小波变换理论与方法

合集下载

小波变换公式原理应用csdn

小波变换公式原理应用csdn

小波变换是一种信号处理技术,其基本原理是将一个信号分解成多个小波函数的线性组合。

这些小波函数具有有限的时间支持,即在有限的时间段内有非零值,这使得小波变换能够有效地分析信号的局部特征。

小波变换的公式如下:
(y(t) = \int_{-\infty}^{+\infty} X(\omega) e^{i\omega t} d\omega)
其中,(X(\omega)) 是小波变换系数,(y(t)) 是小波函数。

小波变换的应用非常广泛,包括信号处理、图像处理、语音处理、模式识别等领域。

具体来说,小波变换可以用于信号的降噪、压缩、特征提取等任务。

在图像处理中,小波变换可以用于图像压缩、图像增强、图像融合等方面。

在语音处理中,小波变换可以用于语音识别、语音合成等方面。

此外,小波变换还可以用于模式识别领域,例如文本分类、人脸识别、手势识别等。

在CSDN上,有许多关于小波变换的博客和教程可供参考。

例如,有一篇博客详细介绍了小波变换的基本原理和在图像处理中的应用,以及如何使用Python实现小波变换。

此外,还可以通过搜索相关教程和资料来深入了解小波变换的原理和应用。

第三章离散小波变换 31页

第三章离散小波变换 31页
第三章 离散小波变换
3.1 尺度和位移的离散化方法
对于连续小波而言,尺度a、时间 t和与时间有关的偏移量τ都是连 续的。如果利用计算机计算,就 必须对它们进行离散化处理,得 到离散小波变换。
本章主要内容
尺度和位移的离散化方法 小波框架理论 二进小波变换
3.1 尺度和位移的离散化方法
为了减小小波变换系数的冗余度,
我们将小波基函数
a,(t)
1 (t)
aa
的a、τ限定在一些离散的点上取值。
离散化方法
(1)尺度的离散化。目前通行的做法 是对尺度进行幂数级离散化。即令a取 a a0j , a0 0, j Z 对应的小波函数是:
j
a02[a0 j (t )], j 0,1,2
如果可以,系数 c j ,k 如何求?
3.2 小波的框架理论
3.2.1 框架 1 框架的定义
在希尔伯特空间H中有一族函数 kkZ,如
果存在0<A<B<∞,对所有的f∈H,有:
Af2 |f,k |2Bf2
k
称 k kZ 是H中的一个框架。
常数A、B的意义。
离散化方法
(2)位移离散化。 ka0j0
通常对τ进行均匀离散取值,以覆盖整个时 间轴, τ满足Nyquist采样定理。在a=2j时, 沿τ轴的响应采样间隔是2j τ0,在a0=2情况 下,j增加1,则尺度a增加一倍,对应的频 率减小一半。此时采样率可降低一半而不 导致引起信息的丢失。
3.3.2 二进小波的性质
(1)二进小波满足小波母函数容许性条件, 即二进小波必为基本小波。
(2)二进小波是冗余的。 由框架理论知:当不满足A=B=1时,框架

小波变换的原理

小波变换的原理

小波变换的原理小波变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。

它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。

小波变换的原理传统的信号理论,是建立在Fourier分析基础上的,而Fourier 变换作为一种全局性的变化,其有一定的局限性。

在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。

小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。

小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier 变换不能解决的许多困难问题。

小波变换的应用小波是多分辨率理论的分析基础。

而多分辨率理论与多种分辨率下的信号表示和分析有关,其优势很明显--某种分辨率下无法发现的特性在另一个分辨率下将很容易被发现。

从多分辨率的角度来审视小波变换,虽然解释小波变换的方式有很多,但这种方式能简化数学和物理的解释过程。

对于小波的应用很多,我学习的的方向主要是图像处理,所以这里用图像的应用来举例。

对于图像,要知道量化级数决定了图像的分辨率,量化级数越高,图像越是清晰,图像的分辨率就高。

小波包变换

小波包变换

1 小波变换的基本理论信号分析是为了获得时间和频率之间的相互关系。

小波变换(DWT )是现代谱分析工具,他既能考察局部时域过程的频域特征,又能考察局部频域过程的时域特征,因此即使对于非平稳过程,处理起来也得心应手。

傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。

与傅立叶变换不同,小波变换能将图像变换为一系列小波系数,这些系数可以被高效压缩和存储,此外,小波的粗略边缘可以更好地表现图像,因为他消除了DCT 压缩普遍具有的方块效应。

通过缩放母小波(Mother wavelet )的宽度来获得信号的频率特征, 通过平移母小波来获得信号的时间信息。

对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。

小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力工具。

它是以局部化函数所形成的小波基作为基底展开的,具有许多特殊的性能和优点,小波分析是一种更合理的进频表示和子带多分辨分析。

2小波包变换的基本理论和原理概论:由于正交小波变换只对信号的低频部分做进一步分解,而对高频部分也即信号的细节部分不再继续分解,所以小波变换能够很好地表征一大类以低频信息为主要成分的信号,但它不能很好地分解和表示包含大量细节信息(细小边缘或纹理)的信号,如非平稳机械振动信号、遥感图象、地震信号和生物医学信号等。

与之不同的是,小波包变换可以对高频部分提供更精细的分解,而且这种分解既无冗余,也无疏漏,所以对包含大量中、高频信息的信号能够进行更好的时频局部化分析。

小波包的定义:正交小波包的一般解释 仅考虑实系数滤波器.{}n n Z h ∈{}n n Zg ∈()11nn ng h -=-()()()()22k k Z kk Z t h t k t g t k φφψφ∈∈⎧=-⎪⎨=-⎪⎩为便于表示小波包函数,引入以下新的记号:通过,,h,g 在固定尺度下可定义一组成为小波包的函数。

