统计学--第三章综合指标---复习思考题
医学统计学(李晓松主编 第2版 高等教育出版社)附录 第3章思考与练习答案
第三章实验研究设计【思考与练习】一、思考题1. 实验设计根据对象的不同可分为哪几类?2. 实验研究中,随机化的目的是什么?3. 什么是配对设计?它有何优缺点?4. 什么是交叉设计?它有何优缺点?5. 临床试验中使用安慰剂的目的是什么?二、案例辨析题“三联药物治疗士兵消化性溃疡”一文中,对2000~2006年在某卫生所采用三联药物治疗的38例消化性溃疡患者进行分析。
内镜检测结果显示,痊愈13人,显效14人,进步7人,无效4人,有效率达89.5%。
据此认为该三联疗法的疗效较好,且由于其价格适中,可在部队卫生所中推广。
该结论是否正确?如果不正确,请说明理由。
三、最佳选择题1. 实验设计的三个基本要素是A. 处理因素、实验效应、实验场所B. 处理因素、实验效应、受试对象C. 受试对象、研究人员、处理因素D. 受试对象、干扰因素、处理因素E. 处理因素、实验效应、研究人员2. 实验设计的三个基本原则是A. 随机化、对照、重复B. 随机化、对照、盲法C. 随机化、重复、盲法D. 均衡、对照、重复E. 盲法、对照、重复3. 实验组与对照组主要不同之处在于A. 处理因素B. 观察指标C. 抽样误差D. 观察时间E. 纳入、排除受试对象的标准4. 为了解某疗法对急性肝功能衰竭的疗效,用12头健康雌性良种幼猪建立急性肝功能衰竭模型,再将其随机分为两组,仅实验组给予该疗法治疗,对照组不给予任何治疗。
7天后观察两组幼猪的存活情况。
该研究采用的是A. 空白对照B. 安慰剂对照C. 实验对照D. 标准对照E. 自身对照5. 观察指标应具有A. 灵敏性、特异性、准确度、精密度、客观性B. 灵敏性、变异性、准确度、精密度、客观性C. 灵敏性、特异性、变异性、均衡性、稳定性D. 特异性、准确度、稳定性、均衡性、客观性E. 灵敏性、变异性、准确度、精密度、均衡性6. 比较两种疗法对乳腺癌的疗效,若两组患者的乳腺癌分期构成不同可造成A. 选择性偏倚B. 测量性偏倚C. 混杂性偏倚D. 信息偏倚E. 失访性偏倚7. 将两个或多个处理因素的各水平进行组合,对各种可能的组合都进行实验,该实验设计方案是A. 随机区组设计B. 完全随机设计C. 析因设计D. 配对设计E. 交叉设计8. 在某临床试验中,将180例患者随机分为两组,实验组给予试验药+对照药的模拟剂,对照给予对照药+试验药的模拟剂,整个过程中受试对象和研究者均不知道受试对象的分组。
统计学期末复习重点第3章综合指标分析
400
平 均 指 标
概念:
Average Index ,是指统计总体中各总体单位的某一数量 标志在一定时间、地点和条件下所达到的一般水平,
通常是总体指标的代表。
作用
(1)反映总体分布的集中特征
4
众数
2.组距式数列的众数
( 1)判断众数组
(2)利用公式计算
1 Mo L d 1 2 2 Mo U d 1 2
例5 假设某行业的上市公司2009年年报公布的本公司 的每股净利润增长率资料如下所示:
每股净利润增长 率/% 0 以下 0 —— 30 30—— 60 60 —— 100 100 以上 合 计 公司数/家 7 19 13 11 5 55 比重/% 12.73 34.54 23.64 20.00 9.09 100
众数在此 区间内
确定众数所在组, 此处次数最多
中位数
概念 计算方法
是指将全部变量值按大小顺序排列 后,处于中间位置的变量值,通常 用Me表示 。
1. 未分组数据或单项式数列的中位数
( 1)确定中间位置(n+1)/2。 (2)寻找数值
例 :某班级的一组学生在体育课的投篮
考试中所投中的篮球的个数分别为3、0、 2、3、4、7、9、7、3、5、7、6、7、3和 10个,试求投中个数的中位数。
4
中位数
2.组距式数列的中位数
( 1)判断中位数组 (2)利用公式计算
f
Mo L 2
S M 1 fM
d
Mo U
f
2
S M 1 fM
d
统计学--第三章--综合指标---复习思考题
第三章 综合指标一、填空题1.总量指标按其反映的时间状况不同可以分为指标和指标.2.相对指标是不同单位〔地区、国家〕的同类指标之比.3.相对指标是两个性质不同而有联系的指标之比.4.某企业某年计划增加值达到500万元,实际为550万元,则增加值的计划完成相对指标为.5.某企业某年计划单位产品成本为40元,实际为45元,则单位产品成本的计划完成相对指标为.6.某车间5名工人的日产量〔件〕为10 10 11 12 14,则日产量的中位数是.7.市场上某种蔬菜早、中、晚的价格〔元〕分别为 1.5、1、0.5,早、中、晚各买1元,则平均价格为.8.在两个数列平均水平时,可以用标准差衡量其变异程度. 9.∑=-)(x x .二、判断题1.20##我国人口出生数是一个时点指标.< >2.20##我国国内生产总值是一个时期指标.< >3.20##我国人均国内生产总值是一个平均指标.< >4.我国第三产业增加值在国内生产总值所占比重是一个结构相对指标.< >5.某企业某年计划劳动生产率比去年提高4%,实际上提高了5%,则劳动生产率的计划完成相对指标为5%/4%.< >6.某企业某年计划单位产品成本比去年降低3%,实际上提高了3.5%,则单位产品成本的计划完成相对指标为1+3.5%/1+3%.< >7.某车间7名工人的日产量〔件〕为22 23 24 24 24 25 26,则日产量的众数是24.< >8.三个连续作业车间的废品率分别为0.5% 0.8% 0.3%,则平均废品率为3%3.0%8.0%5.0⨯⨯.< >9.当BAσσ>时,则说明A 数列平均数的代表性比B 数列强.< >10.全距容易受极端值的影响.< >11.某企业人均增加值是一个强度相对指标.< >12.某企业月末库存额是一个时点指标.< >13.平均指标反映现象的离散程度.< >14.变异指标反映现象的集中趋势.< >15.总体中的一部分数值与另一部分数值之比得到比例相对指标.< >16.报告期水平与基期水平之比得到比较相对指标.< >17.总体中的一部分数值与总体数值之比得到结构相对指标.< >18.加权算术平均数的大小仅受变量值大小的影响.< >19.当两个数列的平均水平相等时,可以用平均差反映平均水平的代表性.< >20.当两个数列的平均水平不相等时,可以用标准差系数反映平均水平的代表性.< >三、单项选择题1.某地区有80万人口,共有8000名医生.平均每个医生要服务800人,这个指标是< >.A.平均指标B.强度相对指标C.总量指标D.比较相对指标2.某商场某种商品价格第一季度是连续上升的.1月份单价20元,销售额12万元;2月份单价25元,销售额10万元;3月份单价30元,销售额13万元.则第一季度的平均单位商品价格为< >.A.2025303++B.201225103013121013⨯+⨯+⨯++121013121013202530++++3.有甲、乙两个数列,若甲的平均差比乙的平均差大,那么< >.A.甲数列的变异程度比乙数列大B.甲数列的平均数的代表性比乙数列小C.甲数列的变异程度比乙数列小D.不能确定两个数列变异程度的大小4.已知3个水果商店梨的单价和销售量,要计算3个商店梨的平均单价,应该采用< >.A.算术平均数B.几何平均数C.调和平均数D.众数5.某企业第一批产品的单位产品成本100元,产量比重为10%;第二批产品的单位产品成本110元,产量比重为20%;第三批产品的单位产品成本120元,产量比重为70%.则平均单位产品成本为< >.A.100×10%+110×20%+120×70%B.1001101203++C.10010%11020%12070%3⨯+⨯+⨯D.10011012010%20%70%102070++++6.总体内部各组成部分之比形成的相对指标是< > 相对指标.A.结构B.比例C.比较D.动态7.某商场计划商品销售额7月份比6月份上升5%,实际上商品销售额7月份比6月份上升3%.则商品销售额的计划完成相对指标为< >.A.3%5%B.103%105%C.97%95%D.105%103%8.加权算术平均数的大小< >.A.仅受各组次数的影响B.仅受各组变量值的影响C.既受变量值影响,也受次数影响D.不受各组变量值的影响9.标志变异指标中最容易受极端值影响的是< >.A.全距B.平均差C.标准差D.标准差系数10.标志变异指标反映总体的< >.A.集中程度B.一般水平C.离散程度D.平均水平四、多项选择题1.下列指标中属于强度相对指标的有< >.A.某地区平均每人粮食产量B.某企业工人平均工资C.某班级学生平均成绩D.某班级学生平均成绩E.某地区平均每人原油产量2.下列属于时点指标的有< >.A.企业固定资产B.商品销售量C.牲畜存栏头数D.某年死亡人口数E.居民储蓄存款余额3.下列属于时期指标的有< >.A.