高中数学必修三讲义 章末检测试卷(二)

合集下载

【湘教版】高中数学必修三期末模拟试卷带答案(2)

【湘教版】高中数学必修三期末模拟试卷带答案(2)

一、选择题1.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为( )A .45B .35 C .25 D .152.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率( ) A .110B .310C .12D .7103.一个不透明的袋中装有6个白球,4个红球球除颜色外,无任何差异.从袋中往外取球,每次任取1个,取出后记下颜色不放回,若为红色则停止,若为白色则继续抽取,停止时从袋中抽取的白球的个数为随机变量X ,则(22)P X ≤=( ). A .23 B .512C .56 D .518 4.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .235.执行如图所示的程序框图,若输出S 的值为511,则判断框内可填入的条件是( )A .4i ≤B .5i ≤C .5i <D .6i ≤6.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k <7.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为A .6B .10C .8D .48.执行如图所示的程序框图,若输出的结果为5,则输入的实数a 的范围是( )A .[)6,24B .[)24,120C .(),6-∞D .()5,249.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[)9,11的学生人数为25,则n 的值为( )A .40B .50C .80D .10010.从两个班级各随机抽取5名学生测量身高(单位:cm ),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高x 甲,x 乙及方差2s 甲,2s 乙的关系为( )A .x 甲>x 乙,2s 甲>2s 乙B .x 甲>x 乙,2s 甲<2s 乙C .x 甲<x 乙,2s 甲<2s 乙D .x 甲<x 乙,2s 甲>2s 乙11.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸12.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和67二、填空题13.过点(0,0)O 作直线与圆22(45)(8)169x y -+-=相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________. 14.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.15.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________16.执行如图所示的伪代码,则输出的S 的值是_______.17.如图所示的伪代码,最后输出的S 值为__________.18.如果执行如图所示的程序框图,那么输出的值为__________.19.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为______.20.总体由编号为01,02, ,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.三、解答题21.某班组织“2人组”投篮比赛,每队2人,在每轮比赛中,每队中的两人各投篮1次,规定:每队中2人都投中则该队得3分;若只有1人投中,则该队得1分若没有人投中,则该队得-1分.A队由甲、乙两名同学组成,甲投球一次投中的概率为35,乙投球一次投中的概率为34,且甲、乙投中与否互不影响,在各轮比赛中投中与否也互不影响.(Ⅰ)求A队在一轮比赛中的得分不低于1分的概率;(Ⅱ)若共进行五轮比赛,记“A队在一轮比赛中得分不低于1分”恰有X次,求X的期望和方差;(Ⅲ)若进行两轮比赛,求A队两轮比赛中得分之和Y的分布列和期望.22.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率. 23.程序框图如图,运行此程序,试求输出的b 的值.24.设计一个算法,已知函数2x y =的图象上,任意给定两点的横坐标1x 和212()x x x ≠,求过这两点的直线的斜率,并画出程序框图.25.为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW·h 至350kW·h 之间,进行适当分组后,画出频率分布直方图如图所示.(I )求a 的值;(Ⅱ)求被调查用户中,用电量大于250kW·h 的户数; (III )为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW·h )的建议,并简要说明理由.26.高二理科班有60名同学参加某次考试,从中随机抽选出5名同学,他们的数学成绩x 与物理成绩y 如下表:(Ⅰ)求y 关于x 的线性回归方程,并估计该班某同学的数学成绩为90分时该同学的物理成绩;(Ⅱ)本次考试中,规定数学成绩达到125分为数学优秀,物理成绩达到100分为物理优秀.若该班数学优秀率与物理优秀率分别为50%和60%,且所有同学中数学优秀但物理不优秀的同学共有6人,请你在答卷页上填写下面22⨯列联表,并判断能否在犯错误的概率不超过0.01的前提下认为数学优秀与物理优秀有关?参考公式及数据:回归直线的系数()()()1122211ˆniiiii i nni ii i x y nxy x x y y bx nxx x ====---==--∑∑∑∑,ˆˆay bx =-,154900n i i i x y ==∑,()5211000i i x x=-=∑,()()()()()22n ad bc K a b c d a c b d -=++++.()2 6.6350.01P K ≥=, ()210.8280.001P K ≥=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】先利用导数求出函数()sin f x x a x =+在R 上单调递增时a 的范围,然后再由几何概型的知识解决问题. 【详解】∵()'1cos f x a x =+,要使函数()sin f x x a x =+在R 上单调递增,则1cos 0a x +≥对任意实数x 都成立.∵1cos 1x -≤≤,∴①当0a >时,cos a a x a -≤≤,∴1a -≥-,∴01a <≤;②当0a =时适合;③当0a <时,cos a a x a ≤≤-,∴1a ≥-,∴10a -≤<,综上11a -≤≤,∴函数()sin f x x a x =+在R 上单调递增的概率为25P =.选C . 【点睛】 本题主要考查已知函数的单调性求参数的范围及几何概型问题,属中等难度题.2.B解析:B 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()1,3,5、()1,3,7、()1,3,9、()1,5,7、()1,5,9、()1,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故选:B . 【点睛】本题考查古典概型的概率计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.3.C解析:C 【分析】X k =表示前k 个球为白球,第1k +个球为红球,则((0)(1)(2)P X P X P X P X ≤==+=+=.由此计算可得结论.【详解】X k =表示前k 个球为白球,第1k +个球为红球,42(0)105P X ===, 644(1)10915P X ⨯===⨯, 21643101(2)6A A P X A ===,所以2415((0)(1)(2)51566P X P X P X P X ≤==+=+==++=, 故选:C . 【点睛】本题考查古典概型概率计算,属于基础题,解题时要认真审题,注意列举法的合理运用.4.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.5.B解析:B 【分析】模拟运行程序1i =,满足条件,1013S =+⨯,2i =,满足条件,进入循环体,反复操作,直到输出511S =,核对满足的条件即可. 【详解】1i =,满足条件,1013S =+⨯; 2i =,满足条件,111335S =+⨯⨯; 3i =,满足条件,111133557S =++⨯⨯⨯;4i =,满足条件,111113355779S =+++⨯⨯⨯⨯; 5i =,满足条件,11111115(1)1335577991121111S =++++=-=⨯⨯⨯⨯⨯; 6i =,不满足条件,输出511S =. 故选:B. 【点睛】本题考查了对程序框图的理解与应用,由程序运行结果,补充条件,数列求和的裂项相消法,属于中档题.6.C解析:C 【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体. 【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=, 3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=, 5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”. 故选:C . 【点睛】本题考查循环结构程序框图. 解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证. 7.C解析:C 【分析】执行如图所示的程序框图,逐次循环,计算其运算的结果,根据选项即可得到答案. 【详解】由题意可知,执行如图所示的程序框图,可知: 第一循环:134,2146n S =+==⨯+=; 第二循环:437,26719n S =+==⨯+=; 第三循环:7310,2191048n S =+==⨯+=,要使的输出的结果为48,根据选项可知8k,故选C.【点睛】 本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题. 8.A解析:A【解析】【分析】模拟程序的运行,依次写出每次循环得到的x ,n 的值,由题意判断退出循环的条件即可得解.【详解】模拟程序的运行,可得n =1,x =1不满足条件x >a ,执行循环体,x =1,n =2不满足条件x >a ,执行循环体,x =2,n =3不满足条件x >a ,执行循环体,x =6,n =4不满足条件x >a ,执行循环体,x =24,n =5此时,由题意应该满足条件x >a ,退出循环,输出n 的值为5.可得:6≤a <24.故选:A .【点睛】本题考查的知识点是循环结构的程序框图的应用,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.9.B解析:B【分析】由频率分布直方图的性质,求得0.25x =,再结合频率分布直方图的频率的计算方法,即可求解.【详解】由频率分布直方图的性质,可得()20.050.150.051x +++=,解得0.25x =,所以学习时长在[)9,11的频率2520.5x n==,解得50n =. 故选:B .【点睛】本题主要考查了频率分布直方图性质及其应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了数据分析能力,以及计算能力. 10.C解析:C【解析】【分析】 利用公式求得x 甲和x 乙,从而得到x 甲和x 乙的大小,观察两组数据的波动程度,可以得到2s 甲与2s 乙的大小,从而求得结果.【详解】 甲班平均身高1691621501601591605x ++++==甲, 乙班平均身高1801601501501651615x ++++==乙, 所以x x <甲乙,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以22s s >乙甲, 故选C.【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.11.A解析:A【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果.【详解】根据频率分布直方图可列下表:故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.12.B解析:B【解析】【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解.【详解】设更正前甲,乙,…的成绩依次为a 1,a 2,…,a 50,则a 1+a 2+…+a 50=50×70,即60+90+a 3+…+a 50=50×70,(a 1﹣70)2+(a 2﹣70)2+…+(a 50﹣70)2=50×75,即102+202+(a 3﹣70)2+…+(a 50﹣70)2=50×75. 更正后平均分为x =150×(80+70+a 3+…+a 50)=70; 方差为s 2=150×[(80﹣70)2+(70﹣70)2+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+50×75﹣102﹣202]=67. 故选B .【点睛】本题考查平均数与方差的概念与应用问题,是基础题.二、填空题13.【分析】根据圆的性质可求得最长弦和最短弦的长度从而得到所有弦长为整数的直线条数从中找到长度不超过的直线条数根据古典概型求得结果【详解】由题意可知最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为: 解析:932【分析】根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过14的直线条数,根据古典概型求得结果.【详解】由题意可知,最长弦为圆的直径:221326r =⨯=()0,0O 在圆内部且圆心到O 12=∴最短弦长为:210=∴弦长为整数的直线的条数有:()22510232⨯-+=条其中长度不超过14的条数有:()2141019⨯-+=条∴所求概率:932p =本题正确结果:932【点睛】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况. 14.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38【解析】【分析】根据几何槪型的概率意义,即可得到结论.【详解】正方形的面积S =1,设阴影部分的面积为S ,∵随机撒1000粒豆子,有380粒落到阴影部分,∴由几何槪型的概率公式进行估计得38011000S , 即S =0.38,故答案为:0.38.【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础. 15.78【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24=16种 解析:【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故答案为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.16.110【分析】分析程序中各变量各语句的作用再根据顺序可知:该程序的作用是累加并输出的值利用等差数列的求和公式计算即可得解【详解】分析程序中各变量各语句的作用根据顺序可知:该程序的作用是累加并输出满足 解析:110【分析】分析程序中各变量、各语句的作用,再根据顺序,可知:该程序的作用是累加并输出24620S =++++的值,利用等差数列的求和公式计算即可得解.【详解】 分析程序中各变量、各语句的作用,根据顺序,可知:该程序的作用是累加并输出满足条件24620S =++++的值, 由于10(220)246201102S +=++++==, 故输出的S 的值为:110,故答案是:110.【点睛】该题考查的用伪代码表示的循环结构的程序的相关计算,考查学生的运算求解能力,属于简单题目.17.21【解析】分析:先根据伪代码执行循环直到I<8不成立结束循环输出S 详解:执行循环得结束循环输出点睛:算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪 解析:21【解析】分析:先根据伪代码执行循环,直到I<8不成立,结束循环输出S.详解:执行循环得3,23+3=95,25+3=137,27+3=179,29+3=21;8I S I S I S I S I ==⨯==⨯==⨯==⨯>;;;结束循环,输出21S =.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.18.0【解析】第一次循环:满足条件;第二次循环:满足条件;第三次循环:满足条件;第四次循环:满足条件;第五次循环:满足条件;第六次循环:满足条件;第七次循环:满足条件;可得的值以为周期进行循环所以最后输 解析:0【解析】第一次循环:1cos 32n S S π=+=,满足条件2018,12n n n <=+=;第二次循环:cos 03n S S π=+=,满足条件2018,13n n n <=+=;第三次循环:cos13n S S π=+=-,满足条件2018,14n n n <=+=;第四次循环:3cos 32n S S π=+=-,满足条件2018,15n n n <=+=;第五次循环:cos13n S S π=+=-,满足条件2018,16n n n <=+=;第六次循环:cos03n S S π=+=,满足条件2018,17n n n <=+=;第七次循环:1cos 32n S S π=+=,满足条件2018,18n n n <=+=;...,可得S 的值以6为周期进行循环,所以最后输出的S 的值为0,故答案为0.19.【解析】【分析】先求出这个数据的平均数为此时这个数据的方差为由此求出结果【详解】某个数据的平均数为方差为现又加入一个新数据则这个数据的平均数为此时这个数据的方差为故答案为【点睛】本题主要考查了平均数 解析:83【解析】【分析】先求出这9个数据的平均数为5,此时这9个数据的方差为()22183559S ⎡⎤=⨯+-⎣⎦,由此求出结果【详解】某8个数据的平均数为5,方差为3,现又加入一个新数据5,则这9个数据的平均数为85559⨯+= ∴此时这9个数据的方差为()2218835593S ⎡⎤=⨯+-=⎣⎦ 故答案为83【点睛】 本题主要考查了平均数和方差的计算公式,属于基础题。

人教版数学高一B版必修3章末综合测评2

人教版数学高一B版必修3章末综合测评2

章末综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本A[5 000名居民的阅读时间的全体是总体,每位居民的阅读时间是个体,200是样本容量.]2.小波一星期的总开支分布如图1①所示,一星期的食品开支如图1②所示,则小波一星期的鸡蛋开支占总开支的百分比为()图1A.1%B.2%C.3%D.5%C[由题图②知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%.]3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,则由此求出的平均数与实际平均数的差是( )A .3.5B .-3C .3D .-0.5B [少输入90,9030=3,平均数少3,求出的平均数减去实际平均数等于-3.]4.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中抽取n 个学生进行问卷调查,如果已知从高一学生中抽取的人数为7人,那么从高三学生中抽取的人数应为( )A .10B .9C .8D .7A [由题意知抽取的比例为7210=130,故从高三中抽取的人数为300×130=10.]5.一个容量为100的样本,其数据的分组与各组的频数如下:A .0.13B .0.39C .0.52D .0.64C [频率为13+24+15100=0.52.] 6.如图2是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为( )【导学号:31892015】图2A.11 B.11.5 C.12 D.12.5C[由频率分布直方图得组距为5,故样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,从而中位数为10+0.20.5×5=12,故选C.]7.甲、乙两支女子曲棍球队在某年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为()①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2 C.3 D.4D[因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确.]8.在某次测量中得到的A样本数据如下:52,54,54,56,56,56,55,55,55,55.若B样本数据恰好是A样本数据都加6后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.标准差D[由题意可知B样本的数据为58,60,60,62,62,62,61,61,61,61,将A样本中的数据由小到大依次排列为52,54,54,55,55,55,55,56,56,56,将B样本中的数据由小到大依次排列为58,60,60,61,61,61,61,62,62,62,因此A样本的众数为55,B样本的众数为61,A选项错误;A样本的平均数为54.8,B样本的平均数为60.8,B选项错误;A样本的中位数为55,B样本的中位数为61,C选项错误;事实上,在A样本的每个数据上加上6后形成B样本,样本的稳定性不变,因此两个样本的标准差相等,故选D.]9.如图3茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩.(单位:分)图3已知甲组数据的平均数为17,乙组数据的中位数为17,则x,y的值分别为() A.2,6 B.2,7C.3,6 D.3,7D[依题意得9+10×2+2+x+20×2+7+4=17×5,即x=3,y=7,故选D.] 10.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为()A.32 B.0.2 C.40 D.0.25A[由频率分布直方图的性质,可设中间一组的频率为x,则x+4x=1,所以x=0.2,故中间一组的频数为160×0.2=32,选A.]11.如图4所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则()图4A.x A >x B ,s A >s BB.x A <x B ,s A >s BC.x A >x B ,s A <s BD.x A <x B ,s A <s BB [A 中的数据都不大于B 中的数据,所以x A <x B ,但A 中的数据比B 中的数据波动幅度大,所以s A >s B .]12.已知样本数据由小到大依次为2,3,3,7,a ,b,12,13.7,18.3,20,且样本的中位数为10.5,若使该样本的方差最小,则a ,b 的值分别为( )A .10,11B .10.5,9.5C .10.4,10.6D .10.5,10.5D [由于样本共有10个值,且中间两个数为a ,b , 依题意,得a +b 2=10.5,即b =21-a .因为平均数为(2+3+3+7+a +b +12+13.7+18.3+20)÷10=10,所以要使该样本的方差最小,只需(a -10)2+(b -10)2最小.又(a -10)2+(b -10)2=(a -10)2+(21-a -10)2=2a 2-42a +221,所以当a =--422×2=10.5时,(a -10)2+(b -10)2最小,此时b =10.5.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.【导学号:31892016】60 [根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.] 14.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取50辆汽车进行测试分析,得到如图5所示的时速的频率分布直方图,则时速在70 km/h 以下的汽车有________辆.图520 [由频率分布直方图可得时速在70 km/h 以下的频率是(0.01+0.03)×10=0.4,所以频数是0.4×50=20.]15.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表如下: 气温(℃)18 13 10 -1 用电量(度) 24 34 38 64由表中数据得回归直线方程y =bx +a 中的b=-2,预测当气温为-4 ℃,用电量为________.68度 [回归直线方程过(x ,y ),根据题意得x =18+13+10+(-1)4=10,y =24+34+38+644=40,将(10,40)代入y ^=-2x +a ,解得a ^=60,y ^=-2x +60,当x =-4时,y ^=(-2)×(-4)+60=68,即当气温为-4 ℃时用电量约为68度.]16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图6).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.图60.0303[∵0.005×10+0.035×10+a×10+0.020×10+0.010×10=1,∴a=0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x,y,z人,则x=0.030×10,解得x=30.同理,y=20,z=10.100故从[140,150]的学生中选取的人数为10×18=3.]30+20+10三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解]因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.18.(本小题满分12分)某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:(1)(2)在这10天中,该公司每天用水量的中位数是多少?(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量更合适?并说明理由.[解] (1)x -=110(22+38+40+2×41+2×44+50+2×95)=51(吨).(2)中位数为41+442=42.5(吨).(3)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.19.(本小题满分12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2.乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定?[解] (1)x -甲=(1+0+2+0+2+3+0+4+1+2)×110=1.5,x -乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x -甲>x -乙,∴乙车床次品数的平均数较小.(2)s 2甲=110×[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s 2乙=0.76,∵s 2甲>s 2乙,∴乙车床的生产状况比较稳定.20.(本小题满分12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.图7(1)在如图7给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.[解] (1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12, x 乙=8+14+13+10+12+216=13, s 2甲≈13.67,s 2乙≈16.67.因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长得较为整齐.21.(本小题满分12分)某医院用光电比色计检验尿汞时,得尿汞含量(mg/L)与消光系数如下表:尿汞含量x2 4 6 8 10 消光系数y 64 134 205 285 360(1)(2)估计尿汞含量为9 mg/L 时的消光系数.【导学号:31892017】[解] (1)设回归直线方程为y ^=bx +a .∵x =6,y =209.6,∴∑i =15x 2i =220,∑i =15x i y i =7 774,∴b ^=7 774-5×6×209.6220-5×62=1 48640=37.15. ∴a^=209.6-37.15×6=-13.3. ∴回归方程为y ^=37.15x -13.3.(2)∵当x =9时,y ^=37.15×9-13.3≈321,∴估计尿汞含量为9 mg/L 时消光系数为321.22.(本小题满分12分)某班100名学生期中考试语文成绩的频率分布直方图如图8所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].图8(1)求图中a 的值;高中数学打印版校对完成版本 (2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数.[解] (1)由频率分布直方图知(2a +0.02+0.03+0.04)×10=1,解得a =0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5;0.04×10×100=40;0.03×10×100=30;0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5;40×12=20;30×43=40;20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.。

【湘教版】高中数学必修三期末试卷带答案(2)

【湘教版】高中数学必修三期末试卷带答案(2)