小波变换的原理及matlab仿真程序

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究2 小波分析基本理论设Ψt ∈L 2 R L 2 R 表示平方可积的实数空间,即能量有限的信号空间 , 其傅立叶变换为Ψt;当Ψt 满足条件4,7:2()Rt dw wCψψ=<∞⎰1时,我们称Ψt 为一个基本小波或母小波,将母小波函数Ψt 经伸缩和平移后,就可以得到一个小波序列:,()()a bt bt aψ-=,,0a b R a ∈≠ 2 其中a 为伸缩因子,b 为平移因子;对于任意的函数ft ∈L 2 R 的连续小波变换为:,(,),()()f a b Rt bW a b f f t dt aψψ-=<>=3 其逆变换为:211()(,)()fR R t b f t W a b dadb C a aψψ+-=⎰⎰ 4 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状;小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低;使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构;3 小波降噪的原理和方法小波降噪原理从信号学的角度看 ,小波去噪是一个信号滤波的问题;尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器;由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示6:小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式:(k)()()S f k e k ε=+* k=…….n-1其中 ,f k 为有用信号,sk 为含噪声信号,ek 为噪声,ε为噪声系数的标准偏差;假设ek 为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 sk 信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的;降噪方法一般来说, 一维信号的降噪过程可以分为 3个步骤进行5,6:1一维信号的小波分解,选择一个小波并确定一个小波分解的层次N,然后对信号进行N 层小波分解计算;2) 小波分解高频系数的阈值量化,对第1层到第N 层的每一层高频系数, 选择一个阈值进行软阈值量化处理.3) 一维小波的重构;根据小波分解的第 N 层的低频系数和经过量化处理后的第1层到第N 层的高频系数,进行一维信号的小波重构;在这 3个步骤中,最核心的就是如何选取阈值并对阈值进行量化,在某种程度上它关系到信号降噪的质量.在小波变换中,对各层系数所需的阈值一般根据原始信号的信号噪声比来选取,也即通过小波各层分解系数的标准差来求取,在得到信号噪声强度后,可以确定各层的阈值;这里着重讨论了信号在两种不同小波恢复后信号质量的不同和对信号中的信号与噪声进行分离;4.仿真实验本文采用Mtalab 本身程序提供的noissin 信号函数及初设原始信号fx 为例进行Matlab 分析1,3,其中:()sin(0.03)f x t =e = noissin + randnsizee1;首先对noissin 函数上叠加上随机噪声信号得到e,分别对比采用db10小波和sym8小波对信号e 进行5层分解,并且细节系数选用minimaxi 阈值模式和尺度噪声db10以及选用sure阈值模式和尺度噪声sym8;在进行噪声消除后,还对原信号进行进一步分析,将原始信号和噪声信号分离开来,仿真结果如图所示:图1图2图3图1-1为原始信号图形,1-2为叠加随机噪声后的图形,而1-3和1-4为利用db10和sym8小波默认阈值降噪后的信号图形;从图1-3和1-4可以看出利用db10和sym8小波降噪后的信号基本上恢复了原始信号,去噪效果明显;但是滤波后的信号与原始信号也有不同,从图中可以很直观地看到采用阈值消噪后信号特征值较少无法准确还原原始信号这是由于为降噪过程中所用的分析小波和细节系数的阈值不恰当所致,如需要更好的恢复信号,还可以采用其它种类小波对其进行分析,通过选取不同的阈值,分析结果,得到一个合适的阈值;从图2和图3中看出,在经过用db10对信号进行5层分解,然后分别对分解的第5层到第1层的低频系数和高频系数进行重构;可以得出其主要基波函数和高频噪声函数的图形,其中小分波分解的细节信号是有白噪声分解得到的,而正弦信号可以在图2中的近似信号a5得到;因为在这一层的影响已经可以忽略了,所以获得的信号就是初始信号的波形,从而把淹没在噪声中的有用信号有效地分离出来;5 总结小波变换对平稳信号的去噪声,要比传统的滤波去噪声得到的效果好.用小波变换进行信号降噪处理, 既降低了噪声同时又提高了信噪比,这说明小波降噪方法是切实可行的方案, 但是由于小波函数很多,采用不同的小波进行分解, 得到的结果可能相差很大, 而变换前并不能预知哪一种小波降噪效果更好,需反复试验比较才能得到良好的效果,这也是小波变换的困难之处之一;另外信号降噪过程中阀值的选取是十分重要的;本文利用两个小波sym8 ,db 10 以及将信号中的信噪分离开来,更加直观可行,通过分别进行信号降噪处理对所得结果与原始信号进行比较可以得出Sym8小波以及默认阈值处理后的重构信号与原始信号最为接近,与分离的结果相同;小波分析是一种信号的视频分析方法,它具有多分辨率分析的特点 ,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,有效区分信号中的突变部分和噪声;通过MATLAB编制程序进行给定信号的噪声抑制和非平稳信号的噪声消除实验表明:基于小波分析的消噪方法是一种提取有用信号、展示噪声和突变信号的优越方法 ,具有广阔的实用价值;在这个越来月信息化的社会中,基于小波分析的应用前景必将越来越广泛;N=10;t=1:10;f=sint.expt+20sint.expt+5sint.expt;plott,f;f=sint.expt+20sint.expt+5sint.expt;输出数据fid=fopen'E:','wt';>> fprintffid,'%f\n',L;C,L=wavedecf,5,'db10';>> fid=fopen'E:','wt';>> fprintffid,'%f\n',L;>> fprintffid,'%f\n',C;>> C,L=wavedecf,1,'db10';>> fid=fopen'E:','wt';>> fprintffid,'%f\n',C;>> C,L=dwtf,'db10';>> fid=fopen'E:','wt';>> fprintffid,'%f\n',C;>> fprintffid,'%f\n',L;参考文献1徐明远,邵玉斌.MATALAB仿真在通信与电子工程中的应用M.西安:西安电子科技大学出版社,2010.2张志涌,杨祖樱等编著.MATLAB教程R2006a-R2007aM.北京:北京航空航天出版社,2006. 3张德丰.详解MATLAB数字信号处理M北京:电子工业出版社,2010.4杨建国.小波分析及其工程应用M北京:机械工业出版社,2005.5冯毅,王香华.小波变换降噪处理及其MATLAB实现J.数字采集与处理,2006,,2112:37-39. 6禹海兰,李天云.基于小波理论的噪声信号分析J.东北电力学院学报.3:36-40.7潘泉,张磊,孟晋丽,张洪才著,小波滤波方法及应用M.北京:清华大学出版社,2005.附仿真源码如下:N=1000;t=1:1000;f=sint;load noissin;e1=noissin;init=66;randn'seed',init;e = e1 + randnsizee1;subplot2,2,1;plott,f;xlabel'1 样本序列'; //x轴标记ylabel'原始信号幅值'; //y轴标记grid ;subplot2,2,2;plote ;xlabel'2 测试样本序列' ;ylabel'含有已加噪声的信号幅值' ;grid ;s1=wdene,'minimaxi','s','one',5,'db12'; subplot2,2,3;plots1;xlabel'3 db10降噪后信号' ;ylabel 'db10小波降噪后的信号幅值';grid;s2=wdene,'heursure','s','one',5,'sym8'; subplot2,2,4;plots2;xlabel'4 sym降噪后信号';ylabel'sym8小波降噪后的信号幅值';grid;figure;subplot6,1,1;plote;ylabel'e';C,L=wavedece,5,'db10';for i=1:5a=wrcoef'a',C,L,'db10',6-i;subplot6,1,i+1; plota;ylabel'a',num2str6-i;endfigure;subplot6,1,1;plote;ylabel'e';for i=1:5d=wrcoef'd',C,L,'db10',6-i;subplot6,1,i+1;plotd;ylabel'd',num2str6-i;end。