某大学历年毕业的学生数B.我国某年耕地面积减少数C.某大学20##6月30日在校学生数D.某商店某月商品销售额E.20##1月1日0时出生的人口数4.如果变量值有一项为0,则不能计算< >.A.算术平均数B.调和平均数C.几何平均数D.众数E.中位数5.可以反映现象代表水平的指标有< >.A.算术平均数B.调和平均数C.标准差D.标准差系数E.众数6.可以反映现象离散程度的指标有< >.A.中位数B.平均差C.全距D.标准差E.几何平均数7.下列指标中属于平均指标的有< >.A.平均亩产量B.某班学生平均身高C.某企业平均每人增加值D.我国平均每人钢产量E.某大学教师平均工资8.当两个数列的平均水平相等时,可以反映平均水平的代表性的指标有< >.A.标准差B.平均差C.全距D.标准差系数E.众数9.标准差和标准差系数的区别是< >.A.作用不同B.计算方法不同C.适用条件不同D.指标表现形式不同E.与平均数的关系不同10.标志变异指标可以< >.A.说明平均数的代表性B.反映现象发展变化的均衡性C.反映现象的稳定性D.反映现象的变异程度E.反映现象的集中趋势五、简答题1.时期指标与时点指标有哪些区别?请分别列出你所熟悉的时期指标与时点指标.2.相对指标有几种?请写出其计算公式.3.说明调和平均数和几何平均数的适用条件.4.标志变异指标有哪些作用?有几类?适用条件如何?5.说明算术平均数、中位数、众数的优缺点与三者之间的关系.6.平均指标与强度相对指标有什么区别?7.全距、平均差、标准差有什么异同?六、计算题1.某企业两个生产班组,各有10名工人,它们生产某种产品的日产量资料如下:计算有关指标说明哪个班组平均日产量高?2.某企业某月份按工人劳动生产率高低分组的资料如下:计算该企业工人平均劳动生产率.3. 某厂3个车间1季度生产情况如下:1车间实际产量为200件,完成计划96%;2车间实际产量为300件,完成计划100%;3车间实际产量为150件,完成计划104%,则3个车间产量的平均计划完成程度为:〔96%+100%+104%〕/3 .另外,1车间产品单位成本为15元/件;2车间产品单位成本为25元/件;3车间产品单位成本为20元/件,则3个车间平均单位成本为:〔15+25+20〕/3.以上平均指标的计算是否正确?如不正确请改正.4. 某月份甲、乙两农贸市场某农产品价格与成交量、成交额的资料如下表:比较该农产品哪一个市场的平均价格高,并说明原因.5. 某汽车装配厂三个车间的废品率与产量资料如下:计算:<1>如三个车间各自负责一辆汽车装配的全过程,平均废品率为多少?〔2〕如三个车间分别负责汽车装配的一道工序,平均废品率为多少?6. 甲、乙两企业某月生产某产品的单位成本与产量比重资料如下:比较成交该月份哪个企业的单位成本高,并说明原因.7.有甲、乙两单位,甲单位职工平均工资800元,标准差为124元.乙单位资料如下:计算有关指标,比较甲、乙两单位职工平均工资的代表性大小.8.某农作物的两种不同良种在5个村生产条基本相同的地块上试种,得到的结果是:甲品种在5个村的平均收获率为499.5<公斤/亩>,标准差为34.46公斤; 乙品种在5个村的平均收获率为499〔公斤/亩〕,标准差为81.35公斤.说明哪一种品种有较大稳定性,有推广价值.第三章 综合指标一、填空题1.时期 时点2.比较3.强度4.550/5005.45/406.117.5.0115.11111++++ 8.相等 9.0二、判断题1.×2.√3.×4. √5.×6.×7. √8.×9.× 10. √ 11. √ 12.× 13.× 14.× 15. √ 16.× 17. √ 18.× 19. √ 20. √ 三、单项选择题1.B2.D3.D4.A5.A6.B7.B8. C9.A 10.C 四、多项选择题1.ADE2.ACE3.ABD4.BC5.ABE6.BCD7.ABE8.ABC9.BCD 10.ABCD 五、简答题1.区别:〔1〕时期指标是反映现象在一段时间内活动总量的总量指标;时点指标是反映现象在某一时刻状况的总量指标;〔2〕时期指标可以累计;不同时点的数值不能累计;〔3〕时期指标数值大小与时期长短有直接关系,时期长,指标数值就大,时期短,指标数值就小;时点指标数值大小与时点间隔长短无直接关系.举例:〔1〕时期指标:国内生产总值、商品销售额、增加值;〔2〕时点指标:企业数、职工人数、库存额.2.〔1〕结构相对指标=总体中某一部分数值∕总体全部数值〔2〕比例相对指标=总体中某一部分数值∕总体中另一部分数值〔3〕比较相对指标=某条件下的某类数值∕另条件下的同类数值〔4〕动态相对指标=报告期水平∕基期水平〔5〕强度相对指标=某一指标数值∕另一有联系但性质不同的指标数值〔6〕计划完成相对指标=实际完成数∕计划任务数3.〔1〕调和平均数:当变量值是绝对数时,变量值可以相加,已知的是分子的资料,缺少的是分母的资料;当变量值是相对数或平均数时,变量值之间既不能相乘也不能相加,已知的是分子的资料,缺少的是分母的资料;〔2〕几何平均数:变量值是相对数,而且变量值之间有连乘的关系.4.作用:〔1〕反映数列的变异程度;〔2〕衡量平均数的代表性.类型:〔1〕绝对数形式:全距、平均差、标准差;〔2〕相对数形式:标准差〔全距、平均差〕系数.适用条件:〔1〕绝对数形式:在两个或多个数列的平均水平相等时,对比其变异程度与平均数的代表性;〔2〕相对数形式:在两个或多个数列的平均水平不相等时,对比其变异程度与平均数的代表性.5.优缺点:〔1〕算术平均数:是根据所有的变量值计算的,是平均指标中最常用、最基本、应用最广泛的一种形式.但容易受极端值的影响,同时,当数列是用文字表示时,无法计算;〔2〕中位数:是根据变量值的位置确定的,不受极端值个数的影响;当数列是用文字表示时,可以计算.但是,由于不是根据所有的变量值计算的,进一步应用受到限制;〔3〕众数:是根据变量值的位置确定的,不受极端值的影响;当数列是用文字表示时,可以计算.但是,由于不是根据所有的变量值计算的,进一步应用受到限制;关系:对称分布时,三者相等;左偏分布时,算术平均数<中位数<众数;右偏分布时,算术平均数>中位数>众数.6.〔1〕涵义不同:平均指标是总体标志总量与总体单位总量之比,反映现象的代表水平;强度相对指标是两个有一定联系但性质不同的指标之比,反映现象的强度、密度或普遍程度、经济效益的.〔2〕分子与分母的依存关系不同:平均指标的分子与分母之间有直接的依存关系;强度相对指标的分子与分母之间没有直接的依存关系.7.相同:作用相同,都可以反映数列的变异程度、衡量平均数的代表性;适用条件相同,都在平均水平相等时使用.不同:全距不是根据全部数值计算的,容易受极端值的影响;平均差虽然是根据全部数值计算的,但用绝对值消除离差正负号,不利于进一步应用;标准差用平方的方法消除离差正负号,应用比较广泛. 六、计算题 1.如下表:(件)甲41040==x 6.5==∑∑=ff χχ乙<件> 因为x 乙>x 甲,所以,乙班组平均日产量高. 2.8029565958085100755065=⨯+⨯+⨯+⨯=x 〔件∕人〕计算结果表明,该企业工人平均劳动生产率为80件∕人.3. 计算错误.平均计划完成程度=20030015065099.61%200300150652.5696%100%104%++==++平均单位成本=1520025300201501350020.77200300150650⨯+⨯+⨯==++〔元/件〕 4.375.145.55.15.14.18.22.12.15.18.22.1==++++=甲x计算结果表明,甲市场的平均价格高,是因为甲市场价格比较高的品种成交量比较大.5. 〔1〕平均废品率=700×0.3%+600×0.2%+800×0.4%∕2100 =6.5∕2100 =0.31% 〔2〕平均合格率=%7.99%6.99%8.99%7.993=⨯⨯平均废品率=1-99.7%=0.3%6.甲x =1×10%+1.1×20%+1.2×70%=1.18乙x =1.2×35%+1.1×25%+1×40%=1.095计算结果表明,甲企业的平均成本高,是因为单位成本高的产品的产量在总产量所占比重大〔70%〕. 7..11 / 11 因为v 乙<v 甲,所以,乙单位平均工资的代表性大. 8.%5.145.49946.34==甲v %3.1649935.81==乙v 因为v 甲<v 乙,说明甲品种收获率差异程度小,所以,甲品种比较稳定性,有推广价值.。
统计学 第三章练习题答案及解析
3%1%2%5.1++453025453025++++统计学第三章出题优课后习题答案原多项选择第三题D 选项解释有误,现在已经重新更改。
一、单项选择题1. 某商场某月商品销售额为1200万元,月末商品库存额为400万元,这两个总量指标( )。
A. 是时期指标B. 前者是时期指标,后者是时点指标C. 是时点指标2. 国民总收入与国内生产总值之间相差一个( )。