一、选择题1.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率为( )A B .2πC .4πD 2.某比赛为甲、乙两名运动员制订下列发球规则:规则一:投掷一枚硬币,出现正面向上,甲发球,否则乙发球;规则二:从装有2个红球与2个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球;规则三:从装有3个红球与1个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球. 其中对甲、乙公平的规则是( ) A .规则一和规则二B .规则一和规则三C .规则二和规则三D .规则二3.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .237B .4715C .1715D .53174.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I 卷,全国II 卷,全国III 卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为( ) A .184B .142C .128D .1145.数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a ,b 分别为6,3,则输出的n =( )A .2B .3C .4D .56.执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A .261B .425C .179D .5447.某程序框图如图所示,其中21()g n n n =+,若输出的20192020S =,则判断框内可以填入的条件为( )A .2020?n <B .2020?nC .2020?n >D .2020?n8.执行如图所示的程序框图,若输出的结果为5,则输入的实数a 的范围是( )A .[)6,24B .[)24,120C .(),6-∞D .()5,249.某班统计一次数学测验的平均分与方差,计算完毕才发现有位同学的分数还未录入,只好重算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x =,221s s = B .1x x =,221s s < C .1x x =,221s s >D .1x x <,221s s =10.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A.48 B.60 C.64 D.7211.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是().A.s1>s2B.s1=s2C.s1<s2D.不确定12.设有一个直线回归方程为2 1.5=-,则变量x增加一个单位时()y xA.y平均增加1.5个单位B.y平均增加2个单位C.y平均减少1.5个单位D.y平均减少2个单位二、填空题13.现有五个分别标有A、B、C、D、E的小球,随机取出三个小球放进三个盒子,每个盒子只能放一个小球,则D、E至少有一个在盒子中的概率为______.14.如图,M是半径为R的圆周上一个定点,在圆周上等可能的任取一点N,连接MN,则弦MN的长度不超过3R的概率是__________.15.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________16.执行如图所示的算法框图,若输入的x的值为2,则输出的n的值为__________.17.如图是一个算法的流程图,则输出的a 的值是___________.18.101110(2)转化为十进制数是__________.19.某次测试共有100名考生参加,测试成绩的频率分布直方图如下图所示,则成绩在80分以上的人数为__________.20.能够说明“若甲班人数为m ,平均分为a ;乙班人数为n n m ≠(),平均分为b ,则甲乙两班的数学平均分为2a b+”是假命题的一组正整数a ,b 的值依次为_____. 三、解答题21.已知函数()f x ax b =+,分别在下列条件下,求函数图象经过第二、三、四象限的概率.(1)设,{2,1,1,2}a b ∈--且ab ;(2)实数,a b 满足条件11,1 1.a b -⎧⎨-⎩22.已知集合{(,)|[0,2],[1,1]}M x y x y =∈∈-.(1)若,x y Z ∈,求0x y +≥的概率; (2)若,x y R ∈,求0x y +≥的概率.23.以下给出了求1234+++的一个算法,按照逐一相加的程序进行: 第一步:计算12+,得到3;第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10. 请设计一个求12345⨯⨯⨯⨯的一个算法.24.由键盘输入三个整数a ,b ,c ,输出其中最大的数,画出其算法的程序框图,并写出程序. 25.为了提高生产效益,某企业引进了一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取100件产品进行质量检测,所有产品质量指标值均在(]15,45以内,规定质量指标值大于30的产品为优质品,质量指标值在(]15,30的产品为合格品,旧设备所生产的产品质量指标值如频率分布直方图所示,新设备所生产的产品质量指标值如频数分布表所示.质量指标值 频数 (]15,202 (]20,258 (]25,3020 (]30,3530 (]35,4025(]40,4515 合计100(1)请分别估计新、旧设备所生产的产品的优质品率.(2)优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高,根据已知图表数据填写下面列联表(单位:件),并判断是否有95%的把握认为“产品质量高于新设备有关”.非优质品 优质品 合计新设备产品 旧设备产品 合计附:P(20K k ≥)0.15 0.10 0.05 0.025 0.010 0.005 0k2.0722.7063.8415.0246.6357.879()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. (3)已知每件产品的纯利润y (单位:元)与产品质量指标值t 的关系式为2,3045,1,1530,t y t <≤⎧=⎨<≤⎩若每台新设备每天可以生产1000件产品,买一台新设备需要80万元,请估计至少需要生产多少天方可以收回设备成本.26.某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设圆的半径为R,且由题意可得是与面积有关的几何概率构成试验的全部区域的面积及正三角形的面积代入几何概率的计算公式可求. 【详解】解:设圆的半径为R构成试验的全部区域的面积:2S R π=记“向圆O 内随机投一点,则该点落在正三角形内”为事件A , 则构成A22) 由几何概率的计算公式可得, ()224P A R π==故选:A . 【点睛】本题主要考查了与面积有关的几何概型概率的计算公式的简单运用,关键是明确满足条件的区域面积,属于基础试题.2.B解析:B 【分析】计算出三种规则下甲发球和乙发球的概率,当两人发球的概率均为12时,该规则对甲、乙公平,由此可得出正确选项. 【详解】对于规则一,每人发球的机率都是12,是公平的; 对于规则二,记2个红球分别为红1,红2,2个黑球分别为黑1、黑2,则随机取出2个球的所有可能的情况有(红1,红2),(红1,黑1),(红1,黑2),(红2,黑1),(红2,黑2),(黑1,黑2),共6种,其中同色的情况有2种,所以甲发球的可能性为13,不公平; 对于规则三,记3个红球分别为红1、红2、红3,则随机取出2个球所有可能的情况有(红1,红2),(红1,红3),(红1,黑),(红2,红3),(红2,黑),(红3,黑),共6种,其中同色的情况有3种,所以两人发球的可能性均为12,是公平的. 因此,对甲、乙公平的规则是规则一和规则三. 故选B. 【点睛】本题考查利用规则的公平性问题,同时也考查了利用古典概型的概率公式计算事件的概率,正确理解题意是解题的关键,考查计算能力,属于中等题.3.B解析:B 【分析】由试验结果知120对0~1之间的均匀随机数,x y ,满足0101x y ≤<⎧⎨≤<⎩,面积为1,两个数能与1构成钝角三角形三边的数对(,)x y ,满足221x y +<且0101x y ≤<⎧⎨≤<⎩, 1x y +>,面积为142π-,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值. 【详解】由题意,120名同学随机写下的实数对()x y ,落在由0101x y <<⎧⎨<<⎩的正方形内,其面积为1.两个数能与1构成钝角三角形应满足2211x y x y +>⎧⎨+<⎩且0101x y <<⎧⎨<<⎩, 此为一弓形区域,其面积为142π-.由题意134421120π-=,解得4715π=,故选B . 【点睛】本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.4.D解析:D 【分析】先计算出9套题中选出3套试卷的可能,再计算3套题年份和编号都各不相同的可能,通过古典概型公式可得答案. 【详解】通过题意,可知从这9套题中选出3套试卷共有39=84C 种可能,而3套题年份和编号都各不相同共有336A =种可能,于是所求概率为61=8414.选D. 【点睛】本题主要考查古典概型,意在考查学生的分析能力,计算能力,难度不大.5.B解析:B 【分析】模拟程序运行,观察变量值的变化,判断循环条件得出结论. 【详解】程序运行中变量值变化如下:6,3a b ==,1n =,9,6a b ==,不满足a b ≤;2n =,13.5a =,12b =,不满足a b ≤;3n =,20.25a =,24b =,满足a b ≤,输出3n =. 故选:B . 【点睛】本题考查程序框图,考查循环结构.解题方法是模拟程序运行,观察变量值的变化,判断循环条件得出结论.6.B解析:B 【分析】根据循环结构的条件,依次运算求解,即得解. 【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===; 满足0105<⨯,故:7,4,4x y n ===; 满足4107<⨯,故:11,36,6x y n ===; 满足361011<⨯,故:17,144,8x y n ===; 满足1441017<⨯,故:25,400,10x y n ===; 此时:4001025>⨯,满足输出条件:输出425x y += 故选:B 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题.7.A解析:A 【分析】 因为()()2111111g n n n n n n n ===-+++,此程序框图是对函数()g n 求和,利用裂项相消法求和,可知201912020n S n ==+,可知2019满足条件进入循环,2020不满足条件没有进入循环,根据选项得到正确结果. 【详解】由2221111111112019(1111222231112020n S n n n n n n ⎫⎛⎫⎛⎫=++⋯+=-+-+⋯+-=-==⎪ ⎪ ⎪++++++⎭⎝⎭⎝⎭,解得2019n =,可得n 的值为2019时.满足判断框内的条件,当n 的值为2020时,不满足判断框内的条件,退出循环,输出S 的值,故判断框内可以填人的条件为“2020n <?”.故选A. 【点睛】本题考查根据循环框图的输出结果填写判断框的内容,关键是分析出满足输出结果时的n 值,再根据选项判断结果.8.A解析:A 【解析】 【分析】模拟程序的运行,依次写出每次循环得到的x ,n 的值,由题意判断退出循环的条件即可得解. 【详解】模拟程序的运行,可得 n =1,x =1不满足条件x >a ,执行循环体,x =1,n =2 不满足条件x >a ,执行循环体,x =2,n =3 不满足条件x >a ,执行循环体,x =6,n =4 不满足条件x >a ,执行循环体,x =24,n =5此时,由题意应该满足条件x >a ,退出循环,输出n 的值为5. 可得:6≤a <24. 故选:A . 【点睛】本题考查的知识点是循环结构的程序框图的应用,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.9.C解析:C 【分析】根据平均数和方差公式计算比较即可. 【详解】设这个班有n 个同学,分数分别是123,,,,n a a a a ⋅⋅⋅,假设第i 个同学的成绩没录入,这一次计算时,总分是()1n x -,方差为()()()()()222222121111i i n s a x a x a x a x a x n -+⎡⎤=-+-+⋅⋅⋅+-+-+⋅⋅⋅+-⎣⎦-; 第二次计算时,()11n nxx x -+=x =,方差为()()()()()()222222221121111++i i i n n s a x a x a x a x a x a x s n n-+-⎡⎤=-+-⋅⋅⋅-+-+-+⋅⋅⋅+-=⎣⎦故有1x x =,221s s >.故选:C 【点睛】本题主要考查样本的平均数和方差公式;属于中档题.10.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.11.C解析:C 【分析】先求均值,再根据标准差公式求标准差,最后比较大小. 【详解】乙选手分数的平均数分别为7885848192767780949384,84,55++++++++====因此s 1<s 2,选C.【点睛】本题考查标准差,考查基本求解能力.12.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.二、填空题13.【分析】计算出都不在盒子中的概率利用对立事件的概率公式可求得结果【详解】记事件从五个分别标有的小球随机取出三个小球放进三个盒子则至少有一个在盒子中则事件从五个分别标有的小球随机取出三个小球放进三个盒 解析:910【分析】计算出D 、E 都不在盒子中的概率,利用对立事件的概率公式可求得结果. 【详解】记事件:M 从五个分别标有A 、B 、C 、D 、E 的小球,随机取出三个小球放进三个盒子,则D 、E 至少有一个在盒子中,则事件:M 从五个分别标有A 、B 、C 、D 、E 的小球,随机取出三个小球放进三个盒子,则D 、E 都不在盒子中,所有的基本事件有:ABC 、ABD 、ABE 、ACD 、ACE 、ADE 、BCD 、BCE 、BDE 、CDE ,共10种,事件M 所包含的基本事件为:ABC ,共1种, 故()()19111010P M P M =-=-=. 故答案为:910. 【点睛】方法点睛:求解古典概型概率的方法如下:(1)列举法; (2)列表法; (3)数状图法; (4)排列组合数的应用.14.【分析】先根据题意先找出弦的长度不超过对应的点其构成的区域是点M 两侧各圆周既而求得概率【详解】根据题意满足条件弦的长度不超过对应的点其构成的区域是点M 两侧各圆周所以弦MN 的长度不超过的概率是故答案为解析:23【分析】先根据题意,先找出弦MN 对应的点,其构成的区域是点M 两侧各13圆周,既而求得概率. 【详解】根据题意,满足条件“弦MN ”对应的点,其构成的区域是点M 两侧各13圆周,所以弦MN 的概率是23P = 故答案为23【点睛】本题主要考查了几何概型的意义,关键是找出满足条件弦MN 的图形测度,再带入公式求解.15.【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛】本题考解析:12【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.16.2【解析】当x=2时x2﹣4x+3=﹣1<0满足继续循环的条件故x=3n=1;当x=3时x2﹣4x+3=0满足继续循环的条件故x=4n=2;当x=4时x2﹣4x+3=3>0不满足继续循环的条件故输出解析:2 【解析】当x=2时,x 2﹣4x+3=﹣1<0,满足继续循环的条件,故x=3,n=1; 当x=3时,x 2﹣4x+3=0,满足继续循环的条件,故x=4,n=2; 当x=4时,x 2﹣4x+3=3>0,不满足继续循环的条件, 故输出的n 值为2; 故答案为2.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.17.9【解析】:试题分析:由题意可得a 是在不断变大的b 是在不断变小当程序运行两次时a=9b=5a>b 跳出程序输出a=9;考点:算法的流程图的计算解析:9 【解析】:试题分析:由题意可得,a 是在不断变大的,b 是在不断变小,当程序运行两次时,a=9,b=5,a>b,跳出程序,输出a="9;" 考点:算法的流程图的计算18.46【解析】试题分析:考点:进位制间的关系解析:46 【解析】试题分析:2345(2)101110121212021246=⨯+⨯+⨯+⨯+⨯=. 考点:进位制间的关系.19.25【解析】分析:先求成绩在80分以上的概率再根据频数等于总数与对应概率乘积求结果详解:因为成绩在80分以下的概率为所以成绩在80分以上的概率为因此成绩在80分以上的人数为点睛:频率分布直方图中小长解析:25 【解析】分析:先求成绩在80分以上的概率,再根据频数等于总数与对应概率乘积求结果.详解:因为成绩在80分以下的概率为(0.0050.03+0.0410=0.75+⨯),所以成绩在80分以上的概率为10.750.25-=,因此成绩在80分以上的人数为0.25100=25.⨯点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1; 频率分布直方图中组中值与对应区间概率乘积的和为平均数; 频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.20.是不相等的正整数即可【解析】∵甲班人数为平均分为乙班人数为平均分为∴甲乙两班的数学平均分为∵∴当时∴该命题是假命题时应满足是不相等的正整数故答案为:是不相等的正整数解析:,a b 是不相等的正整数即可 【解析】∵甲班人数为m ,平均分为a ,乙班人数为()n n m ≠,平均分为b ∴甲、乙两班的数学平均分为ma nbm n++ ∵m n ≠∴当a b =时,2ma nb a bm n ++=+ ∴该命题是假命题时,应满足,a b 是不相等的正整数故答案为:,a b 是不相等的正整数三、解答题21.(1)16;(2)14【分析】(1)分别求出从{2,1,1,2}--中任取两个不同的数所构成的直线条数及满足图象经过第二、三、四象限的直线条数,由古典概型概率公式求解; (2)由题意画出图形,再由测度比是面积比得答案. 【详解】(1)从{2,1,1,2}--中任取两个不同的数,所构成直线()f x ax b =+的条数为2412A =条,满足图象经过第二、三、四象限的直线有21y x =--与2y x =--两条,∴所求概率21126P ==; (2)满足约束条件1111a b -⎧⎨-⎩的区域的面积为224⨯=,若函数()f x ax b =+的图象经过第二、三、四象限, 则1010a b -<⎧⎨-<⎩,所占区域面积为111⨯=.∴所求概率为14P =.【点睛】本题考查古典概型与几何概型的概率计算,考查数形结合思想和数据处理能力.22.(1)8 9(2)78【解析】试题分析:(1)因为x,y∈Z,且x∈[0,2],y∈[-1,1],基本事件是有限的,所以为古典概型,这样求得总的基本事件的个数,再求得满足x,y∈Z,x+y≥0的基本事件的个数,然后求比值即为所求的概率.(2)因为x,y∈R,且围成面积,则为几何概型中的面积类型,先求x,y∈Z,求x+y≥0表示的区域的面积,然后求比值即为所求的概率.试题(1)设"x+y0,,"x y Z≥∈为事件,,A x y Z∈,[]0,2x∈,即[]0,1,2;1,1x y=∈-,即1,0,1y=-.则基本事件有:()()()()()()()()()0,1,0,0,0,1,1,1,1,0,1,1,2,1,2,0,2,1---共9个,其中满足的基本事件有8个,所以()89p A=.故,,0x y Z x y∈+≥的概率为89.(2)设"0,,"x y x y R+≥∈为事件B,因为][0,2,1,1x y⎡⎤∈∈-⎣⎦,则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.所以()11-1122-11722===228ABCDABCD ABCDSSp BS S⨯⨯⨯⨯⨯=⨯四边形阴影四边形四边形,故",0"x y R x y∈+≥,的概率为78.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.23.见解析【分析】利用类比的思想,把示例中的加变为乘,按照逐一相乘的方法,一直乘到5即可.【详解】第一步:计算1乘2,得到2;第二步:将第一步中的运算结果2乘以3,得到6;第三步:将第二步中的运算结果6乘以4,得到24;第四步:将第三步中的运算结果24乘积5,得到120.【点睛】本题考查算法的设计和类比思想的应用;同时让学生体会算法在解决数学问题中的作用;属于中档题.24.见解析.【解析】试题分析:由于a、b、c三者最大值有三个情况,可能a最大,可能b最大,可能c最大,据此试着写出算法;根据上述写出的算法,按照程序框图的画法画出算法流程图即可.试题程序框图如图所示.程序如下:a=input(“a=”);b=input(“b=”);c=input(“c=”);if a>b and a>cprint(%io(2),a);elseif b>cprint(%io(2),b);print(%io(2),c); end end25.(1)70%,55%;(2)列联表见解析,有95%的把握认为产品质量高与新设备有关;(3)471天方. 【分析】(1)根据旧设备所生产的产品质量指标值的频率分布直方图中后3组的频率之和即为旧设备所生产的产品的优质品率,根据新设备所生产的产品质量指标值的频数分布表即可估计新设备所生产的产品的优质品率;(2)根据题目所给的数据填写22⨯列联表,计算K 的观测值2K ,对照题目中的表格,得出统计结论;(3)根据新设备所生产的产品的优质品率,分别计算1000件产品中优质品的件数和合格品的件数,得到每天的纯利润,从而计算出至少需要生产多少天方可以收回设备成本. 【详解】 解:(1)估计新设备所生产的产品的优质品率为:3025150.770%100++==,估计旧设备所生产的产品的优质品率为:()50.060.030.020.5555%⨯++==. (2)由列联表可得,()220030554570 4.8 3.84175125100100K ⨯⨯-⨯==>⨯⨯⨯, ∴有95%的把握认为产品质量高与新设备有关. (3)新设备所生产的产品的优质品率为0.7∴每台新设备每天所生产的1000件产品中,估计有10000.7700⨯=件优质品, 有1000700300-=件合格品.∴估计每台新设备一天所生产的产品的纯利润为700230011700⨯+⨯=(元). 8000001700471÷≈(天),∴估计至少需要生产471天方可以收回设备成本. 【点睛】本题考查了独立性检验的应用问题,考查了频率分布直方图,也考查了计算能力的应用问题,属于中档题.26.(Ⅰ)0.02;(Ⅱ)10800元.(Ⅰ)由频率分布直方图中小矩形面积和为1能求出a.(Ⅱ)根据频率分布直方图,日销售量不低于25件的天数为(0.040.02)5309+⨯⨯=,一个月可获得的奖励为900元,由此可以估计一年内获得的礼金数.【详解】(Ⅰ)由题意可得1[1(0.010.060.070.04)5]0.025a=-+++⨯=.(Ⅱ)根据频率分布直方图知,日销售量不低于25件的天数为:()0.040.025309+⨯⨯=(天),一个月可获得的礼金数为9100900⨯=(元),依此可以估计该微商一年内获得的礼金数为9001210800⨯=元.【点睛】本题考查频率的求法,考查频率分布直方图的性质等基础知识,考查样本估计总体以及运算求解能力、数形结合思想的应用,是基础题.。

【湘教版】高中数学必修三期末试卷(带答案)(2)

【湘教版】高中数学必修三期末试卷(带答案)(2)

一、选择题1.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .382.在下列命题中,①从分别标有1,2,……,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是518; ②341()2x x+的展开式中的常数项为2;③设随机变量~(0,1)N ξ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是( ) A .② B .①③ C .②③D .①②③3.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.2924.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为26,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为20,现从1、2、3、4、5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A.310B.15C.110D.3205.数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为6,3,则输出的n ()A.2 B.3 C.4 D.56.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是()A .94m >B .94m =C .35m =D .35m ≤7.执行如图所示的程序框图,若输出的值为﹣1,则判断框①中可以填入的条件是( )A.n≥999B.n≤999C.n<999 D.n>9998.执行如图所示的程序框图,输出的结果为()A.2019-D.20202221-22-C.202021-B.20199.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()A .成绩B .视力C .智商D .阅读量10.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸11.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A.s1>s2B.s1=s2C.s1<s2D.不确定12.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数()A.40 B.45 C.48 D.50二、填空题13.一只口袋中装有形状、大小都相同的6只小球,其中有3只红球、2只黄球和1只蓝球.若从中1次随机摸出2只球,则2只球颜色相同的概率为____.14.马老师从课本上抄录一个随机变量的概率分布列如表请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案_______ .15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.如下图,程序框图中,若输入4,10m n ==,则输出a 的值是________.17.将二进制数110 101(2)转为七进制数,结果为________. 18.阅读如图所示的程序框图,该程序输出的结果是__________.19.水痘是一种传染性很强的病毒性疾病,容易在春天爆发,武汉疾控中心为了调查某高校高一年级学生注射水痘疫苗的人数,在高一年级随机抽取了5个班级,每个班级的人数互不相同,若把每个班抽取的人数作为样本数据,已知样本平均数为5,样本方差为4,则样本数据中最大值为__________. 20.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.三、解答题21.某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试的平均分;(2)假设分数在[90,100]的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,76,97,88,69,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.22.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:学生1A2A3A4A5A数学8991939597物理8789899293(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.23.如图所示,已知底角为45°的等腰梯形ABCD,底边BC长为7 cm,腰长为22cm,当一条垂直于底边BC(垂足为F)的直线l从B点开始由左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x(0≤x≤7),左边部分的面积为y,求y与x之间的函数关系式,画出程序框图,并写出程序.24.某批发部出售袜子,当购买少于300双时,每双批发价为2.5元;不少于300双时,每双批发价为2.2元.试分别画出程序框图和用程序语言编写计算批发金额.25.我国为全面建设社会主义现代化国家,制定了从2021年到2025年的“十四五”规划.某企业为响应国家号召,汇聚科研力量,加强科技创新,准备增加研发资金.现该企业为了了解年研发资金投入额x (单位:亿元)对年盈利额y (单位:亿元)的影响,研究了“十二五”和“十三五”规划发展期间近10年年研发资金投入额i x 和年盈利额i y 的数据.通过对比分析,建立了两个函数模型:①2y x αβ=+,②x t y e λ+=,其中α,β,λ,t 均为常数,e 为自然对数的底数.令2i i u x >,()ln 1,2,,10ii v y i ==⋅⋅⋅,经计算得如下数据:xy()1021i i x x =-∑()1021i i y y =-∑ uv2621565 26805.36()1021ii uu =-∑()()101iii u u y y =--∑()1021ii v v =-∑()()101iii x x v v =--∑11250 130 2.6 12(2)(ⅰ)根据(1)的选择及表中数据,建立y 关于x 的回归方程;(系数精确到0.01) (ⅱ)若希望2021年盈利额y 为250亿元,请预测2021年的研发资金投入额x 为多少亿元?(结果精确到0.01)附:①相关系数12211()()()()niii nn iii i x x y y r x x y y ===--=--∑∑∑,回归直线ˆˆˆya bx =+中:121()()ˆ()niii nii x x yy bx x ==--=-∑∑,ˆˆay bx =- ②参考数据:ln 20.693≈,ln5 1.609≈.26.某公司有400名员工,根据男女员工人数比例,用分层随机抽样的方法从中抽取了100人,调查他们的通勤时间(上下班途中花费的总时间,单位:分钟),将数据按照[)20,30,[)30,40,,[]80,90分成7组,并整理得到如下频率分布直方图:(I )从总体中随机抽取1人,估计其通勤时间小于40分钟的概率; (Ⅱ)求样本数据的中位数的估计值;(Ⅲ)已知样本中通勤时间大于或等于60分钟的人都是男员工,通勤时间小于60分钟的人中有一半是男员工,求该公司男员工的人数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点, 则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.2.C解析:C 【解析】 【分析】根据二项式定理,古典概型,以及正态分布的概率计算,对选项进行逐一判断,即可判断. 【详解】对①:从9张卡片中不放回地随机抽取2次,共有9872⨯=种可能; 满足2张卡片上的数奇偶性不同,共有54240⨯⨯=种可能; 根据古典概型的概率计算公式可得,其概率为405729P ==,故①错误; 对②:对341()2x x +写出通项公式可得434124144122rrr r r rr x T C C x x ---+⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 令1240r -=,解得3r =,即可得常数项为31422C -⋅=,故②正确;对③:由正态分布的特点可知11(10)(1)22P P p ξξ-<<=-≥=-,故③正确. 综上所述,正确的有②③. 故选:C. 【点睛】本题考查古典概型的概率计算,二项式定理求常数项,以及正态分布的概率计算,属综合性基础题.3.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C.本题考查有放回问题的概率计算,难度一般.4.B解析:B 【分析】由题意可知,另外两个三角形上的数字之和为6,列出所有的基本事件,并确定基本事件的数目,并确定事件“两个三角形上的数字之和为6”所包含的基本事件数,再利用古典概型的概率公式计算出所求事件的概率. 【详解】由题意可知,若该图形为“和谐图形”,则另外两个三角形上的数字之和恰为26206-=.从1、2、3、4、5中任取两个数字的所有情况有()1,2、()1,3、()1,4、()1,5、()2,3、()2,4、()2,5、()3,4、()3,5、()4,5,共10种,而其中数字之和为6的情况有()1,5、()2,4,共2种,因此,该图形为“和谐图形”的概率为21105=,故选:B. 【点睛】本题考查利用古典概型的概率公式计算事件的概率,解题的关键就是列举出基本事件,考查分析问题与解决问题的能力,属于中等题.5.B解析:B 【分析】模拟程序运行,观察变量值的变化,判断循环条件得出结论. 【详解】程序运行中变量值变化如下:6,3a b ==,1n =,9,6a b ==,不满足a b ≤;2n =,13.5a =,12b =,不满足a b ≤;3n =,20.25a =,24b =,满足a b ≤,输出3n =. 故选:B . 【点睛】本题考查程序框图,考查循环结构.解题方法是模拟程序运行,观察变量值的变化,判断循环条件得出结论.6.B解析:B 【分析】由题意知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意可得出判断条件. 【详解】由题意可知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m =”. 故选B.本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题.7.C解析:C 【分析】分析循环结构中求和式子的特点,可到最终结果:2lg(1)S n =-+,当1S =-时计算n 的值,此时再确定判断框的内容. 【详解】由图可得:2lg1lg 2lg 2lg3...lg lg(1)S n n =+-+-++-+,则2lg(1)1S n =-+=-,所以999n =,因为此时需退出循环,所以填写:999n <.故选C. 【点睛】lglg lg(1)1nn n n =-++,通过将除法变为减法,达到简便运算的目的. 8.C解析:C 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,由于()2019232019202021222222212S -=+++⋯+==--.故选C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.D解析:D 【解析】试题分析:由表中数据可得 表1:()25262210140.00916362032K ⨯⨯-⨯=≈⨯⨯⨯;表2: ()2524201216 1.76916362032K ⨯⨯-⨯=≈⨯⨯⨯;表3: ()252824128 1.316362032K ⨯⨯-⨯=≈⨯⨯⨯;表4: ()25214302623.4816362032K ⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D 正确. 考点:独立性检验.10.A解析:A【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果.【详解】根据频率分布直方图可列下表:故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.11.C解析:C【分析】先求均值,再根据标准差公式求标准差,最后比较大小.【详解】乙选手分数的平均数分别为7885848192767780949384,84, 55++++++++====因此s1<s2,选C.【点睛】本题考查标准差,考查基本求解能力.12.C解析:C【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数.【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.二、填空题13.【解析】【分析】由题求得基本事件的总数15种再求得2只颜色相同包含的基本事件的个数根据古典概型及其概率的计算公式即可求解【详解】由题意一只口袋中装有形状大小都相同的6只小球其中有3只红球2只黄球和1 解析:415【解析】 【分析】由题,求得基本事件的总数15种,再求得2只颜色相同包含的基本事件的个数,根据古典概型及其概率的计算公式,即可求解。