小波变换ppt课件

小波变换ppt课件
在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。

02-多分辨率信号分解理论:小波变换

02-多分辨率信号分解理论:小波变换

一个多分辨率信号分解理论:小波表示摘要:多分辨率表示对于分析图像信号内容十分有效,我们研究了在一给定分辨率下逼近信号算子的性能。

显示出在分辨率12+j 和j 2下逼近信号的信息不同,通过在小波标准正交基2L 上分解这一信号可以将其提取。

小波标准正交基是一系列函数,它由扩大和转化唯一函数)(x ψ来构建。

这一分解定义了一个正交多尺度表示叫做小波表示。

它由金字塔算法来计算,其基于正交镜像滤波器的卷积。

对于图像,小波表示区分了几种空间定位。

我们研究这一表示在数据压缩,图像编码,结构辨别及分形分析上的应用。

关键词-编码,分形,多分辨率金字塔,正交镜像滤波器,结构辨别,小波变换 1. 引言在计算机视觉方面,很难由图像像素的灰度强度来直接分析一个图像的信息内容。

的确,这一数值依赖于照明条件。

更为重要的是图像强度的局部变化。

邻居的大小即对比计算处必须被采用于我们要分析的物体大小。

这一尺寸为测量图像局部变化定义了参考分辨率。

总的来说,我们想要识别的结构具有差异很大的尺寸。

因此,定义分析图像的优先或最优分辨率是不可能的。

一些研究人员发明了图像比对算法用来处理不同分辨率下的图像。

为这一目的,一种算法可以识别图像信息至一系列在不同分辨率下显现的细节。

给定一个提高分辨率的序列j r ,在分辨率j r 下的图像细节被定义为它的分辨率j r 下逼近与低分辨率1-j r 下逼近之间的信息差别。

多分辨率分解使得我们可以获得图像的尺度不变性演绎。

图像尺度随着场景与相机光学中心间的距离而变化。

当图像尺寸修改时,我们对于图像的演绎不应该变化。

多分辨率分解可以满足局部尺度不变性如果分辨率参量j r 的序列以指数形式变化。

我们假设存在分辨率一步R ∈α对于所有整数j ,j j r α=。

如果相机靠近场景时间为α,则每一物体被投影到一个2α的区域比相机焦平面更大。

即每一物体以α倍大的分辨率度量。

因此,新图片在分辨率j α下细节与先前在分辨率1+j α下图像细节相一致。

小波变换

小波变换

小波变换理论及应用ABSTRACT :小波理论是近几年发展起来的新的信号处理技术,因其在时间域和频率域都可以达到高的分辨率,被称为“数学显微镜”,在数值信号处理领域应用广泛,发展非常快。

但其涉及较多的数学知识,以及巧妙的数字计算技巧,对于非数学专业的科研人员,要完全掌握其中的精妙之处,有一定的难度。

正是考虑到这一点,本文的开始部分不过多说明小波分析的数学理论,只是以尽量简短的篇幅介绍必要的预备知识,接着阐述小波变换理论。

在理解了小波变换理论的基础上,再举例说明小波变换在实际中的应用。

第一章 小波变换理论这一章用尽量简短的篇幅和通俗的语言介绍小波变换的基本概念。

1.1. 从傅里叶变换到小波变换一、 傅里叶变换在信号处理中重要方法之一是傅里叶变换(Fourier Transform ),它架起了时间域和频率域之间的桥梁。

图1.1给出了傅里叶分析的示意图。

图1.1 傅里叶变换示意图 定义x(t)的傅里叶变换X(ω):⎰∞∞--=dt e t x X t j ωω)()(............................................. (1)X(ω)的傅里叶反变换x(t):⎰∞∞-=ωωπωd e X t x t j )(21)( (2)对很多信号来说,傅里叶分析非常有用。