A. 出口与进口的差额B. 固定资产折旧C. 来自国外的要素收入净额3. 有三批产品,废品率分别为1.5%、2%、1%,相应的废品数量为25件、30件、45件,则这三批产品平均废品率的计算式应为( )。
A. B.C. D.4. 下列各项中,超额完成计划的有( )。
A. 利润计划完成百分数103.5%B. 单位成本计划完成百分数103.5%C. 建筑预算成本计划完成百分数103.5%5. 某厂某种产品生产量1月刚好完成计划,2月超额完成2%,3月超额完成4%,则该厂该年一季度各月平均超额完成计划的计算方法是( )。
A. 2%+4%=6%B. (2%+4%)÷2=3%C. (2%+4%)÷3=2%453025%1%2%5.1++++3%1%2%5.1⨯⨯6. 甲、乙两组工人的平均日产量分别为18件和15件。
若甲乙两组工人的平均日产量不变,但是甲组工人数占两组工人总数的比重下降,则两组工人总平均日产量( )。
A. 上升B. 下降C. 不变D.可能上升,也可能下降7. 当各个变量值的频数相等时,该变量的()。
A. 众数不存在B. 众数等于均值C. 众数等于中位数8. 如果你的业务是提供足球运动鞋的号码,那么哪一种平均指标对你更有用?( )A. 算术平均数B. 几何平均数9. 某年年末某地区城市和乡村平均每人居住面积分别为30.3和33.5平方米,标准差分别12.8和13.1平方米,则居住面积的差异程度( )。
A. 城市大B. 乡村大10. 下列数列的平均数都是50,在平均数附近散布程度最小的数列是( )。
统计学知识点复习思考题
第一章总论一、概念题1.统计总体的同质性是指总体各单位具有某一标志的共同表现。
2.统计指标、可变的数量标志都是变量,变量可以是绝对数、相对数和平均数。
4.不是所有总体单位与总体之间都存在相互转换关系。
5.指标是说明总体数量特征的概念和数值,标志是说明总体单位的属性和特征的名称。
6.统计指标是由总体各单位的数量标志值或总体单位数汇总而成的。
7.年份、产品质量、信用等级、宾馆星级以及是非标志等是品质标志。
二、思考题1.统计学的研究对象是什么?统计学的研究对象的特点有哪些?答:统计学的研究对象是社会经济现象总体的数量特征和数量关系,以及通过这些数量方面反映出来的客观现象发展变化的规律性。
统计学研究对象的特点:数量性、总体性、变异性。
2.什么是数量指标和质量指标?举例说明。
答:数量指标是反映社会经济现象总规模水平或工作总量的统计指标,用绝对数表示。
如人。
口总数、国民生产总值。
质量指标是反映社会经济现象相对水平或工作质量的统计指标,用相对数或平均数表示。
如平均工资、人口密度等。
3.统计指标的概念和构成要素是什么?举例说明。
答:统计指标是反映总体现象数量特征概念和数值。
构成要素有:(1)时间限定;(2)空间范围;(3)指标名称;(4)指标数值;(5)计量单位;(6)计算方法。
如2009年6月全国粗钢产量4942. 5万吨。
4.统计学的学科性质及特点是什么?统计学的研究方法有哪些?答:统计学的学科性质:统计学是一门方法论科学,其特点是“定性分析—定量分析—定性分析”。
统计学的研究方法:大量观察法、统计分组法、综合指标法、统计模型法、归纳推断法等。
5.什么是简单现象总体?什么是复杂现象总体?答:将几个小总体组成一个大总体,这时小总体变成了大总体的总体单位。
如果各总体单位的数量标志值或总体单位数有相加性,则这个大总体叫做简单现象总体;如果无相加性,则叫做复杂现象总体。
上述各个小总体本身是简单现象总体。
第二、三章统计调查与整理一、概念题1.统计整理的方法有分组、汇总和编表。
统计学第三章 综合指标练习题
统计学第三章综合指标练习题统计学第三章综合指标练习题前面章节及第三章综合指标一、选择题1、杭州地区每百人手机拥有量为90部,这个指标是a、比例相对指标b、比较相对指标c、结构相对指标d、强度相对指标2、某组与数据呈圆形正态分布,排序出来算术平均数为5,中位数为7,则该数据分布为a、左偏分布b、右偏分布c、对称分布d、无法判断3、平均值算术平均数的大小a主要受到各组标志值大小的影响,与各组次数多少毫无关系;b主要受到各组次数多少的影响,与各组标志值大小毫无关系;c既与各组标志值大小毫无关系,也与各组次数多少毫无关系;d既与各组标志值大小有关,也受到各组次数多少的影响4、已知一分配数列,最小组限为30元,最大组限为200元,不可能是平均数的为a、50元b、80元c、120元d、210元5、比较两个单位的资料,甲的标准差小于乙的标准差,则a两个单位的平均数代表性相同b甲单位平均数代表性大于乙单位c乙单位平均数代表性大于甲单位d不能确定哪个单位的平均数代表性大6、若单项数列的所有标志值都减少常数9,而次数都增加三分之一,则其算术平均数a、增加9b、增加6c、减少三分之一d、增加三分之二7、与变量值相同计量单位的是a全距b调和平均数c平均差d标准差e线性系数f算术平均数8、由于计量单位或者规模不同造成不可比,可能采用什么方法解决a比较对指标b平均指标c强度相对指标d比例相对指标f结构相对指标9、与变量值同比例变化的是a算术平均数b调和平均数c几何平均数d全距e标准差f平均差g标准差系数10、某数据集服从对称的正态分布,算术平均数为100,现分别增加2个极端值1和199,怎此数据集的分布将a维持等距的正态分布b左偏c右偏d无法推论11、人口普查中以每个居住地居民位调查单位,下面属标志的就是a性别b年龄c男性d人口总数e已婚12、对浙江财经学院学生的基本情况进行调查,属于数量标志的是a平均值开支b年龄c年级d体重e学生总数二、计算题1、已知甲小区居民平均年龄为37岁,标准差为12岁,现对乙小区居民年龄进行抽样调查,得到资料如下(保留1位小数):年龄(岁)人数(人)18以下1218-305030-506850以上40根据以上资料计算:(保留1位小数)(1)计算乙小区居民的平均年龄;(2)比较甲乙两小区平均年龄的代表性大小;2、已知某企业职工工资情况如下:工资(元)人数(人)1000以下201000-2000402000-30001003000-4000504000以上30根据资料计算该企业职工工资的平均数,众数和中位数。
《统计学概论》第三章课后练习题答案
《统计学概论》第三章课后练习题答案一、思考题1.什么是统计整理,统计整理的对象是什么?P612.什么是统计分组,它可以分为哪几种形式?P633.简述编制变量数列的一般步骤。
P70-754.统计表分为哪几种?P785.什么是统计分布,它包括哪两个要素?P686.单项式分组和组距公式分组分别在什么情况下运用?P667.如何正确选择分组标志?P658.为什么要进行统计分组?其主要作用是什么?P63(2009.01)二、判断题1.统计整理只能对统计调查所得到的原始资料进行加工整理。
(×)P61【解析】统计整理分为两情况:一种是对原始资料进行整理,另一种是对次级资料即已加工过的现成资料进行在整理。
2.对一个既定总体而言,合理的分组标志只有一个。
(×)P67【解析】复合分组就是对同一总体选择两个或两个以上标志进行的分组。
3.在异距数列中,计算次数密度主要是为了消除组距因素对次数分布的影响。
(√)P74 4.组中值是指各组上限和下限之中点数值,故在任何情况下它都能代表各组的一般水平。
(×)P72【解析】当组内标志值分布均匀时,组中值能代表各组的一般水平(平均水平),当组内标志值分布不均匀时,组中值不能代表各组的一般水平(平均水平)。
5.在变量数列中,组数等于全距除以组距。
(×)(2010.01)P71【解析】变量数列的分组可分为等距分组和异距分组,只有在等距分组的情况下,组数等于全距除以组距。
6.统计分组的关键问题是确定组数和组距。
(×)(2009.10)P65【解析】统计分组的关键问题是选择恰当的分组标志。
7.按数量标志分组的目的,就是要区分各组在数量上的差别。
(×)P66【解析】按数量标志分组的目的,并不是单纯确定各组在数量上的差别,而是要通过数量上的变化来区分各组的不同类型和性质。
8.连续型变量可以作单项式分组或组距式分组,而离散型变量只能作组距式分组。
统计学第三章课后题及答案解析