2021高中同步创新课堂数学优化方案人教A版必修3习题:第二章章末综合检测(二) Word版含答案

2021高中同步创新课堂数学优化方案人教A版必修3习题:第二章章末综合检测(二) Word版含答案

章末综合检测(二)[同学用书单独成册](时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法错误的是()A.在统计里,最常用的简洁随机抽样方法有抽签法和随机数法B.一组数据的平均数肯定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大解析:选B.平均数不大于最大值,不小于最小值.2.(2021·高考四川卷)某学校为了了解三班级、六班级、九班级这三个班级之间的同学视力是否存在显著差异,拟从这三个班级中按人数比例抽取部分同学进行调查,则最合理的抽样方法是() A.抽签法B.系统抽样法C.分层抽样法D.随机数法解析:选C.依据班级不同产生差异及按人数比例抽取易知应为分层抽样法.3.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以推断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析:选C.由点的分布知x与y负相关,u与v正相关.4.某学校有老师200人,男同学1 200人,女同学1 000人,现用分层抽样的方法从全体师生中抽取一个容量为n的样本,已知女同学一共抽取了80人,则n的值是()A.193 B.192C.191 D.190解析:选B .1 000×n200+1 200+1 000=80,解得n=192.5.(2021·高考湖南卷)在一次马拉松竞赛中,35名运动员的成果(单位:分钟)的茎叶图如图所示.若将运动员按成果由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成果在区间[139,151]上的运动员人数是()A.3 B.4C.5 D.6解析:选B.35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组取1人,共取4人.6.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并登记号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10取到的次数13 8 5 7 6 13 18 10 11 9A.0.53 B.0.5C.0.47 D.0.37解析:选A.1100(13+5+6+18+11)=0.53.7.在某项体育竞赛中,七位裁判为一选手打出的分数如下:90899095939493去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.92,2 B.92,2.8C.93,2 D.93,2.8解析:选B.去掉最高分95,最低分89,所剩数据的平均值为15(90×2+93×2+94)=92,方差s2=15[(90-92)2×2+(93-92)2×2+(94-92)2]=2.8.8.(2022·高考湖北卷改编)依据如下样本数据x 3 4 5 6 7 8y 4.0 2.5 -0.5 0.5 -2.0 -3.0得到的回归方程为y^=b^x+a^,则()A.a^>0,b^>0 B.a^>0,b^<0C.a^<0,b^>0 D.a^<0,b^<0解析:选B.作出散点图如下:观看图象可知,回归直线y^=b^x+a^的斜率b^<0,当x=0时,y^=a^>0.故a^>0,b^<0.9.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()图1图2A.1% B.2%C.3% D.5%解析:选C.由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C.10. 某校高一、高二班级各有7个班参与歌咏竞赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是()A.高一班级的中位数大,高二班级的平均数大B.高一班级的平均数大,高二班级的中位数大C.高一班级的平均数、中位数都大D.高二班级的平均数、中位数都大解析:选A.由茎叶图可以看出,高一班级的中位数为93,高二班级的中位数为89,所以高一班级的中位数大.由计算得,高一班级的平均数为91,高二班级的平均数为6477,所以高二班级的平均数大.故选A.11.(2022·高考山东卷)为了争辩某药品的疗效,选取若干名志愿者进行临床试验,全部志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的挨次分别编号为第一组,其次组,…,第五组,如图是依据试验数据制成的频率分布直方图.已知第一组与其次组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8C.12 D.18解析:选C.志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.12.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成果如表所示:甲的成果环数7 8 9 10频数 5 5 5 5乙的成果环数7 8 9 10频数 6 4 4 6丙的成果环数7 8 9 10频数 4 6 6 4s1、s2、s3分别表示甲、乙、丙三名运动员这次测试成果的标准差,则有()A.s3>s1>s2B.s2>s1>s3C.s1>s2>s3D.s2>s3>s1解析:选B.由于s21=1n(x21+x22+…+x2n)-x2,所以s21=120(5×72+5×82+5×92+5×102)-8.52=73.5-72.25=1.25=54,所以s1=2520.同理s2=2920,s3=2120,所以s2>s1>s3,故选B.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.(2021·高考广东卷)已知样本数据x1,x2,…,x n的均值x-=5,则样本数据2x1+1,2x2+1,…,2x n +1的均值为________.解析:由条件知x-=x1+x2+…+x nn=5,则所求均值x-0=2x1+1+2x2+1+…+2x n+1n=2(x 1+x 2+…+x n )+n n=2x -+1=2×5+1=11.答案:1114.一个总体中有100个个体,随机编号0,1,2,…,99,依从小到大的编号挨次平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定假如在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________.解析:由题意知:m =8,k =8,则m +k =16,也就是第8组的个位数字为6,十位数字为8-1=7,故抽取的号码为76.答案:7615.已知回归方程y ^=4.4x +838.19,则可估量x 与y 的增长速度之比约为________. 解析:x 与y 的增长速度之比应是回归方程斜率的倒数,即522.答案:52216.某校从参与高一班级期中考试的同学中随机抽取60名同学,将其数学成果(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观看图形的信息,据此估量本次考试的平均分为________.解析:在频率分布直方图中,全部小长方形的面积和为1,设[70,80)的小长方形面积为x ,则(0.01+0.015×2+0.025+0.005)×10+x =1,解得x =0.3,即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.答案:71三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)有以下三个案例:案例一:从同一批次同类型号的10袋牛奶中抽取3袋检测其三聚氰胺含量;案例二:某公司有员工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.从中抽取容量为40的样本,了解该公司职工收入状况;案例三:从某校1 000名高一同学中抽取10人参与一项主题为“学雷锋,树新风”的志愿者活动.(1)你认为这些案例应接受怎样的抽样方式较为合适? (2)在你使用的分层抽样案例中写出抽样过程;(3)在你使用的系统抽样案例中按以下规定取得样本编号:假如在起始组中随机抽取的号码为L (编号从0开头),那么第K 组(组号K 从0开头,K =0,1,2,…,9)抽取的号码的百位数为组号,后两位数为L +31K 的后两位数.若L =18,试求出K =3及K =8时所抽取的样本编号.解:(1)案例一用简洁随机抽样,案例二用分层抽样,案例三用系统抽样. (2)①分层,将总体分为高级职称、中级职称、初级职称及其余人员四层; ②确定抽样比例k =40800=120;③按上述比例确定各层样本数分别为8人、16人、10人、6人; ④按简洁随机抽样方式在各层确定相应的样本; ⑤汇总构成一个容量为40的样本.(3)K =3时,L +31K =18+31×3=111,故第三组样本编号为311.K =8时,L +31K =18+31×8=266, 故第8组样本编号为866.18.(本小题满分12分)某制造商为运动会生产一批直径为40 mm 的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm ,保留两位小数)如下:40.02 40.00 39.98 40.00 39.99 40.00 39.98 40.01 39.98 39.99 40.00 39.99 39.95 40.01 40.02 39.98 40.00 39.99 40.00 39.96(1)完成下面的频率分布表,并画出频率分布直方图;分组 频数 频率 频率组距 [39.95,39.97) [39.97,39.99) [39.99,40.01) [40.01,40.03]合计(2)假定乒乓球的直径误差不超过0.02 mm 为合格品,若这批乒乓球的总数为10 000只,试依据抽样检查结果估量这批产品的合格只数.解:(1)分组频数频率频率组距 [39.95,39.97) 2 0.10 5 [39.97,39.99) 4 0.20 10 [39.99,40.01) 10 0.50 25 [40.01,40.03]4 0.20 10 合计201(2)由于抽样的20只产品中在[39.98,40.02]范围内有18只,所以合格率为1820×100%=90%,所以10 000×90%=9 000(只).即依据抽样检查结果,可以估量这批产品的合格只数为9 000.19. (本小题满分12分)甲、乙两位同学参与数学竞赛培训,现分别从他们在培训期间参与的若干次预赛成果中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据;(2)现要从中选派一人参与数学竞赛,从统计学的角度(平均数和方差)考虑,你认为选派哪位同学参与合适?请说明理由.解:(1)作出茎叶图如下:(2)x -甲=18(78+79+81+82+84+88+93+95)=85,x -乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41. 由于x -甲=x -乙,s 2甲<s 2乙,所以甲的成果较稳定,派甲参赛比较合适.20.(本小题满分12分)随着我国经济的进展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2011 2022 2021 2022 2021 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;附:回归方程y ^=b ^t +a ^中,b ^=∑i =1nt i y i -n t - y-∑i =1n t 2i -n t-2,a ^=y --b ^t -.解:(1)列表计算如下:i t i y i t 2i t i y i 1 1 5 1 5 2 2 6 4 12 3 3 7 9 21 4 4 8 16 32 5 5 10 25 50 ∑153655120这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1ny i =365=7.2.又∑i =1n t 2i -n t -2=55-5×32=10,∑i =1n t i y i -n t -y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可猜测该地区2022年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元). 21.(本小题满分12分)甲乙二人参与某体育项目训练,近期的五次测试成果得分状况如图.(1)分别求出两人得分的平均数与方差;(2)依据图和上面算得的结果,对两人的训练成果作出评价. 解:(1)由图象可得甲、乙两人五次测试的成果分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙可知乙的成果较稳定. 从折线图看,甲的成果基本呈上升状态,而乙的成果上下波动,可知甲的成果在不断提高,而乙的成果则无明显提高.22.(本小题满分12分)某化工厂的原料中,有A 和B 两种有效成分,现随机抽取了10份原料样品进行抽样检测,测得A 和B 的含量如下表所示:i 1 2 3 4 5 6 7 8 9 10 x 67 54 72 64 39 22 58 43 46 34 y 24 15 23 19 16 11 20 16 17 13其中x 表示成分A 的百分含量x %,y 表示成分B 的百分含量y %.(1)作出两个变量y 与x 的散点图;(2)两个变量y 与x 是否线性相关?若是线性相关,求出线性回归方程.解:(1)依据y 从小到大的挨次调整表中数据(这样有利于描点,如用画图软件则不需要调整表格数据), 如下表所示:x 22 34 54 43 39 46 64 58 72 67 y11131516161719202324散点图如图所示:(2)观看散点图可知,y 与x 是线性相关关系. i 12 3 4 5 6 7 8 9 10 合计 x i 22 34 54 43 39 46 64 58 72 67 499 y i 11 13 15 16 16 17 19 20 23 24 174 x i y i 242 442 810 688 624 7821 216 1 160 1 656 1 608 9 228x 2i4841 1562 916 1 849 1 521 2 116 4 0963 3645 184 4 48927175所以x =49.9,y =17.4,10x - y -=8 682.6,10x 2=24 900.1设所求的线性回归方程是y ^=a ^+b ^x ,b ^=∑i =110x i y i -10x -y-∑i =110x 2i -10x2=9 228-8 682.627 175-24 900.1=545.42 274.9≈0.239 7,a ^=y -b ^x =17.4-0.239 7×49.9≈5.439 0, 所求的线性回归方程是y ^=0.239 7x +5.439 0.。

【湘教版】高中数学必修三期末模拟试卷含答案(2)

【湘教版】高中数学必修三期末模拟试卷含答案(2)

一、选择题1.如图,过球心的平面和球面的交线称为球的大圆.球面几何中,球O 的三个大圆两两相交所得三段劣弧AB ,BC ,CA 构成的图形称为球面三角形ABC . AB 与AC 所成的角称为球面角A ,它可用二面角B OA C --的大小度量.若球面角3A π=,2B π=,2C π=,则在球面上任取一点P ,P 落在球面三角形ABC 内的概率为( )A .16B .18C .112D .1162.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( ) A .0.3B .0.36C .0.49D .0.513.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19364.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11125.如图是计算11113519++++的值的一个程序框图,其中判断框内应填的是( )A .10iB .10i ≤C .10i >D .10i <6.已知函数1()(1)g x x x =+,程序框图如图所示,若输出的结果1011S =,则判断框中可以填入的关于n 的判断条件是( )A . 10?n ≤B .10?n >C . 11?n ≤D . 11?n >7.某程序框图如图所示,该程序运行后输出的S 的值是( )A .1010B .2019C .2020D .30308.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( )A .1x ≤B .2x ≤C .3x ≤D .4x ≤9.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[]10,14,[]15,19,[]20,24,[]25,29,[]30,34的爱看比例分别为10%,18%,20%,30%,%t .现用这5个年龄段的中间值x 代表年龄段,如12代表[]10,14,17代表[]15,19,根据前四个数据求得x 关于爱看比例y 的线性回归方程为( 4.68)%y kx =-,由此可推测t 的值为( )A .33B .35C .37D .3910.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( )A .成绩B .视力C .智商D .阅读量11.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .185512.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则 ( ) A .B .C .D .二、填空题13.在正方体的12条面对角线和4条体对角线中随机地选取两条对角线,则这两条对角线所在的直线为异面直线的概率等于________.14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是________ .15.在区间[0,1]中随机地取出两个数,则两数之和大于45的概率是______. 16.按下列程序框图运算:规定:程序运行到“判断结果是否大于244”为1次运算.若运算进行3次才停止,则x 的取值范围是__________.17.若下面程序中输入的n 值为2017,则输出的值为__________.18.已知流程图如图,则输出的i =________.19.已知一组数据为2,3,4,5,6,则这组数据的方差为______.20.能够说明“若甲班人数为m ,平均分为a ;乙班人数为n n m ≠(),平均分为b ,则甲乙两班的数学平均分为2a b+”是假命题的一组正整数a ,b 的值依次为_____. 三、解答题21.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.(1)确定,x y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率) 22.从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下: (1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.23.下面给出了一个问题的算法: 第一步,输入x .第二步,若x ≥4,则执行第三步,否则执行第四步. 第三步,y =2x -1,输出y . 第四步,y =x 2-2x +3,输出y . 问题:(1)这个算法解决的问题是什么? (2)当输入的x 值为多大时,输出的数值最小?24.画出求方程lg x+x-3=0在区间(2,3)内的近似解(精确到0.01)的程序框图.25.某企业投资两个新型项目,投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,投资新型项目B 的投资额x (单位:十万元)与纯利润y (单位:万元)的散点图如图所示.(1)求y 关于x 的线性回归方程;(2)根据(1)中的回归方程,若A ,B 两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.26.近年来,国家对西部发展出台了很多优惠政策,为了更有效促进发展,需要对一种旧能源材料进行技术革新,为了了解此种材料年产量x (吨)对价格y (万元/吨)和年利润z (万元)的影响,有关部门对近五年此种材料的年产量和价格统计如表,若 5.5y =.x1 2 3 4 5y 8764c(1)求表格中c 的值;(2)求y 关于x 的线性回归方程y bx a =+;(3)若每吨该产品的成本为2万元,假设该产品可全部卖出,预测当年产量为多少时,年利润z 取得最大值?参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据球体的性质,利用面积比求出概率即可. 【详解】解:由题知,球面角3A π=,2Bπ=,2C π=,则得出球面三角形ABC 是112的球面,设球面三角形ABC 的面积为S , 则球面上任取一点P ,P 落在球面三角形ABC 内的概率为:1=12S P S =球. 故选:C. 【点睛】本题考查面积型几何概型,通过面积比求概率,还考查球体的性质和应用,解题时需要认真审题和理解分析题目.2.D解析:D 【分析】由几何概型中的面积型得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正,即可得解.【详解】设甲、乙两同学等可能到达某咖啡厅的时间为(),x y ,则010x <≤,010y <≤,其基本事件可用正方形区域表示,如图,则甲、乙两同学等可能到达某咖啡厅的时间间隔不超过3分钟的事件为A , 则事件A 为:3x y -≤,其基本事件可用阴影部分区域表示,由几何概型中的面积型可得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正.故选:D. 【点睛】本题考查了几何概型中的面积型,属于基础题.3.C解析:C 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率. 【详解】根据题意,两次取出的成绩一共有36种情况;分别为()67,68、()67,72、()67,73、()67,85、()67,89、()67,93()76,68、()76,72、()76,73、()76,85、()76,89、()76,93 ()78,68、()78,72、()78,73、()78,85、()78,89、()78,93 ()82,68、()82,72、()82,73、()82,85、()82,89、()82,93 ()85,68、()85,72、()85,73、()85,85、()85,89、()85,93 ()92,68、()92,72、()92,73、()92,85、()92,89、()92,93满足条件的有18种,故183126p ==, 故选C 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.4.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标,由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭,()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.5.C解析:C 【分析】分析式子11113519++++的特征,可以得到程序框图的功能是求11113519S =++++的值,观察循环量i 的特征,得到结果. 【详解】由于程序框图的功能是求11113519S =++++的值, 分母n 的初值为1,终值为19,步长为2, 故程序共执行10次,故循环变量i 的值不大于10时,应不满足条件,继续执行循环, 大于10时,应满足条件,退出循环, 故判断框内应填的是i >10, 故选:C. 【点睛】思路点睛:该题考查的是有关程序框图的问题,解题思路如下: (1)观察式子的特征,得到程序框图的功能; (2)由式子的项数,得到循环量i 的特征,得到结果.6.A解析:A 【分析】按照程序框图执行几次,找出此框图的算法功能,再根据已知条件1011S =进一步判断框内条件即可. 【详解】按照程序框图依次执行:110,1,01122S n S ===+=-⨯ 1111112,11+12232233n S ==-+=--=-⨯以此类推,可得111S n =-+ .若1011S =,可得10n =,若要输出1011S =,则判断框内应填10n ≤?. 故选:A.【点睛】 本题主要考查根据程序框图的输出结果判断程序框图中的选择条件,考查逻辑推理能力.7.D解析:D【分析】模拟程序框图的运行过程,得出该程序运行后输出的算式S 是求数列的和,且数列每四项和是定值,由此得出S 的值.【详解】模拟程序框图的运行过程,得出该程序运行后输出的算式: 由于cos ,42xy T π==,且循环数为0,-1,0,1123420132014201520162017201820192020...+++++++(01210141)+...+(0+1201410120161)(01201810120201)S a a a a a a a a a a a a =++++=+-+++++-+++++++-+++++20206=30304=⨯ 故选:D【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题.8.C解析:C【分析】计算出输出15y =时,3x =;继续运行程序可知继续赋值得:4x =,此时不满足判断框条件,结束程序,从而可得判断框条件.【详解】解析 当x =-3时,y =3;当x =-2时,y =0;当x =-1时,y =-1;当x =0时,y =0;当x =1时,y =3;当x =2时,y =8;当x =3时,y =15,x =4,结束.所以y 的最大值为15,可知x ≤3符合题意.判断框应填:3x ≤故选C【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.B解析:B【解析】前4个数据对应的19.5x = ,0.195y = (把百分数转化为小数),而0( 4.68)0y kx ∧=-= 0.0468bx -,0.19519.50.0468b ∧∴=⨯-,0.0124b ∧∴=,0(1.24 4.68)0y x ∧∴=- ,当3034322x +==, 1.2432 4.6835t =⨯-=. 10.D解析:D【解析】试题分析:由表中数据可得表1:()25262210140.00916362032K ⨯⨯-⨯=≈⨯⨯⨯;表2: ()2524201216 1.76916362032K ⨯⨯-⨯=≈⨯⨯⨯; 表3: ()252824128 1.316362032K ⨯⨯-⨯=≈⨯⨯⨯;表4: ()25214302623.4816362032K ⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D 正确.考点:独立性检验.11.C解析:C【分析】根据系统抽样所得的编号为等差数列,再用等差数列的求和公式求解即可.【详解】由系统抽样的定义可知,在区间[201,319]内抽取的编号数构成以205为首项,公差为20的等差数列,并且项数为6,所以6(61)62052015302⨯-⨯+⨯=. 故选:C【点睛】本题考查系统抽样的知识,考查数据处理能力和应用意识. 12.D解析:D【解析】【分析】先计算,代入回归直线方程,可得,从而可求得结果.【详解】 因为,所以, 代入回归直线方程可求得, 所以, 故选D.【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.二、填空题13.【分析】将异面直线分为两种情况:(1)两条面对角线是异面直线(2)一条面对角线和一条体对角线是异面直线由此分别计算出满足要求的方法数最后即可计算出相应概率【详解】由于4条体对角线都经过正方体的中心所 解析:920【分析】将异面直线分为两种情况:(1)两条面对角线是异面直线,(2)一条面对角线和一条体对角线是异面直线,由此分别计算出满足要求的方法数,最后即可计算出相应概率.【详解】由于4条体对角线都经过正方体的中心,所选的两条对角线至少包含一条面对角线: ①两条对角线都是面对角线:任取1条面对角线,剩余的11条面对角线中,有5条与之异面,考虑重复选取,125302⨯∴=(种); ②一条面对角线一条体对角线:任取1条面对角线,有2条体对角线与之异面,∴12224⨯=(种)∴概率为2163024920C +=. 故答案为:920. 【点睛】本题考查异面直线的理解以及用排列组合的方法计算概率,难度一般.排列组合的方法计算相应概率时,可采用古典概型的概率计算方法:先计算出基本事件的总数,然后计算出满足要求的基本事件的数量,此时P =满足要求的基本事件数量基本事件的总数. 14.98【解析】设甲闹钟准时响为事件A 乙闹钟准时响为事件B 则两个闹钟没有一个准时响为事件事件A 与事件B 相互独立得两个闹钟至少有一个准时响与事件对立故两个闹钟至少有一个准时响的概率为解析:98【解析】设甲闹钟准时响为事件A ,乙闹钟准时响为事件B ,则两个闹钟没有一个准时响为事件,事件A 与事件B 相互独立,得,,.两个闹钟至少有一个准时响与事件对立,故两个闹钟至少有一个准时响的概率为.15.【解析】分析:将原问题转化为几何概型的问题然后利用面积型几何概型公式整理计算即可求得最终结果详解:原问题即已知求的概率其中概率空间为如图所示的正方形满足题意的部分为图中的阴影部分所示其中结合面积型几 解析:1725 【解析】 分析:将原问题转化为几何概型的问题,然后利用面积型几何概型公式整理计算即可求得最终结果.详解:原问题即已知01,01x y ≤≤≤≤,求45x y +≥的概率, 其中概率空间为如图所示的正方形,满足题意的部分为图中的阴影部分所示, 其中4,05E ⎛⎫ ⎪⎝⎭,40,5F ⎛⎫ ⎪⎝⎭, 结合面积型几何概型计算公式可得满足题意的概率值为:1441725511125p ⨯⨯=-=⨯.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.16.【分析】根据题意得到不等式和计算得到答案【详解】根据题意知:且故故答案为:【点睛】本题考查了程序框图没有考虑完整情况是容易发生的错误 解析:(]10,28【分析】根据题意得到不等式()3322244x --≤和()333222244x --->⎡⎤⎣⎦,计算得到答案.【详解】根据题意知:()332224428x x --≤∴≤且()33322224410x x --->∴>⎡⎤⎣⎦ 故(]10,28x ∈故答案为:(]10,28【点睛】本题考查了程序框图,没有考虑完整情况是容易发生的错误.17.【分析】根据程序框图的算法功能可知该程序是计算的值再根据裂项相消法即可求出【详解】根据程序框图的算法功能可知该程序是计算的值所以故答案为:【点睛】本题主要考查程序框图的算法功能的理解以及数列求和属于 解析:20172018【分析】 根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值,再根据裂项相消法即可求出.【详解】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值.所以111112233420172018++++⨯⨯⨯⨯ 111111112017122334201720182018⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:20172018. 【点睛】 本题主要考查程序框图的算法功能的理解以及数列求和,属于基础题.常见的数列求和方法有:公式法,裂项相消法,分组求和法,倒序相加求和法,并项求和法,错位相减法等,根据数列的特征选择对应的方法是解题的关键.18.9【解析】根据流程图可得:否;否;否;否;是输出故答案为9 解析:9【解析】根据流程图可得:1,3S i ==,否,133S =⨯=,3i =;否339S =⨯=,5i =; 否9545S =⨯=,7i =;否457315S =⨯=,9i =;是输出9i =,故答案为9. 19.2【解析】分析:根据方差的计算公式先算出数据的平均数然后代入公式计算即可得到结果详解:平均数为:即答案为2点睛:本题考查了方差的计算解题的关键是方差的计算公式的识记它反映了一组数据的波动大小方差越大 解析:2【解析】分析:根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果. 详解:平均数为:2345645+++++=, ()22222211[2434445464]4114255s =⨯-+-+-+-+-=⨯+++=()()()()(). 即答案为2.点睛:本题考查了方差的计算,解题的关键是方差的计算公式的识记.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.是不相等的正整数即可【解析】∵甲班人数为平均分为乙班人数为平均分为∴甲乙两班的数学平均分为∵∴当时∴该命题是假命题时应满足是不相等的正整数故答案为:是不相等的正整数解析:,a b 是不相等的正整数即可【解析】∵甲班人数为m ,平均分为a ,乙班人数为()n n m ≠,平均分为b∴甲、乙两班的数学平均分为ma nb m n++ ∵m n ≠ ∴当a b =时,2ma nb a b m n ++=+ ∴该命题是假命题时,应满足,a b 是不相等的正整数 故答案为:,a b 是不相等的正整数三、解答题21.(1)30,10x y ==;2.3分钟;(2)1720. 【分析】(1)已知得25540,3060y x ++=+=,可求得,x y ,再运用1230325455100x y ⨯+⨯+⨯+⨯+⨯可估计顾客一次购物的结算时间的平均值; (2)利用古典概率公式可求得所求和概率.【详解】(1)由已知得25540,3060y x ++=+=,解得30,10x y ==.该超市所以顾客一次购物的结算时间可视为一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为13023032541055 2.3100⨯+⨯+⨯+⨯+⨯=分钟. (2)记A 为事件“一位顾客一次购买的结算时间不超过3分钟”,12,A A 分别表示事件“该顾客一次购物的结算时间为4分钟”,“该顾客一次购物的结算时间为5分钟”,将频率视为概率得 1210151(),()1001010020P A P A ====, 12()1()()P A P A P A =--11171102020=--=, 故一位顾客一次购物的结算时间不超过3分钟的概率为1720. 【点睛】 本题考查数据的分析和处理,平均数的求得,以及古典概率的求法,属于中档题. 22.(1) 0.4(2)1个 (3) 31()62P A == 【解析】试题分析:(1)用苹果的重量在[90,95)的频数除以样本容量,即为所求.(2)根据重量在[80,85)的频数所占的比例,求得重量在[80,85)的苹果的个数.(3)用列举法求出所有的基本事件的个数,再求出满足条件的事件的个数,即可得到所求事件的概率.试题(1)重量在[)90,95的频率为:; (2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数为:;(3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有,,,,,6种情况.其中符合 “重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 3种;设“抽出的4个苹果中,任取2个,重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==. 考点:1、古典概型及其概率计算公式;2、分层抽样方法.【方法点晴】本题考查古典概型问题,用列举法计算可以列举出基本事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想.本题还考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题. 23.(1)见解析(2)当输入的x 的值为1时,输出的数值最小.【解析】试题分析:本题考查了一个条件分支结构的算法,可分为4x ≥和4x <,执行不同的计算,即可得到结论.试题(1)这个算法解决的问题是求分段函数()()221x 4y x 23x 4x x ⎧-≥⎪=⎨-+<⎪⎩的函数值的问题. (2)本问的实质是求分段函数最小值的问题.当x≥4时,y =2x -1≥7;当x<4时,y =x 2-2x +3=(x -1)2+2≥2.∴函数最小值为2,当x =1时取到最小值.∴当输入x 的值为1时,输出的数值最小.点睛:本题主要考查了一个条件分支结构的算法的应用问题,解答中涉及到分段函数的性质,其中程序填空是重点考查的题型,这种试题考试的重点:①分支条件;②循环的条件;③变量的赋值;④变量的输出,其中前两个是考试的重点,正确理解算法的流程,读懂题意是解答的关键.24.见解析【解析】试题分析:根据据二分法求方程近似解的步骤设计程序框图,注意循环变量.试题程序框图如下图所示.25.(1) 1.60.2y x =+;(2)B 项目的收益更好.【分析】(1)先利用平均数公式求出样本中心点的坐标, 再利用所给公式求出b 的值,最后将样本中心点的坐标代入回归方程求得a 的值即可;(2)分别利用所给关系式以及所求回归方程,求出A ,B 两个项目投资60万元,该企业所得纯利润的估计值,便可预测哪个项目的收益更好.【详解】(1)由散点图可知,x 取1,2,3,4,5时,y 的值分别为2,3,5,7,8, 所以1234535x ++++==,2357855y ++++==, 2222221223354758535 1.61234553b ⨯+⨯+⨯+⨯+⨯-⨯⨯==++++-⨯, 则5 1.630.2a =-⨯=,故y 关于x 的线性回归方程为 1.60.2y x =+.(2)因为投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,所以若A 项目投资60万元,则该企业所得纯利润的估计值为1.760.59.7⨯-=万元; 因为y 关于x 的线性回归方程为 1.60.2y x =+,所以若B 项目投资60万元,则该企业所得纯利润的估计值为1.660.29.8⨯+=万元. 因为9.89.7>,所以可预测B 项目的收益更好.【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,n n i ii i i x y x x y ==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.26.(1)2.5;(2) 1.49.7y x =-+;(3)年产量约为3.5吨时,年利润z 取得最大值.【分析】(1)由均值概念求得c ;(2)根据所给数据计算系数即得;(3)利用(2)中回归直线方程作出预估值进行计算利润后,再由二次函数性质得最大值.【详解】(1)8764 5.55c y ++++==,解得 2.5c =;(2)1234535x ++++==, 5118275 2.568.5ii i x y ==⨯+⨯++⨯=∑, 1222222168.553 5.5 1.4(125)53n i ii n i i x y nx y b x nx==--⨯⨯===-+++-⨯-∑∑,5.5(1.4)39.7a y bx =-=--⨯=,所以回归直线方程为 1.49.7y x =-+.(3)由(2)2(2)(1.49.7) 1.49.7z y x x x x x =-=-+=-+,所以9.7 3.52( 1.4)x =-≈⨯-(吨)利润最大. 【点睛】本题考查线性回归直线方程,考查回归方程的实际应用.考查学生的数据处理能力,运算求解能力.。