因为它能给出信号中包含的各种频率成分。

但是,傅里叶变换有着严重的缺点:变换之后使信号失去了时间信息,它不能告诉人们在某段时间里发生了什么变化。

而很多信号都包含有人们感兴趣的非稳态(或)特性,如漂移、趋势项、突然变化以及信号的开始或结束。

这些特性是信号的重要部分。

因此傅里叶变换不适于分析处理这类信号。

傅里叶变换二、短时傅里叶变换为了克服傅里叶变换的缺点,D.Gabor(1946)提出了短时傅里叶变换(Short Time Fourier Transform), 又称为盖博(Gabor)变换或者加窗傅里叶变换(Windowed Fourier Transform)。

哈尔小波变换的原理及其实现(haar)

哈尔小波变换的原理及其实现(haar)

哈尔小波变换的原理及其实现(Haar)一、引言小波变换是近年来迅速发展并得到广泛应用的一个新学科。

它同时具有理论深刻和应用广泛的双重意义。

小波变换具有多分辨分析的特点,利用小波变换可以检测出数据中的突变和奇异点,这使得它在信号处理、图像处理、语音识别等领域取得了重要的应用。

在众多的小波变换中,Haar小波变换是最简单的一种,也是最容易理解的一种。

本篇文章将对Haar小波变换的原理及其实现进行详细的讨论。

二、Haar小波变换的原理Haar小波变换是一种离散小波变换,其基本思想是通过对输入信号进行逐级近似,逐步将信号分解为不同频率的子信号。

Haar小波变换的基本单位是Haar小波,它是一种简单的、具有正负交替的波形。

Haar小波的形状类似于一个阶梯函数,其时间分辨率固定,但频率分辨率可变。

Haar小波变换通过对输入信号进行逐级二分,实现了对信号的多尺度分析。

在Haar小波变换中,信号的分解过程可以形象地理解为对信号进行"拆分"。

具体来说,对于长度为2^n的输入信号,Haar小波变换将其拆分为2^n/2个子信号,其中每个子信号的长度为2^(n-1)。

每个子信号都由原信号中的一段连续信号组成,这些子信号构成了原信号的不同频率成分。

通过这种方式,Haar小波变换实现了对信号的多尺度分析。

此外,Haar小波变换还具有快速算法的特点。

由于Haar小波的特性,其变换矩阵是一个稀疏矩阵,因此其计算量较小,非常适合于快速计算。

这使得Haar小波变换在实时信号处理等领域得到了广泛的应用。

三、Haar小波变换的实现Haar小波变换的实现主要包括以下几个步骤:1.定义Haar小波:首先需要定义Haar小波的波形和参数。

Haar小波通常由一组正负交替的波形组成,其参数决定了小波的形状和频率分辨率。

2.计算Haar系数:Haar系数是小波变换的关键参数,它决定了Haar小波的形状和性质。

计算Haar系数的方法有很多种,常用的方法有递归法和离散傅里叶变换法等。

小波变换

小波变换

y ( n ) = ∑ x (m) h (m − Mn) ⇔
m
y ( n ) = ∑ x (m) h (n − Mm) ⇔
m
由上述预备知识和前面推导的 DWT 计算公式可以推出 DWT 的工程实现框 图,即离散小波变换的双通道多采样率滤波器组的实现结构图如下:
图 9 离散小波变换工程实现结构图 由以上分析可得一维信号的一级分解重建框图如下:
(18)
y ( n ) = C ⋅ x (n − k ) 即 Y ( z ) = C ⋅ z − kX (z )
从而可得 PR 条件如下:
(19)
° ( z) = 0 H ( z ) + G( − z ) G H (− z) ° −k −k ° ° H ( z ) H ( z ) + G( z )G( z ) = C1 ⋅ z = 2C ⋅ z
将条件(a)代入到条件(2)式中得:
(a)
(21)
− z l [G ( − z) H ( z ) − G ( z ) H (− z )] = C1 ⋅ z − k
M 抽取:每 M 个点中仅抽取一个值保留,因此信号的时域宽度会变为
原来的1 M 。 抽取操作的符号表示如下:
图 4 抽取符号图 上述插值操作的时频域的表达如下: 时域表达:
y ( n ) = x (Mn )
(4) (5)
1 2π −j 1 M −1 k M 复频域表达: Y ( z ) = ∑ X (w z ), w = e M M k =0
复频域表达: 频域表达:
(1)
Y ( z) = X ( zM ) Y (e jw ) = X ( e jMw )
(2) (3)
下面是当 M = 2 时,对信号 x ( n) 进行插值得 y ( n ) 的一个实例。