第三章 一、单项选择题1. 统计整理的中心工作是( )A. 对原始资料进行审核 C.统计汇总问题2. 统计汇总要求资料具有( )A. 及时性 C-全而性3. 某连续变量分为五组:第一组为40—50,70—80,第五组为80以上,依习惯上规定A. 50在第一组,70在第四组B. 编制统计表 D.汇总资料的再审核 B. 正确性 D.系统性第二组为50—60,第三组为60—70,第四组为)B. 60在第二组,80在第五组C. 70在第四组,80在第五组D. 80在第四组,50在第二组4・若数量标志的取值有限.且是为数不多的等差数值,宜编制( ) A.等距式分布数列 C.开口式数列 5・组距式分布数列多适用于( ) A.随机变量 C.连续型变量6.向上累计次数表示截止到某一组为止(A.上限以下的累计次数C.各组分布的次数B.单项式分布数列D.异距式数列 B.确立型变量 D ・离散型变量 ) B.下限以上的累计次数 D.各组分布的频率 7.次数分布有朝数量大的一边偏尾,曲线高峰偏向数量小的方向,该分布曲线属于( ) A.正态分布曲线 C.右偏分布曲线 B. J 型分布曲线 D.左偏分布曲线 &划分连续变量的组限时,相临组的组限一般要( ) A.交叉 C.重叠 二、多项选择题 1.统讣整理的基本内容主要包括( A.统计分组 B.不等 D.间断 B.逻借检查C.数据录入 E.制表打印 2. 影响组距数列分布的要素有( A.组类 C.组距 E.组数据 3. 常见的频率分布类型主要有( A.钟型分布 C. U 型分布 D ・统讣汇总 )B.组限 D.组中值)B. x 型分布 D. J 型分布E. F 型分布 4•根据分组标志不同,分组数列可以分为()C.单项数列D. 变量数列E. 开口数列5. 下列变量一般是钟型分布的有()A. 粮食平均产量的分布B. 零件公差的分布C. 大学生身髙的分布D. 商品市场价格的分布E. 学生成绩的分布6. 下列变量呈J型分布的有()A. 投资额按利润率的分布B. 60岁以上人口按年龄分组的分布C.经济学中的供给曲线D.不同年龄人口的死亡率分布E.经济学中的需求曲线三、填空题1.分布在各组的 ______ 叫次数(频数)。
《统计学》教案第三章 综合指标
第三章综合指标教学内容:1.总量指标的含义、种类、计量单位及其各种单位的特点2.相对指标的含义、表现形式及种类3.平均指标的内涵、作用、各种平均数的计算方法、应用场合4.标志变异指标的含义、作用、种类及其计算教学重点:1.总量指标的种类2.相对指标的种类及计算3.平均指标的种类、计算及其应用场合4.标志变异指标的作用、种类及其应用场合教学难点:平均指标、标志变异指标的计算及其应用场合授课学时:8学时统计指标按其作用和表现形式不同分为三大类:总量指标、相对指标和平均指标,我们把这三类指标统称为综合指标,即综合反映总体的数量特征和数量关系的指标。
第一节总量指标一、总量指标的概念概念:总量指标也称绝对指标,是反映现象在一定的时间、地点条件下的总规模和总水平的指标。
如:2007年全国原油产量为1.87亿吨;2007年全国国内生产总值为为246619亿元;2007年末全国总人口为132129万人2007年全国汽车产量为888. 7万辆;2007年全国工业增加值为107367亿元;2007年末全国就业人员76990万人,其中城镇就业人员29350万人。
总量指标均是用绝对指标表达出来的,也称绝对指标,作用:①它是对现象总体认识的起点(基础数据)。
总量指标是最基本的统计指标,利用它可以反映社会经济开展的规模和水平,说明一个国家的经济实力, 也可说明企业生产经营的成果。
②它是计算平均指标和相对指标的基础,平均指标、相对指标是由绝对指标月实际完成的累计数已到达计划规定数,那么剩余的时间为提前完成计划的时间。
或将全部时间减去自计划执行之日起至累计实际数量已到达计划任务的时间,即为提前完成计划的时间。
如上例,某工业部门截止2005年6月底实际完成的基建投资额已到达8000 万元,那么该部门提前半年时间完成十-五规划。
④计划执行进度的检查它是用计划期中某一段时期的实际累计完成数与计划期全期的计划任务数之比来检查计划执行的进度。
统计学第三章综合指标
150-160 160-170 170-180 180-190 190-200 200-210 210-220 220-230 230-240 合计
9 16 27 20 17 10 8 4 5 120
f+1=20
d=10
L=170 ,U=180
11 M 0 170 10 11 7 7 M 0 180 10 11 7
第三章 综合指标
《统计学原理》
§3.1
总量指标
一、总量指标的概念和作用 总量指标的概念:总量指标是反映社会经 济现象在一定时间、地点和条件下规模和 水平的统计指标(用绝对数表示)。其特点是 随统计范围大小而增减。 例如,我国第四次人口普查,所有被调查 者相加就得到我国1990年7月1日零点的人 口数(大陆)1133685801人;将全国所有 工业企业1992年的工业总产值加总,就得 到我国1992年工业总产值36802亿元;以 上指标均是总量指标。
时点指标
实物指标
按采用的计量 单位不同 价值指标 劳动指标
§3.1
总量指标
二、总量指标的种类 (一)按所说明总体的内容不同分类 1、总体单位总量:表明总体单位数量的多少, 它是总体单位数的总和,又称单位总量或总 体单位数。(反映总体规模的大小) 例如:一个乡镇的企业数;一个城市的学校 数;一个学校的学生人数;一个工厂的职工 数。
§3.2
相对指标
二、相对指标的种类和计算方法 (三)比较相对指标(比较相对数) 1.比较相对指标:反映同一时间两个不同单位同 类指标对比的相对指标 2.比较相对指标计算
比较相对指标=甲单位某指标值/乙单位同类指标值
例如:某年北京市工业总产值708.97亿元,同 期上海市工业总产值1515.35亿元,可得上海 市工业总产值是北京市工业总产的2.14倍 1515.35/708.97=2.14
统计学原理李洁明第三章综合指标
问题 1、在有关大学生学习成绩影响因素调查中,假如搜集到了 2000名学生上学期期末各科考试成绩,以及周学习时长 如何考察每位学生成绩的一般水平?多少男生和女生? 要比较女生、男生成绩的高低,应如何进行比较? 如果已经根据年级进行了分组,然后对每个年级又进行了 周学习时长分组,那么每年级学生学习成绩如何比较?如 何比较每个年级各组学生成绩和学习时长均匀性? 如何比较学生的学习效率?
统计学原理
第一节 总 量 指 标
概述 计算原则
计量单位介绍
概 述
概念 反映社会经济现象一定时间、地点、条件下的总 规模、总水平的统计指标。 表现为绝对数、有名数。 作用 反映国情、国力和企事业单位人、财、物的状况; 是国民经济宏观管理和企业经济核算的基础性指标, 是实行目标管理的工具; 是计算相对指标和平均指标的基础,是基础指标。
统计学原理
加权算术平均(weighted average):应用于分组的绝对 数资料,或者平均指标和相对指标资料
▼权(weight)表示重要性、影响力高低。根据表现形式 分为两种: 权数f(绝对权):次数、频数等绝对数形式; 权重ω(相对权):比重、频率等相对数形式。 ▼对于组距数列,应该用组中值作为变量值。 ▼ 加权算术的一般形式为(K为分组数): x1 f1 x2 f 2 xk f k xf x f f1 f 2 f k
a 一般地,相对数、平均 数都可以表示为 x 。如果已知 b 分组的 xk、bk 时, ak xk bk bx x b b
k 1 m k k 1 k
a
m
统计学原理
例 某班统计学期末考试成绩如下表,计算此班统计学平 均成绩。 成绩 60以下 60-70 70-80 80-90 90以上 合计 人数 2 5 8 6 4 25 组中值x 55 65 75 85 95 —
自考《国民经济统计学》复习笔记(3)
第三章综合指标 ⼀、总量指标 (⼀)总量指标概述 1、概念:将总体单位数相加或总体单位标志值相加,得到说明社会经济现象总体的总规模、总⽔平的指标,即总量指标。
(以绝对数表⽰) 2、说明 (1)总量指标是⼈们认识现象总体数量特征的基础指标。
(2)总量指标数值的⼤⼩受总体范围的制约。
(3)总量指标也可表现为不同时间、不同空间下社会经济现象总体总量之间的差数。
(⼆)总量指标的种类 1、按说明内容不同——总体单位总量、总体标志总量 注意:(1)有些总体单位标志值加总的结果不具实际意义,只是在计算其他指标时使⽤。
(2)⼀个总量指标是总体单位总量还是总体标志总量要随研究⽬的⽽定。
2、按反映的时间状态不同——时期指标、时点指标 (1)时期指标特点:可加性;与包含的时期长短有直接关系;是连续登记、累计的结果。
(2)时点指标特点:不可加;与其时间间隔长短⽆直接关系;间断计数。
3、按表现形态不同——实物指标、价值指标 ⼆、相对指标 (⼀)相对指标概述 1、概念:将两个有联系的统计指标对⽐求得的数量关系的指标即为相对指标。
(以相对数形式表⽰) 2、说明 (1)相对指标反映现象之间的联系程度。
(2)多数相对指标采⽤⽆名数表⽰;有些采⽤名数表⽰,如商品流转次数(次);还有些同时采⽤分了分母指标的单位表⽰,如⼈⼝密度(⼈/平⽅公⾥)。
(⼆)相对指标的种类及计算⽅法:6类 1、结构相对指标= 作⽤:反映⽐重、结构,如:合格率、利⽤率、恩格尔系数等 2、⽐例相对数= 作⽤:反映悬殊情况。
