【常考题】高二数学上期末试题及答案
高二数学上学期期末考试试题含解析(共19页)
镇海中学(zhōngxué)2021学年第一学期期末考试高二年级数学试卷第I卷〔选择题〕一、选择题.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.,,那么〔〕A. B. C. D.或者【答案】C【解析】【分析】求解出集合的取值范围,利用交集定义求解.【详解】由得:或者,即或者那么此题正确选项:【点睛】此题主要考察集合运算中的交集运算,属于根底题.,,那么〔〕A. B.C. D.【答案】D【解析】【分析】根据(gēnjù)单调性,可得,再验证可得最终结果.【详解】在上单调递增,即又又此题正确选项:【点睛】此题考察与对数函数有关的比拟大小类问题,属于根底题.在点〔1,0〕处切线的倾斜角为,那么〔〕A. 2B.C. -1D. 0 【答案】A【解析】【分析】求导得,代入,可得切线斜率,即的值.【详解】由题意得:代入,可得切线斜率又,得此题正确选项:【点睛】此题考察导数的几何意义、直线斜率与倾斜角的关系,属于根底题.R上的函数的图像是连续的,且其中的四组对应值如下表,那么在以下区间中,函数不一定存在零点的是〔〕x 1 2 3 53 -1 2 0A. B. C. D.【答案(dá àn)】D【解析】【分析】根据零点存在定理,依次判断各个选项。
又为的子集,那么区间有零点,那么区间也必有零点;上有零点,那么上必有零点;由此可得结果.【详解】由题意可得:在上必有零点又,在上必有零点在上必有零点又,在上必有零点在上不一定存在零点此题正确选项:【点睛】此题主要考察零点存在定理,关键在于需要明确当,不能得到区间内一定无零点的结论,需要进一步判断.,假设,那么〔〕A. 1B. -1C. -2D. 3【答案】B【解析(jiě xī)】【分析】判断的奇偶性,通过奇偶性求得函数的值.【详解】由题意得:即定义域为,关于原点对称又可得:为奇函数此题正确选项:【点睛】此题考察通过函数奇偶性求函数值。
数学期末考试试卷及答案(高二上学期)
数学期末考试试卷及答案(高二上学期)一、选择题(每题4分,共40分)1. 若复数z满足|z-1|=|z+1|,则z在复平面内表示的点位于()A. 实轴B. 虚轴C. 线段AB的中点D. 圆心O答案:C2. 已知函数f(x)=2x+1,若f(f(x))=3,则x等于()A. -1B. 0C. 1D. 2答案:A3. 设函数g(x)=x²-4x+c,若g(x)的图象上存在两个点A、B,使得∠AOB=90°(其中O为坐标原点),则c的取值范围是()A. (-∞, 1]B. [1, +∞)C. (-∞, 3]D. [3, +∞)答案:A4. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为()A. 1B. 3C. 5D. 7答案:B5. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,∠DCE=30°,则BD的长度为()A. 8B. 10C. 12D. 16答案:B6. 已知函数h(x)=x³-3x,若h(x)的图象上存在一个点P,使得∠AOP=90°(其中O为坐标原点),则x的取值范围是()A. (-∞, 0]B. [0, +∞)C. (-∞, 1]D. [1, +∞)答案:C7. 若等比数列{bn}的前三项分别为1、2、4,则该数列的公比为()A. 2B. 3C. 4D. 5答案:A8. 已知函数p(x)=x²-2x+1,若p(p(x))=0,则x等于()A. 0B. 1C. 2D. 3答案:B9. 设函数q(x)=|x-1|+|x+1|,则q(x)的最小值为()A. 0B. 1C. 2D. 3答案:C10. 若三角形ABC中,∠A=60°,AB=3,AC=4,则BC的长度为()A. 5B. 6C. 7D. 8答案:B二、填空题(每题4分,共40分)11. 若复数z=a+bi(a、b为实数),且|z|=2,则___。
数学期末考试试卷及答案(高二上学期)
数学期末考试试卷及答案(高二上学期)一、选择题(共40分,每小题2分)1. 一次函数y = 2x - 3的图象是直线,下列说法正确的是()。
A. 过点(-3, 3)B. 过点(0, -3)C. 过点(3, 0)D. 过点(0, 3)答案:C2. 已知函数y = ax² + bx + c的图象经过点(1, 4),则a + b + c的值为()。
A. 4B. 6C. 8D. 10答案:B3. 在直角坐标系中,已知点A(2, 3),点B在x轴上,且AB = 5,则点B的坐标为()。
A. (2, 0)B. (0, -3)C. (7, 0)D. (-3, 0)答案:A4. 设函数f(x) = 2x + 3,g(x) = x² - 4,则f(g(2))的值为()。
A. 3B. 7C. 9D. 11答案:C5. 函数y = x² - 6x + 8的图象是一条抛物线,下列说法正确的是()。
A. 开口向上B. 开口向下C. 与x轴平行D. 与y轴平行答案:A二、解答题(共60分)6. 解方程组:2x - y = 3x + y = 5解答:将第一式两边同时加上第二式得到:2x - y + x + y = 3 + 53x = 8x = 8/3将x的值代入第二式得到:8/3 + y = 5y = 5 - 8/3y = 15/3 - 8/3y = 7/3因此,方程组的解为x = 8/3,y = 7/3。
