=-⋅⋅ ⎪⎝.令5312r-=,得1r =.x ∴的系数为15C 5-=-.故选:A .【例2-2】.(2024·湖南)二项式741x ⎫-⎪⎭的展开式中常数项为()A .7-B .21-C .7D .21【答案】A【解析】二项式741x ⎫⎪⎭的通项公式为()14147317741C C 1rrrr r rr T x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,令1414013r r -=⇒=,所以常数项为()17C 17⋅-=-,故选:A 【例2-3】(2024·云南)写出623x⎛⎝展开式中的一个有理项为.【答案】12729x (答案不唯一)【解析】623x⎛⎝展开式的通项公式为所以展开式中的有理项分别为:0r =时,6121213729T x x ==;2r =时,4277363C 1215T x x ==;4r =时,2422563C 135T x x ==;6r =时,37-=T x .故答案为:12729x (四个有理项任写其一均可).【一隅三反】1.(2024·河南)29(2x x-展开式中的常数项为()A .672B .672-C .5376-D .5376【答案】D【解析】二项式29(2)x x -的展开式的通项218319992C )()(N 2)C (,9,r r r r r rr T r x xr x--+=-=-≤∈,令1830r -=,得6r =,所以二项展开式中的常数项为669C 2)7(536-=.故选:D2.(2024安徽)9a x x ⎛⎫+ ⎪⎝⎭展开式中含3x 项的系数为84-,则实数a 的值为()A .1-B .2-C .3-D .4-【答案】A 【解析】()992199C C 0,1,2,,9rr rr r r r a T xa x r x --+⎛⎫=⋅==⋅⋅⋅ ⎪⎝⎭,令923r -=,得3r =.∴3333349C 84T a x a x ==,依题意38484a =-,∴1a =-.故选:A.3.(2023·全国·模拟预测)5的展开式中,有理项是第项.【答案】3【解析】5的展开式的通项511051362155C 3C 3kkkk k k k T x x x ---+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⋅,其中0,1,2,3,4,5k =,当1k T +为有理项时,1056k-为整数,结合0,1,2,3,4,5k =,所以2k =,即有理项是展开式中的第3项,故答案为:3考法三两个二项式乘积的系数【例3-1】(2024·广东广州)在()()511x x +-展开式中3x 的系数为()A .1-B .0C .1D .2【答案】B【解析】显然()()()()5551111x x x x x +-=-+-,则()51x -展开式第1r +项55155,N,5C (1)C (1)rrr rr r r T xr x r --+-∈=-≤=,当3r =时,33235C (1)10x x x ⋅-=-,当2r =时,22335C (1)10x x -=,所以展开式中含3x 的项为3310100x x -+=,即展开式中3x 的系数为0.故选:B【例3-2】(2023·全国·模拟预测)()7y m x y x ⎛⎫+- ⎪⎝⎭的展开式中34x y 的系数为105-,则实数m =()A .2B .1C .1-D .2-【答案】D【解析】()7x y -的展开式的通项公式为()7171C r r r rr T x y -+=-,所以()61171C r r r r r y T x y x-++=-.令6314r r -=⎧⎨+=⎩,解得3r =,()7171C r r r rr mT m x y -+=⋅-.令734r r -=⎧⎨=⎩,解得4r =.由题意,可知()()()3434343777771C 1C C C 1C 105m m m -+⋅-=-+=-=-,所以2m =-.故选:D .【一隅三反】1.(2023·湖北)若()()542x m x --的展开式中的3x 的系数为600-,则实数m =()A .8B .7C .9D .10【答案】B【解析】由题意知,()52x -展开式的通项公式为()55C 2rr rx --,故3x 的系数为()()3232554C 2C 232040600m m ⨯---=--=-,解得7m =.故选:B .2.(2024·广东·)()()42112x x +⋅-的展开式中3x 的系数为.【答案】40-【解析】()()42112x x +⋅-的展开式中3x 的项为:()()313213441C 2C 240x x x x ⨯-+⨯-=-,所以展开式中3x 的系数为40-.故答案为:40-3.(2024·山东滨州)()622x x y y ⎛⎫+- ⎪⎝⎭的展开式中42x y 的系数为.(用数字作答)【答案】40-【解析】()62x y -的通项公式为()()66166C 2C 2rrr r rr r r T x y x y --+=-=-,令2r =得,()22424236C 260T x y x y =-=,此时4242602120x y x y ⋅=,令3r =得,()33333346C 2160T x y x y =-=-,此时3342160160xx y x y y-⋅=-,故42x y 的系数为12016040-=-故答案为:40-考法四三项式指定项的系数【例4-1】(2023·全国·校联考模拟预测)在6221x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为()A .721B .-61C .181D .-59【答案】D【解析】6221x x ⎛⎫+- ⎪⎝⎭ =()6221x x ⎡⎤+-⎢⎥⎣⎦的展开式的通项公式为1r T +=()6622C 1rrrx x -⎛⎫+- ⎪⎝⎭=()()626C 21r r rr x x ---+,其中()66rx -+的展开式的通项公式为1k T +=66C kr kr x---,当0r =时,60r k --=,6k ∴=,常数项为()00666C C 2-;当1r =时,62r k --=,3k ∴=,常数项为()1365C C 2-;当2r =时,64r k --=,0k ∴=,常数项为()22064C C 2-;故常数项为()00666C C 2-+()1365C C 2-+()22064C C 259-=-.故选:D【例4-2】(2023·广东广州)()522x x y +-的展开式中52x y 的系数为(用数字作答).【答案】120【解析】由于()22522x y x y x =⋅⋅,所以()522x x y +-的展开式中含52x y 的项为()()222211252532C 2C C 120x x y x y ⨯⨯-=,所以()522x x y +-的展开式中52x y 的系数为120.故答案为:120【一隅三反】1(2023上·高二课时练习)()52123x x +-的展开式中5x 的系数为.【答案】92【解析】()()()5552123113x x x x +-=-+,又()51x -展开式的通项()()5155C 1C 1,0,1,2,3,4,5rrr r r r r T x x r -+=-=-=,()513x +展开式的通项()5155C 13C 3,0,1,2,3,4,5kk k k k k k S x x k -+===,所以含5x 的项为162534435261T S T S T S T S T S T S ++⋅+⋅++则含5x 的系数()()()()()()012345055144233322411500555555555555C 1C 3C 1C 3C 1C 3C 1C 3C 1C 3C 1C 392-+-+-+-+-+-=.故答案为:92.2.(2024·福建)412x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项为()A .72-B .70-C .70D .72【答案】C【解析】方法一:8412xx ⎛⎫+-= ⎪⎝⎭展开式中,第()1r +项()84188C 1C rrrrrr r T x--+⎛==- ⎝,所以常数项为()44581C 70T =-=,方法二:441122x x x x ⎡⎤⎛⎫=- ⎪⎛⎫+-+ ⎢⎭⎝⎣⎪⎭⎥⎝⎦展开式中,第()1r +项()4141C 2rrrr T x x -+⎛⎫=-+ ⎪⎝⎭,当0r =时,()4041C 2x x ⎛⎫-+ ⎪⎝⎭展开式中常数项为24C 6=;当2r =时,()22241C 2x x ⎛⎫-+ ⎪⎝⎭展开式中常数项为21424C C 48⨯=;当4r =时,()04441C 216x x ⎛⎫-+= ⎪⎝⎭,所以412x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项为70,故选:C .3.(2023上·河北唐山)()423a b c --的展开式中2abc 的系数为()A .208B .216-C .217D .218-【答案】B【解析】根据二项式定理可得,()423a b c --的展开式中,含2abc 的项为()()211122432C C 2C 3216a b c abc ⋅⋅⋅-⋅⋅-=-.所以,()423a b c --的展开式中2abc 的系数为216-.故选:B.考法五(二项式)系数的最值【例5-1】(2023上·辽宁朝阳·高三建平县实验中学校联考阶段练习)在二项式612x ⎫⎪⎭的展开式中,二项式系数最大的是()A .第3项B .第4项C .第5项D .第3项和第4项【答案】B【解析】二项式612x ⎫⎪⎭的展开式共有7项,则二项式系数最大的是第4项.故选:B.【例5-2】(2023·四川雅安)10(1)x -的展开式中,系数最小的项是()A .第4项B .第5项C .第6项D .第7项【答案】C【解析】依题意,10(1)x -的展开通项公式为()11010C ()(1)N C 010,r r r r r r T x x r r +≤≤=-=∈-,其系数为10(1)C r r-,当r 为奇数时,10(1)C r r-才能取得最小值,又由二项式系数的性质可知,510C 是{}10C r 的最大项,所以当=5r 时,10(1)C r r-取得最小值,即第6项的系数最小.故选:C .【一隅三反】1.(2022·重庆)(多选)若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为()A .第4项B .第5项C .第6项D .第7项【答案】BC【解析】 1n x x ⎛⎫+ ⎪⎝⎭的展开式的通项为211rr n r r n rr n n T C x C x x --+⎛⎫== ⎪⎝⎭,因为展开式中第3项与第8项的系数相等,∴27nnC C =,所以9n =,则91x x ⎛⎫+ ⎪⎝⎭展开式中二项式系数最大的项为第5项和第6项;故选:BC .2.(2024·海南)在()1nx +的二项展开式中,系数最大的项为3x 和4x ,则展开式中含x 项的系数为.【答案】7【解析】()1C 0,1,,kn kk n T xk n -+==⋅⋅⋅,因为系数最大的项为3x和4x ,所以n 为奇数,1142n n +⎛⎫--= ⎪⎝⎭,且132n n +-=,解得7n =.所以含x 项的系数为67C 7=.故答案为:73.(2023·上海嘉定)已知6(12)x +的二项展开式中系数最大的项为.【答案】4240x 【解析】设系数最大的项为()61C 2kkk T x +=,则11661166C 2C 2C 2C 2k k k k k k k k ++--⎧⋅≥⋅⎨⋅≥⋅⎩,解得111433k ≤≤,因为06k ≤≤且k 为整数,所以4k =,此时最大的项为()44456C 2240T x x ==.故答案为:4240x 4.(2023·上海)二项式()71x -的展开式中,系数最大的项为.【答案】335x 【解析】()71x -展开式通项公式为()717C 1rr rr T x -+=-,07r ≤≤且r 为整数.要想系数最大,则r 为偶数,其中()007717C 1T x x =-=,()225537C 121T x x =-=,()44357C 135T x x 3=-=,()6677C 17T x x =-=,显然系数最大项为3535T x =.故答案为:335x 考法六(二项式)系数和--赋值法【例6-1】(2023·广东佛山)(多选)已知()()()()102108012102111x x a a x a x a x ++=+++++++ ,则下列结论正确的是()A .02a =B .217a =C .13579384a a a a a ++++=D .0121023116144a a a a ++++= 【答案】ACD【解析】对于A ,令=1x -,则1080(12)(1)112a =-++-=+=,故A 正确;对于B ,因为108108(2)[(1)1][(1)1]x x x x ++=++++-,所以8662108C C (1)73a =+⋅-=,B 错误;对于C ,令0x =,则10011021024a a a +++== ,令2x =-,则8012102256a a a a -+-+== ,所以1357910242563842a a a a a -++++==,故C 正确;对于D ,由选项B 可知,977564110831084108C C (1)2,C C 64,C C 280a a a =+-==+⨯=-==,5342312510861087108810C C 196,C C 238,C C 112,C 146,a a a a =-==+==-==+=109101010C 10,C 1a a ====,所以01210231122237346452806196a a a a +++⋯+=+⨯+⨯+⨯+⨯+⨯7238811294610101116144+⨯+⨯+⨯+⨯+⨯=,故D 正确.故选:ACD.【例6-2】(2023·广东佛山)(多选)若5250125(1)(1)(1)x a a x a x a x =+-+-++- ,其中(0,1,,5)i a i = 为实数,则()A .01a =B .310a =C .13516a a a ++=-D .1251a a a +++= 【答案】AC【解析】令1x =可得01a =,A 正确.()5511x x =-+,其展开式的第三项是()()33235C 1101T x x =-=--,所以310a =-,B 不正确.令0x =可得01250a a a a ++++= ,所以1251a a a +++=- ,D 不正确.令2x =可得012532a a a a -++-= ,与01250a a a a ++++= 相减可得13516a a a ++=-,C 正确.故选:AC【一隅三反】1.(2023·河北)(多选)若()()20232320230123202332R x a a x a x a x a x x -=+++++∈ ,则()A .202302a =B .20230242022152a a a a -++++=C .20231352023512a a a a --++++=D .20233202312232023213333a a a a ++++=- 【答案】BD【解析】对于A ,当0x =时,()20232023022a =-=-,A 错误;对于B ,C ,当1x =时,20230123202311a a a a a +++++== ,当=1x -时,20230123202220235a a a a a a -+-++-=- ,所以20230242022152a a a a -++++= ,13a a+202352023512a a ++++= ,所以B 正确,C 错误;对于D ,当13x =时,20232023120220231323333a a a a ⎛⎫⨯-=++++ ⎪⎝⎭,所以()20232023123202302320231213333a a a a a ++++=--=- ,D 正确.故选:BD .2.(2023·江苏扬州·高二统考期中)(多选)()201212nn n x a a x a x a x -=++++ 的展开式中第3项和第11项的二项式系数相等,则以下判断正确的是()A .第7项的二项式系数最大B .所有奇数项二项式系数的和为132C .21212121222a a a+++=- D .12312231212a a a a ++++=- 【答案】AC【解析】由题意,可得210C C n n =,所以12n =,对于A 中,根据二项式定理的性质,可得中间项第7项的二项式系数最大,所以A 正确;对于B 中,根据二项式系数的性质,可得所有奇数项二项式系数的和为112,所以B 错误;对于C 中,对于C 中,令12x =,可得1212122102(11)0222a a a a ++++=-= ,令0x =,可得01a =,所以21212121222a a a +++=- ,所以C 正确;对于D 中,由()122120121212x a a x a x a x -=++++ ,可得()122120121212()x a a x a x a x '⎡⎤-=++++⎣⎦' ,即2111231211224(12)312a a x a x x a x -=+++-+ ,令1x =,可得1231112231224(12)24a a a a =+--+⨯+=+ ,所以D 错误.故选:AC.3.(2024·黑龙江·高二校联考期末)(多选)若()82801281(1)(1)x a a x a x a x =+-+-++- ,其中0128,,,,a a a a 为实数,则()A .01a =B .656a =C .1357128a a a a +++=D .2468128a a a a +++=【答案】AC【解析】令1t x =-,则原式转化为8280128(1)t a a t a t a t +=++++ ,对A ,令0=t ,得01a =,故A 正确;对B ,由二项式定理得6a =28C 28=,故B 错误;对CD ,令1t =,得801282a a a a ++++= ,令1t =-,得01280a a a a -+-+= ,所以71357024682128a a a a a a a a a +++=++++==,所以2468127a a a a +++=,故C 正确,D 错误.故选:AC考法七余数与小数【例7-1】(2023下·河南郑州·高二校联考期中)108除以49所得的余数是.【答案】22【解析】法一:由10010198291010101010(71)C 7C 7...C 7C 718=+=+++++,前9项可以被49整除,而910C 71714922+==+,故余数为22.法二:由510564(58491)==+5423324549515491015491015495154915=+⨯⨯+⨯⨯+⨯⨯+⨯⨯+,而515759375491549722==⨯+,故余数为22.故答案为:22【例7-2】.(2023·高二课时练习)将50.991精确到0.01的近似值是.【答案】0.96【解析】因为()55011225550.99110.009C 1C 0.009C 0.00910.0450.000810.95581=-=⨯-⨯+⨯-≈-+= ,且将50.991精确到0.01,故近似值为0.96故答案为:0.96【一隅三反】1.(2023安徽)1.028的近似值是.(精确到小数点后三位)【答案】1.172【解析】由题意得:8801223388881.02(10.02)0.020.020.02 1.172C C C C =+≈+⋅+⋅+⋅≈.故答案为:1.1722.(2023上·河北)1098除以1000的余数是.【答案】24【解析】因为10101922899101010101010109(1002)100+C (2)100+C (2)10C 80(2)100+C (2)=-=⨯-⨯⨯-⨯++⨯-⨯⨯-L 101922891010=[100+C (2)100+C (2)100(2)1000]+1024⨯-⨯⨯-⨯++-⨯L 101922891010=[100+C (2)100+C (2)100(2)1000+1000]24⨯-⨯⨯-⨯++-⨯+L ,所以1098除以1000的余数是:24.故答案为:243.(2023下·江苏淮安·高二江苏省郑梁梅高级中学校考阶段练习)今天是星期日,经过7天后还是星期日,那么经过202315天后是()A .星期日B .星期一C .星期三D .星期四【答案】B【解析】()202320232023120222022202320231514114C 14C 141=+=+++⨯+ ,因为20231202220222023202314C 14C 14+++⨯ 能被7整除,所以202315除以7余1,所以经过202315天后是星期一.故选:B.4.(2024·甘肃武威)干支纪年是中国古代的一种纪年法.分别排出十天干与十二地支如下:天干:甲乙丙丁戊己庚辛壬癸地支:子丑寅卯辰巳午未申酉戌亥把天干与地支按以下方法依次配对:把第一个天干“甲”与第一个地支“子”配出“甲子”,把第二个天干“乙”与第二个地支“丑”配出“乙丑”,L ,若天干用完,则再从第一个天干开始循环使用.已知2023年是癸卯年,则8132+年以后是年.【答案】丙午【解析】因为88817788132(121)212C 12C 123+=++=+⨯++⨯+ ,所以8132+年以后地支为“午”.因为8881777888132(103)210C 103C 10332+=++=+⨯⨯++⨯⨯++ ,又因为88326563,32+=+除以10余数为3,所以8132+年以后天干为“丙”,故8132+年以后是丙午年.故答案为:丙午考法八杨辉三角的应用【例8】(2023·广东广州)(多选)我国南宋数学家杨辉在1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.该表蕴含着许多的数学规律,下列结论正确的是()第0行1第1行11第2行121第3行1331第4行14641第5行15101051第6行1615201561…………A .3333434520232024C C C C C ++++= B .11111=,211121=,L ,51115101051=C .从左往右逐行数,第2023项在第63行第7个D .第5行到第10行的所有数字之和为2024【答案】AC【解析】对于A 选项,由组合数的计算性质()1*1C C C ,,m m m n n n m n m n -++=∈<N ,所以,3333433334520234452023C C C C C C C C ++++=++++ 433434552023202320232024C C C C C C =+++==+= ,A 对;对于B 选项,()555122334455555111101C 10C 10C 10C 1010=+=+⋅+⋅+⋅+⋅+15010001000050000100000161051=+++++=,B 错;对于C 选项,第()n n ∈N 行共有1n +项,从左往右逐行数,第n 行最后一项对应的项数为()()()1212312n n n n ++++++++= ,因为()()62162220162++=,且202320167=+,所以,从左往右逐行数,第2023项在第63行第7个,C 对;对于D 选项,第()*n n ∈N 行所有项之和为01C C C 2n n n n n ++=+ ,所以,第5行到第10行的所有数字之和为()565610212222201612-+++==- ,D 错.故选:AC.【一隅三反】1.(2023·山东青岛·高二校联考期中)(多选)我国南宋数学家杨辉1261年所著的《详解九章算法》一书中展示了二项式系数表,数学爱好者对杨辉三角做了广泛的研究.则下列结论正确的是()A .123367891C C C C +++=B .第2023行的第1012个和第1013个数最大C .第6行、第7行、第8行的第7个数之和为第9行的第7个数D .