(内部、互⽐),如:第⼀、⼆、三产业产值;积累额、消费额;体育⽐分等 3、⽐较相对数= 作⽤:反映不平衡程度,如:中美、中⽇、连云港:临忻等 4、强度相对指标= 作⽤:反映经济实⼒,如:⼈均国民⽣产总值 反映负荷⼤⼩,如:⼈⼝密度、商业点密度 反映发展的普遍程度,如:商品流通费⽤率=流通费⽤/流转额 表现形式:⽆名数、复名数 5、动态相对指标= () 作⽤:反映随时间变化的情况。
统计学(第3章)
4、定比尺度(比率尺度 ratio scale)
是对事物之间比值的一种测度,可用
于参数与非参数统计推断。 特征:
除区分事物的类别、进行排序、比较大 小,而且还可以进行加减乘除运算。 具有绝对零点,即“0”表示“没有” 或“不存在”。 所有统计量都可以对其进行分析。与定 距尺度的唯一区别是有绝对固定的零点。
第三章 统计数据的整理 10
3、观察数据和实验数据
观察数据:通过调查或观测而得 到的数据。 实验数据:通过控制实验对象而 收集的数据。
第三章 统计数据的整理
11
4、直接数据和间接数据
直接数据:即原始数据。
间接数据:已加工整理过的数据。
第三章 统计数据的整理
12
第二节 统计整理的含义和步骤
当异距分组时,各组的次数还受 到组距不同的影响。为消除异距 分组的这种影响,须计算频率密 度(或次数密度),计算公式: 频数密度 = 频数/组距 频率密度 = 频率/组距
第三章 统计数据的整理
36
二、分布数列的编制
将原始资料按其数值大小重新排列 2. 确定全距 3. 确定组距和组数 4. 确定组限 5. 编制变量数列 示例3-5
第三章 统计数据的整理
某地人口
21
(三)按分组标志的不同性质分
品质分组(属性分组):是将总体按
品质(或属性)标志进行分组。如企 业按经济成份、企业规模,职工按性 别、文化程度分组等。 数量分组(变量分组):是将总体按 数量标志进行分组,如企业按职工人 数、劳动生产率分组,职工按工龄、 工资分组等。
第三章 统计数据的整理 31
4、开口组的组距与组中值
统计学原理第三章综合指标
总量指标在社会经济统计中的作用:
1、它可以反映一个国家的基本国情和国力, 反映某部门、单位等人、财、物的基本数据。 2、它是制定政策、编制计划、实行社会经济 管理的基本依据之一。 3、它是计算相对指标、平均指标以及各种分 析指标的基础指标,其他指标都是总量指标的 派生指标。
二、总量指标的种类 (一)总量指标按其反映的内容不同,分为 总体单位总量和总体标志总量
一由平均数计算平均数时调和平均数法的应用某商品在三个贸易市场上的销售情况市场平均价格元千克x销售量千克fxf200300006000025020000500002402500060000合计75000170000某商品平均价格计算表市场平均价200600003000025050000200002406000025000合计17000075000二由相对数计算平均数时调和平均数法的应用工厂计划完成程度x计划产值万元fxf9512001140105128001344011520002300合计1600016880某公司各企业平均计划完成程度计算表计划完成程度x实际产值万元m9511401200105134401280011523002000合计1688016000从上述两例中看出若掌握权数资料是基本公式的母项数值则直接采用加权算术平均数形式
四、几何平均数
几何平均数又称“对数平均数”,它是若干项 变量值连乘积开其项数次方的算术根。 (一)简单几何平均数
X G = n X 1 • X 2 • L • X n = n πX
在实际工作中,常用
1 1 lg X G = (lg X 1 + lg X 2 + L + lg X n −1 + lg X n ) = ∑ lg X n n ∴ X G = arc(lg X G )
统计学课后习题答案第三章-综合指标
统计学课后习题答案第三章-综合指标第三章综合指标⼀、单项选择题1.总量指标的数值⼤⼩A.随总体范围的扩⼤⽽增加B.随总体范围的扩⼤⽽减少C.随总体范围的减少⽽增加D.与总体范围的⼤⼩⽆关2.总量指标按其说明的内容不同可以分为A.时期指标和时点指标B.标志总量和总体总量C.实物指标和数量指标D.数量指标和质量指标3.总量指标按其反映的时间状态不同可分为A.时期指标和时点指标B.标志总量和总体总量C.实物指标和数量指标D.数量指标和质量指标4.下列指标中属于总量指标的是A.国民⽣产总值B.劳动⽣产率C.计划完成程度D.单位产品成本5.下列指标中属于时点指标的是A.商品销售额B.商品购进额C.商品库存额D.商品流通费⽤额6.下列指标中属于时期指标的是A.在校学⽣数B.毕业⽣⼈数C.⼈⼝总数D.黄⾦储备量A.都是时期指标B.前者是时期指标,后者是时点指标C.都是时点指标D.前者是时点指标,后者是时期指标8.对不同类产品或商品不能直接加总的总量指标是A.实物量指标B.价值量指标C.劳动量指标D.时期指标9.具有⼴泛的综合性和概括能⼒的统计指标是A.实物量指标B.价值量指标C.劳动量指标D.综合指标10.如果我们要研究⼯业企业职⼯的情况时,则职⼯⼈数和⼯资总额这两个指标A.都是标志总量B.前者是标志总量,后者是总体总量C.都是总体总量D.前者是总体总量,后者是标志总量11.以10为对⽐基础⽽计算出来的相对数称为A.成数B.百分数C.系数D.倍数12.两个数值相⽐,如果分母的数值⽐分⼦的数值⼤很多时,常⽤的相对数形式是A.成数B.百分数C.系数D.倍数13.既采⽤有名数,⼜采⽤⽆名数的相对指标是A.结构相对指标B.⽐例相对指标C.⽐较相对指标A.结构相对指标B.⽐例相对指标C.⽐较相对指标D.强度相对指标15.总体内部部分数值与总体数值之⽐是A.结构相对指标B.⽐例相对指标C.⽐较相对指标D.强度相对指标16.反映同类事物在不同时间状态下对⽐关系的相对指标是A.⽐较相对指标B.⽐例相对指标C.动态相对指标D.强度相对指标17.反映同类事物在不同空间条件下对⽐关系的相对指标是A.⽐较相对指标B.⽐例相对指标C.结构相对指标D.强度相对指标18.反映两个性质不同但有⼀定联系的总量指标之⽐是A.平均指标B.总量指标C.⽐较相对指标D.强度相对指标19.在下列相对指标中具有可加性的相对指标是A.结构相对指标B.⽐较相对指标C.⽐例相对指标D.强度相对指标20.在下列相对指标中具有平均性质的相对指标是A.结构相对指标B.⽐较相对指标C.⽐例相对指标A.职⼯⼈数B.⼯资总额C.⼯业企业数D.平均⼯资22.下列指标中属于强度相对指标的是A.积累消费⽐例B.产品合格率C.⼈均国民收⼊D.中国与⽇本的钢产量之⽐23.下列指标中属于⽐较相对指标的是A.成本利润率B.劳动⽣产率C.轻重⼯业⽐例 D.中国与⽇本的钢产量之⽐24.计划完成程度相对指标的分⼦分母A.只能是绝对指标B.只能是相对指标C.只能是平均指标D.绝对指标、相对指标和平均指标均可25.某企业计划劳动⽣产率⽐上年提⾼10%,实际提⾼15%,则其计划完成程度为A.150%B.5%C.4.56%D.104.55%26.某产品单位成本计划⽐上年降低5%,实际降低8%,则其计划完成程度为A.96.84%B.3%C.3.16%D.160%27.凡长期计划指标是按计划期内各年的总和规定任务时检查计划执⾏情况应按A.直接法B.推算法C.累计法D.⽔平法B.按计划期内某⼀时期应达到的⽔平规定C.按计划期末应达到的⽔平规定D.按计划期累计应达到的⽔平规定29.反映分配数列中各变量值分布的集中趋势的指标是A.数量指标B.平均指标C.相对指标D.变异指标30.算术平均数的基本公式是A.总体部分总量与部分总量之⽐B.总体标志总量与总体单位总数之⽐C.总体标志总量与另⼀总体总量之⽐D.不同总体两个有联系的指标数值之⽐31.在分配数列中,当标志值较⼤⽽权数较⼩时,则算术平均数为A.偏向于标志值较⼤的⼀⽅B.不受权数影响C.偏向于标志值较⼩的⼀⽅D.仅受标志值影响32.在下列哪⼀情况下,算术平均数只受变量值⼤⼩的影响,⽽与次数⽆关A.变量值较⼤⽽次数较⼩B.变量值较⼤⽽次数较⼤C.变量值较⼩⽽次数较⼩D.各变量值出现的次数相同33.当变量值中有⼀项为零,则不能计算A.算术平均数和调和平均数B.众数和中位数C.算术平均数和⼏何平均数D.调和平均数和⼏何平均数34.在组距数列中,如果每组的次数都增加10个单位,⽽组中值不变,则算术平均数A.不变B.上升C.增加10个单位D.⽆法判断B.上升C.增加10个单位D.⽆法判断36.权数对算术平均数的影响作⽤决定于A.权数本⾝数值⼤⼩B.各组标志值的⼤⼩C.权数数值之和的⼤⼩D.作为权数的各组单位数占总体单位总数的⽐重⼤⼩37.各标志值与算术平均数的离差之和等于A.各标志值的平均数B.零C.最⼩值D.最⼤值38.各标志值与算术平均数的离差平⽅之和等于A.各标志值的平均数B.零C.最⼩值D.最⼤值39.简单算术平均数可以说是A.简单调和平均数的特例B.⼏何平均数的特例C.加权算术平均数的特例D.加权调和平均数的特例40.由相对数(或平均数)计算平均数时,若掌握的资料是相对数(或平均数)的母项资料,则应⽤A.