【精编】高中数学必修3第2章统计章末测验试卷(含答案 word可编辑)

【精编】高中数学必修3第2章统计章末测验试卷(含答案 word可编辑)

必修3~第02章~章末测验 (____月___日)一、选择题(共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知A 、B 、C 三个社区的居民人数分别为600、1200、1500,现从中抽取一个容量为n 的样本,若从C 社区抽取了15人,则n = A .33 B .18 C .27 D .212.一幼儿园有10个班,每个班有30名同学,每个班同学随机编号为01﹣30,为了了解他们家长对幼儿园管理方面的要求,对每班第19号同学的家长进行调查,这里运用的抽样方法是 A .抽签法 B .分层抽样法 C .随机数表法 D .系统抽样法3.已知某区中小学学生人数如图所示,为了解学生参加社会实践活动的意向,拟采用分层抽样的方法来进行调查.若高中需抽取20名学生,则小学与初中共需抽取的人数为 A .30 B .40 C .70 D .904.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n 座城市作实验基地,这n 座城市共享单车的使用量(单位:人次/天)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是 A .x 1,x 2,…x n 的平均数 B .x 1,x 2,…x n 的标准差 C .x 1,x 2,…x n 的最大值 D .x 1,x 2,…x n 的中位数5.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距样本,将全体会员随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号),若第5组抽出的号码为23,则第1组至第3组抽出的号码依次是 A .3,8,13 B .2,7,12 C .3,9,15 D .2,6,126.10名学生在一次数学考试中的成绩分别为x 1,x 2,…,x 10,要研究这10名学生成绩的平均波动情况,则最能说明问题的是 A .频率 B .平均数 C .独立性检验 D .方差7.10名小学生的身高(单位:cm )分成了甲、乙两组数据,甲组:115,122,105,111,109;乙组:125,132,115,121,119.两组数据中相等的数字特征是A .中位数、极差B .平均数、方差C .方差、极差D .极差、平均数 8.甲、乙两名同学8次数学测验成绩如茎叶图所示,1x ,2x 分别表示甲、乙成绩的平均数,s 1,s 2分别表示甲、乙成绩的标准差,则有 A .12x x >,s 1<s 2 B .12x x =,s 1<s 2 C .12x x =,s 1=s 2 D .12x x <,s 1>s 29.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为:A .1167 B .365C .36 D10.某工厂对一批新产品的长度(单位:mm )进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为A.20,22.5 B.22.5,25C.22.5,22.75 D.22.75,22.7511.已如样本x1,x2,x3,x n的平均数为x,标准差为s,那么样本3x1+1,3x1+1,3x3+1,……,3x n+1的平均数和标准差分别是A.3x+1,3s B.3x+1,9s C.3x+1,3s+1 D.3x,9s 12.已知如表为x与y x的回归直线y=bx+a必过点A.(2,2)B.(1.5D.(1.5,4)二、填空题(本题共4小题,每小题5分,共20分)13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从高级职称抽取的人数是__________.14.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是__________.15.已知x,y=+中的b=2.2,那么a=__________.根据上表利用最小二乘法求得回归直线方程y x b a16.已知变量x和y线性相关,其一组观测数据为(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归直线方程为y=0.67x+50.9.若已知x1+x2+x3+x4+x5=150,则y1+y2+y3+y4+y5=__________.三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图是某地某公司1000名员工的月收入后的直方图.根据直方图估计:(1)该公司月收入在1000元到1500元之间的人数;(2)该公司员工的月平均收入.18.(本小题满分12分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:甲:86、72、92、78、77;乙:82、91、78、95、88(1)这种抽样方法是哪一种?(2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间产品较稳定.19.(本小题满分12分)某校全体教师年龄的频率分布表如表所示,其中男教师年龄的频率分布直方图如图所示.已知该(2)若按性别分层抽样,随机抽取16人参加技能比赛活动,求男女教师抽取的人数.20.(本小题满分12分)有同一型号的汽车100辆,为了解这种汽车每耗油1L所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油1L所行路程的试验,得到如下样本数据(单位:km):13.7 12.7 14.4 13.8(1(2)根据上表,在坐标系中画出频率分布直方图.21.(本小题满分12分)在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A ,B 两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001一900.(1)若采用随机数表法抽样,并按照以下随机数表,以加粗的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 74 07 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 51 51 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48 26 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 94 14 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43 (2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和;(3)若采用分层轴样,按照学生选择A 题目或B 题目,将成绩分为两层,且样本中A 题目的成绩有8个,平均数为7,方差为4:样本中B 题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.22.(本小题满分12分)在倡导低碳、节能减排政策的推动下,越来越多的消费者选择购买新能源汽车,某品牌新能源汽(1)根据表中数据建立y 关于x 的回归方程为y =1.14x ﹣0.34.我们认为,若残差绝对值|y i y -i |>0.5,则该数据为可疑数据,请找出上表中的可疑数据(2)经过确认,数据采集有误,(1)中可疑数据的维修保养总费用应增加0.7千元.请重新利用线性回归模型拟合数据.(精确到0.01).附:1122ˆni ii nii x y n xx ybxn ==-=-∑∑;a b y x =-;61ii x ==∑21,61 i =∑y i=21.9,61i =∑x i 2=91,61i =∑x i y i =96.6.。

【湘教版】高中数学必修三期末模拟试题(带答案)(2)

【湘教版】高中数学必修三期末模拟试题(带答案)(2)

一、选择题1.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .652.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据: x 4 6 8 10 12 y12356由表中数据求得y 关于x 的回归方程为ˆˆ0.65yx a =+落在回归直线下方的概率为( ) A .25B .35C .34D .123.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为 A .3B .31π-C .3πD .31π-4.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O 为大圆圆心,线段AB 为小圆直径.△AOB 的三边所围成的区域记为I ,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则()A .123p p p >>B .123p p p =+C .213p p p >>D .123p p p =>5.运行下图所示的程序框图,如果输入的2020n =,则输出的n =( )A .6B .7C .63D .646.某程序框图如图所示,该程序运行后输出S 的值是( )A .910B .1011C .1112D .1117.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A .7SB .21SC .28SD .36S8.执行如图所示的程序框图,若输出的结果为5,则输入的实数a 的范围是( )A .[)6,24B .[)24,120C .(),6-∞D .()5,249.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( )A.成绩B.视力C.智商D.阅读量10.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示,则5个剩余分数的方差为( )A.1167B.365C.36 D.6711.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,812.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表:温度℃ -5 0 4 7 12 15 19 23 27 31 36 热饮杯数15615013212813011610489937654根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.中国文化中有很多东西喜欢9或9的倍数.如:九连环、九阴白骨爪、降龙十八掌(1892=⨯)、三十六计(3694=⨯)、孙悟空七十二变(8972⨯=)、八十一难(9981⨯=)等.若一个三位数的各位数字之和为9,如207,126,则这样的三位数共有________.15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.某程序框图如图所示,则该程序运行后输出的S 的值为________.17.更相减损术是出自《九章算术》的一种算法.如图所示的程序框图是根据更相减损术写出的,若输入91a =,39b =, 则输出的值为______.18.如图所示的程序框图,输出的结果是_________.19.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如下表:x1 2 3 4 5 y 7.06.5m3.82.2已知x 和y 具有线性相关关系,且回归方程为 1.238.69y x =-+,那么表中m 的值为__________.20.某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则19a b+的最小值为__________.三、解答题21.手机支付也称为移动支付(Mobile Payment ),是当今社会比较流行的一种付款方式.某金融机构为了了解移动支付在大众中的熟知度,对15—65岁的人群作了问题为“你会使用移动支付吗?”的随机抽样调查,把回答“会”的100个人按照年龄分成5组,绘制成如图所示的频数分布表和频率分布直方图.(1)求x ,a 的值;(2)若从第1,3组中用分层抽样的方法抽取5人,求两组中分别抽取的人数; (3)在(2)抽取的5人中再随机抽取2人,求所抽取的2人来自同一个组的概率. 22.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.23.设计算法求111112233499100+++⋅⋅⋅+⨯⨯⨯⨯的值.要求画出程序框图,写出用基本语句编写的程序.24.试编写程序确定S=1+4+7+10+…中至少加到第几项时S≥300.25.两台机床同时生产直径为10的零件,为了检验产品质量,质量质检员从两台机床的产品中各抽取4件进行测量,结果如下:机床甲109.81010.2机床乙10.1109.910如果你是质量检测员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求.26.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式。

【湘教版】高中数学必修三期末模拟试卷及答案(2)

【湘教版】高中数学必修三期末模拟试卷及答案(2)