第34行中从左到右第14个数与第15个数之比为2:3【答案】ABD【解析】A 选项,123678768761C C C 168421321⨯⨯⨯+++=+++=⨯⨯⨯,39987C 84321⨯⨯==⨯⨯,故A 正确;B 选项,由图可知:第n 行有1n +个数字,如果n 是奇数,则第12n +和第112n ++个数字最大,且这两个数字一样大;如果n 是偶数,则第12n+个数字最大,故第2023行的第1012个和第1013个数最大,故B 正确;C 选项,第6行,第7行,第8行的第7个数字分别为:1,7,28,其和为36;第9行第7个数字是84,故C 错误;D 选项,依题意:第34行第14个数字是133434!C 13!21!=⨯,第34行第15个数字是143434!C 14!20!=⨯,所以133443434!C 213!21!2:334!C314!20!⨯===⨯,故D 正确.故选:ABD.2.(2024上·江西·高二校联考期末)杨辉三角(如下图所示)是数学史上的一个伟大成就,杨辉三角中从第2行到第2023行,每行的第3个数字之和为()A .32023C B .32024C C .32023C 1-D .32024C 1-【答案】B【解析】()()()()()()()1!C !1!!!+!!1!1!C 1!r r n n n r n n r n n r n r r n r r n r +⋅++⋅-=+=-+--+-()()()()()()11!11!1!!1!C !r n n n n r n r r n r ++⋅++===+-+-,由题意可得,第2行到第2023行,每行的第3个数字之和为2222322232223420233342023442023C C C C C C C C C C C ++++=++++=+++ 323202320232024C C C ==+= ,故选:B .3.(2023上·湖北)如图,“杨辉三角”是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,比欧洲发现早500年左右.现从杨辉三角第20行随机取一个数,该数大于2023的概率为()A .1321B .1320C .57D .34【答案】A【解析】由杨辉三角的性质知第20行的数为()20C 020,N ii i ≤≤∈,一共有21个数,其中012342020202020C 1,C 20,C 190,C 1140,C 48452023=====>,由杨辉三角的对称性可知,第20行中大于2023的数的个数为214231-⨯=,故所求概率为1321.故选:A.一.单选题1.(2023·四川南充)二项式62x ⎫-⎪⎭的展开式中常数项为()A .60-B .60C .210D .210-【答案】B【解析】展开式的通项为()611216=C 2kkk k T x x --+骣琪-琪桫,所以()()161022k k k -+-´=Þ=,常数项为()2665C 24602k´-=´=,故选:B.2.(2023·河北)若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-= ,则012020a a a +++= ()A.1B.0C.20202D.20212【答案】C【解析】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=L Q ,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+L .故选:C.3.(2024上海)二项式30的展开式中,其中是有理项的项数共有()A.4项B.7项C.5项D.6项【答案】D【解析】二项式30的展开式中,通项公式为5153063030rr r r rC C x --⋅⋅=⋅,030r ≤≤,0,6,12,18,24,30r ∴=时满足题意,共6项.故选:D.4.(2023安徽省)在12nx ⎫-⎪⎭的展开式中,只有第5项的二项式系数最大,则展开式中5x 的系数为()A.7-B.358-C.358D.7【答案】D【解析】因为在12n x ⎫-⎪⎭的展开式中,只有第5项的二项式系数最大所以8n =所以812x ⎫-⎪⎭的展开式的通项88218811,0,1,2,,822rrrr r r r T C x C x r +-+⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭令852r +=,得2r =所以展开式中5x 的系数为228172C ⎛⎫-= ⎪⎝⎭故选:D 5.(2023安徽)()6111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为()A.15B.20C.30D.35【答案】D【解析】因为()61x +展开式的通项为6C r r x ,所以()6111x x ⎛⎫++ ⎪⎝⎭展开式中含2x 的项为2261C x ⋅和3631x C x ⋅.因为2366152035C C +=+=,所以()6111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为35.故选:D6.(2023下·四川达州·高二统考期末)()3212x x -+的展开式中,3x 的系数为()A .20B .20-C .15-D .15【答案】B 【解析】()()632112x x x --+=,其展开式的通项为:()616C 1rrr r T x -+=⋅⋅-,取3r =得到3x 的系数为()336C 120⋅-=-.故选:B .7.(2023云南)在71x x ⎛⎫- ⎪⎝⎭的二项展开式中,系数最大的是第()项A.3B.4C.5D.6【答案】C【解析】在二项式71x x ⎛⎫- ⎪⎝⎭的展开式中,通项公式为772+177()()r r r r r r rr T C x x C x ---=⋅⋅-=-,故第r +1项的系数为7(1)r rC -,当0,2,4,6r =时,系数为正,因为0162477777C C C C C <=<<,所以当r =4时,系数最大的项是第5项.故选:C8.(2023·江西赣州·)在52x x ⎛⎫- ⎪⎝⎭的展开式中,下列说法不正确的是()A .不存在常数项B .所有二项式系数的和为32C .第3项和第4项二项式系数最大D .所有项的系数和为1【答案】D【分析】根据给定的二项式,写出展开式判断A ;利用二项式性质判断BC ;利用赋值法计算判断D 作答.【详解】523450514233245555555222222C C C C C C x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=+⋅-+⋅-+⋅-+⋅-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭53358080321040x x x x x x =-+-+-,因此在52(x x-的展开式中没有常数项,A 正确;52(x x-的展开式的所有二项式系数的和为5232=,B 正确;52(x x -的展开式的第3项和第4项二项式系数相等,并且最大,C 正确;当1x =时,52(x x-的展开式的所有项的系数和为5(1)1-=-,D 错误.故选:D二.多选题9.(2024·辽宁辽阳)若2nx⎛⎝展开式的二项式系数之和为64,则下列结论正确的是()A .该展开式中共有6项B .各项系数之和为1C .常数项为60-D .只有第4项的二项式系数最大【答案】BD【解析】因为二项式系数之和为64,即有264n =,所以6n =,则该展开式中共有7项,A 错误;令1x =,得该展开式的各项系数之和为1,B 正确;通项()()36662166C 21C 2rr rr r r rr T x x---+⎛=⋅⋅=-⋅⋅⋅ ⎝,令3602r -=,得4r =,()442561C 260T =-⨯⨯=,C 错误;二项式系数最大的是36C ,它是第4项的二项式系数,D 正确.故选:BD.10.(2023·辽宁朝阳)已知2,n ,8成等差数列,则在12nx x ⎛⎫- ⎪⎝⎭的展开式中,下列说法正确的是()A .二项式系数之和为32B .各项系数之和为1C .常数项为40D .展开式中系数最大的项为80x【答案】ABD【解析】由题意可得:22810n =+=,则5n =,对于选项A :二项式系数之和为5232=,故A 正确;对于选项B :令1x =,可得各项系数之和为()5211-=,故B 正确;对于选项C 、D :因为512x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为:()()55521551C 21C 2,0,1,2,3,4,5rrr r r r rr T x x r x ---+⎛⎫=-=-⋅⋅= ⎪⎝⎭,所以553135123280804010x x x x x x x x ---⎛⎫-=-+-+- ⎪⎝⎭,展开式中没有常数项,故C 错误;展开式中系数最大的项为80x ,故D 正确;故选:ABD.11.(2022上·辽宁本溪·高二校考期末)若202123202101232021(12)(R)x a a x a x a x a x x -=+++++∈ ,则()A .01220211a a a a ++++=-LB .20211352021312a a a a +++++=C .20210242020132a a a a -++++=D .123202123202112222a a a a++++=- 【答案】AD【解析】由题意,当0x =,2021011a ==,当1x =时,202101232021(1)1a a a a a +++++=-=- ,A 正确;当=1x -时,2021012320213a a a a a -+-+-= ,所以20211352021312a a a a +++++=- ,20210242020312a a a a -++++= ,B ,C 错误;2202120211212202122021111222222a a a a a a ⎛⎫⎛⎫+++=⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭,当12x =时,2202101220211110222a a a a ⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭,所以2202112202101111222a a a a ⎛⎫⎛⎫⨯+⨯++⨯=-=- ⎪ ⎪⎝⎭⎝⎭,D 正确.故选:AD .12.(2023下·河北沧州·高二统考期中)已知()112110121123x a a x a x a x -=++++ ,则()A .111231112a a a a ++++=-- B .11135791115a a a a a a +++++=-C .11111231152a a a a ++++=- D .12311231133a a a a ++++=- 【答案】ACD【解析】因为()112110121123x a a x a x a x -=++++ ,令0x =可得1102a =,令1x =可得()11012112311a a a a ++++=-⨯=- ①,所以111231112a a a a ++++=-- ,故A 正确;令=1x -可得()1111012310112315a a a a a a -+-++-=+⨯= ②,①-②得111357911152a a a a a a --+++++=,故B 错误;①+②得110246810152a a a a a a -++++++=,又()1123x -展开式的通项为()11111C 23rrr r T x -+=⋅⋅-(011r ≤≤且N r ∈),所以当r 为奇数时展开式系数为负数,当r 为偶数时展开式系数为正数,即0246810,,,,,0a a a a a a >,1357911,,,,,0a a a a a a <,所以12311a a a a ++++ 1111123101152a a a a a =-+-++-=- ,故C 正确;将()112110121123x a a x a x a x -=++++ 两边对x 求导可得:()102101231133232311x a a x a x a x --=++++ ,再令1x =可得()101231123113323133a a a a ++++=--⨯=- ,故D 正确;故选:ACD 三.填空题13.(2023下·安徽合肥·高二统考期末)已知012233C 4C 4C 4C (1)4C 729n n nn n n n n -+-++-= ,则n 的值为.【答案】6【解析】由012233C 4C 4C 4C (1)4C 729n n nn n n n n -+-++-= ,可得001112220C 1(4)C 1(4)C 1(4)C 1(4)729n n n n nn n n n--⋅⋅-+⋅⋅-+⋅⋅-++⋅⋅-= 则(14)729n -=,即6(3)729(3)n -==-,解得6n =.故答案为:6.14.(2023下·山西吕梁·高二统考阶段练习)20242023被4除的余数为.【答案】1【解析】因为20242024020241202322022202320242024202420242023(20241)C 2024C 2024C 2024C 20241=-=-+--+ ,且2024可以被4整除,所以余数为1.故答案为:1.15.(2023·北京)()82212x x x ⎛⎫-+ ⎪⎝⎭的展开式中常数项为.(用数字作答)【答案】2464-【解析】82x x ⎛⎫+ ⎪⎝⎭的展开式的通项8821882C C 2rr r r r rr T x x x --+⎛⎫=⋅= ⎪⎝⎭(0r =,1,2, (8).当4r =时,其展开式的常数项为448C 21120=;当=5r 时,其展开式中21x的系数为558C 21792=,则()82212x x x ⎛⎫-⋅+ ⎪⎝⎭的展开式中常数项为1120217922464-⨯=-.故答案为:2464-16.(2023上·山东·高二校联考阶段练习)()21nx x ++展开式中各项的系数可以仿照杨辉三角构造如图所示的广义杨辉三角,其性质是以下各行每个数是它正上方和左、右两边三个数的和(不足3个数时,用0补上),则()52(3)1x x x -++的展开式中,7x 项的系数为.【答案】45-【解析】根据题意,可得广义杨辉三角如图所示,可知()521x x ++的展开式中,6x 项的系数为745,x 项的系数为30,所以()()5231x x x -++的展开式中,7x 项的系数为14533045⨯-⨯=-.故答案为:45-四.解答题17.(2023·广东梅州)在二项式()92x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有偶数项系数之和;(4)系数绝对值之和.【答案】(1)512(2)1(3)9841-(4)19683【解析】(1)设()99872901292.x y a x a x y a x y a y -=++++ 二项式系数之和为012999999C C C C 2512++++== (2)设9987290129()2x y a x a x y a x y a y -=++++ ,则各项系数之和为0129a a a a ++++ ,令1,1,x y ==得()9012921 1.a a a a ++++=-= (3)由(2)知01291,a a a a ++++= 令1,1x y ==-可得:901293,a a a a -+--= 将两式相减,可得:9135791398412a a a a a -++++==-,故所有偶数项系数之和为9841-.(4)方法一:012901239,a a a a a a a a a ++++=-+-+- 令1,1,x y ==-则9012901239319683a a a a a a a a a ++++=-+-+-== 方法二:0129a a a a ++++ 即为()92x y +展开式中各项系数和,令1,1x y ==得90129319683a a a a ++++== 故系数绝对值之和为19683.18.(2023·全国·高二随堂练习)(1)求92x⎛⎝的展开式中的常数项;(2)若621x ax ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为52,求a 的值;(3)求(10611⎛⎝的展开式中的常数项;(4)若3nx ⎛⎫⎝的展开式中各项系数之和为128,求展开式中31x 的系数.【答案】答案见详解【解析】(1)设92x⎛⎝的展开式通项为:1r T +,则()()1199922199C 2C 21r r rr rr rr T x x r x -----+⎛⎫=⋅⋅-=⋅⋅-⋅ ⎪⎝⎭,当6r =时,6379C 2672T =⨯=;故92x⎛⎝的展开式中的常数项为672;(2)设621x ax ⎛⎫+ ⎪⎝⎭的展开式通项为:1r T +,则()62112316611C C r rrrr r r T xx x a a ---+⎛⎫⎛⎫=⋅⋅=⋅⋅ ⎪ ⎪⎝⎭⎝⎭,当3r =时,结合题意知此时3333334661515C C 222T x x a a a ⎛⎫⎛⎫=⋅⋅=⇒⋅=⇒= ⎪ ⎪⎝⎭⎝⎭;故a 的值为2;(3)设(10611⎛⎫ ⎪⎝⎭、的展开式通项分别为:11r m T H ++、,则3416110C C r m rm r m Tx H x -++==、,当0r m ==时,111T H ⨯=,当3,4r m ==时,454200T H ⨯=,当6,8r m ==时,7945T H ⨯=故(10611⎛⎝的展开式中的常数项为14200454246++=;(4)令1x =,则由题意可知21287n n =⇒=,设3nx ⎛⎫ ⎝的展开式通项为1r T +,则()()2577733177C 3C 31rrr r r r r r T x x x ----+⎛⎫=-=- ⎪⎝⎭,当6r =时,63377C 321T x x --=⨯=,故展开式中31x 的系数为21.19.(2023上·四川攀枝花·高二统考期末)从①第4项的系数与第2项的系数之比是74;②第3项与倒数第2项的二项式系数之和为36;这两个条件中任选一个,再解决补充完整的题目.已知()201221nn n x a a x a x a x -=+++⋅⋅⋅+(*N n ∈),且()21nx -的二项展开式中,____.(1)求n 的值;(2)①求二项展开式的中间项;②求123n a a a a +++⋅⋅⋅+的值.【答案】(1)条件选择见解析,8n =(2)①451120T x =;②831-.【解析】(1)若选择①第4项的系数与第2项的系数之比是74,则有()()()()()()33113112C 211273214244C 21 nn n n n n n n n n ----⋅⋅---⨯⨯=⋅⋅-==,化简可得24400n n --=,求得8n =或7n =-(舍去).若选择②第3项与倒数第2项的二项式系数之和为36,则有()221211C CC C 3622n nnnnn n n nn --+++=+===,化简可得2720n n +-=,求得8n =或9n =-(舍去).(2)由(1)可得8n =,①()821x -的二项展开式的中间项为()()454458C 211120T x x =⋅⋅-=.②二项式()821x -展开式的通项公式为()()()88888C 2112C rrrrr rr x x ---⋅⋅-=-⋅⋅⋅,所以0a 、2a 、4a 、6a 、8a 为正数,1a 、3a 、5a 、7a 为负数.在()828012821x a a x a x a x -=+++⋅⋅⋅+中,令00,1x a ==.再令1x =-,可得801238123831a a a a a a a a a =-+-+⋅⋅⋅+=++++⋅⋅⋅+,∴1238831a a a a +++⋅⋅⋅+=-.20.(2023下·江苏宿迁·高二统考期中)在()2021212222121D D D D D nn n n n nn n n n n x x x x x x ---++=+++++L 的展开式中,把0122,,,D D D D ,nn n n n 叫做三项式的n 次系数列.(1)求02463333D D D D +++的值;(2)根据二项式定理,将等式2(1)(1)(1)n n n x x x +=++的两边分别展开,可得左右两边的系数对应相等,如()()()()2222122C C C C C n n n nnnn=++++ ,利用上述思想方法,求001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C -+--+- 的值.【答案】(1)14(2)0【解析】(1)230615563333(1)D D D D x x x x x ++=++++ 令1x =得:3015633333D D D D =++++ ①令=1x -得:015633331D D D D =-+-+ ②①+②得:02463333282(D D D D )=+++,所以02463333D D D D 14+++=.(2)因为321(1)(1)x x x x -=-++所以()202332023220231(1)(1)x x x x -=-++,右边展开式中含4046x 项的系数为001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C -+--+- ,而展开式中左边含4046x 项的系数为0,所以001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C 0-+--+-= .21.(2023北京)在()20122112121221D D D D D D D nr r r r n n n nn n n n n n n x x x x x x x x ++--++=+++⋅⋅⋅+++⋅⋅⋅++中,把0122D ,D ,D ,,D nn n n n ⋅⋅⋅叫做三项式系数.(1)当2n =时,写出三项式系数0123422222D ,D ,D ,D ,D 的值;(2)()()*na b n N +∈的展开式中,二项式系数可用杨辉三角表示,如图:第1行11第2行121第3行1331第4行14641第5行15101051…………当04n <≤,*n ∈N 时,类比杨辉三角,请列出三项式系数表;(3)求011223398989999999999999999999999999999D C D C D C D C D C D C -+-+⋅⋅⋅+-的值(可用组合数作答).【答案】(1)02D 1=,12D 2=,22D 3=,32D 2=,42D 1=;(2)系数表见解析;(3)3399C .【解析】(1)因为()2223411232x x x x x x ++=++++,所以02D 1=,12D 2=,22D 3=,32D 2=,42D 1=.(2)当04n <≤,*n ∈N 时,三项式系数表如下:第1行111第2行12321第3行1367631第4行14101619161041(3)()()()9999201223319719719819899999999999911D D D D D D x x x x x x x x++⋅-=++++⋅⋅⋅++()09919829798999999999999C C C C C x x x x ⋅-+-⋅⋅⋅++,其中含99x 项的系数为0011229898999999999999999999999999D C D C D C D C D C -+-⋅⋅⋅+-,又()()()99999923111x x x x ++⋅-=-,()9931x -的展开式中的第1r +项为()()9931991C rrrr T x -+=-,令()39999r -=,解得66r =,所以含99x 项的系数为66339999C C =;所以001122339898999966339999999999999999999999999999D C D C D C D C D C D C C C -+-+⋅⋅⋅+-==.22.(2023上·上海松江·高二上海市松江二中校考阶段练习)已知函数()y f x =,*x ∈N ,满足:①对任意*,a b ∈N ,都有()()()()af a bf b af b bf a +>+;②对任意*n ∈N 都有()3f f n n ⎡⎤=⎣⎦.(1)试证明:()f x 为*N 上的严格增函数;(2)求()()()1628f f f ++;(3)令()3nn a f =,*n ∈N ,试证明:121111424n n n a a a ≤+++<+ .【答案】(1)证明见解析(2)66。