7. 某商品原价为120元,现在打8折出售,求出售价格。
解答:打8折即为原价乘以0.8,所以出售价格为120元 × 0.8 = 96元。
8. 某数的5倍减去6等于30,求这个数。
解答:设这个数为x,则根据题意可以列出方程:5x - 6 = 305x = 30 + 65x = 36x = 36/5因此,这个数为36/5。
9. 已知等差数列的首项为3,公差为4,求第10项。
解答:第10项可以通过首项加上9倍公差来计算:第10项 = 3 + 9 × 4= 3 + 36= 39因此,第10项为39。
高二数学上学期期末考试试卷含答案
第一学期期末考试 高二 年级 数学 试卷一、选择题(本大题共12小题,每小题5分,满分60分)每小题只有一个....正确选项,请将正确选项填到答题卡处1.设集合{|(1)(2)0}A x x x =+-<, {|13}B x x =<<,则A B =( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x << D .{|23}x x <<2.下列函数中,在区间上为增函数的是( )A .B .C .D .3.已知平面向量,,且//,则=( ) A .B .C .D .4.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( )A .12B .8C .6D .46.函数()22)(x x f π=的导数是( )A .x x f π4)(=' B. x x f 24)(π=' C. x x f 28)(π=' D. x x f π16)(='7.为了得到函数的图象,可以将函数的图象( )A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度8.已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(3 ,且双曲线的一个焦点在抛物线27y x = 的准线上,则双曲线的方程为 ( )A .2212128x y -=B .2212821x y -=C .22134x y -=D .22143x y -=9.若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为( )A .318B .315C .3824+D .31624+10.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A .925 B .1625 C .310 D .1511.己知函数恒过定点A .若直线过点A ,其中是正实数,则的最小值是( )A .B .C .D . 512.已知不等式2201x m x ++>-对一切()1x ∈+∞,恒成立,则实数m 的取值范围是( ) A . 6m >- B . 6m <- C . 8m >- D . 8m <-第II 卷 (非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知命题p :∀x >0,(x +1)e x >1,则p 为 .14.设变量x ,y 满足约束条件,22,2.y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则z =x -3y 的最小值为15.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__________16.对于下列表格x 196 197 200 203 204 y136 7 m所示的五个散点,已知求得的线性回归方程为y ^=0.8x -155. 则实数m 的值为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分11分)已知0m >,p :()()260x x +-≤,q :22m x m -≤≤+ . (I )若p 是q 的充分条件,求实数m 的取值范围;(Ⅱ)若5m =,“p 或q ”为真命题,“p 且q ”为假命题,求实数x 的取值范围.18、(本小题满分11分).在锐角中,分别为角所对的边,且.(1)确定角的大小;(2)若,且的面积为,求的周长.19 . (本小题满分12分)已知数列{}n a 中,)(2,1*11N n a a a n n ∈==+,数列{}n b 是以公差为3的等差数列,且32a b =.(1) 求数列{}n a ,{}n b 的通项公式; (2) 求数列{}n n b a -的前n 项和n S .20.(本小题满分12分)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数;(2)已知这批产品中每个产品的利润y (单位:元)与产品净重x (单位:克)的关系式为3(9698),5(98104),4(104106).y x x x =≤<⎧⎪≤<⎨⎪≤≤⎩求这批产品平均每个的利润.21.(本小题满分12分)已知椭圆)0(12222>>=+b a by a x C :的焦距为32,长轴长为4.(1)求椭圆C 的标准方程;(2)直线m x y l +=:与椭圆C 交于 A ,B 两点.若OB OA ⊥,求m 的值.22. (本小题满分12 分) 已知函数(1)讨论函数 f (x)的单调性; (2)若对任意的a ∈ [1,4),都存在 (2,3]使得不等式成立,求实数m 的取值范围.