一、选择题1.已知ABCD 为正方形,其内切圆I 与各边分别切于,,,E F G H ,连接,,,EF FG GH HE ,现向正方形ABCD 内随机抛掷一枚豆子(豆子大小忽略不计),记事件A:豆子落在圆I 内;事件B:豆子落在四边形EFGH 外,则()P B A =( )A .14π-B .4π C .21π-D .2π2.将曲线22x y x y +=+围成的区域记为Ⅰ,曲线1x y +=围成的区域记为Ⅱ,在区域Ⅰ中随机取一点,此点取自区域Ⅱ的概率为( ) A .12π+ B .11π+ C .22π+ D .21π+ 3.袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是( ) A .至少有一个白球;都是白球 B .两个白球;至少有一个红球 C .红球、白球各一个;都是白球D .红球、白球各一个;至少有一个白球4.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .165.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,则一开始输入的x 的值为( )A .34B .78C .1516 D .31326.若正整数N 除以正整数m 后的余数为r ,则记为(,)Mod N m r =,例如(10,4)2Mod =.如图所示的程序框图的算法源于我国古代数学名著《孙子算经》中的“中国剩余定理”,则执行该程序框图输出的i =( )A .8B .18C .23D .387.执行如下图的程序框图,如果输入的N 的值是7,那么输出的p 的值是( )A .3B .15C .105D .9458.《数书九章》是我国宋代数学家秦九韶的著作,其中给出了求多项式的值的秦九韶算法,如图所示的程序框图给出了一个利用秦九韶算法求某多项式值的实例,若输入的13x =,输出的12181=y 则判断框“”中应填入的是( )A .2?k ≤B .3?k ≤C .4?k ≤D .5?≤k9.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件10.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元11.一组数据的平均数为x ,方差为2s ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为x B .这组新数据的平均数为a x + C .这组新数据的方差为2asD .这组新数据的标准差为2a s12.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( )A.10 B.11C.12 D.13二、填空题13.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为________.14.在正方体的12条面对角线和4条体对角线中随机地选取两条对角线,则这两条对角线所在的直线为异面直线的概率等于________.15.在区间[0,1]中随机地取出两个数,则两数之和大于45的概率是______.16.执行如图程序框图,输出的结果为______.17.根据如图所示的程序框图,若输出的值为4,则输入的值为______________.18.程序框图如下图所示,其输出的结果是__________________________.19.如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的中位数为a ,乙加工零件个数的平均数为b ,则a b +=______.20.设一个回归方程为0.4 1.8y x =-,则当25x =时,y 的估计值是_______.三、解答题21.空气质量指数(Air Quality Index ,简称AQI )是定量描述空气质量状况的指数,空气质量按照AOI 大小分为六级.某地区一监测站记录自2019年9月起连续n 天空气质量状况,得如下频数统计表及频率分布直方图. 空气质量指数(AOI ) (0,50](50,100] (100,150] (150,200] (200,250] (250,)+∞空气质量等级 优 良 轻度污染 中度污染 重度污染 严重污染 频数(天)2540m105(Ⅰ)求m ,n 的值,并完成频率分布直方图;(Ⅱ)由频率分布直方图,求该组数据的平均数与中位数;(Ⅲ)在空气质量指数分别为(50,100]和(100,150]的监测数据中,用分层抽样的方法抽取6天,再从中任意选取2天,求事件“两天空气质量等级不同”发生的概率.22.某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰.因库房限制每天最多加工6箱.(1)若某天此鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且6箱该种玫瑰被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,求恰好一位是以2000元价格购买的顾客且另一位是以1200元价格购买的顾客的概率: (2)此鲜花批发店统计了100天该种玫瑰在每天下午3点以前的销售量t (单位:箱),统计结果如下表所示(视频率为概率): t /箱 4 5 6 频数30xs①估计接下来的一个月(30天)该种玫瑰每天下午3点前的销售量不少于5箱的天数并说明理由; ②记2log x s b x ⎡⎤=+⎢⎥⎣⎦,64x ≤,若此批发店每天购进的该种玫瑰箱数为5箱时所获得的平均利润最大,求实数b 的最小值(不考虑其他成本,2log x x ⎡⎤⎢⎥⎣⎦为2log x x 的整数部分,例如:[]2.12=,[]0.10=).23.给出某班45名同学的数学测试成绩,60分及以上为及格,要求统计及格人数,及格同学的平均分,全班同学的平均分,画出程序框图,并写出程序语句.24.分别标有1,2,3,4,5,6六个号码的小球,有一个最重,写出挑出最重球的算法,并画出程序框图.25.2020年1月末,新冠疫情爆发,经过全国人民的努力,2月中旬,疫情得到了初步的控制,湖北省以外地区的每日新增确诊人数开始减少,某同学针对这个问题,选取他在统计学中学到的一元线性回归模型,作了数学探究:他于2月17日统计了2月7日至16日这十天湖北省以外地区的每日新增确诊人数,表格如下:计算出: 5.5,335x y ==,()()1013955iii x x y y =--=-∑,()210182.5ii x x =-=∑(1)请你帮这位同学计算出y 与x 的线性回归方程(精确到0.1),然后根据这个方程估计湖北省以外地区新增确诊人数为零时的大概日期;附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为:()()()1012101iii ii x x y y b x x ==--=-∑∑,a y bx =-(2)实际上2月17日至2月22日的新增确诊人数如下: 出评价.26.某市为了解疫情过后制造业企业的复工复产情况,随机调查了100家企业,得到这些企业4月份较3月份产值增长率x 的频率分布表如下:(1)估计制造业企业中产值增长率不低于60%的企业比例及产值负增长的企业比例; (2)求制造业企业产值增长率的平均数与方差的估计值(同一组中的数据用该组区间的中点值为代表).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:设正方形ABCD 边长为a ,分别求解圆I 和正方形EFGH 的面积,得到在圆I 内且在正方形EFGH 内的面积,即可求解()P B A . 详解:设正方形ABCD 边长为a ,则圆I 的半径为,2a r =其面积为21.4a π设正方形EFGH 边长为b ,,2a b a =⇒=其面积为211,2S a =则在圆I 内且在正方形EFGH 内的面积为21,S S S =- 故()121.S S P B A S π-==- 故选C .点睛:本题考查条件概率的计算,其中设正方形ABCD 边长和正方形EFGH 得到在圆I 内且在正方形EFGH 内的面积是解题的关键.2.C解析:C 【分析】画出曲线22x y x y +=+与曲线1x y +=的图像,再根据几何概型的方法求解即可. 【详解】当0,0x y >>时,曲线22x y x y +=+、曲线1x y +=分别为2222111222x y x y x y ⎛⎫⎛⎫+=+⇒-+-= ⎪ ⎪⎝⎭⎝⎭,1x y +=.又22x y x y +=+、1x y +=均关于,x y 轴,原点对称.故两曲线围成的区域Ⅰ(正方形和四个半圆)、Ⅱ(正方形)如图:可知区域Ⅰ的面积为2222S ππ⎛⎫+⋅=+ ⎪ ⎪⎝⎭正方形;区域Ⅱ的面积为()222=;∴由几何概率公式得:22p π=+.故选:C. 【点睛】本题主要考查了几何概型的运用,需要根据题意去绝对值画出一象限的图像,再根据对称性补全图像.同时也考查了几何概型中面积型的问题.属于中档题.3.C解析:C 【分析】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,结合所给的选项,逐一进行判断,从而得出结论. 【详解】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生, 对于A ,至少有1个白球;都是白球,不是互斥事件.故不符合.对于B 两个白球;至少有一个红球,是互斥事件,但也是对立事件,故不符合. 对于C 红球、白球各一个;都是白球是互斥事件,但不是对立事件,故符合. 对于D 红球、白球各一个;至少有一个白,不是互斥事件.故不符合. 故选:C . 【点睛】本题主要考查互斥事件与对立事件的定义,意在考查学生对这些知识的理解掌握水平.4.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S (A)3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.5.B解析:B 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算输入时变量x 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得到答案. 【详解】本题由于已知输出时x 的值,因此可以逆向求解: 输出0x =,此时4i =; 上一步:1210,2x x -==,此时3i =; 上一步:1321,24x x -==,此时2i =; 上一步:3721,48x x -==,此时1i =; 故选:B . 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理和数学运算的能力,属于基础题.6.C解析:C 【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出同时满足条件:①被3除余2,②被5除余3,③被7除余2,故输出的i 为23,故选C .【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.7.C解析:C【分析】由已知中的程序框图,得到该程序的功能是利用循环结构计算并输出变量p 的值,模拟程序的运行过程,分析循环中各变量的变化情况,可得答案.【详解】模拟程序的运行,可得:7,1,1N k p ===,满足条件7k <,执行循环体,3,3k p ==;满足条件7k <,执行循环体,5,15k p ==;满足条件7k <,执行循环体,7,105k p ==;此时,不满足条件7k <,推出循环,输出p 的值为105,故选C .【点睛】本题主要考查了程序框图的应用问题,解答中应模拟程序框图的运行过程,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.8.C解析:C【解析】【分析】模拟程序的运行过程,即可得出输出y 的值时判断框中应填入的是什么.【详解】模拟程序的运行过程如下, 输入114,1,11333x k y ===⨯+=, 41132,1339k y ==⨯+=, 131403,19327k y ==⨯+=, 4011214,127381k y ==⨯+=,此时不满足循环条件,输出12181=y ; 则判断框中应填入的是4?k ≤. 故选:C .【点睛】本题考查了算法与程序框图的应用问题,理解框图的功能是解题的关键,是基础题. 9.D 解析:D【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58yx =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用. 10.C解析:C【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误; 当月工资为210元时,210=50+80x ,解得x=2,此时劳动生产率约为2000元,D 正确.故选C .考点:线性回归方程.11.D解析:D 【分析】根据平均数及方差的定义可知,一组数据的每个数都乘以a 得到一组新数据,平均值变为原来a 倍,方差变为原来2a 倍.【详解】设一组数据1234,,,,,n x x x x x ⋯的平均数为x ,方差为2s ,则平均值为()12341n ax ax ax ax ax ax n++++⋯+=, ()()()()()22222212341n s x x x x x x x x x x n ⎡⎤=-+-+-+-+⋯+-⎢⎥⎣⎦,()()()()()222222212341n ax ax ax ax ax ax ax ax ax ax a s n ⎡⎤∴-+-+-+-+⋯+-=⋅⎢⎥⎣⎦ 故选:D.【点睛】 本题主要考查了方差,平均数的概念,灵活运用公式计算是解题关键,属于中档题. 12.C解析:C【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19,由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25,∴做问卷C 的人数为25﹣14+1=12,故选C .【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.二、填空题13.【分析】利用对立事件的概率公式计算即可【详解】解:设至少有一种新产品研发成功的事件为事件事件为事件的对立事件则事件为一种新产品都没有成功因为甲乙研发新产品成功的概率分别为和则再根据对立事件的概率之间 解析:1315【分析】利用对立事件的概率公式,计算即可,【详解】解:设至少有一种新产品研发成功的事件为事件m ,事件n 为事件m 的对立事件,则事件n 为一种新产品都没有成功, 因为甲乙研发新产品成功的概率分别为23和35. 则()232(1)(1)3515p n =--=, 再根据对立事件的概率之间的公式可得()()213111515P m P n =-=-=,故至少有一种新产品研发成功的概率1315. 故答案为:1315. 【点睛】 本题主要考查了对立事件的概率,考查学生的计算能力,属于基础题.14.【分析】将异面直线分为两种情况:(1)两条面对角线是异面直线(2)一条面对角线和一条体对角线是异面直线由此分别计算出满足要求的方法数最后即可计算出相应概率【详解】由于4条体对角线都经过正方体的中心所 解析:920【分析】将异面直线分为两种情况:(1)两条面对角线是异面直线,(2)一条面对角线和一条体对角线是异面直线,由此分别计算出满足要求的方法数,最后即可计算出相应概率.【详解】由于4条体对角线都经过正方体的中心,所选的两条对角线至少包含一条面对角线: ①两条对角线都是面对角线:任取1条面对角线,剩余的11条面对角线中,有5条与之异面,考虑重复选取,125302⨯∴=(种); ②一条面对角线一条体对角线:任取1条面对角线,有2条体对角线与之异面,∴12224⨯=(种)∴概率为2163024920C +=. 故答案为:920. 【点睛】本题考查异面直线的理解以及用排列组合的方法计算概率,难度一般.排列组合的方法计算相应概率时,可采用古典概型的概率计算方法:先计算出基本事件的总数,然后计算出满足要求的基本事件的数量,此时P =满足要求的基本事件数量基本事件的总数. 15.【解析】分析:将原问题转化为几何概型的问题然后利用面积型几何概型公式整理计算即可求得最终结果详解:原问题即已知求的概率其中概率空间为如图所示的正方形满足题意的部分为图中的阴影部分所示其中结合面积型几 解析:1725【解析】分析:将原问题转化为几何概型的问题,然后利用面积型几何概型公式整理计算即可求得最终结果.详解:原问题即已知01,01x y ≤≤≤≤,求45x y +≥的概率, 其中概率空间为如图所示的正方形,满足题意的部分为图中的阴影部分所示,其中4,05E ⎛⎫ ⎪⎝⎭,40,5F ⎛⎫ ⎪⎝⎭, 结合面积型几何概型计算公式可得满足题意的概率值为:1441725511125p ⨯⨯=-=⨯.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.16.【分析】n=2018时输出S 利用三角函数的周期性即可得出【详解】n=2018时输出SS=又的周期为12由图象易知:∴S==故答案为:【点睛】本题的实质是累加满足条件的数据可利用循环语句来实现数值的累 解析:12. 【分析】n=2018时,输出S .利用三角函数的周期性即可得出.【详解】n=2018时,输出S .S=232017 6666sin sin sin sin ππππ++++ 又y sin 6x π=的周期为12,由图象易知:2312 06666sin sin sin sin ππππ++++=, ∴S=23122017 168?66666sin sin sin sin sin πππππ⎛⎫++++⨯+ ⎪⎝⎭=12故答案为:12.【点睛】本题的实质是累加满足条件的数据,可利用循环语句来实现数值的累加(乘)常分以下步骤:(1)观察S的表达式分析,确定循环的初值、终值、步长;(2)观察每次累加的值的通项公式;(3)在循环前给累加器和循环变量赋初值,累加器的初值为0,累乘器的初值为1,环变量的初值同累加(乘)第一项的相关初值;(4)在循环体中要先计算累加(乘)值,如果累加(乘)值比较简单可以省略此步,累加(乘),给循环变量加步长;(5)输出累加(乘)值.17.或1【解析】试题分析:根据已知中的程序框图可得:该程序的功能是计算并输出分段函数的函数值分段讨论满足y=4的x值最后综合讨论结果可得答案考点:(1)流程图;(2)分段函数解析:或1【解析】试题分析:根据已知中的程序框图可得:该程序的功能是计算并输出分段函数的函数值,分段讨论满足y=4的x值,最后综合讨论结果可得答案.考点:(1)流程图;(2)分段函数.18.127【分析】根据题意按照程序框图的顺序进行执行然后输出结果即可【详解】解:由程序框图知循环体被执行后a的值依次为37153163127故输出的结果是127故答案为127【点睛】本题考查程序框图的识解析:127【分析】根据题意,按照程序框图的顺序进行执行,然后输出结果即可【详解】解:由程序框图知,循环体被执行后a的值依次为3、7、15、31、63、127,故输出的结果是127.故答案为127.【点睛】本题考查程序框图的识别,通过对已知框图的分析与执行,写出运算结果,属于基础题.19.5【解析】【分析】由茎叶图直接可以求出甲的中位数和乙的平均数求和即可【详解】由茎叶图知甲加工零件个数的中位数为乙加工零件个数的平均数为则【点睛】本题主要考查利用茎叶图求中位数和平均数解析:5【解析】【分析】由茎叶图直接可以求出甲的中位数和乙的平均数,求和即可.【详解】 由茎叶图知,甲加工零件个数的中位数为()1212221.52a =⨯+=, 乙加工零件个数的平均数为()11917112124222430323010b =⨯+++++++++23=,则21.52344.5a b +=+=.【点睛】本题主要考查利用茎叶图求中位数和平均数.20.2【解析】分析:直接利用回归方程将代入即可求得的估计值详解:∵回归方程为∴当时的估计值为故答案为82点睛:本题考查回归方程的运用考查学生的计算能力属于基础题解析:2【解析】分析:直接利用回归方程,将25x =代入,即可求得y 的估计值.详解:∵回归方程为0.4 1.8y x =-,∴当25x =时,y 的估计值为 0.425 1.88.2y =⨯-=.故答案为8.2.点睛:本题考查回归方程的运用,考查学生的计算能力,属于基础题.三、解答题21.(Ⅰ)20m =,100n =,直方图见解析;(Ⅱ)90,81.25;(Ⅲ)815. 【分析】(Ⅰ)由频率的计算公式,即可求得参数,m n ,根据表格中数据,即可补全直方图; (Ⅱ)根据频率分布直方图中平均数和中位数的求解方法,即可容易求得;(Ⅲ)先用分层抽样求得6天中在区间(50,100]和(100,150]的天数,列举出所有任取2天的可能性,找出满足题意的可能性,根据古典概型的概率求解公式即可求得结果.【详解】(Ⅰ)由题知100.00250n⨯=,解得100n =,所以20m =. 频率分布直方图如图:(Ⅱ)平均数为[250.005750.0081250.0041750.0022250.001]50⨯+⨯+⨯+⨯+⨯⨯ 6.25302517.511.2590=++++=; 中位数为0.50.25505081.250.4-+⨯= ; (Ⅲ)按分层抽样在(50,100]和(100,150]中抽取分别抽取4天和2天,在所抽取的6天中,将空气质量指数为(50,100]的4天分别记为1A ,2A ,3A ,4A , 空气质量指数为(100,150]的2天分别记为1B ,2B ,从中任取2天的基本事件为()()()()()()()()()()(){1213142324341112212231,,,,,,,,,,,,,,,,,,,,,A A A A A A A A A A A A A B A B A B A B A B()()()()}32414212,,,,,,,A B A B A B B B 共15个,其中事件M “两天空气质量等级不同”发生基本事件包括8个, 所以概率8()15P M =. 【点睛】本题考查频率的计算,频率分布直方图的绘制,以及由频率分布直方图计算中位数和平均数,古典概型的概率计算,涉及分层抽样,属综合中档题.22.(1)815;(2)①21;②4- 【分析】(1)根据古典概型概率公式计算可得;(2)①用100−30可得;②用购进5箱的平均利润>购进6箱的平均利润,解不等式可得.【详解】解:(1)设这6位顾客是A ,B ,C ,D ,E ,F .其中3点以前购买的顾客是A ,B ,C ,D .3点以后购买的顾客是E ,F .从这6为顾客中任选2位有15种选法:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),其中恰好一位是以2000元价格购买的顾客,另一位是以1200元价格购买的顾客的有8种:(A ,E ),(A ,F ),(B ,E ),(B ,F ),(C ,E ),(C ,F ),(D ,E ),(D ,F ). 根据古典概型的概率公式得815P =; (2)①依题意30100x s ++=,∴70x s +=,所以估计接下来的一个月(30天)内该种玫瑰每天下午3点以前的销售量不少于5箱的天数是3070%21⨯=天;②批发店每天在购进4箱数量的玫瑰时所获得的平均利润为:4×2000−4×500×3=2000元;批发店每天在购进5箱数量的玫瑰时所获得的平均利润为:3070(420001120055003)(5200055003)2260100100⨯⨯+⨯-⨯⨯+⨯⨯-⨯⨯=元; 批发店每天在购进6箱数量的玫瑰时所获得的平均利润为:30(420002120065003)(520001120065003)100100x ⨯⨯+⨯-⨯⨯+⨯⨯+⨯-⨯⨯ (6200065003)4202230100x s s +⨯⨯-⨯⨯=++ 由()2260420223070x x >++-,解得:32.5x >,则32.564x <≤ 所以270log x x b x ⎡⎤++=⎢⎥⎣⎦,要求b 的最小值,则求()2log x g x x x ⎡⎤=+⎢⎥⎣⎦的最大值, 令()2log x f x x =,则()()()'22ln 2ln 1log ln x x f x x x -==,(]32.5,64x ∈ 明显()'0f x >,则()2log x f x x =在(]32.5,64上单调递增, 则()2log x g x x x ⎡⎤=+⎢⎥⎣⎦在(]32.5,64上单调递增, ()264646464641074log 646g x ⎡⎤⎡⎤∴=+=+=+=⎢⎥⎢⎥⎣⎦⎣⎦, 则b 的最小值为70744-=-.【点睛】本题考查了古典概型及其概率计算公式,属中档题.23.程序图见解析.【解析】【分析】因为只统计及格人数,所以设计一个条件语句,对于求和设计一个计数变量,一个累加变量,根据结束条件设置成直到型或当型. 最后对应改成基本语句.【详解】用M表示及格人数,S表示及格同学的总分。

2018年高中数学北师大版必修三:第2章 8 章末综合检测(二)含解析

2018年高中数学北师大版必修三:第2章 8 章末综合检测(二)含解析

章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列赋值语句正确的是( ) A .a +b =5 B .5=a C .a =2b =2D .a =a +1解析:选D.赋值语句的一般格式是变量名=表达式,赋值号左右两边不能互换,赋值号左边只能是变量,而不能是表达式.2.如果以下程序运行后输出的结果是132,那么在程序中While 后面的①处应填( ) i =12 S =1 Do S =S *i i =i -1 Loop While ① 输出S . A .i >11 B .i ≥11 C .i ≤10D .i <11解析:选B.当循环终止条件为真时,继续循环,否则停止执行循环体.由于输出的是132,故应选B.3.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .选择结构C .顺序结构、选择结构D .顺序结构、循环结构 答案:C4.计算下列各式中的S 的值,能设计算法求解的是( ) ①S =1+2+3+…+100;②S =1+2+3+…; ③S =1+2+3+…+n (n ≥2且n ∈Z ). A .①② B .①③ C .②③D .①②③解析:选B.因为算法步骤具有“有限性”特点,故②不可用算法求解.5.算法步骤如下: 1.m =a .2.若b <m ,则m =b . 3.若c <m ,则m =c . 4.若d <m ,则m =d . 5.输出m .则输出的m 表示( ) A .a ,b ,c ,d 中的最大值 B .a ,b ,c ,d 中的最小值 C .将a ,b ,c ,d 由小到大排列 D .将a ,b ,c ,d 由大到小排列解析:选B.按步骤进行阅读,看每一步完成了一个怎样的任务.1.确定的值为a .2.若b <m ,则m 的值为b …可知取较小的数,即输出的m 为a ,b ,c ,d 中的最小值.故选B.6.执行如图所示的程序框图,输出的k 值为( )A .3B .4C .5D .6解析:选B.初值为a =3,k =0,进入循环体后a =32,k =1;a =34,k =2;a =38,k =3;a =316,k =4,此时a <14,退出循环,则输出k =4.故选B. 7.下列算法运行后输出的结果为( ) i =1 Do i =i +2 S =3+2*i i =i +1 Loop While i <8 输出S . A .17 B .19 C .21D .23解析:选C.这是用Do Loop 语句编写的算法,按Do Loop 语句的程序运行可知最后一次执行循环体时S =3+2×(7+2)=21.8.For I =2 To 100 step 2 输出I Next上面程序最后输出的是( ) A .2+4+6+8+…+100的和 B .100C .2,4,6,…,100,D .2+3+…+100的和 答案:B9.执行如图所示的程序框图(算法流程图),输出的n 为( )A .3B .4C .5D .6解析:选 B.初始值,a =1,n =1,|a -1.414|=0.414≥0.005,执行第一次循环,a =1+11+a =32,n =2;|a -1.414|=0.086≥0.005,执行第二次循环,a =1+11+a =75,n =3;|a -1.414|=0.014≥0.005,执行第三次循环,a =1+11+a =1712,n =4; |a -1.414|≈0.002 7<0.005,跳出循环,输出n =4.10.执行如图所示的程序框图后,若输出结果为-1,则输入x 的值不可能是( )A .2B .1C .-1D .-2解析:选D.当x ≥0时,y =-1,故A 、B 正确.当x <0时,y =x 3=-1,则x =-1.故选D. 11.执行如图所示的程序框图后,输出的值为4,则P 的取值范围是( )A.⎝⎛⎦⎤34,78B.⎝⎛⎦⎤23,78 C.⎝⎛⎦⎤45,89D.⎝⎛⎦⎤56,910解析:选A.根据程序框图,第一次循环,S =12,n =2;第二次循环,S =12+122=34,n =3;第三次循环,S=34+123=78,n =4.而输出的n 值为4,因此当执行了n =3时,P 取最大值,此时P =78,执行n =2时,P 取最小值,此时P =34,故P 的取值范围是⎝⎛⎦⎤34,78. 12.下列程序执行后输出的结果是( ) i =11 S =1 Do S =S *i i =i -1 Loop While i ≥9 输出 S A .990 B .110 C .7 920D .11解析:选A.i =11,S =11,i =10;i =10,S =110,i =9;i =9,S =990,i =8;i =8,i <9,S =990. 二、填空题:本题共4小题,每小题5分.13.下面给出的是条件语句编写的算法,该算法的功能是________. 输入n ;If n 能被2整除 Then 输出“偶数” Else输出“奇数” End If解析:该算法语句反映的是整数n 能否被2整除问题,若能被2整除,则n 是偶数,否则为奇数,因此,此算法功能是判断一个整数n 是奇数还是偶数.答案:判断一个整数n 是奇数还是偶数14.在一个算法中,经常会遇到一些条件的判断,算法框图根据条件是否成立有不同的流向,则处理这种过程的结构是________.解析:由选择结构的定义可知,在选择结构中需对某些条件作出判断,判断的结果影响着算法流向. 答案:选择结构15.已知a =⎝⎛⎭⎫-12-2,b =log 1312,c =(-3)23,则执行如图的程序框图后输出的结果等于________.(填a ,b ,c 即可)解析:根据指数函数和对数函数以及幂函数的性质可知,a =⎝⎛⎭⎫-12-23,b =log 1312,c =(-3)23,(-3)23=323,因为⎝⎛⎭⎫-12-23=(-2)23=223<323,因为log 1312=log 32<1,因此可知(-3)2是最大值. 答案:c16.如图所示,程序框图的输出结果是________.解析:当输入x =1,y =1,执行z =x +y 及z ≤50,x =y ,y =z 后, x ,y ,z 的值依次对应如下:x =1,y =1,z =2; x =1,y =2,z =3; x =2,y =3,z =5; x =3,y =5,z =8; x =5,y =8,z =13; x =8,y =13,z =21; x =13,y =21,z =34; x =21,y =34,z =55.由于55≤50不成立,故输出55. 答案:55三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分10分)执行如图所示的程序框图,求输出的点C 的坐标.解:从上到下执行该程序框图第一步,过点A (1,-1)且与直线2x -y +4=0垂直的直线方程是x +2y +1=0. 第二步,直线2x -y +4=0与直线x +2y +1=0的交点坐标是B (-95,25).第三步,点A (1,-1)关于点B (-95,25)对称的点C 的坐标是(-235,95).第四步,输出点C 的坐标(-235,95). 18.(本小题满分12分)学习优秀的条件如下: (1)五门课的成绩总分不小于500分;(2)三门主课每门的成绩都不小于100分,其他两门成绩都不小于90分. 输入某学生的五门成绩,问他是否够优秀条件?画出程序框图. 解:程序框图如图所示:19.(本小题满分12分)试用基本语句描述求函数y=-x2-2x+3在x∈(-∞,n]上的最大值的算法,并画出算法框图.解:算法语句如下:输入n;a=-1b=-2c=3If n>-1Thent=4*a*c-b2max=t/(4*a)Elsey=-n2-2*n+3max=yEnd If输出max.算法框图如图所示:20.(本小题满分12分)你知道“完全立方数”吗?如果一个数是另一个整数的完全立方(也就是三次乘方),那么我们就称这个数为完全立方数.请设计一个程序,逐个输出[0,1 000]内的完全立方数.解:For i =0 To 10S =i 3If S ≤1 000 Then输出S Next21.(本小题满分12分)如图所示,在边长为4的正方形ABCD 的边上有一动点P ,点P 沿边线由B →C →D →A (B 为起点,A 为终点)运动.若设点P 运动的路程为x ,△APB 的面积为y ,试写出程序,根据输入的x 值,输出相应的y 值.解:y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,8,4<x ≤8,2(12-x ),8<x ≤12.程序框图如图.程序如下:输入xIf x≥0 And x≤4 Theny=2*xElseIf x≤8 Theny=8Elsey=2*(12-x)End IfEnd If输出y22.(本小题满分12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少;(3)写出程序框图的程序语句.解:(1)开始时,x=1时,y=0;接着x=3,y=-2;然后x=9,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015 时,输出最后一对,共输出(x,y)的组数为1 008.(3)程序框图的程序语句如下:x=1y=0n=1Do输入(x,y)n=n+2x=3*xy=y-2Loop While n>2 016赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°. (1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形;(3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。

最新精编高中人教A版必修三高中数学章末综合测评2和答案

最新精编高中人教A版必修三高中数学章末综合测评2和答案

章末综合测评(二) 统计(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样【解析】由抽样方法的概念知,第一种是简单随机抽样,第二种是系统抽样.【答案】 D2.小波一星期的总开支分布如图1①所示,一星期的食品开支如图1②所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图1A .1%B .2% C.3%D .5%【解析】 由题图②知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%.【答案】 C3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,则由此求出的平均数与实际平均数的差是( )A .3.5B .-3 C.3D .-0.5【解析】 少输入90,9030=3,平均数少3,求出的平均数减去实际平均数等于-3.【答案】 B4.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中抽取n 个学生进行问卷调查,如果已知从高一学生中抽取的人数为7人,那么从高三学生中抽取的人数应为( )A .10B .9【解析】由题意知抽取的比例为7210=130,故从高三中抽取的人数为300×130=10.【答案】 A5.一个容量为100的样本,其数据的分组与各组的频数如下:则样本数据在[10,40)上的频率为( )A.0.13 B.0.39C.0.52 D.0.64【解析】频率为13+24+15100=0.52.【答案】 C6.如图2是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为( )图2A.11 B.11.5【解析】由频率分布直方图得组距为5,故样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,从而中位数为10+0.20.5×5=12,故选C.【答案】 C7.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为( )A.13 B.17C.19 D.21【解析】因为47-33=14,所以由系统抽样的定义可知样本中的另一个学生的编号为5+14=19.【答案】 C8.在某次测量中得到的A样本数据如下:52,54,54,56,56,56,55,55,55,55.若B样本数据恰好是A样本数据都加6后所得数据,则A,B两样本的下列数字特征对应相同的是( )A.众数B.平均数C.中位数D.标准差【解析】由题意可知B样本的数据为58,60,60,62,62,62,61,61,61,61,将A样本中的数据由小到大依次排列为52,54,54,55,55,55,55,56,56,56,将B样本中的数据由小到大依次排列为58,60,60,61,61,61,61,62,62,62,因此A样本的众数为55,B样本的众数为61,A选项错误;A样本的平均数为54.8,B样本的平均数为60.8,B选项错误;A样本的中位数为55,B样本的中位数为61,C选项错误;事实上,在A样本的每个数据上加上6后形成B样本,样本的稳定性不变,因此两个样本的标准差相等,故选D.【答案】 D9.如图3茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩.(单位:分)图3已知甲组数据的平均数为17,乙组数据的中位数为17,则x,y的值分别为( )A.2,6 B.2,7C.3,6 D.5,7【解析】依题意得9+10×2+2+x+20×2+7+4=17×5,即x=5;y=7,故选D.【答案】 D10.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为( )A.32 B.0.2C.40 D.0.25【解析】由频率分布直方图的性质,可设中间一组的频率为x,则x+4x=1,所以x=0.2,故中间一组的频数为160×0.2=32,选A.【答案】 A11.如图4所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x-A和x-B,样本标准差分别为s A和s B,则( )图4A.x-A>x-B,s A>s B B.x-A<x-B,s A>s BC.x-A>x-B,s A<s B D.x-A<x-B,s A<s B【解析】A中的数据都不大于B中的数据,所以x-A<x-B,但A中的数据比B中的数据波动幅度大,所以s A>s B.【答案】 B12.(2014.陕西高考)某公司10位员工的月工资(单位:元)为x1,x2, (x10)其均值和方差分别为x-和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x-,s2+1002B.x-+100,s2+1002C.x-,s2D.x-+100,s2【解析】x1+x2+…+x1010=x-,y i=x i+100,所以y1,y2,…,y10的均值为x-+100,方差不变,故选D.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13.(2014·天津高考)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.【解析】根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.【答案】6014.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取50辆汽车进行测试分析,得到如图5所示的时速的频率分布直方图,根据下图,时速在70 km/h 以下的汽车有________辆.图5【解析】由频率分布直方图可得时速在70 km/h以下的频率是(0.01+0.03)×10=0.4,所以频数是0.4×50=20.【答案】2015.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:由表中数据,求得线性回归方程为y^=0.65x+a^,根据回归方程,预测加工70个零件所花费的时间为________分钟.【解析】由数据可得x-=30,y-=76,将中心点(30,76)代入线性回归方程可得a^=76-0.65×30=56.5,所以线性回归方程为y^=0.65x+56.5.当x=70时,y^=0.65×70+56.5=102.【答案】10216.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图6).由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________. 【导学号:28750046】图6【解析】∵0.005×10+0.035×10+a×10+0.020×10+0.010×10=1,∴a=0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x,y,z人,则x100=0.030×10,解得x=30.同理,y=20,z=10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.【答案】0.030 3三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)一批产品中,有一级品100个,二级品60个,三级品40个,分别用系统抽样和分层抽样的方法,从这批产品中抽取一个容量为20的样本.【解】(1)系统抽样的方法:先将200个产品随机编号:001,002,…,200,再将200个产品按001~010,011~020,…,191~200,分成20组,每组10个产品,在第一组内用简单随机抽样确定起始的个体编号,按事先确定的规则,从每组中分别抽取样本,这样就得到一个容量为20的样本.(2)分层抽样的方法:先将总体按其级别分为三层,一级品有100个,产品按00,01,…,99编号;二级品有60个,产品按00,01,…,59编号;三级品有40个,产品按00,01,…,39编号.因总体个数:样本容量为10∶1,故用简单随机抽样的方法:在一级品中抽10个,二级品中抽6个,三级品中抽4个.这样就得到一个容量为20的样本.18.(本小题满分12分)某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:(1)在这10天中,该公司用水量的平均数是多少?(2)在这10天中,该公司每天用水量的中位数是多少?(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?【解】(1)x-=110(22+38+40+2×41+2×44+50+2×95)=51(吨).(2)中位数为41+442=42.5(吨).(3)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.19.(本小题满分12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2.乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定?【解】(1)x-甲=(1+0+2+0+2+3+0+4+1+2)×110=1.5,x-乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x-甲>x-乙,∴乙车床次品数的平均数较小.(2)s2甲=110[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙车床的生产状况比较稳定.20.(本小题满分12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.图7(1)在如图7给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.【解】 (1)茎叶图如图所示:(2) x -甲=9+10+11+12+10+206=12, x -乙=8+14+13+10+12+216=13, s 2甲≈13.67,s 2乙≈16.67.因为x -甲<x -乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长得较为整齐.21.(本小题满分12分)某医院用光电比色计检验尿汞时,得尿汞含量(mg/L)与消光系数如下表:(1)如果y与x之间具有线性相关关系,求回归直线方程;(2)估计尿汞含量为9 mg/L时的消光系数.【解】(1)设回归直线方程为y^=b^x+a^.∵x-=6,y-=209.6,∴b^=7 774-5×6×209.6220-5×62=1 48640=37.15.∴a^=209.6-37.15×6=-13.3.∴回归方程为y^=37.15x-13.3.(2)∵当x=9时,y^=37.15×9-13.3≈321,∴估计尿汞含量为9 mg/L时消光系数为321.22.(本小题满分12分)某班100名学生期中考试语文成绩的频率分布直方图如图8所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].图8(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.【解】(1)由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5;0.04×10×100=40;0.03×10×100=30;0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5;40×1 2=20;30×43=40;20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.。