二项式定理经典习题与答案

二项式定理经典习题与答案

二项式定理1. 求(X ? 一丄)9展开式的:2x(1 )第6项的二项式系数; (2) 第3项的系数; (3)X 9的系数。

分析:(1)由二项式定理及展开式的通项公式易得:第6项的二项式系数为 C9 = 126 ;(2)T 3 (x 2)7 •(一丄)2 =9x 12,故第 3 项的系数为 9;2x(3)1=C ; (x 2)9」(-丄)r =(-丄)「C ;伙1…,令 18-3r =9,故 r = 3,所2x2求系数是(-丄)3C3 - -212 22. 求证:5151 -1能被7整除。

分析:5151 _1 =(49 +2)51 _1=C 5I 4951 +C5/ 950・2半…+c 5;49 ”250 + C ;;251 — 1 ,除CH 251 -1以外各项都能被7整除。

又 c ;; 251 -1 = (23)17 一1 =(7 +1)17 -1 =昭717 +c ;7716卄+砖7 + 硝 一1 显然能被7整除,所以5151 -1能被7整除。

3. 求9192除以100的余数。

分析:9192 = (90 +1)92=C 929092 +C 929091 半一+c9290 +c 9;由此可见,除后两项外均能被 100整除,而C 9290 + C 9; =8281 =82汉100+81 故9192除以100的余数为81。

4. (2009北京卷文)若(V 2)^a b. 2(a, b 为有理数),则a b -A . 33B . 29C . 23D . 19答案】Bw析】本题主要考查二项式定理及其展开式•属于基础知识 ' 基本运算的考查•41234•••( 1+Q +c4(V 2 丨 +c :(T 2) +c :W 2) +c :(T 2)=1 4.212 8 .2 4=1712& ,由已知,得 17 1^. 2 = a b.2 ,••• a - b=17 '12 = 29 •故选 B.5. ( 2009 北京卷理)若(1 • '.2)5 =a • b',2(a,b 为有理数),贝U a b = ( )A . 45B . 55C . 70D . 80答案】C解析】本题主要考查二项式定理及其展开式•属于基础知识、基本运算的考查5 0 1 2 3 4 51 =C5 .2 C5 ,2 C5 .2 C5 .2 C5 ,2 C5 ,2=1 20 2^2 20 4、、2 =45 29.2 ,由已知,得41 29.2 = a ^.2 ,二a • b = 41 • 29 二70•故选 C.16.已知(仮-一)n的展开式中,前三项系数的绝对值依次成等差数列2vx(1)证明展开式中没有常数项;(2)求展开式中所有的有理项分析:依条件可得关于n的方程求出n ,然后写出通项T r d ,讨论常数项和有理项对r 的限制。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

二项式定理(习题含答案)

二项式定理(习题含答案)

二项式定理(习题含答案)二项式定理一、求展开式中特定项1、在的展开式中,的幂指数是整数的共有() A .项 B .项 C .项 D .项【答案】C【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为.(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为,4、二项式的展开式中的常数项为.【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填.6、设,则的展开式中常数项是.【答案】 332,30x 4567()r r rrrr x C x x C T 65153********--+?==30......2,1,0=r =r 2531 ()x x+1x =232n =5n =2531()x x+10515r r r T C x -+=2r =2 510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420 sin 12cos 2x a x dx π=-+()622x ??+ ?332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ??=-+=+=-+= ??的展开式的通项为,所以所求常数项为.二、求特定项系数或系数和7、的展开式中项的系数是()A .B .C .D .【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是.【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是.【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为.10、已知,那么展开式中含项的系数为.【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于()A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2rr r r r rr r T C C x ---+==-??3633565566(1)22(1)2T C C --=-??+-?332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -?-3x 6(1)(2)x x -?-3x 336)(2x C -226)(x -x C -?)(3x 552-2636-=-C C dx xn 16e 1=n x x )(3-2x 66e111ln |6e n dx x x=?==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ?=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a 8210(2)454180.C -=?=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为.13、如果,那么的值等于()(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于.【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x-21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-?=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++017a a a +++1x =7270127(12)x a a x a x a x -=++++70127(12)1a a a a -=++++=-0x =7270127(12)x a a x a x a x -=++++70(10)1a -==12711a a a ++++=-1272a a a +++=-*3)()n n N ∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-(sin cos )k x x dx π=-?8822108)1(x a x a x a a kx ++++=- 1238a a a a ++++=0 (sin cos )(cos sin )k x x dx x x ππ=-=--?,令得:,即再令得:,即所以18、设(5x ﹣)n的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r=(﹣1)r54﹣r.令4﹣=1,解得r=2,∴展开式中x 的系数为(﹣1)r ??54﹣r =1×6×25=150,19、设,则.【答案】【解析】,所以令,得到,所以三、求参数问题20、若的展开式中第四项为常数项,则() A . B . C . D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则()(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -?=++++01281a a a a ++++=0x =80128(120)000a a a a -?=+?+?++?01a =12380a a a a ++++=8877108)1(x a x a x a a x ++++=- 178a a a +++=255178a a a +++=87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =456725333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,.23、若的展开式中的系数为10,则实数() A或1 B .或1 C .2或 D .【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B .24、设,当时,等于()A .5B .6C .7D .8 【答案】C .【解析】令,则可得,故选C .四、其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+20162013﹣20162012+…+2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+?=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n6=n 4r+14T =C r r r a x -43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r r r T C a x +=22144101C a C a a +=?=53-23(1)(1)(1)(1)nx x x x ++++++++2012n n a a x a x a x =++++012254n a a a a ++++=n 1x =2312(21)22222225418721 n nn n n +-++++= =-=?+=?=-。