高二数学期末考试参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 101112答案ABBABCADCDBA13、∃x 0>0,使得(x 0+1)0e x ≤1. 14.-8 15.32 16. 8 17. (本题11分)解:(I ):26p x -≤≤ ………………………1分p 是q 的充分条件[]2,6∴-是[]2,2m m -+的子集 ………………………2分 022426m m m m m >⎧⎪∴-≤-⇒≥∴⎨⎪+≥⎩的取值范围是[)4,+∞………………………5分(Ⅱ)当5m =时,:37q x -≤≤,由题意可知,p q 一真一假, ………………………6分p 真q 假时,由2637x x x x -≤≤⎧⇒∈∅⎨<->⎩或 ………………………8分 p 假q 真时,由26326737x x x x x <->⎧⇒-≤<-<≤⎨-≤≤⎩或或 ………………………10分 所以实数x 的取值范围是[)(]3,26,7-- ………………………11分18. (本题11分)解:(1),由正弦定理得A C A sin sin 2sin 3•=…………1分又,, …………3分又 …………5分(2)由已知得,…………7分在中,由余弦定理得…………8分即,又,(舍负)…………10分故的周长为 …………11分19 . (本题12分)解(1))(2,1*11N n a a a n n ∈==+ ,{}的等比数列是公比为数列2n a ∴, 121-⨯=∴n n a ..........................................3分 因为等差数列{}n b 的公差为3,又42232===a b ,所以233)1(2-=⨯-+=n n b b n ,..........................6分 (2))()()(2211n n n b a b a b a S -++-+-=)(2121n n b b b a a a ++-++=)(.....................8分 2)231(212-1-+--=n n n ..................................10分 122322-+-=nn n...............................12分20、 (本题12分)解: (1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.......1分 设样本容量为n .∵样本中产品净重小于100克的个数是36...........2分 ∴36n =0.300,∴n =120...........3分.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750.........4分∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.....5分 (2) 产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100, (0.100+0.150+0.125)×2=0.750, 0.075×2=0.150,........8分∴其相应的频数分别为120×0.1=12,120×0.750=90,120×0.150=18,...10分 ∴这批产品平均每个的利润为1120×(3×12+5×90+4×18)=4.65(元)...12分 20.(本题12分)解:(1)∵椭圆)0(12222>>=+b a b y a x C :的焦距为32,长轴长为4,3=∴c ,2=a ,∴1=b ,..........................................2分∴椭圆C 的标准方程为1422=+y x .........................4分 (2)设),(,2211y x B y x A )(,将直线AB的方程m x y +=为代入椭圆方程得0448522=-++m mx x . .......................6分 则58-21mx x =+,544221-=m x x , ①.又0)44(206422>--=∆m m ,解得52<m . .......................9分,由OB OA ⊥得:0)(2))((2212121212121=+++=+++=+m x x m x x m x m x x x y y x x ........11分将①代入,得5102±=m ,又∵满足52<m ,∴5102±=m .........12分22.(本题满分12分)解:(1).........2分令得:..........3分令得:...........4分所以函数f(x)的单调递增区间为:和;单调递减区间为:.........6分(2)因为由(1)知函数在(2,3]上单调递增,所以........8分若对任意的a[1,4),都存在(2,3]使得不等式成立,等价于恒成立........9分令当时,所以当时,........11分故实数m 的取值范围是:.......12分。
最新高二数学上学期期末考试试卷含答案