2020数学必修三人教B版新素养同步讲义:第二章统计章末综合检测(二)

2020数学必修三人教B版新素养同步讲义:第二章统计章末综合检测(二)

章末综合检测(二) [学生用书P111(单独成册)] (时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本.考虑采用系统抽样,则分段的间隔(抽样距)k 为( )A .40B .30C .20D .12详细分析:选A.抽样间隔为1 20030=40. 特别注意当总体的个数样本容量不是整数时,应先从总体中利用简单随机抽样进行剔除.2.下列哪种工作不能使用抽样方法进行( ) A .测定一批炮弹的射程B .测定海洋某一水域的某种微生物的含量C .高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D .检测某学校全体高三学生的身高和体重的情况详细分析:选D.抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A 、B 、C 都是从总体中抽取部分个体进行检验,选项D 是检测全体学生的身体状况,所以要对全体学生的身体都进行检验,而不能采取抽样的方法.3.甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A .甲B .乙C .甲、乙相同D .不能确定详细分析:选B.方差反映了数据的稳定性.方差越小发挥越稳定.4.从总体中抽取的样本数据有m 个a ,n 个b ,p 个c ,则总体的平均数μ的估计值为( ) A .a +b +c 3B .m +n +p 3C .ma +nb +pc 3D .ma +nb +pc m +n +p详细分析:选 D.数据个数有m +n +p 个,所有数据和为ma +nb +pc ,平均数为ma +nb +pcm +n +p,故选D.5.最近许多地方校车出现车祸,对学生造成很大危害,为此某市交通局、公安局、教育局联合对全市校车进行抽查.①从农村50辆、乡镇100辆、城市200辆中抽50辆进行检查;②从农村50辆中再抽10辆进行重点检查.对上述抽样应采用的抽样方法是( )A .①分层抽样法 ②简单随机抽样法B .①系统抽样法 ②分层抽样法C .都用分层抽样法D .全用简单随机抽样法详细分析:选A.①从差距较大的三部分中抽样应采用分层抽样法,②从50辆中抽10辆,由于数量不大,可以采用简单随机抽样法.6.在某项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A .92,2 B .92,2.8 C .93,2 D .93,2.88详细分析:选B.由题意知,所剩数据为90,90,93,94,93,所以其平均值为90+15(3+4+3)=92;方差为15(22×2+12×2+22)=2.8,故选B.7.某班有学生52人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号为6号,32号,45号的同学都在样本中,那么样本中还有一位同学的座位号是( )A .19B .16C .24D .36详细分析:选A.系统抽样又称等距抽样,一旦第一组确定后,其余各组均选本组的这一个,本题中第一组选6号,第二组选6+13=19.8.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5~18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是( ) A .20 B .30 C .40 D .50 详细分析:选C.[56.5,64.5)的频率为0.03×2+0.05×2×2+0.07×2=0.40,[56.5,64.5)的频数为100×0.40=40.9.某班有56名同学,一次数学考试,经计算得到平均成绩为75分,标准差为s 分,后来发现登录有错误,某甲得90分误记为70分,某乙得80分误记为100分,更正后重新计算标准差为s 1,则s 与s 1的大小关系是( )A .s =s 1B .s <s 1C .s >s 1D .不能确定详细分析:选C.错误订正前后平均分没有变化,但更正后两数据更接近平均数,所以方差应变小.10.两个相关变量满足如下关系:两变量的回归直线方程为( )A .y ^=0.56x +97.4 B .y ^=0.63x -31.2 C .y ^=50.2x +51.4 D .y ^=60.4x +40.7详细分析:选A.利用公式b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2=0.56,a ^=y --b ^x -=97.4,所以回归直线方程为y ^=0.56x +97.4.11.某同学在使用计算器求30个数据的平均数的过程中将一个数据105误输入为15,那么由此求出的平均数与实际平均数的差是( )A .3.5B .-3C .3D .-0.5详细分析:选B.更正之前x -=x 1+x 2+…+x 29+1530,更正之后x -′=x 1+x 2+…+x 29+10530,所以x --x -′=15-10530=-3.12.若数据x 1,x 2,…,x n 的平均数为x -,方差为s 2,则3x 1+5,3x 2+5,…,3x n +5的平均数和标准差分别为( )A .x -,sB .3x +5,sC .3x -+5,3s D .3x -+5,9s 2+30s +25详细分析:选C.因为x 1,x 2,…,x n 的平均数为x -,所以3x 1+5,3x 2+5,…,3x n +5的平均数为3x -+5.而s ′2=1n [(3x 1+5-3x --5)2+(3x 2+5-3x --5)2+…+(3x n +5-3x --5)2]=1n ×32[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2] =9s 2,所以s ′=3s .二、填空题:本题共4小题,每小题5分. 13.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如表所示:甲乙丙丁 平均数x -8.5 8.8 8.8 8方差s 23.5 3.5 2.1 8.7则参加奥运会的最佳人选应为________.详细分析:由平均数可知乙、丙最佳.虽然乙、丙平均数一样,但丙的方差小于乙的,说明丙的水平较稳定,所以丙为最佳人选.答案:丙14.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为100的样本,其频率分布直方图如图所示,则据此估计支出在[50,60)元的同学的频率为________.详细分析:[20,50)的频率之和0.01×10+0.024×10+0.036×10=0.7,由于各组频率之和等于1,[50,60)的频率为1-0.7=0.3.利用样本估计总体支出在[50,60)元的同学的频率为0.3.答案:0.315.已知x 、y从散点图分析,y 与x 线性相关,且y ^=0.95x +a ,则 a =________. 详细分析:由表可求出x -=2,y -=4.5, 因为直线y ^=0.95x +a 过(x -,y -), 所以4.5=0.95×2+a ,所以a =2.6. 答案:2.616.已知方差s 2=1n (x 21+x 22+…+x 2n )-x -2,用这个公式计算:若10个数的平均数是3,标准差是2,则方差是______,这10个数的平方和是________.详细分析:由于s =s 2,解得方差为4,将s 2=4,n =10,x -=3,代入公式4=110(x 21+x 22+…+x 210)-32,所以x 21+x 22+…+x 210=130.答案:4 130三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡? 解:x -甲=15(60+80+70+90+70)=74,x -乙=15(80+60+70+80+75)=73,s 2甲=15[(60-74)2+(80-74)2+(70-74)2+(90-74)2+(70-74)2] =15(142+62+42+162+42) =15×520=104. s 2乙=15[(80-73)2+(60-73)2+(70-73)2+(80-73)2+(75-73)2]=15(72+132+32+72+22) =15×280=56. 所以x -甲>x -乙,s 2甲>s 2乙.所以甲的平均成绩较高,乙各门功课发展较平衡.18.(本小题满分12分)为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示),(1)求出各组相应的频率;(2)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.解:(1)由频率分布直方图可得下表分组 频率 [1.00,1.05) 0.05 [1.05,1.10) 0.20 [1.10,1.15) 0.28 [1.15,1.20) 0.30 [1.20,1.25) 0.15 [1.25,1.30]0.02(2)由分层抽样中每个个体被抽到的概率相同知: 设水库中鱼的总条数为N , 则120N =6100,即N =2 000, 故水库中鱼的总条数约为2 000条.19.(本小题满分12分)某企业的某种产品产量与单位成本统计数据如下:月份123456产量(千件)23434 5单位成本(元/件)737271736968(1)试确定回归直线方程;(2)指出产量每增加1 000件时,单位成本下降多少?(3)假定产量为6 000件时,单位成本是多少?解:(1)设x表示每月产量(单位:千件),y表示单位成本(单位:元/件),作散点图.由图知y与x间呈线性相关关系,设线性回归方程为y=bx+a.由公式可求得b≈-1.818,a=77.363,所以回归直线方程为y=-1.818x+77.363.(2)由回归方程知,每增加1 000件产量,单位成本下降1.818元.(3)当x=6时,y=-1.818×6+77.363=66.455,所以产量为6 000件时,单位成本是66.455元/件.20.(本小题满分12分)参加市数学调研抽测的某校高三学生成绩分布的茎叶图1和频率分布直方图2均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:求参加数学抽测的人数n,抽测成绩的中位数及分数分布在[80,90),[90,100]内的人数.解:分数在[50,60)内的频数为2,由频率分布直方图可以看出,分数在[90,100]内的同样有2人.=10×0.008,得n=25.由2n由茎叶图可知抽测成绩的中位数为73.所以分数在[80,90)之间的人数为25-(2+7+10+2)=4.所以参加数学竞赛的人数n=25,中位数为73,分数分布在[80,90),[90,100]内的人数分别为4,2.21.(本小题满分12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.解:(1)因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3,频率分布直方图如图所示:(2)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)×10=0.75,所以,抽样学生成绩的合格率是75%,利用组中值估算抽样学生的平均分45·f1+55·f2+65·f3+75·f4+85·f5+95·f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71分.22.(本小题满分12分)某个体服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这种服装件数x 之间的一组数据关系如表所示:x 3 45 6 7 8 9 y66697381899091已知:∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487.(1)求x -、y -;(2)画出散点图;(3)求纯利y 与每天销售件数x 之间的回归直线方程; (4)若该周内某天销售服装20件,估计可获纯利多少元. 解:(1)x -=3+4+5+6+7+8+97=6,y -=66+69+73+81+89+90+917=5597≈79.86.(2)散点图如图所示.(3)由散点图知,y 与x 有线性相关关系,设回归直线方程为y ^=b ^x +a ^. 因为∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487,x -=6,y -=5597,所以b ^=3487-7×6×5597280-7×36=13328=4.75,a ^=5597-6×4.75≈51.36,所以回归直线方程为y ^=4.75x +51.36.(4)当x =20时,y ^=4.75×20+51.36≈146.因此本周内某天的销售为20件时,估计这天的纯收入大约为146元.。

2019北师大版高中数学必修三第2章章末综合检测(二)含解析

2019北师大版高中数学必修三第2章章末综合检测(二)含解析

章末综合检测(二)(时间:120分钟,满分:150分)、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1 .下列赋值语句正确的是(A . a+ b = 5 B. 5= a)C. a = 2b= 2 D . a= a+ 1解析:选D.赋值语句的一般格式是变量名=表达式,赋值号左右两边不能互换,赋值号左边只能是变量,而不能是表达式.2.如果以下程序运行后输出的结果是132,那么在程序中While后面的①处应填(i= 12)S= 1DoS= S*iLoop While ①输出S.A. i>11C. i w 10D. i<11解析:选B.当循环终止条件为真时,继续循环,否则停止执行循环体.由于输出的是132,故应选B.x x03. 已知函数y= '输入自变量x的值,输出对应的函数值.设计程序框图/+ 1, x<0,时,需用到的基本逻辑结构是()A .顺序结构B .选择结构C.顺序结构、选择结构D .顺序结构、循环结构答案:C4. 计算下列各式中的S的值,能设计算法求解的是()①S= 1 + 2+ 3 + •••+ 100;② S= 1+ 2 + 3 + …;A .①②B .①③C.②③ D .①②③解析:选B.因为算法步骤具有“有限性”特点,故②不可用算法求解.5•算法步骤如下:1. m= a.2. 若b<m,贝U m = b.3. 若c<m,贝U m = c.4. 若d<m,贝U m = d.5. 输出m.则输出的m表示()A . a, b, c, d中的最大值B. a, b, c, d中的最小值C. 将a, b, c, d由小到大排列D. 将a, b, c, d由大到小排列解析:选B.按步骤进行阅读,看每一步完成了一个怎样的任务.1.确定的值为a.2.若b<m, 则m的值为b…可知取较小的数,即输出的m为a, b, c, d中的最小值.故选B.6. 执行如图所示的程序框图,输出的k值为()A . 3B . 4C. 5 D . 63 3 3解析:选B.初值为a = 3, k= 0,进入循环体后 a = -, k= 1; a= 3, k= 2; a = 3, k= 3;3 1a= ~, k= 4,此时a<4,退出循环,则输出k= 4•故选B.7. 下列算法运行后输出的结果为()i= 12 4 8 Do10 .执行如图所示的程序框图后,若输出结果为一1,则输入x 的值不可能是( )S = 3+ 2*i i = i + 1 Loop While i<8 输出S. A. 17 C . 21解析:选C.这是用Do Loop 语句编写的算法,按 Do Loop 语句的程序运行可知最后次执行循环体时 S = 3 + 2X (7 + 2) = 21.& For I = 2 To 100 step 2输出INext上面程序最后输出的是()A . 2+ 4 + 6+ 8+-+ 100 的和 B. 100C. 2, 4, 6, (100)D . 2+ 3 +…+ 100 的和 答案:B 9•执行如图所示的程序框图A . 3 C . 5a = 1, n = 1, |a — 1.414|= 0.414》0.005,执行第一次循环,1317+ =-, n = 2; a — 1.414| = 0.086>0.005,执行第二次循环, a = 1+ =-, n = 3; |a1 + a 21 + a 5117—1.414| = 0.014》0.005,执行第三次循环, a = 1+ = —, n = 4;1+ a 12|a — 1.414|~ 0.002 7<0.005,跳出循环,输出 n = 4.B . 19 D .23解析:选B.初始值, (算法流程图),输出的n 为B . 4C •- 1D • - 2解析:选D.当x > 0时,y =— 1,故A 、B 正确•当x<0时,y = x 3=- 1,贝x =- 1•故 选D.11 •执行如图所示的程序框图后,输出的值为4,则P 的取值范围是( )A |3 A. 4, C.1113解析:选A.根据程序框图,第一次循环, S = 1 n = 2;第二次循环,S = 2 + p= 4, n大值,此时P = £执行n = 2时,P 取最小值,此时812 •下列程序执行后输出的结果是 ( )i = 11 S = 1 DoS = S*i i = i - 1 Loop While i > 9(W)/输“/2 .3'3 1=3 ;第三次循环,s = -+ 23=n = 4•而输出的n 值为4,因此当执行了n = 3时,P 取最/输;//3P = 3故P 的取值范围是输出 S A . 990 B . 110 C . 7 920D . 11解析:选 A.i = 11, S = 11, i = 10; i = 10, S = 110, i = 9; i = 9, S = 990, i = 8; i = 8, i<9, S = 990.二、填空题:本题共 4小题,每小题5分.13.下面给出的是条件语句编写的算法,该算法的功能是 ______________ . 输入nIf n 能被2整除 Then输出“偶数” Else输出“奇数” End If解析:该算法语句反映的是整数n 能否被2整除问题,若能被2整除,则n 是偶数,否则为奇数,因此,此算法功能是判断一个整数n 是奇数还是偶数.答案:判断一个整数n 是奇数还是偶数14.在一个算法中,经常会遇到一些条件的判断, 算法框图根据条件是否成立有不同的流向,则处理这种过程的结构是 __________ .解析:由选择结构的定义可知, 在选择结构中需对某些条件作出判断, 判断的结果影响 着算法流向.答案:选择结构2c = (- 3)3,则执行如图的程序框图后输出的结果等于.(填a , b , c 即可)解析:根据指数函数和对数函数以及幕函数的性质可知,a = -1 [b = logg,c =(-15.已知a =,b = log 11,32/输血/222 2 2 r 17 3? 2 ?3)3, (- 3)3= 33,因为 _1= (- 2)3= 23<33,1 因为log^2= log32<1,2因此可知(一3)3是最大值.答案:c16•如图所示,程序框图的输出结果是 ___________ .[幵始]S T/ 输二/r _ I _I~~ ----解析:当输入x= 1, y= 1,执行z= x+ y及z w 50, x= y, y= z后,x, y, z的值依次对应如下:x= 1, y= 1, z= 2;x= 1, y= 2, z= 3;x= 2, y= 3, z= 5;x= 3, y= 5, z= 8;x= 5, y= 8, z= 13;x= 8, y= 13, z= 21;x= 13, y= 21, z= 34;x= 21, y= 34, z= 55.由于55< 50不成立,故输出55.答案:55三、解答题:本大题共6小题,共70分•解答应写出必要的文字说明、证明过程或演算步骤.17. (本小题满分10分)执行如图所示的程序框图,求输出的点C的坐标./输山点空的坐标/解:从上到下执行该程序框图第一步,过点 A (1, - 1)且与直线2x — y + 4 = 0垂直的直线方程是 x + 2y + 1 = 0. 9 2第二步,直线 2x — y + 4= 0与直线x + 2y + 1= 0的交点坐标是 B ( — 5,-).5 5 9 2 23 9第三步,点A (1,— 1)关于点B ( — 5,5)对称的点C 的坐标是(一"5,5). 23 9第四步,输出点C 的坐标(一牙,5).18. (本小题满分12分)学习优秀的条件如下: (1) 五门课的成绩总分不小于 500分;(2)三门主课每门的成绩都不小于100分,其他两门成绩都不小于 90分.输入某学生的五门成绩,问他是否够优秀条件?画出程序框图. 解:程序框图如图所示:19. (本小题满分12分)试用基本语句描述求函数 y =— x 2— 2x + 3在x € ( — ^, n ]上的 最大值的算法,并画出算法框图.轴人学业的丘门/ 課成绩砧/解:算法语句如下:输入na=—1b=- 2c= 3If n> —1 The nt= 4*a*c—b2max= t/(4* a)Elsey=—n2—2*n+ 3max= yEnd If输出max.算法框图如图所示:(W)iI=-}20. (本小题满分12分)你知道“完全立方数”吗?如果一个数是另一个整数的完全立方(也就是三次乘方),那么我们就称这个数为完全立方数. 请设计一个程序,逐个输出[0,1 000]内的完全立方数.解:For i = 0 To 10Next21. (本小题满分12分)如图所示,在边长为4的正方形ABCD的边上有一动点P,点P 沿边线由C T D T A(B为起点,A为终点)运动•若设点P运动的路程为、△ APB的面积为y,试写出程序,根据输入的[2x, 0< x< 4,解:y= < 8, 4<x< 8,〔2 (12—x), 8<x w 12.程序框图如图.程序如下:输入XIf x> 0 And x< 4 Theny= 2*xElseIf x< 8 Theny= 8Elsey= 2*(12 —x)End IfEnd IfS= i3If S w 1 000 Then输出Sx值,输出相应的y值.DB输出y22. (本小题满分12分)已知某算法的程序框图如图所示,若将输出的(x, y)值依次记为(X1 , y1),(X2,y2),…,(X n, y n),…(1) 若程序运行中输出的一个数组是(9 , t),求t的值;(2) 程序结束时,共输出(x, y)的组数为多少;(3) 写出程序框图的程序语句.解:(1)开始时,x= 1 时,y= 0;接着x= 3, y=—2;然后x= 9, y= —4,所以t=—4.(2) 当n = 1时,输出一对,当n= 3时,又输出一对,…,当n= 2 015时,输出最后对,共输出(x,y)的组数为1 008.(3) 程序框图的程序语句如下:x= 1y= 0n= 1Do输入(x,y)n= n+ 2x= 3*xy= y—2Loop While n>2 016。

【北师大版】高中数学必修三期末试卷(带答案)(2)

【北师大版】高中数学必修三期末试卷(带答案)(2)