二项式定理4(含答案)

二项式定理4(含答案)

二项式定理知识梳理:1.二项式定理的有关概念(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n n b n(n ∈N *),这个公式叫做______________.①二项展开式:右边的多项式叫做(a +b )n 的二项展开式. ②项数:二项展开式中共有________项.③二项式系数:在二项展开式中各项的系数________(k =______________)叫做二项式系数.④通项:在二项展开式中的________________叫做二项展开式的通项,用T k +1表示,即通项为展开式的第k +1项:T k +1=____________________.2.二项式系数的性质(1)对称性:与首末两端________的两个二项式系数相等.(2)增减性与最大值:当n 是偶数时,中间的一项二项式系数________________取得最大值;当n 为奇数时,中间的两项二项式系数____________、________________________相等,且同时取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =______,C 0n +C 2n +C 4n +…+C 偶n =________,C 1n +C 3n +C 5n +…+C 奇n =________.自我检测 1.(2011·福建)(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .102.(2011·陕西)(4x-2-x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15 D .20 3.(x -2y )10的展开式中x 6y 4项的系数是( ) A .840 B .-840 C .210 D .-2104.(2010·四川)⎝⎛⎭⎪⎫2-13x 6的展开式中的第四项是______.5.(2011·山东)若(x -ax2)6展开式的常数项为60,则常数a 的值为________.6.(2011·烟台期末)已知n 为正偶数,且⎝⎛⎭⎫x 2-12x n 的展开式中第4项的二项式系数最大,则第4项的系数是__________.(用数字作答) 探究点一 二项展开式及通项公式的应用例1 已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.变式迁移1 (2010·湖北)在(x +43y )20的展开式中,系数为有理数的项共有________项. 探究点二 二项式系数的性质及其应用例2 (1)求证:C 1n +2C 2n +3C 3n +…+n C nn =n ·2n -1; (2)求S =C 127+C 227+…+C 2727 除以9的余数.变式迁移2 (2011·上海卢湾区质量调研)求C 22n +C 42n +…+C 2k 2n +…+C 2n2n 的值.探究点三 求系数最大项例3 已知f (x )=(3x 2+3x 2)n 展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.变式迁移3 (1)在(x +y )n 的展开式中,若第七项系数最大,则n 的值可能等于( ) A .13,14 B .14,15 C .12,13 D .11,12,13(2)已知⎝⎛⎭⎫12+2x n,(ⅰ)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数的最大项的系数;(ⅱ)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.学案 二项式定理自主梳理1.(1)二项式定理 ②n +1 ③C k n 0,1,2,…,n ④C k n an -k b kC k n an -k b k 2.(1)等距离 (2)2nn C 12n n C + 12n nC -(3)2n 2n -1 2n -1自我检测 1.B [(1+2x )5的第r +1项为T r +1=C r 5(2x )r =2r C r 5x r ,令r =2,得x 2的系数为22·C 25=40.]2.C [设展开式的常数项是第r +1项,则T r +1=C r 6·(4x )r ·(-2-x )6-r ,即T r +1=C r 6·(-1)6-r ·22rx ·2rx -6x =C r 6·(-1)6-r ·23rx -6x ,∴3rx -6x =0恒成立.∴r =2,∴T 3=C 26·(-1)4=15.∴选C.]3.A4.-160x5.4解析 (x -a x2)6展开式的通项为T r +1=C r 6x 6-r (-1)r ·(a )r ·x -2r =C r 6x 6-3r(-1)r ·(a )r . 令6-3r =0,得r =2.故C 26(a )2=60,解得a =4.6.-52课堂活动区例1 解题导引 (1)通项T r +1=C r n an -r b r是(a +b )n 的展开式的第r +1项,而不是第r 项;二项式系数与项的系数是完全不同的两个概念,二项式系数是指C r n ,r =0,1,2,…,n ,与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分.(2)求二项展开式中的有理项,一般是根据通项公式所得到的项,其所有的未知数的指数恰好都是整数的项.解这种类型的问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数,再根据数的整除性来求解.若求二项展开式中的整式项,则其通项公式中同一字母的指数应是非负整数,求解方式与求有理项的方式一致.解 (1)通项公式为T r +1=C r n3n rx-⎝⎛⎭⎫-12r 3rx - =C r n⎝⎛⎭⎫-12r 23n r x -,因为第6项为常数项,所以r =5时,有n -2r3=0,即n =10.(2)令n -2r 3=2,得r =12(n -6)=12×(10-6)=2, ∴所求的系数为C 210⎝⎛⎭⎫-122=454.(3)根据通项公式,由题意得⎩⎨⎧10-2r3∈Z ,0≤r ≤10,r ∈N .令10-2r 3=k (k ∈Z ),则10-2r =3k ,即r =5-32k ,∵r ∈N ,∴k 应为偶数.∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为C 210⎝⎛⎭⎫-122x 2,C 510⎝⎛⎭⎫-125,C 810⎝⎛⎭⎫-128x -2. 变式迁移1 6解析 展开式的通项T r +1=C r 20·x 20-r ·(43y )r =C r 20·x 20-r ·y r ·43r.由0≤r ≤20,r4∈Z 得r =0,4,8,12,16,20.所以系数为有理数的项共有6项.例2 解题导引 (1)在有关组合数的求和问题中,经常用到形如C 0n =C n n =C n +1n +1,C kn =C n -k n ,k C k n =n C k -1n -1等式子的变形技巧;(2)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式.求余数问题时,应明确被除式f (x )、除式g (x )[g (x )≠0]、商式q (x )与余式的关系及余式的范围.(1)证明 方法一 设S =C 1n +2C 2n +3C 3n +…+(n -1)·C n -1n +n C n n ,① ∴S =n C n n +(n -1)C n -1n +(n -2)C n -2n +…+2C 2n +C 1n =n C 0n +(n -1)C 1n +(n -2)C 2n +…+2C n -2n +C n -1n ,② ①+②得2S =n (C 0n +C 1n +C 2n +…+C n -1n +C n n )=n ·2n . ∴S =n ·2n -1.原式得证. 方法二 ∵k n C k n =k n ·n !k !(n -k )!=(n -1)!(k -1)!(n -k )!=C k -1n -1,∴k C k n =n C k -1n -1.∴左边=n C 0n -1+n C 1n -1+…+n C n -1n -1=n (C 0n -1+C 1n -1+…+C n -1n -1)=n ·2n -1=右边. (2)解 S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2 =9(C 09×98-C 19×97+…+C 89-1)+7,显然上式括号内的数是正整数. 故S 被9除的余数为7.变式迁移2 解 (1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n. 令x =1得C 02n +C 12n +…+C 2n -12n +C 2n 2n =22n ;再令x =-1得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n 2n =0.两式相加,再用C 02n =1,得C 22n +C 42n +…+C 2n 2n =22n2-1=22n -1-1.例3 解题导引 (1)求二项式系数最大的项:如果n 是偶数,则中间一项[第⎝⎛⎭⎫n 2+1项]的二项式系数最大;如果n 是奇数,则中间两项[第n +12项与第⎝ ⎛⎭⎪⎫n +12+1项]的二项式系数相等且最大;(2)求展开式系数最大的项:如求(a +bx )n (a ,b ∈R )的展开式中系数最大的项,一般是采用待定系数法.设展开式各项系数分别为A 1,A 2,…,A n +1,且第r +1项系数最大,应用⎩⎪⎨⎪⎧A r ≥A r -1A r ≥A r +1解出r 来,即得系数最大的项. 解 (1)令x =1,则二项式各项系数的和为 f (1)=(1+3)n =4n ,又展开式中各项的二项式系数之和为2n . 由题意知,4n -2n =992.∴(2n )2-2n -992=0,∴(2n +31)(2n -32)=0, ∴2n =-31(舍),或2n =32,∴n =5.由于n =5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是T 3=C 2523x 骣琪琪桫3(3x 2)2=90x 6, T 4=C 3523x 骣琪琪桫2(3x 2)3=270223x .(2)展开式的通项公式为T r +1=C r 53r·()2523r x+.假设T r +1项系数最大,则有⎩⎪⎨⎪⎧C r 53r ≥C r -15·3r -1,C r 53r ≥C r +15·3r +1,∴⎩⎪⎨⎪⎧5!(5-r )!r !×3≥5!(6-r )!(r -1)!,5!(5-r )!r !≥5!(4-r )!(r +1)!×3.∴⎩⎪⎨⎪⎧3r ≥16-r,15-r ≥3r +1.∴72≤r ≤92,∵r ∈N ,∴r =4. 变式迁移3 (1)D [(1)分三种情况:①若仅T 7系数最大,则共有13项,n =12;②若T 7与T 6系数相等且最大,则共有12项,n =11;③若T 7与T 8系数相等且最大,则共有14项,n =13,所以n 的值可能等于11,12,13,故选D.](2)解 (ⅰ)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∵n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝⎛⎭⎫12423=352, T 5的系数为C 47⎝⎛⎭⎫12324=70, 当n =14时,展开式中二项式系数的最大的项是T 8. ∴T 8的系数为C 714⎝⎛⎭⎫12727=3 432. (ⅱ)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0.∴n =12或n =-13(舍去). 设T k +1项的系数最大, ∵⎝⎛⎭⎫12+2x 12=⎝⎛⎭⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1.∴9.4≤k ≤10.4.∴k =10.∴展开式中系数最大的项为T 11,T 11=⎝⎛⎭⎫1212C 1012410x 10=16 896x 10.专项训练1.在⎝ ⎛⎭⎪⎫1x -2x 6的展开式中x 2的系数是________.解析 设展开式中第r +1项是x 2项, 则由T r +1=C r 6⎝ ⎛⎭⎪⎫1x 6-r ·(-2x )r =(-2)r C r 6x2r -6, 得2r -6=2,解得r =4.∴x 2项系数为(-2)4C 46=16×15=240. 答案 2402.若⎝ ⎛⎭⎪⎫x 2+1ax 6的二项展开式中x 3的系数为52,则a =________.解析 设第r +1项的系数为52,则T r +1=C r 6(x 2)6-r ⎝ ⎛⎭⎪⎫1ax r =C r 61a r x 12-3r, 令12-3r =3,得r =3,∴C 361a 3=52, ∴a 3=8,a =2. 答案 23.⎝⎛⎭⎪⎫xy-y x 6的展开式中,x 3的系数等于________. 解析 ⎝ ⎛⎭⎪⎫xy -y x 6的通项为T r +1=C r 6⎝⎛⎭⎪⎫x y 6-r ⎝⎛⎭⎪⎫-y x r =C r 6(-1)rx 6-32ry 32r -3, 令6-32r =3,得r =2,32r -3=0,故x 3的系数为C 26(-1)2=15.答案 154.⎝ ⎛⎭⎪⎫2x +1x 27的展开式中倒数第三项为________. 解析 由于n =7,可知展开式中共有8项, ∴倒数第三项也为正数第六项. ∴T 6=C 57(2x )2⎝ ⎛⎭⎪⎫1x 25=22·C 57·1x 8. 答案 84x 85.已知(1+ax )5=1+10x +bx 2+…+a 5x 5,则b =________. 解析 根据题意知,二项展开式的第二项为C 15·ax =10x ,∴a =2.第三项为C 25·(ax )2=bx 2,即b =40.答案 406.如果⎝ ⎛⎭⎪⎫x +1x 2n 的展开式中第4项与第6项的系数相等,求n 及展开式中的常数项.解 由已知可得C 32n =C 52n ,所以3+5=2n ,即n =4. 所以展开式中的通项为T r +1=C r 8x8-2r , 若它为常数项,则r =4,所以T 5=C 48=70.综合提高 (限时30分钟)7.⎝ ⎛⎭⎪⎫x 2-1x n的展开式中,常数项为15,则n =________. 解析 ⎝ ⎛⎭⎪⎫x 2-1x n 的通项为T r +1=C r n x 2(n -r )·(-1)r ·x -r =(-1)r ·C r n ·x 2n -3r . 令2n -3r =0,则2n =3r ,即r =23n . 当n =3时,r =2,T r +1≠15, 当n =6时,r =4,T r +1=15. 答案 68.(1+2x 2)⎝ ⎛⎭⎪⎫x -1x 8的展开式中的常数项为________.解析 设⎝ ⎛⎭⎪⎫x -1x 8的第r +1项为T r +1=(-1)r C r 8x8-2r. 则令8-2r =0,得r =4;令8-2r =-2,得r =5. 故原式展开式中常数项为1×(-1)4C 48+2×(-1)5C 58=-42.答案 -429.设f (x )=(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)2+5(2x +1)-1,则f (x )=________.解析 f (x )=C 05(2x +1)5+C 15(2x +1)4·(-1)+ C 25(2x +1)3·(-1)2+C 35(2x +1)2·(-1)3+ C 45(2x +1)·(-1)4+C 55(-1)5=(2x +1-1)5=32x 5.答案 32x 510.(1-x )4(1+x )4的展开式中x 项的系数是________. 解析 ∵(1-x )4(1+x )4=(1-x )4,∴展开式中含x 的项为C 14(-x )1=-4x ,故展开式中x 项的系数为-4. 答案 -411.在(3-x )20(x ∈R ,x ≠0)的展开式中,已知第2r 项与第r +1项(r ≠1)的二项式系数相等. (1)求r 的值;(2)若该展开式的第r 项的值与倒数第r 项的值的1256相等,求x 的值.解 (1)由题意知C 2r -120=C r20,即2r -1=r 或2r -1=20-r ,解得r =7或r =1(舍去).(2)T r =C r -120·321-r ·(-x )r -1,当r =7时,T 7=C 620·314·x 6, 倒数第7项,即T 15=C 1420·36·x 14, 由题意C 620·314·x 6=1256·C 1420·36·x 14, 解得x =±6.12.(3x +32)100展开式所得关于x 的多项式中系数为有理数的共有多少项?解,若第k +1项的系数为有理数,则50-k 2,k3均为整数,故k 为6的倍数时,第k +1项的系数为有理数.∵0≤k ≤100,∴k =6×0,6×1,6×2,…,6×16时,项的系数为有理数,故有17项系数为有理数.13.(创新拓展)求⎝ ⎛⎭⎪⎫a +1a 2+110展开式中的常数项. 解 ∵⎝ ⎛⎭⎪⎫a +1a 2+110=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫a +1a 210,则其通项为:T k +1=C k 10·⎝ ⎛⎭⎪⎫a +1a 2k , (其中k =0,1,2,…,9).要求原式的常数项,则需要求⎝ ⎛⎭⎪⎫a +1a 2k 的展开式中的常数项. ∵T r +1=C r k ·a k -r ·a -2r =C r k ·a k -3r (其中r =0,1,2,…,k ). 由题意,令k -3r =0,则k =3r ,即k 是3的倍数,所以k =0,3,6,9.当k =0时,C 010=1.当k =3时,r =1,C 310·C 13=360. 当k =6时,r =2,C 610·C 26=3 150. 当k =9时,r =3,C 910·C 39=840. 所以原式展开式中的常数项是C 010+C 310·C 13+C 610·C 26+C 910·C 39=4 351.高考专区:1.(2011·陕西高考理科·T4)6(42)xx --(x ∈R )展开式中的常数项是 ( )(A )20- (B )15- (C )15 (D )20【思路点拨】根据二项展开式的通项公式写出通项,再进行整理化简,由x 的指数为0,确定常数项是第几项,最后计算出常数项.选C.62(6)1231666(1)(4)(2)(1)22(1)2-----+=-=-⋅⋅=-⋅r r x r x r r r x r xr r rx xr r T C C C , 令1230x xr -=,则4r =,所以45615T C ==,故选C .2.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( ) (A )154-(B )154 (C )38-(D )38【思路点拨】利用二项展开式定理求解. 选C. 6226216(1)2--+=-r rrr r T C x,令1422662321,2.28--===-=-r r T C x 得, 3.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( )(A )80 (B )40 (C )20 (D )10【思路点拨】先利用二项式定理写出展开式中的2x 项,再从中提取“系数”.【精讲精析】选B. 由二项式定理易得,5(12)x +的展开式中的222225240x C x x =项为,2x ∴ 的系数等于40.4.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )(A )-40 (B )-20 (C )20 (D )40【思路点拨】用赋值法求各项系数和,确定a 的值,然后再求常数项,也可以用组合提取法求解.【精讲精析】选D.解析1: 令1x =,可得51()(2)a x x x x+-的展开式中各项系数和为1+a ,∴12a +=,即1a =.51(2)x x -的通项公式5151(2)()r r r r T C x x-+=-552r r C -=⋅52(1).r r x --∴511()(2)x x x x+-的展开式中的常数项为323152(1)x C x -⋅⋅- 232512(1)+⋅⨯-C x x=40. 解析2:用组合提取法,把原式看做6个因式相乘,若第1个括号提出x ,从余下的5个括号中选2个提出x ,选3个提出1x ;若第1个括号提出1x ,从余下的括号中选2个提出1x ,选3个提出x .故常数项为223322335353111(2)()()(2)408040.x C x C C C x xx x⋅⋅-+⋅-⋅=-+= 二、填空题5.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则1110a a += .【思路点拨】利用二项式展开式的性质,可知第11项和第12项二项式系数最大,且项的系数互为相反数.【精讲精析】利用二项式展开式的性质,可知第11项和第12项二项式系数最大,且项的系数互为相反数,即1110a a +=0. 【答案】0。