小波变换公式推导

小波变换公式推导

小波变换公式推导
1、定义小波函数:小波函数ψ(t)是一个具有零平均值的振荡函数,它在时间域和频率域都是局部化的。

2、小波变换的积分形式:对于信号f(t),其连续小波变换(CWT)定义为
其中,a是尺度参数,控制小波的宽度;b是平移参数,控制小波的位置。

3、小波函数的性质:小波函数需要满足一定的条件,如可容许性条件,以确保小波变换的存在性和唯一性。

4、逆变换:连续小波变换的逆变换为
其中,Cψ是一个与ψ有关的常数。

5、离散小波变换:在实际应用中,常常使用离散小波变换(DWT),它是对连续小波变换的尺度和平移参数进行离散化得到的。

6、多分辨率分析:小波变换的一个重要特性是多分辨率分析,它允许我们在不同的尺度上观察信号,从而揭示信号的局部特征。

7、小波基的选择:在实际应用中,需要选择适合信号特点的小波基函数,如Haar小波、Daubechies小波等。

8、快速小波变换:为了提高计算效率,可以使用快速小波变换(FWT)算法,它利用了小波变换的某些性质来减
少计算量。

小波变换原理公式

小波变换原理公式

小波变换原理公式小波变换是一种信号处理和数据分析的方法,它可以将信号分解成不同尺度的频率成分。

小波变换的原理公式如下:W(a, b) = ∫f(t)ψ*[(t-b)/a]dt其中,W(a, b)表示小波系数,a和b分别表示尺度参数和平移参数。

f(t)是原始信号,ψ(t)是小波基函数。

小波变换的原理可以通过对其公式进行解释。

首先,尺度参数a控制小波基函数的压缩或扩展程度,即决定了小波基函数在时间轴上的拉伸。

当a较大时,小波基函数会被拉伸,从而对应较低频率的成分;而当a较小时,小波基函数会被压缩,对应较高频率的成分。

平移参数b则决定了小波基函数在时间轴上的平移,即决定了小波基函数的起始位置。

通过改变平移参数b,可以对不同时间段的信号进行分析。

小波变换的过程可以分为两个步骤:分解和重构。

首先,通过不同尺度和平移参数的组合,对原始信号进行分解,得到一系列小波系数。

这些小波系数表示了不同频率和时间范围的信号成分。

然后,通过逆小波变换,将这些小波系数重构成原始信号。

小波变换具有多尺度分析的特点,可以对信号的局部特征进行捕捉。

相比于傅里叶变换,小波变换更适用于非平稳信号的分析,因为小波基函数在时间和频率上都有局部性。

小波变换在许多领域都有广泛的应用。

在信号处理中,小波变换可以用于信号去噪、特征提取、边缘检测等。

在图像处理中,小波变换可以用于图像压缩、图像增强等。

在金融分析中,小波变换可以用于股票价格预测、风险管理等。

在生物医学领域,小波变换可以用于心电信号分析、脑电信号分析等。

小波变换是一种强大的信号处理和数据分析工具,其原理公式提供了一种理论基础。

通过对尺度和平移参数的调节,可以对不同频率和时间范围的信号成分进行分析和提取。

小波变换在许多领域都有广泛的应用,为解决实际问题提供了有效的工具和方法。

Morlet小波变换理论与应用研究及软件实现

Morlet小波变换理论与应用研究及软件实现

小波变换理论在其他领域的应用
除了在图像和语音信号处理领域的应用,小波变换理论还在其他多个领域得到 了广泛的应用。例如,在数值分析中,小波变换被用于函数的逼近和插值,能 够实现高效且精确的数值计算。在几何学中,小波变换被用于曲线和曲面拟合 以及几何形状的设计和优化等。此外,小波变换还在信号与系统分析、地球物 理学、医学成像等领域有着广泛的应用。
#定义信号
y = np.sin(2 * np.pi * 5 * x) + np.random.normal(size=len(x))
#进行Morlet小波变换
#小波重构
y_reconstructed = sg.waverec(coeffs, 'morl')
#绘制原始信号和小波重构信号
plt.plot(x, y, label='Original Signal') plt.plot(x, y_reconstructed, label='Reconstructed Signal')
软件实现
实现Morlet小波变换的软件工具有很多种,包括Python、MATLAB等编程语言 以及专门的工具包。在Python中,可以使用scipy库中的wavelet模块来进行 Morlet小波变换。例如,以下代码展示了如何使用Python实现一维信号的 Morlet小波变换:
import matplotlib.pyplot as plt
参考内容
引言
小波变换理论是一种重要的信号处理方法,在过去的几十年里得到了广泛的应 用和发展。小波变换理论的应用领域涵盖了图像处理、语音信号处理、数值分 析、几何学等多个领域,为各个领域的发展带来了重要的推动作用。本次演示 将介绍小波变换理论的应用进展,包括在图像处理、语音信号处理和其他领域 的应用,并展望未来的研究方向。

小波变换理论与方法

小波变换理论与方法

.
37
3.3 识别信号发展趋势
.
38
3.4 无参回归估计
.
随 机 设 计 模 式
39
固 定 设 计 模 式
.
40
谢谢聆听,请各位批评指正
.
41
W f(a ,b ) f,
1 a,b a f(t)
*(tb)d t a
式中,<* ,*>表示内积,a>0 ,为尺度因子,b为位移因子,*表示复
数共轭,ψa,b(t)称为小波基函数。
ψ(t)称为母小波,ψ(t)必须满足容许性条 件:
小波函数时间频率窗
.
14
部分小波波形
.
15
小波分类的标准
➢支撑长度:即当时间或频率趋向于无穷大时,它们从一 个有限值收敛到0,长度越小,对奇异点的区分效果越好。
.
17
➢将小波函数沿时间轴向右移动一个单位时间,然后 重复步骤(1)、(2)求出此时的小波变换系数C,直到覆 盖完整个信号长度,如图所示;
➢将所选择的小波函数尺度伸缩一个单位,然后 重复步骤(1)、(2)、(3),如图所示;
➢对所有的尺度伸缩重复步骤(1).、(2)、(3)、(4)。
18
连续小波变换实例
为序列{fn}逆离散傅里叶变换
.
6
X ( t ) c o s ( 2 1 0 t ) c o s ( 2 2 5 t ) c o s ( 2 5 0 t ) c o s ( 2 1 0 0 t )
平稳信号是指分布参数或者分布律随时间不发生变化的信 号,也就是统计特性(期望与方差)不. 随时间变化而变化。 7
G f(,)f( t)g ( t ) e i td t f( t) ,g ,t( t)