一、选择题1.将曲线22x y x y +=+围成的区域记为Ⅰ,曲线1x y +=围成的区域记为Ⅱ,在区域Ⅰ中随机取一点,此点取自区域Ⅱ的概率为( ) A .12π+ B .11π+ C .22π+ D .21π+ 2.如图所示,已知圆1C 和2C 的半径都为2,且1223C C =,若在圆1C 或2C 中任取一点,则该点取自阴影部分的概率为( )A 33533π+B 33533π+C 331033π+D 331033π+3.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.2924.下列命题中正确的是( )A .事件A 发生的概率()P A 等于事件A 发生的频率()n f AB .一个质地均匀的骰子掷一次得到3点的概率是16,说明这个骰子掷6次一定会出现一次3点C .掷两枚质地均匀的硬币,事件A 为“一枚正面朝上,一枚反面朝上”,事件B 为“两枚都是正面朝上”,则()()2P A P B =D .对于两个事件A 、B ,若()()()P AB P A P B =+,则事件A 与事件B 互斥5.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k <6.执行如图的程序框图,若输入1t =-,则输出t 的值等于( )A .3B .5C .7D .157.正整数N 除以正整数m 后的余数为n ,记为()N n MODm ≡,例如()2516MOD ≡.如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入49N =时,则输出结果是( )A.58 B.61 C.66 D.768.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是()A .94m >B .94m =C .35m =D .35m ≤9.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( )A .成绩B .视力C .智商D .阅读量10.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差11.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 12.下列说法:①设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位;②线性回归直线ˆybx a =+必过必过点(),x y ;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .3二、填空题13.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1,则甲以3:1取得胜利的概率为______________.14.如图,在圆心角为23π,半径为2的扇形AOB 中任取一点P ,则2OA OP ⋅≤的概率为________.15.如图,某建筑工地搭建的脚手架局部类似于一个223⨯⨯ 的长方体框架,一个建筑工人欲从 A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为______________.16.执行如图所示的程序框图,则输出的结果为__________.17.某程序框图如图所示,则该程序运行后输出的S的值为________.18.如图,程序框图中,语句1被执行的次数为__________.19.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____20.某校有高一学生n 名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为10n的样本,若样本中男生比女生多12人,则n =_______.三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.在最强大脑的舞台上,为了与国际X 战队PK ,假设某季Dr.魏要从三名擅长速算的选手A 1,A 2,A 3,三名擅长数独的选手B 1,B 2,B 3,两名擅长魔方的选手C 1,C 2中各选一名组成中国战队.假定两名魔方选手中更擅长盲拧的选手C 1已确定入选,而擅长速算与数独的选手入选的可能性相等.(Ⅰ)求A 1被选中的概率; (Ⅱ)求A 1,B 1不全被选中的概率.23.编写程序计算98246++⋅⋅⋅++的值.24.设计算法求111112233499100+++⋅⋅⋅+⨯⨯⨯⨯的值.要求画出程序框图,写出用基本语句编写的程序.25.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74 乙班:90 76 86 81 84 87 86 82 85 83 (1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.26.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数: 温度(单位:C ︒)21 23 24 27 29 32死亡数y (单位:株)6 11 20 27 57 77经计算:611266i i x x ===∑,611336i i y y ===∑,()()61557i i i x x y y =--=∑,()62184i i x x =-=∑,()6213930i i y y =-=∑,()621ˆ236.64i i y y=-=∑,8.0653167e ≈,其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6i =.(1)若用线性回归模型,求y 关于x 的回归方程ˆˆˆybx a =+(结果精确到0.1); (2)若用非线性回归模型求得y 关于x 的回归方程0.2303ˆ0.06x ye =,且相关指数为20.9522R =.(i )试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好; (ii )用拟合效果好的模型预测温度为35C ︒时该紫甘薯死亡株数(结果取整数). 附:对于一组数据()11,u v ,()22,u v ,,(),n n u v ,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计分别为:()()()121ˆnii i ni i uu v v u u β==--=-∑∑,ˆˆav u β=-;相关指数为:()()22121ˆ1niii niii v vR v v ==-=--∑∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】画出曲线22x y x y +=+与曲线1x y +=的图像,再根据几何概型的方法求解即可. 【详解】当0,0x y >>时,曲线22x y x y +=+、曲线1x y +=分别为2222111222x y x y x y ⎛⎫⎛⎫+=+⇒-+-= ⎪ ⎪⎝⎭⎝⎭,1x y +=.又22x y x y +=+、1x y +=均关于,x y 轴,原点对称.故两曲线围成的区域Ⅰ(正方形和四个半圆)、Ⅱ(正方形)如图:可知区域Ⅰ的面积为22222S ππ⎛⎫+⋅=+ ⎪ ⎪⎝⎭正方形;区域Ⅱ的面积为()222=;∴由几何概率公式得:22p π=+.故选:C. 【点睛】本题主要考查了几何概型的运用,需要根据题意去绝对值画出一象限的图像,再根据对称性补全图像.同时也考查了几何概型中面积型的问题.属于中档题.2.D解析:D 【分析】设两圆交于点,A B ,连接11,AC BC ,12,AB C C ,设12,AB C C 交于点D ,由已知的数据可得1AC B △为等边三角形,从而可求出阴影部分的面积,进而求出总面积,即可求出概率.【详解】设两圆交于点,A B ,连接11,AC BC ,12,AB C C ,设12,AB C C 交于点D , 则112132C D C C ==,190ADC ∠=︒,所以1113cos 2C D AC D AC ∠==,所以130AC D ∠=︒,则160AC B ∠=︒, 所以1AC B △为等边三角形, 所以604342(4)2336043S ππ⨯=-⨯=-阴, 图形的总面积42024(23)2333S πππ=⨯--=+总, 所以求概率为4232333201033233ππππ--=++,故选:D【点睛】此题考查几何概型概率的求法,关键是求阴影部分的面积,属于中档题.3.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.4.C解析:C 【分析】根据频率与概率的关系判断即可得A 选项错误;根据概率的意义即可判断B 选项错误;根据古典概型公式计算即可得C 选项正确;举例说明即可得D 选项错误. 【详解】解:对于A 选项,频率与实验次数有关,且在概率附近摆动,故A 选项错误; 对于B 选项,根据概率的意义,一个质地均匀的骰子掷一次得到3点的概率是16,表示一次实验发生的可能性是16,故骰子掷6次出现3点的次数也不确定,故B 选项错误; 对于C 选项,根据概率的计算公式得()1112222P A =⨯⨯=,()111224P B =⨯=,故()()2P A P B =,故C 选项正确;对于D 选项,设[]3,3x ∈-,A 事件表示从[]3,3-中任取一个数x ,使得[]1,3x ∈的事件,则()13P A =,B 事件表示从[]3,3-中任取一个数x ,使得[]2,1x ∈-的事件,则()12P A =,显然()()()511632P A B P A P B ==+=+,此时A 事件与B 事件不互斥,故D 选项错误. 【点睛】 本题考查概率与频率的关系,概率的意义,互斥事件等,解题的关键在于D 选项的判断,适当的举反例求解即可.5.C解析:C 【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体. 【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=, 3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=, 5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”. 故选:C . 【点睛】本题考查循环结构程序框图. 解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.6.C解析:C 【分析】直接根据程序框图依次计算得到答案. 【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<, 不满足条件0t >,1t =,满足条件()()250t t +-<, 满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7. 故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.7.B解析:B 【分析】该程序框图的作用是求被3和5除后的余数为1的数,根据所给的选项,得出结论. 【详解】模拟程序的运行,可得49N =,50N =, 不满足条件()13N MOD ≡,51N =; 不满足条件()13N MOD ≡,52N =;满足条件()13N MOD ≡,不满足条件()15N MOD ≡,53N =;不满足条件()13N MOD ≡,54N =;不满足条件()13N MOD ≡,55N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,56N =;不满足条件()13N MOD ≡,57N =;不满足条件()13N MOD ≡,58N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,59N =;不满足条件()13N MOD ≡,60N =;不满足条件()13N MOD ≡,61N =; 满足条件()13N MOD ≡,满足条件()15N MOD ≡,输出61N =. 故选:B. 【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.8.B解析:B【分析】由题意知i为鸡的数量,j为兔的数量,m为足的数量,根据题意可得出判断条件.【详解】由题意可知i为鸡的数量,j为兔的数量,m为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m=”.故选B.【点睛】本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题. 9.D解析:D【解析】试题分析:由表中数据可得表1:()25262210140.00916362032K⨯⨯-⨯=≈⨯⨯⨯;表2:()25242012161.76916362032K⨯⨯-⨯=≈⨯⨯⨯;表3:()2528241281.316362032K⨯⨯-⨯=≈⨯⨯⨯;表4:()25214302623.4816362032K⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D正确.考点:独立性检验.10.D解析:D【分析】选项A求出海水稻根系深度的中位数是444745.52+=,判断选项A正确;选项B写出普通水稻根系深度的众数是32,判断选项B正确;选项C先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C正确;选项D先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D错误.【详解】解:选项A:海水稻根系深度的中位数是444745.52+=,故选项A正确;选项B:普通水稻根系深度的众数是32,故选项B正确;选项C:海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C正确;选项D:普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误 故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题. 11.D解析:D 【详解】解:对于A ,由图象可知当速度大于40km /h 时,乙车的燃油效率大于5km /L , ∴当速度大于40km /h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误; 对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误; 对于C ,由图象可知当速度为80km /h 时,甲车的燃油效率为10km /L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故C 错误; 对于D ,由图象可知当速度小于80km /h 时,丙车的燃油效率大于乙车的燃油效率, ∴用丙车比用乙车更省油,故D 正确 故选D .考点:1、数学建模能力;2、阅读能力及化归思想.12.C解析:C 【解析】分析:利用回归方程和独立性检验对每一个命题逐一判断.详解:对于①,一个回归方程35y x =-,变量x 增加一个单位时,y 应平均减少5个单位,所以该命题是错误的;对于②,线性回归直线ˆybx a =+必过必过点(),x y ,是正确的;对于③,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,并不能说明他有99%的可能患肺病,所以该命题是错误的. 故答案为:C.点睛:本题主要考查回归方程和独立性检验,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.174【分析】设甲在第一二三四局比赛中获胜分别为事件则所求概率为:再根据概率计算公式计算即可【详解】设甲在第一二三四局比赛中获胜分别为事件由题意甲要以取胜的可能是所以=故答案为:0174【点睛】本题解析:174 【分析】设甲在第一、二、三、四局比赛中获胜分别为事件1A 、2A 、3A 、4A ,则所求概率为:123412341234()()()P P A A A A P A A A A P A A A A =++,再根据概率计算公式计算即可.【详解】设甲在第一、二、三、四局比赛中获胜分别为事件1A 、2A 、3A 、4A , 由题意,甲要以3:1取胜的可能是1234A A A A ,1234A A A A ,1234A A A A , 所以123412341234()()()P P A A A A P A A A A P A A A A =++=0.50.60.30.60.50.40.50.60.50.40.50.60.174⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=. 故答案为:0.174. 【点睛】本题考查独立事件和互斥事件的概率计算,考查逻辑思维能力和计算能力,属于常考题.14.【分析】根据题意建立坐标系求出圆心角扇形区域的面积进而设由数量积的计算公式可得满足的区域求出其面积代入几何概率的计算公式即可求解【详解】根据题意建立如图的坐标系则则扇形的面积为设若则有即;则满足的区解析:1332+【分析】根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设(),P x y ,由数量积的计算公式可得满足2OA OP ⋅≤的区域,求出其面积,代入几何概率的计算公式即可求解. 【详解】根据题意,建立如图的坐标系,则()(2,0,3A B - 则扇形AOB 的面积为21242233ππ⨯⨯=设(),P x y若2OA OP ⋅≤,则有22x ≤,即1x ≤; 则满足2OA OP ⋅≤的区域为如图的阴影区域,直线1x =与弧AB 的交点为P ',易得P '的坐标为(,则阴影区域的面积为23π+故2OA OP ⋅≤的概率2132423P ππ+==+故答案为:128π+【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.15.【解析】【分析】先求出最近路线的所有走法共有种再求出不连续向上攀登的次数然后可得概率【详解】最近的行走路线就是不走回头路不重复所以共有种向上攀登共需要3步向右向前共需要4步因为不连续向上攀登所以向解析:27 【解析】 【分析】先求出最近路线的所有走法共有77A 种,再求出不连续向上攀登的次数,然后可得概率. 【详解】最近的行走路线就是不走回头路,不重复,所以共有77A 种,向上攀登共需要3步,向右向前共需要4步,因为不连续向上攀登,所以向上攀登的3步,要进行插空,共有4345A A 种,故所求概率为43457727A A P A ==. 【点睛】本题主要考查古典概率的求解,明确事件包含的基本事件种数是求解关键,侧重考查数学建模和数学运算的核心素养.16.6【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算S 的值并输出变量i 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得S=1i=1满足条件S<40执行解析:6 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算S 的值并输出变量i 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟程序的运行,可得 S =1,i =1满足条件S <40,执行循环体,S =3,i =2 满足条件S <40,执行循环体,S =7,i =3 满足条件S <40,执行循环体,S =15,i =4 满足条件S <40,执行循环体,S =31,i =5 满足条件S <40,执行循环体,S =63,i =6此时,不满足条件S <40,退出循环,输出i 的值为6. 故答案为:6. 【点睛】本题主要考查的是程序框图,属于基础题.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.【分析】根据程序框图依次计算运行结果发现输出的S 值周期变化利用终止运行的条件判断即可求解【详解】由程序框图得:;第一次运行第二次运行第三次运行故周期为4当程序运行了2019次故的值为故答案为【点睛】 解析:12【分析】根据程序框图,依次计算运行结果,发现输出的S 值周期变化,利用终止运行的条件判断即可求解 【详解】由程序框图得:1,1S k ==; 第一次运行1,2;8S k == 第二次运行1212,3;842S k =⨯=== 第三次运行121,4;2S k =⨯==故周期为4, 当2020k =,程序运行了2019次,201945043=⨯+,故S 的值为12故答案为12【点睛】本题考查程序框图,根据程序的运行功能判断输出值的周期变化是关键,是基础题18.34【解析】循环次数=(循环终值-循环初值)/步长+1又循环的初值为退出循环时终值为步长为故循环次数次故答案为解析:34循环次数=(循环终值-循环初值)/步长+1,又循环的初值为1,退出循环时终值为100,步长为3,故循环次数10011343-=+=次,故答案为34. 19.或【分析】利用平均数与方差公式直接求解即可【详解】由题去掉最高与最低分后的测试成绩为8284848689则平均数方差故答案为:或【点睛】本题考查茎叶图考查平均数与方差的计算是基础题解析:5.6或285【分析】利用平均数与方差公式直接求解即可 【详解】由题去掉最高与最低分后的测试成绩为82,84,84,86,89,则平均数8284848689855x ++++==方差()()()()()2222221288582858485848586858955s ⎡⎤=-+-+-+-+-=⎣⎦ 故答案为:5.6或285【点睛】本题考查茎叶图,考查平均数与方差的计算,是基础题20.【分析】依题意可得解之即得解【详解】依题意可得解得故答案为1320【点睛】本题主要考查分层抽样意在考查学生对这些知识的理解掌握水平和分析推理能力 解析:1320【分析】 依题意可得6512111110n⎛⎫-⨯= ⎪⎝⎭,解之即得解. 【详解】 依题意可得6512111110n⎛⎫-⨯=⎪⎝⎭,解得1320n =. 故答案为1320 【点睛】本题主要考查分层抽样,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318.试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为17 18.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为13 18.试题(Ⅰ)设至少回答对一个问题为事件A,则()11117 133218P A=-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.根据题意,()11111033218P X=-=⨯⨯=, ()2112023329P X==⨯⨯⨯=,()2212103329P X==⨯⨯=,()11112033218P X==⨯⨯=,()21123023329P X==⨯⨯⨯=,()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B,则()212213 9189918P B=+++=.22.(Ⅰ)13(Ⅱ)89【解析】分析:(Ⅰ)利用古典概型概率公式求出A1被选中的概率;(Ⅱ)利用对立事件概率公式求出求A1,B1不全被选中的概率.详解:(Ⅰ)从擅长速算、数独的6名选手中各选出1名与魔方选手C1组成中国战队的一切可能的结果组成集合Ω={(A1,B1,C1),(A1,B2,C1),(A1,B3,C1),(A2,B1,C1),(A2,B2,C1),(A2,B3,C1),(A3,B1,C1),(A3,B2,C1),(A3,B3,C1)},由9个基本事件组成.由题知每一个基本事件被抽取的机会均等,用M表示“A1被选中”,则M={(A1,B1,C1),(A1,B3,C1),(A1,B3,C1)},因而.(Ⅱ)用N表示“A1、B1不全被选中”这一事件,则其对立事件表示“A1、B1全被选中”,由于={(A1,B1,C1) },∴,从而点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.23.答案详见解析.【解析】【分析】根据题干要求写出循环结构的程序即可.【详解】程序如下:i=2sum=0DOsum=sum+ii=i+2LOOP UNTIL i>98PRINT sumEND【点睛】应用循环语句编写程序时需注意:①循环语句中的循环变量一般要设初始值.②在循环过程中需要有“结束”的语句,程序中最忌“死循环”.24.程序图见解析.【解析】【分析】这是一个累加求和问题,设计一个计数变量,一个累加变量,根据结束条件设置成直到型或当型. 最后对应改成基本语句.【详解】这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示【点睛】本题考查循环结构,考查基本分析能力.25.(1)=83.2x 甲,=84x 乙;(2)22=26.36=13.2S S 甲乙,,=5.13S 甲,=3.63S 乙;(3)乙班的总体学习情况比甲班好【解析】试题分析:每组样本数据有10个,求样本的平均数利用平均数公式,10个数的平均数等于这10个数的和除以10;比较平均分的大小可以看出两个班学生平均水平的高低,求样本的方差只需使用方差公式,求这10个数与平均数的差的平方方和再除以10;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定 . 试题 (1)x 甲=110×(82+84+85+89+79+80+91+89+79+74)=83. 2, x 乙=110×(90+76+86+81+84+87+86+82+85+83)=84. (2)2S 甲=110×[(82-83. 2)2+(84-83. 2)2+(85-83. 2)2+(89-83. 2)2+(79-83. 2)2+(80-83. 2)2+(91-83. 2)2+(89-83. 2)2+(79-83. 2)2+(74-83. 2)2]=26. 36, 2S 甲=110[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13. 2, 则s 甲=26.36≈5. 13,s 乙=13.2≈3. 63.(3)由于x x <甲乙,则甲班比乙班平均水平低.由于S S >甲乙,则甲班没有乙班稳定. 所以乙班的总体学习情况比甲班好【点睛】怎样求样本的平均数,n 个数的平均数等于这n 个数的和除以n ;比较平均数的大小可以看出两个样本平均水平的高低,怎样求样本的方差,就是求这n 个数与平均数的差的平方方和再除以n ;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定 .26.(1)ˆy=6.6x −139.4;(2)(i )回归方程0.2303ˆ0.06x y e =比线性回归方程ˆy=6.6x −138.6拟合效果更好;(ii )190. 【分析】(1)根据公式,结合已知数据,分别求得ˆˆ,ba ,则问题得解; (2)根据相关指数的计算公式,结合已知数据,求得2R ,再进行比较即可; (3)将35x =代入回归方程,即可求得结果.【详解】(Ⅰ)由题意得,()()()121557ˆ 6.6384ni i i n i i x x y y b x x ==--==≈-∑∑ ∴ˆa=33−6.6326=−139.4, ∴y 关于x 的线性回归方程为:ˆy=6.6x −139.4. (Ⅱ) (i )线性回归方程ˆy=6.6x −138.6对应的相关指数为: ()()6221621ˆ236.641110.06020.93983930i i i i i i y y R y y ==-=-=-≈-=-∑∑, 因为0.9398<0.9522,所以回归方程0.2303ˆ0.06x ye =比线性回归方程ˆy =6.6x −138.6拟合效果更好. (ii )由(i )知,当温度35C x ︒=时,0.2303358.06050.060.060.063167190ˆye e ⨯==≈⨯≈, 即当温度为35C 时该批紫甘薯死亡株数为190.【点睛】本题考查线性回归直线方程的求解、相关指数的求解,以及用回归直线方程进行估算,属综合中档题.。

高中数学章末综合测评2统计新人教A版必修3

高中数学章末综合测评2统计新人教A版必修3

章末综合测评(二) 统 计(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各选项中的两个变量具有相关关系的是( ) A .长方体的体积与边长 B .大气压强与水的沸点C .人们消费水平越高,社会经济水平越好D .球的半径与表面积C [A 、B 、D 是函数关系,C 是相关关系.]2.某班学生父母年龄的茎叶图如图所示,左边是父亲年龄,右边是母亲年龄,则该班同学父亲的平均年龄比母亲的平均年龄大( )A .2.7岁B .3.1岁C .3.2岁D .4岁C [由茎叶图提供数据,分别求出父亲与母亲年龄的平均值,可得结论.]3.如果在一次试验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是( )A.y ^=x +1.9 B.y ^=1.04x +1.9 C.y ^=0.95x +1.04D.y ^=1.05x -0.9B [x -=14(1+2+3+4)=2.5,y -=14(3+3.8+5.2+6)=4.5,由于回归直线方程过样本中心点(x -,y -),代入验证知,B 选项满足.]4.在样本的频率分布直方图中,某个小长方形的面积是其他小长方形面积之和的14,已知样本容量是80,则该组的频数为( )A .20B .16C .30D .35B [设该组的频数为x ,则其他组的频数之和为4x ,由样本容量是80,得x +4x =80,解得x =16,即该组的频数为16,故选B.]5.从编号为0,1,2,3,…,79的80件产品中,采用系统抽样的方法抽取容量为5的一组样本,若编号为42的产品在样本中,则该组样本中产品的最小编号为( )A .8B .10C .12D .14B [系统抽样的分段间隔为805=16,设样本中产品的最小编号是x,42是第三个编号,因此x +2×16=42⇒x =10.故选B.]6.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差A [设9位评委评分按从小到大排列为x 1<x 2<x 3<x 4…<x 8<x 9.则①原始中位数为x 5,去掉最低分x 1,最高分x 9后剩余x 2<x 3<x 4<…<x 8,中位数仍为x 5,A 正确;②原始平均数x =19(x 1+x 2+x 3+x 4…+x 8+x 9),后来平均数x ′=17(x 2+x 3+x 4…+x 8) ,平均数受极端值影响较大,∴x 与x ′不一定相同,B 不正确;③s 2=19[(x 1-x )2+(x 2-x )2+…+(x 9-x )2],s ′2=17[(x 2-x ′)2+(x 3-x ′)2+…+(x 8-x ′)2],由②易知,C 不正确;④原极差=x 9-x 1,后来极差=x 8-x 2,显然极差变小,D 不正确.故选A.]7.如图是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为( )A .11B .11.5C .12D .12.5C [由直方图知,组距为5,故各组频率分别是0.3,0.5,0.2,从而中位数为10+0.20.5×5=12.]8.某校高三级部分为甲、乙两个级部,现用分层抽样的方法从高三级部中抽取30名老师去参加教研会,已知乙级部中每个老师被抽到的可能性都为13,则高三级部的全体老师的个数为( )A .10B .30C .60D .90D [因为乙级部中每个老师被抽到的可能性都为13,所以高三年级中每个老师被抽到的可能性都为13,由30÷13=90(人),可得全体老师人数.]9.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( )A .70和50B .70和67C .75和50D .75和67B [设更正前甲、乙、…的成绩依次为a 1,a 2,…,a 50, 则a 1+a 2+…+a 50=50×70,即60+90+a 3+…+a 50=50×70, (a 1-70)2+(a 2-70)2+…+(a 50-70)2=50×75, 即102+202+(a 3-70)2+…+(a 50-70)2=50×75, 更正后平均分为x =150×(80+70+a 3+…+a 50)=70;方差为s 2=150×[(80-70)2+(70-70)2+(a 3-70)2+…+(a 50-70)2]=150×[100+(a 3-70)2+…+(a 50-70)2]=150×[100+50×75-102-202]=67.] 10.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为( )A .32B .0.2C .40D .0.25A [由频率分布直方图的性质,可设中间一组的频率为x ,则x +4x =1,∴x =0.2,故中间一组的频数为160×0.2=32.]11.下表提供了某厂节能降耗技术改造后生产某产品的过程中产量x (吨)与相应的生产能耗y (吨)的几组对应数据.根据表中提供的数据,求出y 关于x 的回归方程是y ^=0.7x +0.35,那么表中t 的值是( )A.4.5 C .3D .3.15C [x -=14(3+4+5+6)=4.5,代入y ^=0.7x +0.35知y -=3.5,即14(2.5+t +4+4.5)=3.5,∴t =3.]12.在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各项中,一定符合上述指标的是( )①平均数x -≤3;②标准差s ≤2;③平均数x -≤3且标准差s ≤2;④平均数x -≤3且极差小于或等于2;⑤众数等于1且极差小于或等于4.A .①②B .③④C .③④⑤D .④⑤D [①②③不符合,④符合,若极差为0或1,在x -≤3的条件下,显然符合指标;若极差为2且x -≤3,则每天新增感染人数的最小值与最大值有下列可能:(1)0,2,(2)1,3;(3)2,4,符合指标.⑤符合,若众数为1且极差小于或等于4,则最大值不超过5,符合指标.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的横线上) 13.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人):组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.30 [由题意知,1245+15=30120+a.解得a =30.]14.从一堆苹果中任取20个,并得到它们的质量(单位:克)数据分布如下:...70 [∵质量不少于120克的苹果的频数为14,∴频率为1420×100%=70%.]15.某公司借助手机微信平台推广自己的产品,对今年前5个月的微信推广费用x 与利润额y (单位:百万元)进行了初步统计,得到下列表格中的数据:经计算,月微信推广费用x 与月利润额y 满足线性回归方程y =6.5x +17.5,则p 的值为________.50 [由题中数据可得x =2+4+5+6+85=5,y =30+40+60+p +705=200+p5.由线性回归方程y ^=6.5x +17.5经过样本中心(x ,y ), 有200+p5=6.5×5+17.5,解得p =50.] 16.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下:甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12.三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲__________,乙__________,丙__________.众数 平均数 中位数 [ 甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:该组数据8出现的次数最多;乙:该组数据的平均数x -=4+6×3+8+9+12+138=8;丙:该组数据的中位数是7+92=8.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:天数 1 1 1 2 2 1 2 用水量/吨22384041445095(2)在这10天中,该公司每天用水量的中位数是多少?(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量? [解] (1)x -=110(22+38+40+2×41+2×44+50+2×95)=51(吨).(2)中位数为41+442=42.5(吨).(3)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.18.(本小题满分12分)2017年春节前,有超过20万名来自广西、四川的外来务工人员选择驾乘摩托车沿321国道返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个休息站,让过往的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的摩托车驾驶人员每隔50人询问一次省籍,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?[解] (1)根据题意,因为有相同的间隔,符合系统抽样的特点,所以交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样方法.(2)从图中可知,被询问了省籍的驾驶人员中 广西籍的有5+20+25+20+30=100(人), 四川籍的有15+10+5+5+5=40(人),设四川籍的驾驶人员应抽取x 名,依题意得5100=x40,解得x =2,即四川籍的应抽取2名.19.(本小题满分12分)抽样调查30个工人家庭的人均月收入,得到如下数据(单位:元): 404 444 556 430 380 420 500 430 420 384420 404 424 340 424 412 388 472 358 476376 396 428 444 366 436 364 438 330 426(1)取组距为60,起点为320,列出样本的频率分布表;(2)画出频率分布直方图;(3)根据频率分布直方图估计人均月收入在[440,560]上的家庭所占的百分比.[解] (1)频率分布表如下:分组频数频率[320,380)60.20[380,440)180.60[440,500)40.13[500,560]20.07合计30 1.00(2)(3)人均月收入落在[440,560]上的家庭所占的频率为0.13+0.07=0.2=20%.所以估计人均月收入在[440,560]上的家庭所占的百分比为20%.20.(本小题满分12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm) 甲:9,10,11,12,10,20;乙:8,14,13,10,12,21.(1)在如图给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.[解] (1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12,x 乙=8+14+13+10+12+216=13,s 2甲≈13.67,s 2乙≈16.67.因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长得较为整齐.21.(本小题满分12分)下表数据是退水温度x (单位:℃)对黄酮延长性y (单位:%)效应的试验结果,y 是以延长度计算的.x /℃300 400 500 600 700 800 y /%405055606770(2)指出x ,y 是否线性相关;(3)若线性相关,求y 关于x 的线性回归方程;(4)估计当退水温度是1 000 ℃时,黄酮延长性的情况. [解] (1)散点图如图.(2)由散点图可以看出样本点分布在一条直线附近,可见y 与x 线性相关. (3)列出下表并用科学计算器进行有关计算.i 1 2 3 4 5 6 x i 300 400 500 600 700 800 y i 405055606770 x i y i 12 000 20 000 27 500 36 000 46 900 56 000 x 2i90 000 160 000 250 000 360 000 490 000640 000设线性回归方程为y ^=b ^x +a ^,于是可得,a ^=y -b ^x =57-0.058 86×550=24.627.因此所求线性回归方程为 y ^=0.058 86x +24.627.(4)将x =1 000代入线性回归方程得, y ^=0.058 86×1 000+24.627=83.487,即当退水温度是1 000 ℃时, 黄酮延长性大约是83.487%.22.(本小题满分12分)甲、乙两人在相同的条件下各射靶10次,每次射靶成绩(单位:环)如图所示:(1)填写下表:平均数 中位数 命中9环以上甲 7 ________ 1 乙________________3(2)①结合平均数和方差,分析偏离程度; ②结合平均数和中位数,分析谁的成绩好些;③结合平均数和命中9环以上(含9环)的次数,看谁的成绩好些; ④结合折线图上两人射击命中环数及走势,分析谁更有潜力. [解] (1)甲的射靶环数从小到大排列为5,6,6,7,7,7,7,8,8,9, ∴中位数为7环.乙的射靶环数依次为2,4,6,8,7,7,8,9,9,10,∴x -乙=110(2+4+6+8+7+7+8+9+9+10)=7(环).乙的射靶环数从小到大排列为2,4,6,7,7,8,8,9,9,10,∴中位数是7+82=7.5(环).于是填充后的表格,如表所示:(2)s 2甲=10[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=1.2,s 2乙=110[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.①甲、乙的平均数相同,均为7,但s 2甲<s 2乙,说明甲偏离平均数的程度小,而乙偏离平均数的程度大.②甲、乙的平均数相同,而乙的中位数比甲大,说明乙射靶环数的优秀次数比甲多. ③甲、乙的平均数相同,而乙命中9环以上(含9环)的次数比甲多2次,可知乙的射靶成绩比甲好.④从折线图上看,乙的成绩呈上升趋势,而甲的成绩在平均线上波动不大,说明乙的状态在提升,更有潜力.。