一、选择题1、数列}{n a 的首项为2,且41-=-n n a a (n ≥2),则通项公式是: A 、n a n 46-= B 、24-=n a n C 、1+=n a n D 、n a n 24-=2、已知数列}{n a 的通项公式为nn n n a )5(43-+=,前n 项的和为n S ,则=∞→nn SlimA 、87- B 、7259-C 、0D 、54- 3、经过点(5、10)且与原点距离为5的直线的斜率是: A 、43B 、2C 、21D 、43或不存在 4、以原点圆心,且截直线01543=++y x 所得弦长为8的圆的方程是:A 、522=+y x B 、2522=+y x C 、422=+y x D 、1622=+y x 5、方程01)2()1(22=-++++m y m mx 所表示的图形是一个圆,则常数m 的值是:A 、2B 、-1C 、2或-1D 、不存在 6、直线02)()32(22=--+-+m y m m x m m 与直线01=--y x 平行,则m 的值是:A 、1B 、-1C 、1或-1D 、不存在7、椭圆1121622=+y x 上的点P 到右焦点距离为38,则P 点的横坐标是:A 、38B 、83C 、316D 、37 8、给出下列四条不等式:①2)1(-x >2)(x ②2)1(-x >x ③x ≥0 ④x >12)1(-x >x 2)1(-x >x以上不等式中与不等式x x >-1同解的有 A 、①③ B 、②④ C 、③ D 、④9、等差数列{}n a 中23=a ,公差1=d ,n S 为前n 项的和,要使+++321321S S S …+nS n 的值最大,则n 为: A 、7 B 、8 C 、9 D 、8或910、数列{}n a 满足21=a ,++=21a a a n …+1-n a (n ≥2),则20a 等于: A 、172 B 、182 C 、192 D 、220 二、填空题:11、直线x y 21=关于直线x y 2=对称的直线方程是__________12、不等式2<|12-x |<8的解集是_________________13、与直线0543=+-y x 垂直, 且与圆4)2()1(22=++-y x 相切的直线方程是_____。
高二数学上学期期末考试题精选及答案
高二数学上学期期末考试题第I 卷(试题) 一、 选择题:(每题5分,共60分)2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( )(A )18, (B )6, (C )23, (D )243 3、与不等式xx --23≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)0<x-2≤1, (C)32--x x≥0, (D)(x-3)(2-x)>06、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( )(A )L 1到L 2的角为π43, (B )L 1到L 2的角为4π(C )L 2到L 1的角为43π, (D )L 1到L 2的夹角为π437、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( )(A )3x+4y –5=0, (B)3x+4y+5=0, (C)-3x+4y –5=0, (D)-3x+4y+5=08、直线y=x+23被曲线y=21x 2截得线段的中点到原点的距离是 ( )(A )29 (B )29 (C )429 (D )22911、双曲线: 的准线方程是191622=-x y ( ) (A)y=±716 (B)x=±516 (C)X=±716 (D)Y=±51612、抛物线:y=4ax 2的焦点坐标为 ( ) (A )(a 41,0) (B )(0, a 161) (C)(0, -a 161) (D) (a161,0)二、填空题:(每题4分,共16分) 13、若不等式ax 2+bx+2>0的解集是(–21,31),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 . 15、已知圆的方程⎩⎨⎧-=+=θθsin 43cos 45y x 为(θ为参数),则其标准方程为 .16、已知双曲线162x -92y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为 .三、 解答题:(74分)17、如果a ,b +∈R ,且a ≠b ,求证: 422466b a b a b a +>+(12分)19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。
上学期高二的数学期末考试试题和答案
上学期高二的数学期末考试试题和答案一、选择题(每题5分,共25分)1. 若函数f(x) = 2x + 1是单调递增的,则实数a的取值范围是:A. a > -1B. a ≤ -1C. a > 0D. a ≤ 02. 已知函数g(x) = x^3 - 6x^2 + 9x,则g'(x)的正确表达式是:A. 3x^2 - 12x + 9B. 3x^2 + 12x - 9C. 6x^2 - 12x + 9D. 6x - 123. 设向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积为:A. -7B. 7C. -5D. 54. 已知等差数列的前5项和为35,公差为3,首项为:A. 5B. 6C. 7D. 85. 若复数z = 3 + 4i的模为5,则复数z的辐角主值为:A. π/4B. π/2C. 3π/4D. π二、填空题(每题5分,共25分)1. 若函数f(x) = x^3 - 6x在区间(-∞,2)内单调递减,则实数a的取值范围是______。