加权算术平均数法计算B.加权调和平均数法计算C.简单算术平均数法计算D.⼏何平均数法计算41.由相对数(或平均数)计算平均数时,若掌握的资料是相对数(或平均数)的⼦项资料,则应⽤A.加权算术平均数法计算B.加权调和平均数法计算C.简单算术平均数法计算D.⼏何平均数法计算D.众数和中位数43.下列平均数中属于位置平均数的是A.算术平均数B.调和平均数C.⼏何平均数D.众数和中位数44.众数是由变量数列中的A.标志值⼤⼩决定的B.极端数值决定的C.标志值平均⽔平决定的D.标志值出现次数多少决定的45.计算平均指标最常⽤和最基本的形式是A.众数和中位数B.算术平均数C.⼏何平均数D.调和平均数46.计算平均指标的基本要求(前提)是社会经济现象的A.⼤量性B.同质性C.变异性D.社会性47.加权算术平均数的⼤⼩A.只受各组标志值的影响B.只受各组次数的影响C.与各组标志值和次数⽆关D.受各组标志值和次数共同影响48.假如组距数列各组的标志值不变,⽽每组的次数都增加20%,则加权算术平均数A.增加20%B.减少20%C.没有变化D.⽆法判断D.⽆法判断50.如果将每⼀标志值都增加10个单位,则算术平均数A.保持不变B.也增加10个单位C.减少10个单位D.⽆法判断51.如果将每⼀标志值都扩⼤5倍,则算术平均数A.保持不变B.也扩⼤5倍C.缩⼩5倍D.⽆法判断52.根据同⼀资料计算的算术平均数(E)、⼏何平均数(G)和调和平均数(H)之间的关系为A.G≤H≤EB.H≥E≥GC.E≥G≥HD.H≥G≥E53.设有六个⼯⼈的⽇产量(件)分别为5、6、7、8、9、10,则这个数列中A.7是众数B.8是众数C.7.5是众数D.没有众数54.如果单项数列各项变量值所对应的权数相等时,则A.众数就是居于中间位置的那个变量值B.众数不存在C.众数就是最⼩的那个变量值D.众数就是最⼤的那个变量值55.设有⼋个⼯⼈的⽇产量(件)分别为4、6、6、8、9、12、14、15,则这个数列的中位数是A.4.5B.8和956.在变量分配数列中,中位数是A.处于中间位置的标志值B.处于中间位置的频数C.最⼤频数的标志值D.与众数同值57.由组距数列计算众数时,如果众数组相邻两组的次数相等,则A.众数在众数组内靠近上限B.众数在众数组内靠近下限C.众数组的组中值就是众数D.众数为零58.由组距数列计算算术平均数时,⽤组中值代表组内变量⼀般⽔平的假定条件是A.各组的次数必须相等B.组中值能取整数C.各组的变量值在本组内呈均匀分布D.各组必须是封闭组59.调查某地区1010户农民家庭,按⼉童数分配的资料如下:则其中位数为:A.380B.2C.2.5D.50560.当算术平均数、众数和中位数相等时其总体内部的次数分布表现为A.钟型分布B.U型分布C.正态分布D.J型分布61.当变量分布呈右偏时,有A.众数 <中位数<算术平均数B.算术平均数<中位数<众数62.反映分配数列中各变量值分布的离散趋势的指标是A.总量指标B.相对指标C.平均指标D.变异指标63.反映总体各单位标志值变异程度或变动范围的统计指标称为A.总量指标B.相对指标C.平均指标D.变异指标64.标志变异指标与平均数代表性之间存在着A.正⽐关系B.反⽐关系C.互余关系D.倒数关系65.受极端数值影响最⼤的变异指标是A.全距B.平均差C.标准差D.标准差系数66.由组距数列计算全距指标的近似⽅法是A.全距=最⾼组下限-最低组上限B.全距=最⼤变量值-最⼩变量值C.全距=最⼤组中值-最⼩组中值D.全距=最⾼组上限-最低组下限67.平均差是指各变量值与其算术平均数的A.平均离差B.离差的平均数C.离差绝对数D.离差平⽅的平均数68.标准差是指各变量值与其算术平均数的A.离差平⽅的平均数B.离差平⽅的平均数的平⽅根69.计算标准差⼀般所依据的中⼼指标是A.众数B.中位数C.⼏何平均数D.算术平均数70.平均差和标准差就其实质⽽⾔属于A.总量指标B.相对指标C.平均指标D.计划指标71.平均差与标准差的主要区别在于A.说明意义不同B.计算前提不同C.计算结果不同D.数学处理⽅法不同72.两个总体的平均数不等,但标准差相等,则A.平均数⼩,代表性⼤B.平均数⼤,代表性⼩C.⽆法进⾏判断D.两个平均数代表性相等73.在甲⼄两个变量数列中,如果甲数列的标准差⼤于⼄数列,则A.两个数列的平均数代表性相同B.甲数列的平均数代表性⾼于⼄数列C.⼄数列的平均数代表性⾼于甲数列D.⽆法确定哪个数列的平均数代表性好74.标准差系数抽象了A.总体指标数值多少的影响B.总体单位数多少的影响C.标志变异程度的影响D.平均⽔平⾼低的影响75.⽐较两个不同平均⽔平的同类现象或两个性质不同的不同类现象平均数代表性⼤⼩时,应⽤A.全距D.标准差系数76.若把现象分为具有某种标志或不具有某种标志,则所采⽤的标志是A.不变标志B.品质标志C.数量标志D.是⾮标志77.设某企业⽣产某种产品300吨,其中合格产品270吨,不合格品30吨,则是⾮标志的标准差为A.90B.0.3C.0.09D.0.978.是⾮标志的⽅差的最⼤值是A.0.5B.0.25C.1D.没有最⼤值79.是⾮标志标准差取值最⼤的条件是A.成数最⼤B.成数最⼩C.成数等于1D.成数等于0.580.交替标志的平均数是A.pB.qC.p+qD.1-p81.交替标志的标准差是A. B. C.D.82.P 的取值范围是A.P=0B.P ≤083.在经济分析中常⽤的“百分点”是指A. 两个百分数相加的结果B.两个百分数相减的结果C.两个百分数相乘的结果D.两个百分数相除的结果⼆、多项选择题 pq q p +p -1q1.下列指标中属于综合指标的有A.总量指标B.相对指标C.平均指标D.变异指标E.样本指标2.常⽤的总量指标的推算⽅法有A.插值估算法B.⽐例关系推算法C.抽样推算法D.平衡关系推算法E.因素关系推算法3.⼀个国家(地区)⼀定时期内的国内⽣产总值属于A.数量指标B.质量指标C.标志总量D.时期指标E.时点指标4.总体单位总量和总体标志总量的地位A.随研究⽬的的不同⽽变化B.可以是总体单位总量转化为总体标志总量C.在同⼀研究⽬的下也会变化D.可以是总体标志总量转化为总体单位总量E.只能是总体标志总量转化为总体单位总量5.时期指标的特点有A.可以连续计数B.只能间断计数E.数值与时期长短有直接关系6.下列指标中属于时期指标的是A.国民⽣产总额B.⼈均收⼊C.⼯资总额D.⼈⼝总数E.商品库存量7.时点指标的特点有A.可以连续计数B.只能间断计数C.数值不能直接相加D.数值与时间间隔长短⽆关E.数值与时间间隔长短有直接关系8.下列指标中属于时点指标的有A.商品销售量B.商品库存量C.在校学⽣数D.毕业⽣⼈数E.外汇储备额9.逐年扩⼤的耕地⾯积与逐年增加的棉花产量A.都是时期指标B.前者是时期指标,后者是时点指标C.都是时点指标D.前者是时点指标,后者是时期指标E.前者是总体总量,后者是标志总量10.计算总量指标应该注意的问题是A.现象必须具有同质性B.计量单位必须统⼀C.指标必须有明确的统计含义D.指标必须有科学的计算⽅法E.指标必须具有可⽐性11.相对指标的数值表现形式是A.绝对数12.分⼦和分母可以互换的相对指标有A.结构相对指标B.⽐较相对指标C.强度相对指标D.动态相对指标E.计划完成相对指标13.分⼦和分母可以属于不同总体的相对指标有A.结构相对指标B.⽐较相对指标C.⽐例相对指标D.强度相对指标E.动态相对指标14.分⼦和分母属于同类现象的相对指标有B.结构相对指标 B.⽐较相对指标C.⽐例相对指标D.强度相对指标E.计划完成相对指标15.下列相对指标中属于同⼀时期数值对⽐的指标有A.结构相对指标B.⽐较相对指标C.强度相对指标D.动态相对指标E.计划完成相对指标16.⽐较相对指标可以⽤于A.不同国家、地区、单位之间的⽐较B.先进⽔平与落后⽔平的⽐较C.不同时期的⽐较D.实际⽔平与计划⽔平的⽐较E.实际⽔平与标准⽔平或平均⽔平的⽐较17.强度相对指标应⽤⼴泛,它可以反映A.经济实⼒18.下列指标中属于强度相对指标的有A.资⾦利税率B.商品流通费⽤率C.⼈⼝密度D.⼈⼝⾃然增长率E.全员劳动⽣产率19.计划完成相对指标的对⽐基础从形式上说可以是A.总量指标B.相对指标C.平均指标D.质量指标E.样本指标20.检查长期计划执⾏情况的⽅法有A.⽔平法B.⽅程式法C.累计法D.⼏何平均法E.最⼩平⽅法21.计算和应⽤相对指标应注意的原则是A.正确选择对⽐的基数B.保持对⽐指标的可⽐性C.把相对指标和分组法结合应⽤D.把相对指标和绝对指标结合应⽤E.把多种相对指标结合起来应⽤22.平均指标的作⽤表现为A.反映现象总体的综合特征B.反映变量值分布的集中趋势C.反映变量值分布的离散趋势D.反映现象在不同地区之间的差异E.揭⽰现象在不同时间之间的发展趋势23.平均指标的种类包括D.众数E.中位数24.下列平均指标中哪些属于数值平均数?A.算术平均数B.调和平均数C.⼏何平均数D.