二项式定理经典习题及答案

二项式定理经典习题及答案

二项式定理1.求()xx2912展开式的:(1)第6项的二项式系数;(2)第3项的系数;(3)x 9的系数。

分析:(1)由二项式定理及展开式的通项公式易得:第6项的二项式系数为C95126;(2)T Cx x x 39227212129()(),故第3项的系数为9;(3)T C x xCxrr rrrrr192991831212()()(),令1839r ,故r =3,所求系数是()12212393C2.求证:51151能被7整除。

分析:5114921494924922151515105151150515150515151()C C C C ,除C 51515121以外各项都能被7整除。

又C C C C C5151513171717017171161716171721217117771()()显然能被7整除,所以51151能被7整除。

3.求9192除以100的余数。

分析:919019090909292920929219192919292()C C C C由此可见,除后两项外均能被100整除,而C C929192929082818210081故9192除以100的余数为81。

4.(2009北京卷文)若4(12)2(,a b a b 为有理数),则a bA .33B . 29C .23D .19【答案】 B【解析】本题主要考查二项式定理及其展开式. 属于基础知识、基本运算的考查.∵4123401234444441222222CCCCC1421282417122,由已知,得171222a b ,∴171229a b.故选B.5.(2009北京卷理)若5(12)2(,a b a b 为有理数),则a b()A .45B .55C .70D .80【答案】C【解析】本题主要考查二项式定理及其展开式. 属于基础知识、基本运算的考查.∵51234501234555555512222222CCCCCC15220202204241292,由已知,得412922a b ,∴412970a b.故选 C.6.已知()xxn124的展开式中,前三项系数的绝对值依次成等差数列。

第三节二项式定理

第三节二项式定理

第三节二项式定理[知识梳理] 1.二项式定理(1)二项式定理:(a+b)nC0n a n C1n a n-1C k n n-k k C n n b n*(2)通项公式:T k+1=C k n a n(3)(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.2.二项式系数的性质[常用结论]若二项展开式的通项为T r+1=g(r)·x h(r)(r=0,1,2,…,n),g(r)≠0,则有以下常见结论:(1)h(r)=0⇔T r+1是常数项.(2)h(r)是非负整数⇔T r+1是整式项.(3)h(r)是负整数⇔T r+1是分式项.(4)h (r )是整数⇔T r +1是有理项.[基础自测]一、走进教材1.(选修2-3P 37A 组T 5(2)改编)⎝⎛⎭⎫x +12x 8的展开式中常数项为________,是第________项.解析:二项展开式的通项为T k +1=C k 8(x )8-k⎝⎛⎭⎫12x k =⎝⎛⎭⎫12k C k 8x 4-k ,令4-k =0,解得k =4,所以T 5=⎝⎛⎭⎫124C 48=358.答案:35852.(选修2-3P 35练习T 1(2)改编)化简:C 12n +C 32n +…+C 2n -12n=________. 解析:因为C 02n +C 12n +C 22n +…+C 2n 2n =22n ,所以C 12n +C 32n +…+C 2n -12n =12(C 02n +C 12n +…+C 2n 2n )=22n -1. 答案:22n -13.(选修2-3P 41B 组T 5改编)若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________.解析:令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.答案:8 二、走出误区常见误区:①混淆“二项式系数”与“系数”致误;②配凑不当致误.4.在二项式⎝⎛⎭⎫x 2-2x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________.解析:由题意得2n =32,所以n =5.令x =1,得各项系数的和为(1-2)5=-1. 答案:-15.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=________.解析:因为(1+x )10=[2-(1-x )]10,所以其展开式的通项为T r +1=(-1)r 210-r ·C r 10(1-x )r,令r =8,得a 8=4C 810=180.答案:1806.(x +1)5(x -2)的展开式中x 2的系数为________.解析:(x +1)5(x -2)=x (x +1)5-2(x +1)5,展开式中含有x 2的项为-20x 2+5x 2=-15x 2,故x 2的系数为-15.答案:-15[题组练透]1.二项式⎝⎛⎭⎫x 2-2x 10的展开式中,x 项的系数是( )A.152 B .-152C .15D .-15解析:选B ⎝⎛⎭⎫x 2-2x 10的二项展开式的通项为T r +1=C r 10⎝⎛⎭⎫x 210-r ⎝⎛⎭⎫-2x r =(-1)r 22r -10C r10x 23- 5r,令5-3r 2=12,得r =3,所以x 项的系数是(-1)3·2-4·C 310=-152.故选B. 2.(2019·天津高考)⎝⎛⎭⎫2x -18x 38的展开式中的常数项为________. 解析:⎝⎛⎭⎫2x -18x 38的通项为T r +1=C r 8()2x 8-r ·⎝⎛⎭⎫-18x 3r =C r 828-r ⎝⎛⎭⎫-18r ·x 8-4r . 令8-4r =0,得r =2,∴ 常数项为T 3=C 2826⎝⎛⎭⎫-182=28. 答案:283.(2019·浙江高考)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.解析:由二项展开式的通项公式可知T r +1=C r 9·(2)9-r ·x r ,r ∈N,0≤r ≤9, 当项为常数项时,r =0,T 1=C 09·(2)9·x 0=(2)9=16 2. 当项的系数为有理数时,9-r 为偶数,可得r =1,3,5,7,9,即系数为有理数的项的个数是5. 答案:162 54.(一题多解)⎝⎛⎭⎫ax +1x 6的展开式的常数项为160,则实数a =________. 解析:法一:⎝⎛⎭⎫ax +1x 6的展开式的通项T r +1=C r 6(ax )6-r ·⎝⎛⎭⎫1x r =C r 6a 6-r x 6-2r ,令6-2r =0,得r =3,所以C 36a 6-3=160,解得a =2.法二:⎝⎛⎭⎫ax +1x 6=⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ,要得到常数项,则需ax 与1x 的个数相同,各为3个,所以从6个因式中选择3个ax 的系数,即C 36a 3=160,解得a =2.答案:2[解题技法]求二项展开式中的项的方法求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).[例1] (1)(2020·合肥模拟)已知(ax +b )6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax +b )6的展开式中所有项系数之和为( )A .-1B .1C .32D .64(2)若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则|a 0|-|a 1|+|a 2|-|a 3|+|a 4|-|a 5|=( ) A .0 B .1 C .32D .-1(3)在(1+x )n (x ∈N *)的二项展开式中,若只有x 5的系数最大,则n =________.[解析] (1)由二项展开式的通项公式可知x 4项的系数为C 26a 4b 2,x 5项的系数为C 16a 5b ,则由题意可得⎩⎪⎨⎪⎧C 26a 4b 2=135,C 16a 5b =-18,解得a +b =±2,故(ax +b )6的展开式中所有项的系数之和为(a +b )6=64.(2)由(1-x )5的展开式的通项T r +1=C r 5(-x )r =C r 5(-1)r x r,可知a 1,a 3,a 5都小于0.则|a 0|-|a 1|+|a 2|-|a 3|+|a 4|-|a 5|=a 0+a 1+a 2+a 3+a 4+a 5.在原二项展开式中令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=0.(3)二项式中仅x 5的系数最大,其最大值必为C n 2n ,即得n2=5,解得n =10.[答案] (1)D (2)A (3)10[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大; (2)如果n 是奇数,则中间两项⎝⎛⎭⎫第n +12项与第n +12+1项的二项式系数相等并最大.[跟踪训练]1.若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A .63x B.4xC .4x 6xD.4x或4x 6x 解析:选A 令x =1,可得⎝ ⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x .2.(2020·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A .1B .243C .121D .122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.3.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案:-3或14.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考向(一) 几个多项式和展开式中特定项(系数)问题[例2] 在1+(1+x )+(1+x )2+(1+x )3+(1+x )4+(1+x )5的展开式中,含x 2项的系数是( )A .10B .15C .20D .25[解析] 含x 2项的系数为C 22+C 23+C 24+C 25=20.[答案] C[解题技法]对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项,从每一项中分别得到特定的项,再求和即可.考向(二) 几个多项式积展开式中特定项(系数)问题[例3] (1)(2019·全国卷Ⅲ)(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20D .24(2)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)(1+x )4的二项展开式的通项为T k +1=C k 4x k(k =0,1,2,3,4),故(1+2x 2)(1+x )4的展开式中x 3的系数为C 34+2C 14=12.故选A.(2)(ax +1)6的展开式中x 2的系数为C 46a 2,x 的系数为C 56a ,因为(x -1)(ax +1)6的展开式中含x 2项的系数为0,所以-C 46a 2+C 56a =0,解得a =0或a =25.因为a 为正实数,所以a =25. [答案] (1)A (2)25[解题技法]对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.考向(三) 三项式展开式中特定项(系数)问题[例4] ⎝⎛⎭⎫x +1x +25的展开式中x 2的系数是________. [解析] 在⎣⎡⎦⎤⎝⎛⎭⎫x +1x +25的展开式中,含x 2的项为2C 15⎝⎛⎭⎫x +1x 4,23C 35⎝⎛⎭⎫x +1x 2,所以在这几项的展开式中x 2的系数和为2C 15C 14+23C 35C 02=40+80=120.[答案] 120[解题技法](a +b +c )n 展开式中特定项的求解方法[跟踪训练]1.在⎝⎛⎭⎫x +1x -16的展开式中,含x 5项的系数为( ) A .6 B .-6 C .24D .-24解析:选B 由⎝⎛⎭⎫x +1x -16=C 06⎝⎛⎭⎫x +1x 6-C 16⎝⎛⎭⎫x +1x 5+C 26⎝⎛⎭⎫x +1x 4-…-C 56⎝⎛⎭⎫x +1x +C 66,可知只有-C 16⎝⎛⎭⎫x +1x 5的展开式中含有x 5,所以⎝⎛⎭⎫x +1x -16的展开式中含x 5项的系数为-C 05C 16=-6,故选B.2.⎝⎛⎭⎫x 2-3x +4x ⎝⎛⎭⎫1-1x 5的展开式中常数项为( ) A .-30 B .30 C .-25D .25解析:选C ⎝⎛⎭⎫x 2-3x +4x ⎝⎛⎭⎫1-1x 5=x 2⎝⎛⎭⎫1-1x 5-3x ⎝⎛⎭⎫1-1x 5+4x ⎝⎛⎭⎫1-1x 5,⎝⎛⎭⎫1-1x 5的展开式的通项T r +1=C r 5(-1)r ⎝⎛⎭⎫1x r,易知当r =4或r =2时原式有常数项,令r =4,T 5=C 45(-1)4⎝⎛⎭⎫1x 4,令r =2,T 3=C 25(-1)2·⎝⎛⎭⎫1x 2,故所求常数项为C 45-3×C 25=5-30=-25,故选C.[课时过关检测]A 级——夯基保分练1.⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A .10 B .20 C .40D .80解析:选C T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫2x r =C r 52r x 10-3r ,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40. 2.⎝⎛⎭⎫1x 2+4x 2+43展开式的常数项为( ) A .120 B .160 C .200D .240解析:选B 因为⎝⎛⎭⎫1x 2+4x 2+43=⎝⎛⎭⎫1x +2x 6,其展开式的通项为T r +1=C r 6·⎝⎛⎭⎫1x 6-r ·(2x )r =C r 62r x 2r -6,令2r -6=0,可得r =3,故展开式的常数项为C 36·23=160.3.已知(x +2)(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 0+a 2+a 4=( ) A .123 B .91 C .-120D .-152解析:选D 法一:因为(2x -1)5的展开式的通项T r +1=C r 5(2x )5-r ·(-1)r (r =0,1,2,3,4,5),所以a 0+a 2+a 4=2×C 55×20×(-1)5+[1×C 45×21×(-1)4+2×C 35×22×(-1)3]+[1×C 25×23×(-1)2+2×C 15×24×(-1)1]=-2-70-80=-152,故选D.法二:令x =1,得a 0+a 1+a 2+a 3+a 4+a 5+a 6=3 ①,令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5+a 6=-243 ②,①+②,得a 0+a 2+a 4+a 6=-120.又a 6=1×25=32,所以a 0+a 2+a 4=-152,故选D.4.在⎝⎛⎭⎫x -ax 5的展开式中,x 3的系数等于-5,则该展开式的各项的系数中最大值为( ) A .5 B .10 C .15D .20解析:选B ⎝⎛⎭⎫x -a x 5的展开式的通项T r +1=C r 5x 5-r ⎝⎛⎭⎫-a x r =(-a )r C r 5x 5-2r ,令5-2r =3,则r =1,所以-a ×5=-5,即a =1,展开式中第2,4,6项的系数为负数,第1,3,5项的系数为正数,故各项的系数中最大值为C 25=10,选B.5.若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C .1D .2解析:选D 由题意得⎝⎛⎭⎫x +1x 10的展开式的通项公式是T k +1=C k 10·x 10-k ·⎝⎛⎭⎫1x k =C k 10x 10-2k ,⎝⎛⎭⎫x +1x 10的展开式中含x 4(当k =3时),x 6(当k =2时)项的系数分别为C 310,C 210,因此由题意得C 310-a C 210=120-45a =30,由此解得a =2,故选D.6.(x 2+x +y )5的展开式中,x 5y 2项的系数为( ) A .10 B .20 C .30D .60解析:选C 法一:利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2项的系数为C 25C 13=30.故选C.法二:利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.7.(多选)已知(a +b )n 的展开式中第5项的二项式系数最大,则n 的值可以为( ) A .7 B .8 C .9D .10解析:选AB ∵已知(a +b )n 的展开式中第5项的二项式系数C 4n 最大,则n =7或8.故选A 、B.8.(多选)已知(3x -1)n =a 0+a 1x +a 2x 2+…+a n x n ,设(3x -1)n 的展开式的二项式系数之和为S n ,T n =a 1+a 2+…+a n ,则( )A .a 0=1B .T n =2n -(-1)nC .n 为奇数时,S n <T n ;n 为偶数时,S n >T nD .S n =T n解析:选BC 由题意知S n =2n ,令x =0,得a 0=(-1)n ,令x =1,得a 0+a 1+a 2+…+a n =2n ,所以T n =2n -(-1)n ,故选B 、C.9.(一题两空)若⎝⎛⎭⎪⎫3x -13x 2m的展开式中二项式系数之和为128,则m =________,展开式中1x3的系数是________.解析:由题意可知2m =128,∴m =7,∴展开式的通项T r +1=C r 7(3x )7-r·⎝⎛⎭⎪⎫-13x 2r =C r 737-r(-1)r x 7-5r 3,令7-53r =-3,解得r =6,∴1x 3的系数为C 6737-6(-1)6=21. 答案:7 2110.(2020·合肥模拟)(x -2)3(2x +1)2的展开式中x 的奇次项的系数之和为________. 解析:依题意得,(x -2)3(2x +1)2=(x 3-6x 2+12x -8)·(4x 2+4x +1)=4x 5-20x 4+25x 3+10x 2-20x -8,所以展开式中x 的奇次项的系数之和为4+25-20=9.答案:911.若⎝⎛⎭⎫x +12x n (n ≥4,n ∈N *)的二项展开式中前三项的系数依次成等差数列,则n =________.解析:⎝⎛⎭⎫x +12x n 的展开式的通项T r +1=C r n x n -r ⎝⎛⎭⎫12x r =C r n 2-r x n -2r ,则前三项的系数分别为1,n 2,n (n -1)8,由其依次成等差数列,得n =1+n (n -1)8,解得n =8或n =1(舍去),故n =8.答案:812.已知(a 2+1)n 展开式中的二项式系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的二项式系数最大的项等于54,则正数a 的值为________.解析:⎝⎛⎭⎫165x 2+1x 5展开式的通项为T r +1=C r 5⎝⎛⎭⎫165x 25-r ·⎝⎛⎭⎫1x r =C r 5⎝⎛⎭⎫1655-r x 20-5r 2. 令20-5r =0,得r =4, 故常数项T 5=C 45×165=16, 又(a 2+1)n 展开式中的二项式系数之和为2n ,由题意得2n =16,∴n =4.∴(a 2+1)4展开式中二项式系数最大的项是中间项T 3,从而C 24(a 2)2=54,∴a = 3. 答案:3B 级——提能综合练13.设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( )A .0B .1C .11D .12解析:选D 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1,又13整除52, 所以只需13整除1+a ,又0≤a <13,a ∈Z ,所以a =12.14.若⎝⎛⎭⎫x +a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中的常数项为( ) A .10B .20C .30D .40解析:选D 令x =1,得(1+a )(2-1)5=1+a =2,所以a =1.因此⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5的展开式中的常数项为⎝⎛⎭⎫2x -1x 5的展开式中x 的系数与1x的系数的和.⎝⎛⎭⎫2x -1x 5的展开式的通项T r +1=C r 5(2x )5-r ⎝⎛⎭⎫-1x r =C r 525-r x 5-2r ·(-1)r . 令5-2r =1,得r =2,因此⎝⎛⎭⎫2x -1x 5的展开式中x 的系数为C 2525-2×(-1)2=80; 令5-2r =-1,得r =3,因此⎝⎛⎭⎫2x -1x 5的展开式中1x的系数为C 3525-3×(-1)3=-40,所以⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5的展开式中的常数项为80-40=40. 15.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A .39B .310C .311D .312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.16.(一题两空)在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则n =________,展开式中常数项的值为________.解析:在二项式⎝⎛⎭⎫x +3x n 的展开式中,令x =1得各项系数之和为4n ,即A =4n ,二项展开式中的二项式系数之和为2n ,即B =2n .∵A +B =72,∴4n +2n =72,解得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3的展开式的通项为T r +1=C r 3(x )3-r ⎝⎛⎭⎫3x r =3r C r 3x 3-3r 2,令3-3r 2=0,得r =1,故展开式中的常数项为T 2=3×C 13=9.答案:3 9。