2018-2019数学新学案同步必修三苏教版讲义:第2章 统计章末检测试卷二 Word版含答案

2018-2019数学新学案同步必修三苏教版讲义:第2章 统计章末检测试卷二 Word版含答案

章末检测试卷(二)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.在下列各图中,两个变量具有线性相关关系的图是________.答案 (2)(3)解析 由散点图知(1)为函数关系,(4)不具有相关关系,故(2)(3)正确.2.某影院有50排座位,每排30个,一次报告会后,留下所有座位号为8的听众50人进行座谈.则采用的抽样方法是____________. 答案 系统抽样解析 留下所有座位号为8的听众50人进行座谈,则留下的人的座位号是相同的,且50排留50人,符合系统抽样.3.一防疫站对学生进行身体健康调查,红星中学共有学生1 600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是________. 答案 760解析 设该校的女生人数是x ,则男生人数是1 600-x ,抽样比是2001 600=18,则18x =18(1 600-x )-10,解得x =760. 4.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于-1,那么对于样本1,x 1,-x 2,x 3,-x 4,x 5的中位数可以表示为________. 答案 12(1+x 5)解析 由题意把样本从小到大排序为x 1,x 3,x 5,1,-x 4,-x 2,因此得中位数为12(1+x 5).5.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.答案 16解析 依题意可知二年级的女生有380人,那么三年级的学生人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×28=16.6.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是______. ①这种抽样方法是一种分层抽样; ②这种抽样方法是一种系统抽样;③这五名男生成绩的方差大于这五名女生成绩的方差. 答案 ③解析 根据分层抽样和系统抽样定义判断①,②,求出五名男生和五名女生成绩的方差判断③.①不是分层抽样,因为抽样比不同.②不是系统抽样,因为随机询问,抽样间隔未知. ③五名男生成绩的平均数是x =86+94+88+92+905=90,五名女生成绩的平均数是y =88+93+93+88+935=91,五名男生成绩的方差为s 21=15×(16+16+4+4+0)=8, 五名女生成绩的方差为s 22=15×(9+4+4+9+4)=6, 显然,五名男生成绩的方差大于五名女生成绩的方差.7.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[2 700,3 000)的频率为________.答案 0.3解析 频率=频率组距×组距=0.001×300=0.3.8.从某小学随机抽取100名学生,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.答案 0.030 3解析 因为5个矩形面积之和为1, 即(0.005+0.010+0.020+a +0.035)×10=1, 所以0.070×10+10a =1,所以a =0.030. 由于三组内学生数的频率分别为0.3,0.2,0.1, 所以三组内学生的人数分别为30,20,10. 因此从[140,150]内选取的人数为1060×18=3.9.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人. 答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.10.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x 及其标准差s 如下表所示,则选送决赛的最佳人选应是______.答案 乙解析 平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好. 11.某大学数学系共有本科生5 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为________. 答案 40解析 应抽取三年级的学生人数为200×24+3+2+1=40.12.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是________.①平均数与方差均不变;②平均数变了,而方差保持不变;③平均数不变,而方差变了;④平均数与方差均发生了变化. 答案 ②解析 设原来数据的平均数为x ,将它们改变为x i +c 后平均数为x ′,则x ′=x +c ,而方差s ′2=1n[(x 1+c -x -c )2+…+(x n +c -x -c )2]=s 2.13.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________. 答案 4解析 由平均数为10,得(x +y +10+11+9)×15=10,则x +y =20.又方差为2,∴[(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x 2+y 2=208,2xy =192; ∴|x -y |=(x -y )2=x 2+y 2-2xy =4.14.在某地区高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是________.(填序号)①平均数x≤3;②标准差s≤2;③平均数x≤3且标准差s≤2;④平均数x≤3,且极差小于或等于2;⑤众数等于1且极差小于或等于4.答案④⑤解析①②③不符合,④符合,若极差等于0或1,在x≤3的条件下显然符合指标;若极差等于2且x≤3,则每天新增感染人数的最小值与最大值有下列可能:(ⅰ)0,2;(ⅱ)1,3;(ⅲ)2,4,符合指标.⑤符合,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标.二、解答题(本大题共6小题,共90分)15.(14分)某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.15.(1)求x的值;(2)现用分层抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人?解(1)依题意有x1 000=0.15,解得x=150.(2)∵第一车间的工人数是173+177=350,第二车间的工人数是100+150=250,∴第三车间的工人数是1 000-350-250=400.设应从第三车间抽取m名工人,则有m400=501 000,解得m=20,∴应在第三车间抽取20名工人.16.(14分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.解(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,所以x=50.即参加这次测试的学生有50人.(3)达标率为(0.3+0.4+0.2)×100%=90%,所以估计该年级学生跳绳测试的达标率为90%.17.(14分)一次科技知识竞赛,两组学生的成绩如下表(满分为100分).已经计算得知两个组成绩的平均数都是80,请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁次,说明理由.解(1)甲组成绩的众数为90,乙组成绩的众数为70,从成绩的众数比较看,甲组的成绩好一些.(2)由表中数据可知,两组均有学生50人,所以s2甲=150[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172.s2乙=150[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.∵s2甲<s2乙,∴甲组的成绩比乙组的成绩好.(3)甲、乙两组成绩的中位数、平均数都是80,其中,甲组成绩不低于80分的有33人,乙组成绩不低于80分的有26人,从这一角度来看甲组的成绩较好.(4)从成绩统计表来看,甲组的成绩不低于90分的有20人,乙组的成绩不低于90分的有24人,所以乙组成绩集中在高分段的人数多.同时乙组得满分的人数比甲组得满分的人数多6,从这一些角度来看,乙组的成绩较好.18.(16分)某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:(1)求出表中字母m,n,M,N所对应的数值;(2)画出频率分布直方图;(3)估计该校高一女生身高在149.5~165.5 cm范围内有多少人?解(1)由题意M=80.16=50,落在区间[165.5,169.5]内的数据频数m=50-(8+6+14+10+8)=4,频率为n=0.08,总频率N=1.00.(2)频率分布直方图如图.(3)该校高一女生身高在[149.5,165.5)之间的比例为0.12+0.28+0.20+0.16=0.76,则该校高一女生在此范围内的人数为450×0.76=342.19.(16分)对某电子元件进行寿命追踪调查,情况如下表所示:(1)列出频率分布表;(2)画出频率分布直方图;(3)估计电子元件的寿命在300 h以上的可能性是多少?解(1)频率分布表如下:(2)频率分布直方图如图所示.(3)由频率分布表可知:电子元件寿命在300 h以上的频率为0.40+0.20+0.15=0.75,故我们估计电子元件的寿命在300 h以上的可能性是0.75.20.(16分)某地区2011年至2017年农村居民家庭人均纯收入y(单位:千元)的数据如下表:(1)已知两变量线性相关,求y关于t的回归方程;(2)利用(1)中的回归方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2019年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b =∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2,a =y -b t .解 (1)由所给数据计算得t =17(1+2+3+4+5+6+7)=4,y =17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i =1n(t i -t )2=9+4+1+0+1+4+9=28,∑i =1n(t i -t )(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b =∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2=1428=0.5, a =y -b t =4.3-0.5×4=2.3, 故所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b =0.5>0,故2011年至2017年该地区农村居民家庭人均纯收入逐年增加,平均每年约增加0.5千元.将2019年的年份代号t =9代入(1)中的回归方程, 得y ^=0.5×9+2.3=6.8,故预测该地区2019年农村居民家庭人均纯收入为6.8千元.。

高中数学人教B版必修3章末综合测评2 Word版含解析

高中数学人教B版必修3章末综合测评2 Word版含解析

章末综合测评(二)(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).某学校为了调查高一年级的名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取名同学进行抽查;第二种由教务处对该年级的学生进行编号,从到,抽取学号最后一位为的同学进行调查.则这两种抽样的方法依次是( ).分层抽样,简单随机抽样.简单随机抽样,分层抽样.分层抽样,系统抽样.简单随机抽样,系统抽样【解析】由抽样方法的概念知,第一种是简单随机抽样,第二种是系统抽样.【答案】.小波一星期的总开支分布如图①所示,一星期的食品开支如图②所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图【解析】由题图②知,小波一星期的食品开支为元,其中鸡蛋开支为元,占食品开支的,而食品开支占总开支的,所以小波一星期的鸡蛋开支占总开支的百分比为.【答案】.某同学使用计算器求个数据的平均数时,错将其中一个数据输入为,则由此求出的平均数与实际平均数的差是( ).-.-【解析】少输入,=,平均数少,求出的平均数减去实际平均数等于-.【答案】.某校现有高一学生人,高二学生人,高三学生人,学校学生会用分层抽样的方法从这三个年级的学生中抽取个学生进行问卷调查,如果已知从高一学生中抽取的人数为人,那么从高三学生中抽取的人数应为( )【解析】由题意知抽取的比例为=,故从高三中抽取的人数为×=.【答案】.一个容量为的样本,其数据的分组与各组的频数如下:则样本数据在[)上的频率为( )【解析】频率为=.【答案】.如图是一容量为的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末检测试卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;②一次数学考试中,某班有10人的成绩在100分以上,32人的成绩在90~100分,12人的成绩低于90分,现从中抽取9人了解有关情况;③运动会的工作人员为参加4×100 m 接力赛的6支队伍安排跑道.针对这三件事,恰当的抽样方法分别为( ) A.分层抽样,分层抽样,简单随机抽样 B.系统抽样,系统抽样,简单随机抽样 C.分层抽样,简单随机抽样,简单随机抽样 D.系统抽样,分层抽样,简单随机抽样 考点 抽样方法的综合应用 题点 抽样方法的选择 答案 D解析 ①中,总体容量较大,抽取的样本容量较大,用系统抽样比较恰当;②中,考试成绩在不同分数段之间的同学有明显的差异,用分层抽样比较恰当;③中,总体包含的个体较少,用简单随机抽样比较恰当.2.总体容量为524,若采用系统抽样,下列的抽取间隔中不需要剔除个体的是( ) A.3 B.4 C.5 D.6 考点 系统抽样 题点 系统抽样的应用 答案 B解析 因为5244=131,所以当抽取间隔为4时,不需要剔除个体.3.用系统抽样的方法从个体为1 003的总体中,抽取一个容量为50的样本,则在整个抽样过程中每个个体被抽到的可能性是( ) A.501 003 B.120 C.110D.730考点 系统抽样 题点 系统抽样的应用答案 A解析 根据系统抽样的方法可知,每个个体入样的可能性相同,均为nN ,所以每个个体入样的可能性是501 003.4.一个容量为200的样本,其数据的分组与各组的频数如下表:组别 [0,10) [10,20) [20,30) [30,40) [40,50) 频数1515203035组别 [50,60) [60,70) [70,80) [80,90) [90,100] 频数2520151510则样本数据落在[20,60)上的频率为( ) A.0.11 B.0.5 C.0.45D.0.55考点 频率分布表 题点 求指定组的频率 答案 D解析 由题中表格可知样本数据落在[20,60)上的频数为20+30+35+25=110,故其频率为110200=0.55. 5.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5B.91.5和92C.91和91.5D.92和92考点 众数、中位数、平均数的综合 题点 茎叶图中的中位数和平均数 答案 A解析 将这组数据从小到大排列,得87,89,90,91,92,93,94,96.故中位数为91+922=91.5.平均数为x =91+-4-2-1+0+1+2+3+58=91.5.6.如图为某个容量为100的样本的频率分布直方图,分组为[96,98),[98,100),[100,102),[102,104),[104,106],则在区间[98,100)上的频数为( )A.10B.30C.20D.40考点 频率分布直方图 题点 求指定组的频率 答案 C解析 区间[98,100)上小矩形的面积为0.100×2=0.200,所以区间[98,100)上的频数为100×0.200=20,故选C.7.若数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则3x 1+5,3x 2+5,…,3x n +5的平均数和标准差分别为( ) A.x ,s B.3x +5,sC.3x +5,3sD.3x +5,9s 2+30s +25考点 方差与标准差 题点 求平均数与标准差 答案 C解析 ∵x 1,x 2,…,x n 的平均数为x ,∴3x 1+5,3x 2+5,…,3x n +5的平均数为3x +5, s ′2=1n [(3x 1+5-3x -5)2+…+(3x n +5-3x -5)2]=1n ×32[(x 1-x )2+…+(x n -x )2]=9s 2. ∴s ′=3s .8.在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各项中,一定符合上述指标的是( ) ①平均数x ≤3;②标准差s ≤2;③平均数x ≤3且标准差s ≤2;④平均数x ≤3且极差小于或等于2;⑤众数等于1且极差小于或等于4.A.①②B.③④C.③④⑤D.④⑤考点方差与标准差题点方差与其它数字特征的综合运算答案 D解析①②③不符合,④符合,若极差等于0或1,在x≤3的条件下,显然符合指标;若极差等于2且x≤3,则每天新增感染人数的最小值与最大值有下列可能:(1)0,2,(2)1,3,(3)2,4,符合指标.⑤符合,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标,故选D.9.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64B.54C.48D.27考点频率分布直方图题点求频数答案 B解析前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为38-16=22.又最大频率为0.32,故第四组频数为0.32×100=32,所以a=22+32=54.故选B.10.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60)内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为()A.4∶3∶1B.5∶3∶1C.5∶3∶2D.3∶2∶1考点频率分布直方图题点求频数答案 B解析体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.30,体重在[55,60)内的频率为0.02×5=0.1,∵0.5∶0.3∶0.1=5∶3∶1,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1,故选B.11.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为106,乙组数据的平均数为105.4,则x,y的值分别为()A.5,7B.6,8C.6,9D.8,8考点茎叶图题点茎叶图的应用答案 B解析∵甲组数据的中位数为106,∴x=6.又∵乙组数据的平均数为105.4,∴89+106+(100+y)+109+1155=105.4,解得y=8.综上,x,y的值分别为6,8.故选B.12.下列关于线性回归的判断,正确的个数为( )①若散点图中所有的点都在一条直线附近,则这条直线为回归直线;②散点图中的绝大多数点都线性相关,个别特殊点不影响线性回归,如图中的点A ,B ,C ; ③已知回归方程y ^=0.50x -0.81,则当x =25时,y 的估计值为11.69; ④回归直线方程的意义是它反映了样本整体的变化趋势. A.0 B.1 C.2 D.3 答案 D解析 能使所有数据点都在它附近的直线不止一条,而据回归直线的定义,知只有按最小二乘法求得回归系数a ^,b ^,得到的直线y ^=b ^x +a ^才是回归直线,所以①不对;②正确;将x =25代入y ^=0.50x -0.81,解得y ^=11.69,所以③正确;④正确,所以选D. 二、填空题(本大题共4小题,每小题5分,共20分)13.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下: 甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12.三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲________,乙________,丙________. 答案 众数 平均数 中位数解析 甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:该组数据8出现的次数最多;乙:该组数据的平均数x =4+6×3+8+9+12+138=8;丙:该组数据的中位数是7+92=8.14.甲、乙、丙、丁四人参加运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲 乙 丙 丁 平均环数x 8.5 8.8 8.8 8 方差s 23.53.52.18.5则参加运动会的最佳人选应为________. 考点 方差与标准差 题点 平均数与方差的计算 答案 丙解析 从表格中可以看出乙和丙的平均成绩最好,但丙发挥得比乙稳定,故最佳人选应为丙. 15.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人):学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________. 考点 分层抽样的方法 题点 由比例关系求抽取个数 答案 30解析 由题意知,1245+15=30120+a,解得a =30.16.从一堆苹果中任取20个,并得到它们的质量(单位:克)数据分布如下:则这堆苹果中,质量不少于...120克的苹果数约占苹果总数的________%. 考点 频率分布表 题点 求累计频率 答案 70解析 ∵质量不少于120克的频数为14, ∴频率为1420×100%=70%.三、解答题(本大题共6小题,共70分)17.(10分)某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.15.(1)求x的值;(2)现用分层抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人?考点分层抽样的方法题点由各层比例关系求每层抽取个数.解(1)依题意有x1 000=0.15,解得x=150.(2)∵第一车间的工人数是173+177=350,第二车间的工人数是100+150=250,∴第三车间的工人数是1 000-350-250=400.设应从第三车间抽取m名工人,则有m400=501 000,解得m=20,∴应在第三车间抽取20名工人.18.(12分)有关部门要了解甲型H1N1流感预防知识在学校的普及情况,特制了一份有10道题的问卷到各学校进行问卷调查.某中学A,B两个班各被随机抽取了5名学生接受问卷调查.A 班5名学生得分为:5,8,9,9,9;B班5名学生得分为:6,7,8,9,10(单位:分).请你估计A,B两个班中哪个班的问卷得分要稳定一些.考点方差与标准差题点求方差与标准差解A班的5名学生的平均得分为(5+8+9+9+9)÷5=8,方差s21=15×[(5-8)2+(8-8)2+(9-8)2+(9-8)2+(9-8)2]=2.4;B班的5名学生的平均得分为(6+7+8+9+10)÷5=8,方差s22=15×[(6-8)2+(7-8)2+(8-8)2+(9-8)2+(10-8)2]=2.∴s21>s22,∴B班的预防知识的问卷得分要稳定一些.19.(12分)某地政府调查了工薪阶层1 000人的月工资,并根据调查结果画出如图所示的频率分布直方图,为了了解工薪阶层对月工资的满意程度,要用分层抽样的方法从调查的 1 000人中抽出100人做电话询访,则[30,35)(百元)月工资段应抽出多少人?考点频率分布直方图题点求指定组的频数解月工资落在[30,35)(百元)内的频率为1-(0.02+0.04+0.05+0.05+0.01)×5=1-0.85=0.15,而0.15÷5=0.03,所以各组的频率比为0.02∶0.04∶0.05∶0.05∶0.03∶0.01=2∶4∶5∶5∶3∶1,所以[30,35)(百元)月工资段应抽出320×100=15(人).20.(12分)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.41.60.5 1.80.62.1 1.1 2.5 1.2 2.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面的茎叶图,从茎叶图看,哪种药的疗效更好?解(1)由观测结果可绘制茎叶图如图.从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎“2.”,“3.”上,而B药疗效的试验结果有710的叶集中在茎“0.”,“1.”上,由此可看出A药的疗效更好.(2)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得,x=120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得,x>y,因此可以看出A药的疗效更好.21.(12分)某市2017年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.考点频率分布直方图题点画频率分布直方图解(1)频率分布表:(2)频率分布直方图如图所示.(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月的天数的1415,说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;染污指数在80以上的接近轻微染污的天数为15,加上处于轻微污染的天数,共17天,占当月天数的1730,超过50%,说明该市空气质量有待进一步改善.22.(12分)某地区2011年至2017年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2011 2012 2013 2014 2015 2016 2017 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(1)已知两变量线性相关,求y 关于t 的回归直线方程;(2)利用(1)中的回归直线方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2019年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .考点 回归直线 题点 求回归直线 解 (1)由所给数据计算得t =17(1+2+3+4+5+6+7)=4,y =17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i =1n(t i -t )2=9+4+1+0+1+4+9=28,∑i =1n(t i -t )(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2=1428=0.5, a ^=y -b ^t =4.3-0.5×4=2.3, 故所求回归直线方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2011年至2017年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2019年的年份代号t =9代入(1)中的回归直线方程, 得y ^=0.5×9+2.3=6.8,故预测该地区2019年农村居民家庭人均纯收入为6.8千元.。

相关文档
最新文档