众数E.中位数25.下列平均指标中哪些属于位置平均数?A.算术平均数B.调和平均数C.⼏何平均数D.众数E.中位数26.受极端变量值影响的平均数有A.算术平均数B.调和平均数C.⼏何平均数D.众数E.中位数27.算术平均数的基本公式中包含着A.分⼦分母同属于⼀个总体B.分⼦分母的计量单位相同C.分母是分⼦的承担者D.分⼦附属于分母E.分⼦分母都是数量标志值28.加权算术平均数等于简单算术平均数是因为A.各组标志值不同B.各组次数相等C.各组标志值相同D.各组次数不相等E.各组次数等于1B.权数必须表现为标志值的承担者C.权数与标志值相乘具有经济意义D.权数必须是总体单位数E.权数必须是单位数⽐重30.加权算术平均数和加权调和平均数计算⽅法的选择主要是根据已知资料的情况⽽定A.如果掌握公式的分母资料⽤加权算术平均数计算B.如果掌握公式的分⼦资料⽤加权算术平均数计算C.如果掌握公式的分母资料⽤加权调和平均数计算D.如果掌握公式的分⼦资料⽤加权调和平均数计算E.如果缺乏公式的分⼦分母资料则⽆法计算31.应⽤算术平均数法计算平均数所具备的条件是A.掌握变量为相对数和相应的标志总量B.掌握变量为平均数和相应的标志总量C.掌握变量为绝对数和其相应的总体总量D.掌握变量为相对数和其相应的总体总量E.掌握变量为平均数和其相应的总体总量32.应⽤调和平均数法计算平均数所具备的条件是A.掌握总体标志总量和相应的标志总量B.缺少算术平均数基本公式的分⼦资料.C.缺少算术平均数基本公式的分母资料D.掌握变量为相对数和其相应的标志总量E.掌握变量为平均数和其相应的标志总量33.⼏何平均数主要适⽤于计算A.具有等差关系的数列B.具有等⽐关系的数列C.变量的代数和等于总速度的现象D.变量的连乘积等于总⽐率的现象E.变量的连乘积等于总速度的现象34.中位数是A.居于数列中间位置的那个变量值B.根据各个变量值计算的C.不受极端变量值的影响D.不受极端变量值位置的影响A.算术平均数与众数、中位数之间存在⼀定关系B.算术平均数与众数、中位数之间不存在⼀定关系C.算术平均数与众数、中位数三者合⽽为⼀D.中位数与算术平均数的距离约等于众数与算术平均数距离的1/3E.中位数与众数的距离约等于众数与算术平均数距离的2/336.如果仅从数量关系上考虑,⽤同⼀资料计算出来的三种平均数的结果是A.⼏何平均数⼤于调和平均数B.⼏何平均数⼩于调和平均数C.⼏何平均数⼤于算术平均数D.⼏何平均数⼩于算术平均数E.⼏何平均数⼤于调和平均数和算术平均数37.影响加权算术平均数⼤⼩的因素有A.各组变量值⽔平的⾼低B.各组变量值次数的多少C.各组次数之和D.各组变量值之和E.各组变量值次数占总次数的⽐重⼤⼩38.应⽤平均指标应注意的问题有A.注意现象总体的同质性B.⽤组平均数补充说明总平均数C.注意极端数值的影响D.⽤分配数列补充说明平均数E.把平均数与典型事例相结合39.计算⼏何平均数应满⾜的条件是A.总⽐率等于若⼲个⽐率之和B.总⽐率等于若⼲个⽐率之积C.总速度等于若⼲个速度之积D.总速度等于若⼲个速度之和E.被平均的变量值不得为负数40.标志变异指标可以A.衡量平均数代表性的⼤⼩B.反映产品质量的稳定性。
统计学复习思考题与练习题参考答案doc
第一章复习思考题与练习题:一、思考题1.统计的基本任务是什么?2.统计研究的基本方法有哪些?3.如何理解统计总体的基本特征。
4.试述统计总体和总体单位的关系。
5.标志与指标有何区别何联系。
二、判断题1、社会经济统计的研究对象是社会经济现象总体的各个方面。
()2、在全国工业普查中,全国企业数是统计总体,每个工业企业是总体单位。
()3、总体单位是标志的承担者,标志是依附于单位的。
()4、数量指标是由数量标志汇总来的,质量指标是由品质标志汇总来的。
()5、全面调查和非全面调查是根据调查结果所得的资料是否全面来划分的()。
三、单项选择题1、社会经济统计的研究对象是()。
A、抽象的数量关系B、社会经济现象的规律性C、社会经济现象的数量特征和数量关系D、社会经济统计认识过程的规律和方法2、某城市工业企业未安装设备普查,总体单位是()。
A、工业企业全部未安装设备B、工业企业每一台未安装设备C、每个工业企业的未安装设备D、每一个工业3、标志是说明总体单位特征的名称,标志有数量标志和品质标志,因此()。
A、标志值有两大类:品质标志值和数量标志值B、品质标志才有标志值C、数量标志才有标志值D、品质标志和数量标志都具有标志值4、统计规律性主要是通过运用下述方法经整理、分析后得出的结论()。
A、统计分组法B、大量观察法C、综合指标法D、统计推断法5、指标是说明总体特征的,标志是说明总体单位特征的,所以()。
A、标志和指标之间的关系是固定不变的B、标志和指标之间的关系是可以变化的C、标志和指标都是可以用数值表示的D、只有指标才可以用数值表示答案:二、 1.× 2.× 3.√ 4.× 5.×三、 1.C 2.B 3.C 4.B 5.B第三章一、复习思考题1.什么是平均指标?平均指标可以分为哪些种类?2.为什么说平均数反映了总体分布的集中趋势?3.为什么说简单算术平均数是加权算术平均数的特例?4.算术平均数的数学性质有哪些?5.众数和中位数分别有哪些特点?6.什么是标志变动度?标志变动度的作用是什么?7.标志变动度可分为哪些指标?它们分别是如何运用的?8.平均数与标志变动度为什么要结合运用?二、练习题1.某村对该村居民月家庭收入进行调查,获取的资料如下:3.某蔬菜市场某种蔬菜上午1元可买1.5公斤,中午1元可买2公斤,下午1元可买2.5公斤。
统计学复习第3章+综合指标
二、全距
R
1. 全距是总体各单位标志值最大值和最小值之差, 即:R Xmax -Xmin 2. 全距的特点
① 优点: 计算方便,易于理解。 ② 缺点: 全距只考虑数列两端数值差异,它是测 定标志变动度的一种粗略方法,不能全面反映总 体各单位标志的变异程度。
三、四分位差 Q.D. 1.概念: 将总体各单位的标志值按大小顺序排列,
根据卡尔 皮尔逊经验公式,还可以推算出: M0 3Me 2 X Me X 1 ( M0 2 X ) 3
1 (3 M e M 0 ) 2
八、平均指标的运用原则
1.平均指标只能适用于同质总体。 2.用组平均数补充说明总平均数。 3.用分配数列补充说明平均数
第四节 标志变动度
三、正确运用相对指标的原则
1.注意二个对比指标的可比性。
经济内容有内在联系,总体范围以及指标口径 一致,计算方法、计算价格可比
2.相对指标要和总量指标结合起来运用。
3.多种相对数结合运用 4.在比较二个相对数时,是否适宜相除再求一 个相对数,应视情况而定。若除出来有实际意 义,则除;若不宜相除,只宜相减求差数,用 百分点表示之。(百分点 —— 即百分比中相当 于百分之一的单位)
f
Me XU
式中: XL、XU fm S m 1 Sm 1 f d
2
Sm 1 fm
表示中位数所在组的下限、上限
中位数所在组的次数 中位数所在组以下的累计次数 中位数所在组以上的累计次数 总次数 中位数所在组的组距
3.中位数的特点
① 中位数也是一种位置平均数,它也不受极端值 及开口组的影响,具有稳健性。 ② 各单位标志值与中位数离差的绝对值之和是个 最小值。
它作为一种数值平均数,受所有标志值的影响;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 综合指标一、填空题1.总量指标按其反映的时间状况不同可以分为 指标和 指标。
2. 相对指标是不同单位(地区、国家)的同类指标之比。
3. 相对指标是两个性质不同而有联系的指标之比。
4.某企业某年计划增加值达到500万元,实际为550万元,则增加值的计划完成相对指标为 。
5.某企业某年计划单位产品成本为40元,实际为45元,则单位产品成本的计划完成相对指标为 。
6.某车间5名工人的日产量(件)为10 10 11 12 14,则日产量的中位数是 。
7.市场上某种蔬菜早、中、晚的价格(元)分别为、1、,早、中、晚各买1元,则平均价格为 。
8.在两个数列平均水平 时,可以用标准差衡量其变异程度。
9.∑=-)(x x 。
二、判断题年我国人口出生数是一个时点指标。
( ) 年我国国内生产总值是一个时期指标。
( ) 年我国人均国内生产总值是一个平均指标。
( )4.我国第三产业增加值在国内生产总值所占比重是一个结构相对指标。
( )5.某企业某年计划劳动生产率比去年提高4%,实际上提高了5%,则劳动生产率的计划完成相对指标为5%/4%。
( )6.某企业某年计划单位产品成本比去年降低3%,实际上提高了%,则单位产品成本的计划完成相对指标为1+%/1+3%。
( )7.某车间7名工人的日产量(件)为22 23 24 24 24 25 26,则日产量的众数是24。
( )8.三个连续作业车间的废品率分别为% % %,则平均废品率为3%3.0%8.0%5.0⨯⨯。