二项式定理典型例题(含解答)

二项式定理典型例题(含解答)

二项式定理典型例题典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中前三项的系数成等差数列,求展开式中所有有理项. 分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t nn , 由已知:)1(8112312-+=+=n n n tt t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr rr T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r 依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四例4(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫ ⎝⎛+=++x x x x .由121⎪⎪⎭⎫⎝⎛+x x 展开式的通项公式r rrrrr x x T--+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们通过22)1(1x x x x -+=-+或)(12x x -+展开. 解:方法一:[]6262)1()1(x x x x -+=-+ -+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ;(2))12(11C 11C 31C 21C 1210-+=++++++n n nn n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =⋅=+++=-----11111012)C C C (n n n n n n n 右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-⋅+=+11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+ 10101091092102C 2C 2C 21021++++⨯+= )C 2C 2C 210(21101099108210+++++=从而可以得到:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n 98)18(98911--+=--=++n n n n9818C 8C 8C 81211111--+⋅+⋅++⋅+=+-+++n nn n n n n n981)1(88C 8C 8211111--+++⋅++⋅+=-+++n n n n n n n 2111118C 8C 8⋅++⋅+=-+++n n n n n 64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x 2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C52554245322352323)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+x C x x C x x C10742532243840513518012032xx x x x x -+-+-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛-233254315530510)3()4()3()4()4([321-+-+=x C x C x C x ])3()3()4()3()4(5554134532335-+-+-+C x C x C)243716204320576038401024(321369121510-+-+-=x x x x x x10742532243840513518012032x x x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0 =k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++ ,∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把nx x ⎪⎭⎫ ⎝⎛-+21转化为nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,解出n . 解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =, ∴展开式的常数项为n nnC2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为n n n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-. 令20)1(2-=-nn n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________.分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可. 解: 1031⎪⎭⎫ ⎝⎛+x x 有意义必须0>x ;依题意有43T T <即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x .∴应填:5648980<<x .典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C , 即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xx C .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据条件得到2x 的系数关于n 的二次表达式,然后用二次函数性质探讨最小值.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C n m 499)211(55112211022+-=+-=-=n n n mn .∵+∈N n , ∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25.说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得.典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a . ①∴129721=+++a a a .(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得:6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=. 说明:(1)根据问题恒等式特点来用“特殊值”法.这是一种重要方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g . 典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是___. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-=3)17(10-+=37771010910911010010-++++=C C C C2]77[791081109010-+++⨯=C C C又∵余数不能为负数,需转化为正数。

高中数学选修2-3课时作业9:1.3.1二项式定理

高中数学选修2-3课时作业9:1.3.1二项式定理

1.3.1二项式定理一、选择题 1.(1+1x)4等于( )A .1+3x +6x 2+3x 3+1x 4B .1+4x +6x 2+4x 3+1x 4C .1+4x +5x 2+6x 3+1x 4D .1+6x +5x 2+4x 3+1x42.在⎝⎛⎭⎪⎫x 2-2x 6的二项展开式中,x 2的系数为( )A .-154 B.154C .-38 D.383.(x -2y )10的展开式中x 6y 4项的系数是( )A .840B .-840C .210D .-210 4.(x -13x )10的展开式中含x 的正整数指数幂的项数是( )A .1B .2C .4D .6 5.若(3x -132x)n 的展开式中含有非零常数项,则这样的正整数n 的最小值是( )A .3B .4C .5D .66.若(1+x )n 的展开式中x 2项的系数为a n ,则1a 2+1a 3+…+1a n的值( )A .大于2B .小于2C .等于2D .大于32二、填空题7.在(x -a )10的展开式中,x 7的系数是15,则实数a =________. 8.已知a =⎠⎛0π(sin x +cos x )d x ,则二项式(a x -1x)6展开式中含x 2项的系数是________. 9.设二项式(x -ax)(a >0)的展开式中x 3的系数为A,常数项为B.若B =4A,则a 的值是________. 三、解答题10.已知在(3x -33x)n 的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.11.求证:32n +2-8n -9(n ∈N *)能被64整除.12.求(1+x+x2)8的展开式中x5的系数.——★参考答案★——一、选择题1[答案]B[解析]由(1+1x )4=C 04+C 141x +C 24(1x )2+C 34(1x )3+C 44(1x )4=1+4x +6x 2+4x 3+1x 4. 2[答案]C [解析]T r +1=C r 6(x 2)6-r ·(-2x)r =(-1)r 22r -6C r 6x 3-r,令3-r =2,则r =1,所以x 2的系数为(-1)1×2-4×C 16=-38,故选C . 3.[答案]A[解析]方法一:设二项展开式中的第(r +1)项为x 6y 4,则T r +1=C r 10x 10-r ·(-2y )r =(-1)r ·(2)r ·C r 10·x 10-r ·y r ,∴10-r =6.∴r =4.∴该项系数为(-1)4·(2)4·C 410=840.方法二:(x -2y )10可以看作是由10个括号形成的连乘积,而x 6y 4是10项中取6个x 、4个y ,∴系数是C 610x 6·C 44·(-2y )4中的系数.∴系数为C 610·22=840. 4.[答案]A[解析]展开式通项为T r +1=C r 10(x )10-r (-13x)r = C r 10(-13)r x 10-3r 2,若展开式中含x 的正整数指数幂,即5-32r ∈N *,且0≤r ≤10,r ∈N , 所以r =2,即含x 的正整数指数幂的项只有一项. 5.[答案]B[解析]T r +1=C r n (3x )n -r(-132x)r=C r n (3)n -r (-1)r (132)r ·x n -r ·x -r 3=C r n (3)n -r(-132)r xn -4r3,令n -43r =0,得n =43r .∴n 取最小值为4.6.[答案]B[解析]由题意知a n =C 2n =nn -12,∴1a n =2nn -1=2(1n -1-1n),从而1a 2+1a 3+…+1a n =2(1-12+12-13+…+1n -1-1n )=2(1-1n )<2.二、填空题7.[答案]-12[解析]T 4=C 310x 7(-a )3,则C 310(-a )3=15,解得a =-12. 8.[答案]-192[解析]由题意知,a =(-cos x +sin x )|π0=2,则展开式中x 2的系数为C 16·25·(-1)=-192.9.[答案]2[解析]展开式的通项为T k +1=C k 6x 6-k ·(-a )k x -k 2 =(-a )k C k 6x 6-3k2 ,故A =(-a )2C 26,B =(-a )4C 46,由B =4A ,得a 2=4,又a >0,故a =2. 三、解答题10.[解析](1)通项公式为T k +1=C k n x n -k 3(-3)k x ―k 3=C k n (-3)k xn -2k 3.∵第6项为常数项,∴k =5时有n -2k 3=0,即n =10.(2)令n -2k 3=2,得k =12(n -6)=2,∴所求的系数为C 210(-3)2=405. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈Z ,令10-2k3=R (R ∈Z),则10-2k =3R ,即k =5-32R .∵k ∈Z ,∴R 应为偶数.∴R 可取2,0,-2,即k 可取2,5,8. ∴第3项,第6项与第9项为有理项,它们分别为C 210(-3)2x 2,C 510(-3)5,C 810(-3)8x -2.11.证明:32n +2-8n -9=(8+1)n +1-8n -9=C 0n +18n +1+C 1n +18n +…+C n +1n +1-8n -9=C 0n +18n +1+C 1n +18n +…+C n -1n +1·82+8(n +1)+1-8n -9=C 0n +18n +1+C 1n +18n +…+C n -1n +182,该式每一项都含因式82,故能被64整除. 12.解:方法一:(1+x +x 2)8=[1+(x +x 2)]8, 所以T r +1=C r8·(x +x 2)r ,则x 5的系数由(x +x 2)r 来决定,T′k +1=C k r ·x r -k ·x 2k =C k r xr +k , 令r +k =5,由r ≥k ,解得⎩⎪⎨⎪⎧ r =5k =0或⎩⎪⎨⎪⎧ r =4k =1或⎩⎪⎨⎪⎧r =3k =2,∴含x 5的项的系数为C 58·C 05+C 48·C 14+C 38·C 23=504.方法二:(1+x +x 2)8=[(1+x )+x 2]8=C 08(1+x )8+C 18·(1+x )7·x 2+C 28·(1+x )6·(x 2)2+C 38·(1+x )5·(x 2)3+…+C 78(1+x )(x 2)7+C 88(x 2)8,则展开式中含x 5的项的系数为C 08·C 58+C 18·C 37+C 28·C 16=504.方法三:(1+x +x 2)8=(1+x +x 2)(1+x +x 2)…(1+x +x 2)(共8个),这8个因式的乘积的展开式中形成x 5的来源有三种.(1)有2个括号各出1个x 2,其余6个括号恰有1个括号出1个x ,这种方式共有C 28·C 16种; (2)有1个括号出1个x 2,其余7个括号中恰有3个括号出1个x ,共有C 18·C 37种; (3)没有1个括号出x 2,恰有5个括号各给出1个x ,共有C 58种;∴x 5的系数为:C 28·C 16+C 18·C 37+C 58=504.。