小波变换原理

小波变换原理

小波变换原理小波变换是一种多尺度分析方法,它可以将信号分解成不同尺度的成分,从而揭示出信号的局部特征。

小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。

本文将介绍小波变换的原理及其在实际应用中的一些特点。

小波变换的原理可以通过分析其数学表达式来理解。

假设我们有一个连续信号f(t),我们希望将其分解成不同尺度的成分。

我们可以使用一组小波函数ψ(a, b)来对信号进行分解,其中a表示尺度参数,b表示平移参数。

小波函数具有一定的特性,比如局部化、平滑性等,这使得它可以很好地描述信号的局部特征。

小波变换可以通过对信号与小波函数进行内积运算来实现,即。

W(a, b) = ∫f(t)ψ(a, b)dt。

其中W(a, b)表示小波系数,ψ(a, b)表示小波函数的共轭。

通过对不同尺度和平移参数下的小波系数进行计算,我们可以得到信号在不同尺度下的频谱信息,从而实现信号的分解和分析。

小波变换的一个重要特点是多尺度分析能力。

传统的傅里叶变换只能提供信号在全局尺度下的频谱信息,而小波变换可以提供信号在不同尺度下的频谱信息,这使得它可以更好地捕捉信号的局部特征。

这种多尺度分析的能力使得小波变换在处理非平稳信号时具有优势,比如地震信号、心电图信号等。

另外,小波变换还具有一定的局部化特性。

小波函数在时域和频域上都具有一定的局部化特性,这使得小波变换可以更好地描述信号的局部特征。

相比之下,傅里叶变换在频域上具有全局性,这在一定程度上限制了其对信号局部特征的描述能力。

除了信号分析之外,小波变换还在图像处理、数据压缩等领域有着广泛的应用。

在图像处理中,小波变换可以用于图像的去噪、边缘检测等任务;在数据压缩中,小波变换可以将信号的能量集中在少数重要的小波系数上,从而实现对信号的高效压缩。

总之,小波变换是一种重要的信号分析方法,它具有多尺度分析能力和局部化特性,适用于处理非平稳信号和具有局部特征的信号。

在实际应用中,小波变换有着广泛的应用前景,可以帮助我们更好地理解和处理各种类型的信号和数据。

小波变换的基本原理与理论解析

小波变换的基本原理与理论解析

小波变换的基本原理与理论解析小波变换(Wavelet Transform)是一种在信号处理和图像处理领域中广泛应用的数学工具。

它通过将信号分解成不同频率和时间的小波分量,可以有效地捕捉信号的局部特征和时频特性。

本文将介绍小波变换的基本原理和理论解析。

一、小波变换的基本原理小波变换的基本原理可以概括为两个步骤:分解和重构。

1. 分解:将原始信号分解为不同尺度和频率的小波分量。

这个过程类似于频谱分析,但是小波变换具有更好的时频局部化特性。

小波分解可以通过连续小波变换(Continuous Wavelet Transform,CWT)或离散小波变换(Discrete Wavelet Transform,DWT)来实现。

在连续小波变换中,原始信号与一组母小波进行卷积,得到不同尺度和频率的小波系数。

母小波是一个用于分解的基本函数,通常是一个具有有限能量和零平均的函数。

通过在时间和尺度上的平移和缩放,可以得到不同频率和时间的小波分量。

在离散小波变换中,原始信号经过一系列低通滤波器和高通滤波器的处理,得到不同尺度和频率的小波系数。

这种方法更适合于数字信号处理,可以通过快速算法(如快速小波变换)高效地计算。

2. 重构:将小波分量按照一定的权重进行线性组合,恢复原始信号。

重构过程是分解的逆过程,可以通过逆小波变换来实现。

二、小波变换的理论解析小波变换的理论解析主要包括小波函数的选择和小波系数的计算。

1. 小波函数的选择:小波函数是小波变换的核心,它决定了小波变换的性质和应用范围。

常用的小波函数有Morlet小波、Haar小波、Daubechies小波等。

不同的小波函数具有不同的时频局部化特性和频谱性质。

例如,Morlet小波适用于分析具有明显频率的信号,而Haar小波适用于分析信号的边缘特征。

选择合适的小波函数可以提高小波变换的分辨率和抗噪性能。

2. 小波系数的计算:小波系数表示了信号在不同尺度和频率上的能量分布。

小波基本理论及应用PPT课件

小波基本理论及应用PPT课件
小波变换通过选取不同的小波基函数, 对信号进行多尺度分解,得到信号在 不同尺度和频率上的系数,这些系数 可以反映信号在不同时间和频率上的 特征。
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。

小波分析入门PPT课件

小波分析入门PPT课件
随着机器学习的发展,小波分析有望在特征提取、数据压缩等领域与机器学习相结合, 提高机器学习的性能和效率。
THANKS
感谢观看
应用
在音频处理、图像处理、信号处理等领域有广泛应用 。
复数小波变换
定义
复数小波变换是指小波基函数为复数的小波变换,其变换结果也 为复数。
特点
复数小波变换具有更强的灵活性和表达能力,能够更好地描述信 号的复杂性和细节。
应用
在雷达信号处理、通信信号处理、图像处理等领域有广泛应用。
04
CATALOGUE
小波变换的基本原理
小波变换的定义
小波变换是一种信号的时间-频率分析方法,通过将信号分解 成不同频率和时间的小波分量,实现对信号的时频分析和去 噪。
小波变换的原理
小波变换通过将信号与一组小波基函数进行内积运算,得到 信号在不同频率和时间上的投影,从而实现对信号的时频分 析和去噪。
小波变换的应用领域
小波变换的基本理论
一维小波变换
定义
实例
一维小波变换是一种将一维函数分解 为不同频率和时间尺度的过程,通过 小波基函数的平移和伸缩实现。
一维小波变换在图像压缩中广泛应用 ,如JPEG2000标准就采用了小波变 换技术。
作用
一维小波变换用于信号处理、图像处 理等领域,能够有效地提取信号中的 特征信息,实现信号的时频分析和去 噪等。
数值计算中的应用
数值求解偏微分方程
小波分析可以用于求解偏微分方程的数值解,通过小波变 换可以将方程转化为离散形式,便于计算。
数值积分与微分
小波分析可以用于数值积分与微分的计算,通过小波基函 数展开被积函数或被微分函数,可以快速计算积分或微分 值。
数值优化