( )9.当BAσσ>时,则说明A 数列平均数的代表性比B 数列强。
( )10.全距容易受极端值的影响。
( )11.某企业人均增加值是一个强度相对指标。
( ) 12.某企业月末库存额是一个时点指标。
( ) 13.平均指标反映现象的离散程度。
( ) 14.变异指标反映现象的集中趋势。
( )15.总体中的一部分数值与另一部分数值之比得到比例相对指标。
( ) 16.报告期水平与基期水平之比得到比较相对指标。
( )17.总体中的一部分数值与总体数值之比得到结构相对指标。
( ) 18.加权算术平均数的大小仅受变量值大小的影响。
( )19.当两个数列的平均水平相等时,可以用平均差反映平均水平的代表性。
( )20.当两个数列的平均水平不相等时,可以用标准差系数反映平均水平的代表性。
( ) 三、单项选择题1.某地区有80万人口,共有8000名医生。
平均每个医生要服务800人,这个指标是( )。
A.平均指标B.强度相对指标C.总量指标D.比较相对指标 2.某商场某种商品价格第一季度是连续上升的。
1月份单价20元,销售额12万元;2月份单价25元,销售额10万元;3月份单价30元,销售额13万元。
则第一季度的平均单位商品价格为( )。
A.2025303++ B. 201225103013121013⨯+⨯+⨯++121013121013202530++++3.有甲、乙两个数列,若甲的平均差比乙的平均差大,那么( )。
A.甲数列的变异程度比乙数列大B.甲数列的平均数的代表性比乙数列小C.甲数列的变异程度比乙数列小D.不能确定两个数列变异程度的大小4.已知3个水果商店梨的单价和销售量,要计算3个商店梨的平均单价,应该采用( )。
A.算术平均数B.几何平均数C.调和平均数D.众数5.某企业第一批产品的单位产品成本100元,产量比重为10%;第二批产品的单位产品成本110元,产量比重为20%;第三批产品的单位产品成本120元,产量比重为70%。
则平均单位产品成本为( )。
×10%+110×20%+120×70% B.1001101203++C.10010%11020%12070%3⨯+⨯+⨯D.10011012010%20%70%102070++++6.总体内部各组成部分之比形成的相对指标是( ) 相对指标。
A.结构B.比例C.比较D.动态7.某商场计划商品销售额7月份比6月份上升5%,实际上商品销售额7月份比6月份上升3%。
则商品销售额的计划完成相对指标为( )。
A.3%5%B.103%105%C.97%95%D.105%103%8.加权算术平均数的大小( )。
A.仅受各组次数的影响B.仅受各组变量值的影响C.既受变量值影响,也受次数影响D.不受各组变量值的影响9.标志变异指标中最容易受极端值影响的是( )。
A.全距B.平均差C.标准差D.标准差系数10.标志变异指标反映总体的( )。
A.集中程度B.一般水平C.离散程度D.平均水平四、多项选择题1.下列指标中属于强度相对指标的有( )。
A.某地区平均每人粮食产量B.某企业工人平均工资C.某班级学生平均成绩D.某班级学生平均成绩E.某地区平均每人原油产量2.下列属于时点指标的有( )。
A.企业固定资产B.商品销售量C.牲畜存栏头数D.某年死亡人口数E.居民储蓄存款余额3.下列属于时期指标的有( )。
A.某大学历年毕业的学生数B.我国某年耕地面积减少数C.某大学2004年6月30日在校学生数D.某商店某月商品销售额年1月1日0时出生的人口数4.如果变量值有一项为0,则不能计算( )。
A.算术平均数B.调和平均数C.几何平均数D.众数E.中位数5.可以反映现象代表水平的指标有( )。
A.算术平均数B.调和平均数C.标准差D.标准差系数E.众数6.可以反映现象离散程度的指标有( )。
A.中位数B.平均差C.全距D.标准差E.几何平均数7.下列指标中属于平均指标的有( )。
A.平均亩产量B.某班学生平均身高C.某企业平均每人增加值D.我国平均每人钢产量E.某大学教师平均工资8.当两个数列的平均水平相等时,可以反映平均水平的代表性的指标有( )。
A.标准差B.平均差C.全距D.标准差系数E.众数9.标准差和标准差系数的区别是( )。
A.作用不同B.计算方法不同C.适用条件不同D.指标表现形式不同E.与平均数的关系不同10.标志变异指标可以( )。
A.说明平均数的代表性B.反映现象发展变化的均衡性C.反映现象的稳定性D.反映现象的变异程度E.反映现象的集中趋势五、简答题1.时期指标与时点指标有哪些区别请分别列出你所熟悉的时期指标与时点指标。
2.相对指标有几种请写出其计算公式。
3.说明调和平均数和几何平均数的适用条件。
4.标志变异指标有哪些作用有几类适用条件如何5.说明算术平均数、中位数、众数的优缺点及三者之间的关系。
6.平均指标与强度相对指标有什么区别7.全距、平均差、标准差有什么异同六、计算题1.某企业两个生产班组,各有10名工人,它们生产某种产品的日产量资料如下:计算有关指标说明哪个班组平均日产量高2.某企业某月份按工人劳动生产率高低分组的资料如下:计算该企业工人平均劳动生产率。
3. 某厂3个车间1季度生产情况如下:1车间实际产量为200件,完成计划96%;2车间实际产量为300件,完成计划100%;3车间实际产量为150件,完成计划104%,则3个车间产量的平均计划完成程度为:(96%+100%+104%)/3 。
另外,1车间产品单位成本为15元/件;2车间产品单位成本为25元/件;3车间产品单位成本为20元/件,则3个车间平均单位成本为:(15+25+20)/3。
以上平均指标的计算是否正确如不正确请改正。
4. 某月份甲、乙两农贸市场某农产品价格及成交量、成交额的资料如下表:比较该农产品哪一个市场的平均价格高,并说明原因。
5. 某汽车装配厂三个车间的废品率及产量资料如下:计算:(1)如三个车间各自负责一辆汽车装配的全过程,平均废品率为多少(2)如三个车间分别负责汽车装配的一道工序,平均废品率为多少6. 甲、乙两企业某月生产某产品的单位成本及产量比重资料如下:比较成交该月份哪个企业的单位成本高,并说明原因。
7.有甲、乙两单位,甲单位职工平均工资800元,标准差为124元。
乙单位资料如下:计算有关指标,比较甲、乙两单位职工平均工资的代表性大小。
8.某农作物的两种不同良种在5个村生产条基本相同的地块上试种,得到的结果是:甲品种在5个村的平均收获率为(公斤/亩),标准差为公斤; 乙品种在5个村的平均收获率为499(公斤/亩),标准差为公斤。
说明哪一种品种有较大稳定性,有推广价值。
第三章 综合指标一、填空题1.时期 时点2.比较3.强度 /500 /40 7.5.0115.11111++++ 8.相等 二、判断题1.×2.√3.×4. √5.×6.×7. √8.×9.× 10. √ 11. √ 12.× 13.× 14.× 15. √ 16.× 17. √ 18.× 19. √ 20. √ 三、单项选择题8. C 四、多项选择题五、简答题1.区别:(1)时期指标是反映现象在一段时间内活动总量的总量指标;时点指标是反映现象在某一时刻状况的总量指标;(2)时期指标可以累计;不同时点的数值不能累计;(3)时期指标数值大小与时期长短有直接关系,时期长,指标数值就大,时期短,指标数值就小;时点指标数值大小与时点间隔长短无直接关系。
举例:(1)时期指标:国内生产总值、商品销售额、增加值;(2)时点指标:企业数、职工人数、库存额。
2.(1)结构相对指标=总体中某一部分数值∕总体全部数值 (2)比例相对指标=总体中某一部分数值∕总体中另一部分数值 (3)比较相对指标=某条件下的某类数值∕另条件下的同类数值(4)动态相对指标=报告期水平∕基期水平(5)强度相对指标=某一指标数值∕另一有联系但性质不同的指标数值(6)计划完成相对指标=实际完成数∕计划任务数3.(1)调和平均数:当变量值是绝对数时,变量值可以相加,已知的是分子的资料,缺少的是分母的资料;当变量值是相对数或平均数时,变量值之间既不能相乘也不能相加,已知的是分子的资料,缺少的是分母的资料;(2)几何平均数:变量值是相对数,而且变量值之间有连乘的关系。
4.作用:(1)反映数列的变异程度;(2)衡量平均数的代表性。
类型:(1)绝对数形式:全距、平均差、标准差;(2)相对数形式:标准差(全距、平均差)系数。
适用条件:(1)绝对数形式:在两个或多个数列的平均水平相等时,对比其变异程度及平均数的代表性;(2)相对数形式:在两个或多个数列的平均水平不相等时,对比其变异程度及平均数的代表性。
5.优缺点:(1)算术平均数:是根据所有的变量值计算的,是平均指标中最常用、最基本、应用最广泛的一种形式。
但容易受极端值的影响,同时,当数列是用文字表示时,无法计算;(2)中位数:是根据变量值的位置确定的,不受极端值个数的影响;当数列是用文字表示时,可以计算。