第03讲 二项式定理 (精练)(含答案解析)

第03讲 二项式定理 (精练)(含答案解析)

第03讲二项式定理(精练)第03讲二项式定理(精练)A 夯实基础B 能力提升C 综合素养A 夯实基础一、单选题(2022·全国·高二单元测试)1.已知5的展开式中含32x 的项的系数为()A .30B .-30C .25D .-25(2022·全国·高二课时练习)2.若22nx x ⎛⎫+ ⎪⎝⎭的展开式有9项,则自然数n 的值为()A .7B .8C .9D .10(2022·广东广州·高二期末)3.已知二项式1nx x ⎛⎫- ⎪⎝⎭展开式的二项式系数和为64,则展开式中常数项为()A .120-B .20-C .15D .20(2022·福建厦门·高二期末)4.在26(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含5x 的项的系数是()A .5B .6C .7D .11(2022·黑龙江·大庆市东风中学高二期末)5.在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是()A .7B .8C .9D .10(2022·全国·长垣市第一中学高三开学考试(理))6.定义函数()()*,(1)N nf x n x n =+∈,已知()i,32i(i f n =为虚数单位),则22nx ⎫⎪⎭的展开式中常数项是()A .180B .120C .90D .45(2022·河南南阳·高二期末(理))7.()421x y x ++的展开式中22y x的系数为()A .4B .6C .8D .12(2022·福建·泉州市城东中学高二期中)8.若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为()A .1或3-B .1-C .1-或3D .3-二、多选题(2022·全国·高二课时练习)9.(多选)已知()20212202101220212x a a x a x a x -=+++⋅⋅⋅+,则()A .01a =B .202112320212a a a a +++⋅⋅⋅+=C .3201820218C a =D .20212021123202132a a a a +++⋅⋅⋅+=-(2022·广东·佛山市南海区狮山高级中学高二阶段练习)10.已知()()()()10210012102111x a a x a x a x -=+-+-++- ,则下列结论正确的有()A .01a =B .6210a =C .123102310122221024a a a a ++++= D .024*******a a a a a a +++++=三、填空题(2022·全国·高二课时练习)11.计算:12399101010101012C 4C 8C 2C 2-+-+⋅⋅⋅-+=________.(2022·贵州·贵阳市白云区第二高级中学高二期末(理))12.若7270127(1)x a a x a x a x -=++++ ,则1237a a a a ++++= _________.(用数字作答)四、解答题(2022·江西·赣州市赣县第三中学高二阶段练习(理))13.已知n的二项式展开式的各项二项式系数和与各项系数和均为128,(1)求展开式中所有的有理项;(2)求展开式中系数最大的项.(2022·广东·南海中学高二阶段练习)14.已知()()()*23nf x x n =-∈N 展开式的二项式系数和为512,且()()()()2012111nn f x a a x a x a x =+-+-++- .(1)求2a 的值;(2)设()20206f k r -=+,其中,k r ∈N ,且6r <,求r 的值.B 能力提升(2022·全国·高二单元测试)15.在二项式n的展开式中,二项式系数最大的项只有一项,且是第4项.(1)求n 的值;(2)求展开式中所有有理项的系数之和;(3)把展开式中的项重新排列,求有理项互不相邻的排法种数.(2022·全国·高二课时练习)16.在①若展开式倒数后三项的二项式系数之和等于46,②若展开式所有项的系数和为512,③若展开式中第3项与第4项的系数之比为3:7这三个条件中任选一个,并且解答下列问题.在二项式1nx ⎛ ⎝的展开式中,______.(1)求展开式中二项式系数最大的项;(2)求展开式中的常数项.C 综合素养(2022·江苏·苏州中学高二期末)17.在①只有第5项的二项式系数最大;②第4项与第6项的二项式系数相等;③奇数项的二项式系数的和为128;这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.已知2012(21)n nn x a a x a x a x -=+++(n ∈N*),___________(1)求122222n na a a +++ 的值:(2)求12323n a a a na +++ 的值.(2022·江苏淮安·高二期末)18.(1)用二项式定理求103除以5的余数;(2)某小组有8人,从中选择4人参加活动,有两种选法:第一种:直接选4人,有48C 种选法.第二种:如果该组的组长参加活动,则从剩余的7人中选3人,有37C 种选法;如果该组的组长不参加活动,则从剩余的7人中选4人,有47C 种选法.因为这两种选法的效果是一致的,所以我们可以得到一个等式:874347C C C =+.试将这种情形推广:从1n +个元素中选择m 个元素的不同选法得到的等式是.并以此求解:22223428C C C C ++++ .(用数字作答).参考答案:1.A【分析】根据二项式展开式的通项公式,列出方程即可求出1r =,代入即可求解.【详解】5展开式的第1r +项为()5252155CC 60,1,2,,5rr rr r r r T x r--+=⋅=⋅=⋅⋅⋅,令52322r -=,得1r =,故展开式中含32x的项的系数为115C 630⋅=.故选:A .2.B【分析】根据二项式展开式的项数即可得解.【详解】解:因为22nx x ⎛⎫+ ⎪⎝⎭的展开式共有1n +项,所以19n +=,所以8n =,故选:B .3.B【分析】首先利用264n =求出n ,然后再利用二项式展开式的通项即可求解.【详解】根据题意可得264n =,解得6n =,则61()x x -展开式的通项为662661C (()C r r r r r rx x x---=-,令620r -=,得3r =,所以常数项为:33633661654C C 20321x x -⨯⨯⎛⎫-=-=-=- ⎪⨯⨯⎝⎭.故选:B.4.C【分析】先求解5(1)x +和6(1)x +中含5x 的项的系数,然后求和可得答案.【详解】因为26(1)(1)(1)x x x ++++⋅⋅⋅++中只有5(1)x +和6(1)x +中含5x 的项,5(1)x +的含5x 的项为5x ,6(1)x +的含5x 的项为556C x ,所以26(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中含5x 的项的系数是561C 7+=.故选:C.5.D【分析】由题意,利用二项式系数的性质,求得n 的值.【详解】当7n =时,7()a b +的展开式有8项,7()a b +的展开式中二项式系数3477C C ,,最大,即第四项和第五项的二项式系数最大;当8n =时,8()a b +的展开式有9项,8()a b +的展开式中二项式系数48C 最大,即第五项的二项式系数最大;当9n =时,9()a b +的展开式有10项,9()a b +的展开式中二项式系数4599C C ,最大,即第五项和第六项的二项式系数最大.当10n =时,10()a b +的展开式有11项,10()a b +的展开式中二项式系数510C 最大,即第六项的二项式系数最大.故选:D .6.A【分析】根据复数运算求得n ,结合二项式展开式的通项公式求得正确答案.【详解】()()()()()2428101i 2i,1i 2i 4,1i 16,1i 32i +=+==-+=+=,由题可知(1i)32i n +=,所以10n =.所以2102x ⎫-⎪⎭的展开式的通项为()11052110100122C C (2)2r rrr rrr T xx x+---⎛⎫⋅⋅=-- ⎪⎝⎭=.令10502r -=,解得2r =.所以展开式中的常数项是2210C (2)180⨯-=.故选:A 7.B【分析】变形后求出其通项公式42141C rrrr T x y x -+⎛⎫=+ ⎪⎝⎭,令2r =,则2222341C T x y x ⎛⎫=+ ⎪⎝⎭,再求出221x x ⎛⎫+ ⎪⎝⎭中的21x 的系数即可求得结果【详解】()()442211x y x y xx ⎡⎤++=++⎢⎥⎣⎦的通项公式42141C rrr r T x y x -+⎛⎫=+ ⎪⎝⎭,令2r =,则2222242344211C C 2T x y x x y x x ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭,所以22y x的系数为24C 6=,故选:B 8.A【分析】利用赋值法,分别令2x =-,和0x =,()()9028139++⋅⋅⋅+-++⋅⋅⋅+=a a a a a a m ,028++⋅⋅⋅++a a a 9139(2)++⋅⋅⋅+=+a a a m ,再根据()()2290281393a a a a a a ++⋅⋅⋅+-++⋅⋅⋅+=,求得m 的值.【详解】在9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x 中,令2x =-可得9012389-+-+⋅⋅⋅+-=a a a a a a m ,即()()9028139++⋅⋅⋅+-++⋅⋅⋅+=a a a a a a m ,令0x =,可得9028139(2)++⋅⋅⋅++++⋅⋅⋅+=+a a a a a a m ,∵()()2290281393a a a a a a ++⋅⋅⋅+-++⋅⋅⋅+=,∴()()()90281390281393++⋅⋅⋅++++⋅⋅⋅+++⋅⋅⋅+-++⋅⋅⋅+=⎡⎤⎣⎦a a a a a a a a a a a a ,∴()99929(2)23+⋅=+=m m m m ,整理得223+=m m ,解得1m =,或3m =-.故选:A 9.CD【分析】结合赋值法、二项式展开式的通项公式对选项进行分析,从而确定正确选项.【详解】令0x =,得202102a =,故A 错误;令1x =,得()2021012202121a a a a -=+++⋅⋅⋅+,即012320211a a a a a ++++⋅⋅⋅+=,所以2021123202112a a a a +++⋅⋅⋅+=-,故B 错误;因为()20212x -的展开式的通项为()()20212021120212021C 212C rrr r r r rr T x x --+=⋅⋅-=-,所以()201832018320182021202112C 8C a =-⨯=,故C 正确;由()20212x -的展开式的通项及题意,得12320211232021a a a a a a a a +++⋅⋅⋅+=-+-+⋅⋅⋅-,令=1x -,得()2021202101232021213a a a a a -+-+⋅⋅⋅-=+=,则20212021123202132a a a a -+-+⋅⋅⋅-=-,故D 正确.故选:CD 10.ABD【分析】通过赋值根据选项一一判断即可得结果.【详解】解:对于A ,取1x =得10210012(12)(11)(11)(11)a a a a -=+-+-++- ,所以01a =,故A 正确;对于B ,1010(2)[1(1)]x x -=--的展开式中第7项为6610C [(1)]x --,所以6610C 210a ==,故B正确;对于C ,取32x =得10123100*********222221024a a a a a ⎛⎫++++=-=- ⎪⎝⎭ ,故C 错误;对于D ,由1021001210(2)(1)(1)(1)x a a x a x a x -=+-+-++- ,取0x =得()()100246810115192a a a a a a a a a a a +++++-++++=,取2x =得()()0246810135190a a a a a a a a a a a ++++++++++=,所以9024********a a a a a a +++++==,故D 正确.故选:ABD.11.1【分析】将12399101010101012C 4C 8C 2C 2-+-+⋅⋅⋅-+整理变形为二项式形式,即可求得答案.【详解】12399101010101012C 4C 8C 2C 2-+-+⋅⋅⋅-+()()()1098001122101010C 12C 12C 12=-⨯+-⨯+-⨯()()()7133991010101010C 12C 12C 12+-⨯+⋅⋅⋅+-⨯+-⨯()10121=-+=,故答案为:112.127【分析】根据题意判断各项系数正负,化简含绝对值的等式,运用赋值法即可得到答案.【详解】因为7270127(1)x a a x a x a x -=++++ ,所以x 奇次方系数为负,x 偶次方系数为正,所以12371234567a a a a a a a a a a a ++++=-+-+-+- ,对于7270127(1)x a a x a x a x -=++++ ,令=1x -,得7012345672a a a a a a a a -+-+-+-=,令0x =,得01a =,两式相减,得7123456721127a a a a a a a -+-+-+-=-=,即1237127a a a a ++++= .故答案为:12713.(1)展开式中所有的有理项为2321T x =,177-=T x (2)5435x 和1235x 【分析】(1)由二项式系数的性质可得2128n =,进而可得n 的值,再令1x =求出a 的值,然后结合二项展开式的通项公式即可求解;(2)由二项展开式的通项公式可知,展开式中系数最大的项即为展开式中二项式系数最大的项,从而利用二项式系数的性质即可求解.(1)解:因为n的二项展开式的各二项式系数和为2n ,各项系数和为()1na -,所以由已知得2128n =,故7n =,所以()71128a -=,解得1a =-,所以该二项式为7+,其通项为143417C k k k T x -+=,0,1,2,,7k = ,所以当2,6k =时,该项为有理项,所以展开式中所有的有理项为22237C 21T x x ==,141861477C 7T xx --==;(2)解:因为7+展开式的通项公式为143417C k k k T x -+=,0,1,2,,7k = ,所以展开式中系数最大的项即为展开式中二项式系数最大的项,而由二项式系数的性质可知最大的项为展开式的第4或第5项,所以展开式中系数最大的项为5534447C 35T x x ==和1142257C 35T x x ==;14.(1)144-(2)=5r 【分析】(1)根据二项展开式的二项式系数和求出9n =,再结合()()9923121x x -=-+-⎡⎤⎣⎦,根据二项式定理即可求出答案;(2)根据已知条件改写原式,得到原式可以被整除的部分,根据余项、6r <转化求解即可得到答案.(1)因为()()()*23nf x x n =-∈N 展开式的二项式系数和为512,所以2512n =,得9n =,所以()()()()()9929012923121111x x a a x a x a x -=-+-=+-+-++-⎡⎤⎣⎦ ,所以()72229C 12144a =-=-.(2)()()()990018899999202022032036120C 36C 36C 36C 20f -=⨯--=+-=++++- 00188999C 36C 36C 3619=+++- ,因为09188999C 36C 36C 36+++ 能被6整除,而()19465-=-⨯+,()20206f k r -=+,所以=5r .15.(1)6(2)32(3)144【分析】(1)利用二项式定理的展开式的性质即可求解;(2)利用二项式定理的展开式,找出x 的次数为整数的项,即可求解(3)元素不相邻的排列问题用插空法,即可求解.(1)由题意知142n+=,所以6n =.(2)二项式6⎫⎪⎭的展开式的通项为()6366166C C 0,1,2,,6kk kkkk T x k --+===⋅⋅⋅,当0,2,4,6k =时,x 的次数为整数,对应的项为有理项.于是展开式中有理项共有四项,分别为第1项第3项、第5项、第7项,所以展开式中所有有理项的系数之和为0246616666C C C C 232-+++==(或02466666C C C C 11515132+++=+++=).(3)展开式共有7项,其中4项为有理项,3项为无理项.将无理项排列,有33A 种排法,将有理项插空排列,有44A 种排法,故有理项互不相邻的排法共有3434A A 144=(种).16.(1)3126x 和32126x (2)84【分析】(1)根据①或②或③求得n ,进而求得展开式中二项式系数最大的项.(2)根据二项式展开式的通项公式求得正确答案.【详解】(1)选择条件①:由题意,得()120121C C C C C C 1462n n n n n n n n n n n n ---++=++=++=,整理得2900n n +-=,解得9n =(10n =-舍去).