2. 已知函数g(x) = x^3 - 6x^2 + 9x,则g'(x)的正确表达式是______。
3. 设向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积为______。
4. 已知等差数列的前5项和为35,公差为3,首项为______。
5. 若复数z = 3 + 4i的模为5,则复数z的辐角主值为______。
三、解答题(每题10分,共50分)1. (10分)已知函数f(x) = x^3 - 6x^2 + 9x,求f'(x)并讨论f(x)的单调性。
2. (10分)已知等差数列的首项为a,公差为d,前n项和为S,求证:S = n/2 * (2a + (n - 1)d)。
3. (10分)解方程:x^2 + (a - 2)x + 1 = 0,讨论方程的实数根情况。
4. (10分)已知复数z = a + bi(a, b为实数),且|z| = 5,求复数z的模和辐角主值。
高二数学上学期期末考试试题(及答案)
高二数学上学期期末考试试题(及答案)高二数学上学期期末考试试题及答案第I卷(选择题)1.在三角形ABC中,已知a+b=c-2ab,则C=()。
A。
2π/3 B。
π/3 C。
π D。
3π/4改写:在三角形ABC中,已知a+b=c-2ab,求C的大小。
答案:B2.在三角形ABC中,已知cosAcosB=p,求以下条件p的充要条件。
A。
充要条件B。
充分不必要条件C。
必要不充分条件D。
既非充分也非必要条件改写:在三角形ABC中,已知cosAcosB=p,求p的充要条件。
答案:B3.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为()。
A。
9 B。
27 C。
54 D。
72改写:已知等比数列{an}和等差数列{bn}的一些条件,求{bn}的前9项和。
答案:C4.已知数列{an}的前n项和Sn=n+2n,则数列{a1}的前n 项和为()。
A。
n^2/(n-1) B。
n(n+1)/(2n+1) C。
3(2n+3)/(2n+1) D。
3(n+1)/(n-1)改写:已知数列{an}的前n项和Sn=n+2n,求数列{a1}的前n项和。
答案:B5.设 2x-2y-5≤2,3x+y-10≥3,则z=x+y的最小值为()。
A。
10 B。
8 C。
5 D。
2改写:已知不等式2x-2y-5≤2和3x+y-10≥3,求z=x+y的最小值。
答案:C6.对于曲线C:x^2/4+y^2/k^2=1,给出下面四个命题:①曲线C不可能表示椭圆;②“14”的必要不充分条件;④“曲线C表示焦点在x轴上的椭圆”是“1<k<5”的充要条件。
其中真命题的个数为()。
A。
0个 B。
1个 C。
2个 D。
3个改写:对于曲线C:x^2/4+y^2/k^2=1,判断下列命题的真假,并统计真命题的个数。
答案:C7.对于曲线C:x^2+y^2=1与直线y=k(x+3)交于点A,B,则三角形ABM的周长为()。
【必考题】高二数学上期末试卷附答案
A.12.68 万元
B.13.88 万元
C.12.78 万元
D.14.28 万元
8.执行如图所示的程序框图,如果输入的 a 1,则输出的 S
A.2
B.3
C.4
D.5
9.赵爽是我国古代数学家、天文学家大约在公元 222 年赵爽为《周碑算经》一书作序时,
介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由 4 个全等的直角
人,则星期六安排一名男生、星期日安排一名女生的概率为( )
A. 1 3
B. 5 12
C. 1 2
D. 7 12
11.从 1,2,3,…,9 中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个
奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一
个偶数.在上述事件中,是对立事件的是
的平均数和方差分别为( )
A. x , 82
B. 5x 2 , 82
C. 5x 2 , 2582 D. x , 2582
4.某高校大一新生中,来自东部地区的学生有 2400 人、中部地区学生有 1600 人、西部地
区学生有 1000 人.从中选取 100 人作样本调研饮食习惯,为保证调研结果相对准确,下列判
一、选择题
1.A 解析:A 【解析】 【分析】
根据二项式 (2 x)5 展开式的通项公式,求出 x3 的系数,由已知先求 a 的值,模拟程序的
运行,可得判断框内的条件. 【详解】
3
解:由于 a (2x 1)dx x2 x |30 6 ,
0
二项式 (2 x)5 展开式的通项公式是 Tr1 C5r 25r xr , 令r 3, T31 C53 22 x3 ; x3 的系数是 C53 22 13 40 . 程序运行的结果 S 为 360, 模拟程序的运行,可得 k 6 , S 1 不满足条件,执行循环体, S 6 , k 5 不满足条件,执行循环体, S 30 , k 4 不满足条件,执行循环体, S 120 , k 3 不满足条件,执行循环体, S 360 , k 2 由题意,此时,应该满足条件,退出循环,输出 S 的值为 360.