小波变换及分析原理知识

小波变换及分析原理知识

- 252 -小波分析原理1.1 小波变换及小波函数的多样性小波是函数空间2()L R 中满足下述条件的一个函数或者信号()x ψ:2ˆ().R C d ψψωωω+=<∞⎰式中,*{0}R R =-表示非零实数全体,ˆ()ψω是()x ψ的傅里叶变换,()x ψ成为小波母函数。

对于实数对(,)a b ,参数a 为非零实数,函数(,)()x b a b x a ψ-⎛⎫=⎪⎝⎭称为由小波母函数()x ψ生成的依赖于参数对(,)a b 的连续小波函数,简称小波。

其中:a 称为伸缩因子;b 称为平移因子。

对信号()f x 的连续小波变换则定义为,(,)()(),()f a b Rx b W a b f x dx f x x a ψψ-⎛⎫==〈〉 ⎪⎝⎭其逆变换(回复信号或重构信号)为*1()(,)fR R x b f x W a b dadb C a ψψ⨯-⎛⎫=⎪⎝⎭⎰⎰ 信号()f x 的离散小波变换定义为2(2,2)2()(2)j j j j f W k f x x k dx ψ+∞---∞=-⎰其逆变换(恢复信号或重构信号)为(2,2)()(2,2)()j j j j fk j k f t C Wk x ψ+∞+∞=-∞=-∞=∑∑其中,C 是一个与信号无关的常数。

显然小波函数具有多样性。

在MA TLAB 小波工具箱中提供了多种小波幻术,包括Harr 小波,Daubecheies (dbN )小波系,Symlets (symN )小波系,ReverseBior (rbio )小波系,Meyer (meyer )小波,Dmeyer (dmey )小波,Morlet(morl)小波,Complex Gaussian(cgau)小波系,Complex morlet(cmor)小波系,Lemarie (lem )小波系等。

实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波函数。

- 253 -1.2 小波的多尺度分解与重构1988年Mallat 在构造正交小波基时提出多尺度的概念,给出了离散正交二进小波变换的金字塔算法,其小波分析树形结构如图1所示,即任何函数2()()f x L R ∈都可以根据分辨率为2N-的()f x 的低频部分(近似部分)和分辨率为2(1)j j N -≤≤下()f x 的高频部分(细节部分)完全重构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F() eit f (t)dt
其中 L 1(R ){f(X)| | f(t)|dx
i是虚数单位,ω是频率变量。F(ω)的连续傅里叶逆变换为
f (t)21 eitF()d
1.2 离散傅里叶变换
对于实数或者复数离散时间序列f0, f1,…, FN-1,若
N 1
满足 | f (t ) | ,则称 n0
小波运算的基本步骤:
➢选择一个小波函数,并将这个小波与要 分析的信号起始点对齐; ➢计算在这一时刻要分析的信号与小波函 数的逼近程度,即计算小波变换系数C,C 越大,就意味着此刻信号与所选择的小波 函数波形越相近,如图所示。
➢将小波函数沿时间轴向右移动一个单位时间,然后 重复步骤(1)、(2)求出此时的小波变换系数C,直到覆 盖完整个信号长度,如图所示;
的常数,a和b的选取与小波ψ(t)的具体形式有关。离散小波函数表示
为:
m ,nt
1 a 0 m
tn a b 0 m 0a 0 m 1 a 0 m
a 0 m tn b 0
相应的离散小波变换可以表示为:
W fm ,nf,m ,n ft? m *,ntdt
当a0=2,b0=1时,离散小波变换称为二进离散小波变换,这样便于分析 ,并且适合于在计算机上进行高效的运算。
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: E ssi2logsi2
2)P范数熵:若P≥1,在lp范数意义上定义E(s)= s i P ,则:
设∑为n个小波系数的平方和,令η= Σ n

n
3
,μ= log2 n2
n,
T3=
T2
minT1,T2
(4)基于极大极小原理的Minimax方法
该准则采用的也是一种固定阈值,它产生一个最小均方误差的极值。 具体的阈值选取规则为:
T4=
0.39360.1829log2n n32
0
n32
阈值量化函数的选取
➢ 小波变换的一个重要性质是它在时域和频域均 具有很好的局部化特征,它能够提供目标信号 各个频率子段的频率信息。这种信息对于信号 分类是非常有用的。
➢ 小波变换一个信号为一个小波系数,这样一个 信号可由小波系数来刻画。
2.1 连续小波变换
小波变换是一个平方可积分函数f(t)与一个在时频域上均具有良 好局部性质的小波函数ψ(t)的内积:

2.2.3小波包分解
小波分析是将信号分解为近似与细节两部分,近似部分又可 以分解成第二层近似与细节,可以这样重复下去。对于一个 N层分解来说, 有N+1个分解信号的途径。而小波包分析的 细节与近似部分一样,也可以分解,对于N层分解,它产生 2N个不同的途径。
三 小波变换的一些应用
3.1小波包去噪
基波角频率 1
2, 为 T T1
1 的周f (期t ) 。
直流分量:
a0
1 T1
t0T1 f (t)dt
t0
余弦分量的幅度:an
2 T1
t0T1 t0
f(t)cos(n1t)dt
正弦分量的幅度:bn
2 T1
t0T1 t0
f(t)sin(n1t)dt
1.1 连续傅里叶变换
对于函数f(t)∈L1(R),其连续傅里叶变换为
C
小波函数时间频率窗
部分小波波形
小波分类的标准
➢支撑长度:即当时间或频率趋向于无穷大时,它们从一 个有限值收敛到0,长度越小,对奇异点的区分效果越好。
➢对称性:对称性越好,越能保证信号不失真(不产生畸 变),越能提高信号的重构精度。
➢正则性:它在对信号或图像的重构获得较好的平滑效果 作用上是非常有用的。
W f(a ,b ) f,
a,b 1 a f(t)
*(tb)d t a
式中,<* ,*>表示内积,a>0 ,为尺度因子,b为位移因子,*表示复
数共轭,ψa,b(t)称为小波基函数。
a,b t
1 a
t
b a
ψ(t)称为母小波,ψ(t)必须满足容许性条
件:
t dt
0或
Ψω 2
d
狄利克雷条件(Dirichlet Conditions) (1 )在一周期内,如果有间断点存在,则间断点的数目应是有限个; (2)在一周期内,极大值和极小值的数目应是有限个; (3)在一周期内,信号是绝对可积的
若周期信号 f ( t满) 足狄利克雷条件,则可展开为傅里叶级数。
傅里叶级数表达式:
ቤተ መጻሕፍቲ ባይዱ
f(t)a0 [ancos(n 1 t)b nsin(n 1 t)] n 1
yi T yi T
式中,sgn()为符号函数。
阈值准则
SNR rmse
heursure
11.0062 1.7976
sqtwolog
28.7143 0.7416
rigrsure
11.0062 1.7976
mininmax
21.9542 1.0398
阈值量化函数 SNR RMSE
硬阈值法 13.9391 1.5524
E(s)=
si P
P
s P
i
3)对数能量熵 E(si)= log si2 ,0log(0)=0,则有 i E(s)= logsi2 i
4)阈值熵:
1
E(s)=
0
s i 式中,ɛ是阈值,且ɛ >0. si
阈值选择准则
(1)基于无偏似然估计原理的Rigrsure规则;
W为一向量,其元素为小波系数的平方,并按由小到大的顺序排列, W=[w1,w2,…,wn],且w1≤w2≤…≤wn,再设一向量R,其元素为:
阈值量化是应用所估计的阈值T,对小波系数进行的处理。目前, 阈值量化函数主要采用两种方法。
一种是硬阈值法,当小波系数大于该阈值时,保留原值,否则置 零,其公式为:
yi
0yi
yi T yi T
另一种是软阈值法,当小波包系数大于该阈值时,向着减小系数 幅值的方向作一个收缩δ,否则置零,其公式为:
yi s0gnyi yi δ
平稳信号是指分布参数或者分布律随时间不发生变化的信 号,也就是统计特性(期望与方差)不随时间变化而变化。
sin(2100t)
X2
ssiinn((22
50t) 25t)
sin(210t)
0t 300 300t 600 600t 800 800t 1000
sin(210t) X2 ssiinn((225205tt))
i
ri=[ n-2i-(n-i)w+ w k ]/n (i=1,2,….,n) k 1
以R元素中的最小值rb为风险值,由rb的下标变量b求出对应的wb,则
阈值T1为:
T1= σ w b
(2)通用阈值T1(sqtwolog准则)
T2= σ 2logn
(3)启发式的stein无偏风险阈值T3(Heursure)准则
加噪信号数学模型为f(t)=s(t)+n(t),s(t)是原信号,n(t)是随机白噪声, 满足E[n(t)]=0和D[n(t)]=σ2。设Ψ(t)为小波函数,n(t)的小波包变换为
Wn(j,t)=n(t)·Ψj(t)= nt Ψ j t u du
R
n(t)的小波包系数的期望和方差分别为:
E(|Wn(j,t)|2)=0
G f(,)f( t)g ( t ) e i td t f( t) ,g ,t( t) R
其中 g ,t(t)g (t)e i tg (t)ei t ,窗口函数g(t)起着时
限作用,e i t 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
短时傅里叶变换示意图
固 定 设 计 模 式
谢谢聆听,请各位批评指正
➢将所选择的小波函数尺度伸缩一个单位,然后 重复步骤(1)、(2)、(3),如图所示;
➢对所有的尺度伸缩重复步骤(1)、(2)、(3)、(4)。
连续小波变换实例
2.2 离散小波变换
在实际应用中,需要对尺度因子a和位移因子b进行离散化处理,可以
取: aa0m,bnboa0m , m,n为整数,a0为大于1的常数,b0为大于0
小波变换理论与方法
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
一 傅里叶变换
◆ 1822年,法国数学家傅里叶(J.Fourier)发表的研究热传导理 论的“热的力学分析”,提出“每一个周期函数都可以表示成三角函数 之和” ,奠定了傅里叶级数的理论基础。
◆ 1829年,法国数学家狄利克雷(P.G.Dirichlet)以严密的方式 给出傅里叶级数与积分存在条件的完整证明。
软阈值法 28.7143 0.7416
系统性干扰信号探测
阈值准则
SNR RMSE
噪声消除和系统干扰处理
43.4135 0.3556
小波包阈值消噪
28.7143 0.7416
3.2 小波时频图
可将多分辨分析与连续小波变换结合起来分析信号的特征
3.3 识别信号发展趋势
3.4 无参回归估计
随 机 设 计 模 式
D(|Wn(j,t)|2)=
Ψ t 2
j
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
N 1
相关文档
最新文档