因此,二项展开式中共有10项,所以二项式系数最大的项有两项:第5项和第6项.又5445931126C T x x⎛⎫== ⎪⎝⎭,45569321126C T x x⎛⎫==⎪⎝⎭,所以展开式中二项式系数最大的项为3126x 和32126x .选择条件②:因为展开式所有项的系数和为512,所以()9115122n+==,解得9n =.因此,二项展开式中共有10项,所以二项式系数最大的项有两项:第5项和第6项.又5445931126C T x x⎛⎫== ⎪⎝⎭,45569321126C T x x⎛⎫==⎪⎝⎭,所以展开式中二项式系数最大的项为3126x 和32126x .选择条件③:依题意可得23C 3C 7nn =,即3327n =-,所以9n =.因此,二项展开式中共有10项,所以二项式系数最大的项有两项:第5项和第6项.又5445931126C T x x⎛⎫== ⎪⎝⎭,45569321126C T x x⎛⎫==⎪⎝⎭,所以展开式中二项式系数最大的项为3126x 和32126x .(2)由(1)得9n =,二项式为91x ⎛+ ⎝,二项展开式的通项为()93921991C C 0,1,2,,9rr rr r r T xr x --+⎛⎫===⋅⋅⋅ ⎪⎝⎭,令3902r -=,得6r =,所以展开式中的常数项为63799C C 84T ===.17.(1)-1(2)16【分析】(1)根据选①,②,③解得都有8n =,所以有8280128(21)x a a x a x a x -=+++,令0x =,得01a =,再令12x =,得8120280222a a aa ++++=,于是可得8120281222a a a a +++=-=-;(2)由(1)可得8n =,所以有8280128(21)x a a x a x a x -=+++,两边分别求导得727123816(21)238x a a x a x a x -=+++,再令1x =即可得答案.【详解】(1)解:若选①:因为只有第5项的二项式系数最大,所以展开式中共有9项,即19n +=,得8n =,若选②:因为第4项与第6项的二项式系数相等,所以35C C 8n n n =⇒=,若选③:因为奇数项的二项式系数的和为128,所以12128n -=,解得8n =.因为8280128(21)x a a x a x a x -=+++,令12x =,则有88120281(21)2222a a a a ⨯-=++++,即有8120280222a a a a ++++=,令0x =,得01a =,所以8120281222a a a a +++=-=-;综上所述:812281222a a a +++=-;(2)由(1)可知:无论选①,②,③都有8n =,8280128(21)x a a x a x a x -=+++,两边求导得727123816(21)238x a a x a x a x -=+++,令1x =,则有123816238a a a a =+++,所以123823816a a a a +++=.18.(1)4;(2)11C C C m m m n n n -+=+,84.【分析】(1)利用二项式定理展开式即可求解整除问题;(2)利用类比推理及组合数的性质即可求解.【详解】(1)因为105539(101)==-03014144555C 10(1)C 10(1)C 10(1)=⨯⨯-+⨯⨯-++⨯⨯- 5055C 10(1)+⨯-⨯.在展开式中,前5项均可以被5整除,最后一项为1-,因此103除以5的余数为4.(2)类比引例方法可得11C C C m m m n n n -+=+.所以2222322232223433488844C C C C C C C C C C C ++++=++++=+++ 39C 84==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业 A 组——基础对点练1.二项式(x +1)n (n ∈N +)的展开式中x 2的系数为15,则n =( ) A.7 B .6 C .5 D .4解析:因为(x +1)n 的展开式中x 2的系数为C n -2n ,所以C n -2n =15,即C 2n =15,亦即n 2-n =30,解得n =6(n =-5舍). 答案:B2.二项式(x 2-2x )10的展开式中,x 项的系数是( ) A.152 B .-152 C .15 D .-15 解析:(x 2-2x )10的二项展开式的通项公式为 T r +1=C r 10(x 2)10-r (-2x )r =(-1)r 22r -10C r10x 5-3r 2, 令5-3r 2=12,得r =3,所以x 项的系数是(-1)3·2-4·C 310=-152.故选B. 答案:B3.(2018·惠州市调研)(12x -2y )5的展开式中x 2y 3的系数是( ) A.-20 B .-5 C .5 D .20解析:(12x -2y )5展开式的通项公式为T r +1=C r 5(12x )5-r ·(-2y )r =C r 5·(12)5-r ·(-2)r ·x 5-r ·y r ,令r =3,得x 2y 3的系数为C 35(12)2·(-2)3=-20. 答案:A4.若(a 2+1a 2+2)n 展开式中的常数项是252,则n =( ) A.4 B .5 C .6D .7解析:(a 2+1a 2+2)n =(a +1a )2n ,(a +1a )2n 的展开式的通项为T r +1=C r 2n a 2n -r (1a )r=C r 2na2n-2r,令2n-2r=0,则r=n,所以其展开式中的常数项为C n2n,依题意知,C n2n =252,结合选项得n=5.答案:B5.在x(1+x)6的展开式中,含x3项的系数为()A.30 B.20 C.15 D.10解析:在(1+x)6的展开式中,含x2的项为T3=C26·x2=15x2,故在x(1+x)6的展开式中,含x3的项的系数为15.答案:C6.若,则在的展开式中,x的幂指数不是整数的项共有()A.13项B.14项C.15项D.16项解析:所以该二项展开式的通项(0≤r≤18,且r∈N),当r=0,6,12,18时,展开式中x的幂指数为整数,所以该二项展开式中x的幂指数不是整数的项有19-4=15项,故选C.答案:C7.(2018·武汉市模拟)若(3x-1)5=a0+a1x+a2x2+…+a5x5,则a1+2a2+3a3+4a4+5a5=()A.80 B.120 C.180 D.240解析:由(3x-1)5=a0+a1x+a2x2+…+a5x5两边求导,可得15(3x-1)4=a1+2a2x +3a3x2+…+5a5x4,令x=1得,15×(3-1)4=a1+2a2+3a3+…+5a5,即a1+2a2+3a3+4a4+5a5=240,故选D.答案:D8.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ) A.5 B .6 C .7D .8解析:由题意得:a =C m 2m ,b =C m +12m +1, 所以13C m 2m =7C m +12m +1,∴13·(2m )!m !·m !=7·(2m +1)!(m +1)!·m !, 解得m =6,经检验为原方程的解,选B. 答案:B9.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=( ) A.0 B .1 C .-1 D .2 解析:a 10,a 11分别是含x 10和x 11项的系数,所以a 10=-C 1121,a 11=C 1021, 所以a 10+a 11=C 1021-C 1121=0.答案:A10.已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =( ) A.35 B.25 C.34 D.45解析:(ax +1)6的展开式中x 2项的系数为C 46a 2,x 项的系数为C 56a ,(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. 答案:B11.(x -y )(x +y )8的展开式中x 2y 7的系数为( ) A.20 B .30 C .-20D .-30解析:由二项展开式公式可知,含x 2y 7的项可表示为x ·C 78xy 7-y ·C 68x 2y 6,故(x -y )(x +y )8的展开式中x 2y 7的系数为C 78-C 68=C 18-C 28=8-28=-20.答案:C12.若(1x -3x )n 的展开式中二项式系数和为64,则展开式中的常数项为( ) A.-540 B .540 C .560 D .-560解析:(1x -3x )n 的展开式中二项式系数和为2n =64,解得n =6,则展开式的通项公式为T k +1=C k 6(1x )6-k (-3x )k =C k 6(-3)k x 2k -6,令2k -6=0,则k =3,故T 4=C 36(-3)3=-540. 答案:A13.(2018·山西八校联考)已知(1+ax 2)n (a ,n ∈N *)的展开式中第3项与第4项的二项式系数最大,且含x 4的项的系数为40,则a 的值为________.解析:由二项式系数的性质可得n =5,T r +1=C r 515-r (ax 2)r =C r 5a r x 2r ,由2r =4,得r =2,由C 25a 2=40,得a 2=4,又a ∈N *,所以a =2.答案:214.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析:由于f (x )=x 5=[(1+x )-1]5,所以a 3=C 35(-1)2=10.答案:10B 组——能力提升练1.(2018·漳州模拟)已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A.-20 B .0 C .1 D .20解析:令x =1,得a 0+a 1+a 2+…a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20. 答案:D2.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于( ) A.34(3n -1) B.34(3n -2) C.32(3n -2)D.32(3n -1)解析:在展开式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n ,即a 0-a 1+a 2-a 3+…+(-1)n a n =3(1-3n )1-3=32(3n -1).答案:D3.(2018·南昌模拟)(x 2-x +1)3展开式中x 项的系数为( ) A.-3 B .-1 C .1 D .3解析:∵(x 2-x +1)3=[(x 2-x )+1]3的展开式的通项为T k +1=C k 3(x 2-x )3-k ,令3-k =1,则T 3=C 23(x 2-x )=3x 2-3x ,即(x 2-x +1)3展开式中x 项的系数为-3.故选A. 答案:A4.(2018·肇庆模拟)(x +2y )7的展开式中,系数最大的项是( ) A.68y 7 B .112x 3y 4 C.672x 2y 5D .1 344x 2y 5解析:设第r +1项系数最大,则有⎩⎪⎨⎪⎧C r 7·2r ≥C r -17·2r -1,C r 7·2r ≥C r +17·2r +1,即⎩⎪⎨⎪⎧7!r !(7-r )!·2r≥7!(r -1)!(7-r +1)!·2r -1,7!r !(7-r )!·2r≥7!(r +1)!(7-r -1)!·2r +1,即⎩⎨⎧ 2r ≥18-r ,17-r ≥2r +1,解得⎩⎪⎨⎪⎧r ≤163,r ≥133.又∵r ∈Z ,∴r =5.∴系数最大的项为T 6=C 57x 2·25y 5=672x 2y 5.故选C. 答案:C5.已知函数f (x )=-x 3+2f ′(2)x ,n =f ′(2),则二项式⎝ ⎛⎭⎪⎫x +2x n 展开式中常数项是( ) A.第7项 B .第8项 C .第9项 D .第10项解析:由题意可得f ′(x )=-3x 2+2f ′(2),令x =2可得f ′(2)=-12+2f ′(2),∴n =f ′(2)=12.二项式⎝ ⎛⎭⎪⎫x +2x 12展开式的通项为T r +1=C r 12x 12-r (2x -12)r =2r ·C r 12x 12-32r ,令12-32r =0,可得r =8,所以展开式中常数项是第9项,故选C. 答案:C6.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A.-20 B .20 C .-15 D .15解析:当x >0时,f [f (x )]=f (-x )=⎝ ⎛⎭⎪⎫-x +1x 6,常数项为C 36(-x )3⎝ ⎛⎭⎪⎫1x 3=-20. 答案:A7.若(1-2x )2 016=a 0+a 1x +…+a 2 016x 2 016(x ∈R),则a 12+a 222+…+a 2 01622 016的值为( )A.2 B .0 C .-1D .-2解析:在(1-2x )2 016=a 0+a 1x +…+a 2 016x 2 016中,令x =0,得(1-0×2)2 016=a 0,即a 0=1,令x =12,得⎝ ⎛⎭⎪⎫1-2×12 2 016=a 0+a 12+a 222+…+a 2 01622 016,即a 0+a 12+a 222+…+a 2 01622 016=0.∵a 0=1,∴a 12+a 222+…+a 2 01622 016=-1,故选C. 答案:C8.设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =( )A.3 B .2 C .4D .5解析:根据题意知a 0=1,a 1=3,a 2=4,结合二项式定理得⎩⎪⎨⎪⎧C 1n ·1a =3,C 2n ·1a 2=4,解得a =3. 答案:A9.已知的展开式中常数项为( )A.23 B .-32 C .33 D .40 解析:则r =3,展开式中常数项为(-2)3C 34=-8×4=-32.答案:B10.(2018·石家庄模拟)已知x 8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,则a 7=( )A.6 B .7 C .8D .9解析:∵x 8=[1+(x -1)]8,∴其展开式的通项为T r +1=C r 8(x -1)r .令r =7,得a 7=C 78=8. 答案:C11.(2018·洛阳模拟)⎝⎛⎭⎪⎪⎫2x +13x n 的展开式中各项系数之和为729,则该展开式中x 2的系数为( )A.136 B .148 C . 150D .160解析:依题意,得3n =729,即n =6.二项式⎝⎛⎭⎪⎪⎫2x +13x 6的展开式的通项是T r +1=C r 6·(2x )6-r ·⎝ ⎛⎭⎪⎪⎫13x r =C r 6·26-r·x 6-4r 3.令6-4r 3=2,得r =3.因此,在该二项式的展开式中x 2的系数是C 36×26-3=160. 答案:I 12.已知(x -a x)5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.解析:该二项展开式的通项T r +1=C r 5x5-r(-a x)r =C r 5×(-a )r(x 5-32r ).由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1. 答案:±113.将⎝ ⎛⎭⎪⎫1-1x 2n (n ∈N *)的展开式中x -4的系数记为a n ,则1a 2+1a 3+…+1a 2 018=________.解析:将⎝ ⎛⎭⎪⎫1-1x 2n (n ∈N *)的展开式中x -4的系数记为a n ,则a n =C 2n =n (n -1)2,∴1a 2+1a 3+…+1a 2 018=2× ⎝ ⎛⎭⎪⎫1-12+12-13+…+12 017-12 018=2 0171 009. 答案:2 0171 00914.(2018·合肥市质检)(x -2)3(2x +1)2展开式中x 奇次项的系数之和为________. 解析:依题意,(x -2)3(2x +1)2=(x 3-6x 2+12x -8)·(4x 2+4x +1)=4x 5-20x 4+25x 3+10x 2-20x -8,所以展开式中x 奇次项的系数之和为4+25-20=9. 答案:915.(2018·合肥市质检)在(x -1x -1)4的展开式中,常数项为________.解析:易知(x -1x -1)4的展开式的通项T r +1=C r 4(-1)4-r ·(x -1x )r ,又(x -1x )r 的展开式的通项R m +1=C m r (-x -1)m x r -m =C m r (-1)m x r -2m , ∴T r +1=C r 4(-1)4-r ·C mr (-1)m x r -2m , 令r -2m =0,得r =2m ,∵0≤r ≤4,∴0≤m ≤2, ∴当m =0,1,2时,r =0,2,4,故常数项为T 1+T 3+T 5=C 04(-1)4+C 24(-1)2·C 12(-1)1+C 44(-1)0·C 24(-1)2=-5. 答案:-5。

相关文档
最新文档