【常考题】高二数学上期末试题带答案
【常考题】高二数学上期末试题带答案一、选择题1.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )A .116B .18 C .38D .3162.下面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为( )A .90?i ≤B .100?i ≤C .200?i ≤D .300?i ≤3.执行如图所示的程序框图,若输入8x =,则输出的y 值为( )A .3B .52C .12D .34-4.如果数据121x +、221x +、L 、21n x +的平均值为5,方差为16,则数据:153x -、253x -、L 、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1445.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸6.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .637.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( ).①1月至8月空气合格天数超过20天的月份有5个 ②第二季度与第一季度相比,空气合格天数的比重下降了 ③8月是空气质量最好的一个月 ④6月的空气质量最差 A .①②③B .①②④C .①③④D .②③④8.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( ) A .31号B .32号C .33号D .34号9.下列赋值语句正确的是( ) A .s =a +1 B .a +1=s C .s -1=a D .s -a =110.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变11.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.1636B.1736C.12D.193612.执行如图所示的程序框图,则输出s的值为()A.10 B.17 C.19 D.36二、填空题13.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.14.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.15.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________16.执行下面的程序框图,如果输入的0.02t=,则输出的n=_______________.17.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______.18.取一根长度为3米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A)的概率为________19.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.20.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.三、解答题21.某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中40%的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.拥有驾驶证 没有驾驶证 合计得分优秀得分不优秀 25合计100(1)补全上面22⨯的列联表,并判断能否有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关?(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k ≥ 0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试,先从这些学生的成绩中随机抽取了50名学生的成绩,按照[)[)[]50,60,60,70,...,90,100分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分)(1)求频率分布直方图中的x 的值,并估计50名学生的成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表)(2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数. 23.用秦九韶算法求()543383f x x x x =+-25126x x ++-,当2x =时的值.24.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率25.设关于x 的一元二次方程2220x bx a -+=,其中,a b 是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率. (1)若随机数,{1,2,3,4}a b ∈;(2)若a 是从区间[0,4]中任取的一个数,b 是从区间[1,3]中任取的一个数. 26.某学校高一、高二、高三的三个年级学生人数如下表高三高二高一女生100150z男生300450600按年级分层抽样的方法评选优秀学生50人,其中高三有10人.(1)求z 的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取8人,经检测她们的得分如下:9.4,8.6,9.2, 9.6,8.7,9.3,9.0,8.2,把这8人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为, 由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.2.B解析:B 【解析】 【分析】根据题意可知该程序运行过程中,95i =时,判断框成立,191i =时,判断框不成立,即可选出答案。
高二上半学年的数学期末试题及解答
高二上半学年的数学期末试题及解答试题一:代数与函数1. 已知函数 $f(x) = 3x^2 - 2x + 5$,求 $f(2)$ 的值。
2. 解方程 $\frac{1}{3}x + 4 = 7$。
3. 若 $x$ 是方程 $2x + 1 = 3$ 的解,求方程 $4x + 2 = 6$ 的解。
解答一:代数与函数1. 将 $x$ 替换为 $2$,得到 $f(2) = 3(2)^2 - 2(2) + 5 = 15$。
2. 将方程两边同时减去 $4$,得到 $\frac{1}{3}x = 3$。
再将方程两边同时乘以 $3$,得到 $x = 9$。
3. 将方程两边同时减去 $2$,得到 $4x = 4$。
再将方程两边同时除以 $4$,得到 $x = 1$。
试题二:几何1. 已知 $\triangle ABC$ 是等腰三角形,$AB = AC$。
若 $\angle BAC = 60^\circ$,求 $\angle ABC$ 和 $\angle BCA$ 的度数。
2. 在直角三角形 $\triangle ABC$ 中,已知 $AB = 5$,$BC =12$,求 $AC$ 的长度。
3. 已知平行四边形 $ABCD$ 的对角线交点为 $E$,若 $AC =8$,$BD = 6$,求 $AE$ 和 $DE$ 的长度。
解答二:几何1. 由等腰三角形的性质可知,$\angle ABC = \angle BCA$。
又由三角形内角和为 $180^\circ$,得到 $\angle ABC = \angle BCA =\frac{180^\circ - 60^\circ}{2} = 60^\circ$。
2. 根据勾股定理,$AC = \sqrt{AB^2 + BC^2} = \sqrt{5^2 + 12^2} = \sqrt{169} = 13$。
3. 由平行四边形的性质可知,$AE = BD = 6$,$DE = AC - AE = 13 - 6 = 7$。
高二数学上学期期末考试题及答案
高二数学上学期期末考试题及答案一、选择题(每题4分,共40分)1. 设函数$f(x) = x^3 - 3x + 1$,则$f(-1)$的值为()A. -3B. 0C. 3D. 4答案:C2. 函数$y = 2x^3 - 3x^2 + 1$的导数为()A. $6x^2 - 6x$B. $6x^2 + 6x$C. $6x^2 - 3x$D. $6x^2 + 3x$答案:A3. 设函数$y = \sqrt{1 - x^2}$,则其定义域为()A. $x \in (-\infty, 1]$B. $x \in [0, 1]$C. $x \in [-1, 1]$D. $x \in (-\infty, -1] \cup [1, +\infty)$答案:C4. 已知函数$f(x) = \frac{1}{x}$,$g(x) = x^2$,则$f(g(x))$的解析式为()A. $\frac{1}{x^3}$B. $\frac{1}{x^2}$C. $x^3$D. $x^4$答案:A5. 已知函数$f(x) = x^3 - 3x^2 + 2$,求$f(1)$的值()A. 0B. 1C. 2D. 3答案:B6. 设函数$f(x) = 2x + 3$,$g(x) = 4x - 5$,求$f(g(x))$的值()A. $8x - 7$B. $8x + 7$C. $6x - 7$D. $6x + 7$答案:A7. 已知函数$f(x) = x^2 - 2x + 1$,求$f(-1)$的值()A. 0B. 1C. 2D. 3答案:B8. 设函数$f(x) = 2x^3 - 3x^2 + 1$,则$f'(x)$的值为()A. $6x^2 - 6x$B. $6x^2 + 6x$C. $6x^2 - 3x$D. $6x^2 + 3x$答案:A9. 函数$y = x^2 + 2x + 1$的极值点为()A. 0B. 1C. -1D. 2答案:C10. 设函数$f(x) = x^3 - 3x^2 + 3x - 1$,则$f(2)$的值为()A. 0B. 1C. 2D. 3答案:D二、填空题(每题4分,共40分)11. 函数$f(x) = x^3 - 3x^2 + 2$的导数为________。
高二数学上学期期末考试试卷含答案(共3套)
高二上学期期末考试数学试卷含答案(全卷满分:120 分 考试用时:120 分钟)一、选择题(本大题共12小题,共60分)1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是( )A. ①用随机抽样法,②用系统抽样法B. ①用系统抽样法,②用分层抽样法C. ①用分层抽样法,②用随机抽样法D. ①用分层抽样法,②用系统抽样法 2.若直线1:(2)10l m x y ---=与直线2:30l x my -=互相平行,则m 的值为( )A. 0或-1或3B. 0或3C. 0或-1D. -1或33.用秦九韶算法求多项式542()42016f x x x x x =++++在2x =-时,2v 的值为( )A. 2B.-4C. 4D. -34.执行右面的程序框图,如果输入的3N =,那么输出的S =( )A. 1B.32C.53D.525.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件) 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A. 5,5B. 3,5C. 3,7D. 5,7 6.若点P (3,4)和点Q (a ,b )关于直线10x y --=对称,则( )A.5,2a b ==B. 2,1a b ==-C. 4,3a b ==D. 1,2a b ==-7.直线l 过点(0,2),被圆22:4690c x y x y +--+=截得的弦长为l 的方程是( )A.423y x =+ B. 123y x =-+ C. 2y = D. 423y x =+ 或2y = 8.椭圆221169x y +=中,以点(1,2)M 为中点的弦所在直线斜率为( )A.932-B.932C.964D.9169.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )C.12πD.14π10.若椭圆22194x y k+=+的离心率为45,则k 的值为( ) A .-21B .21C .-1925或21D.1925或21 11.椭圆221164x y +=上的点到直线x +2y -2=0的最大距离是( ) A .3 B.11 C .2 2D.1012.2=,若直线:12l y kx k =+-与曲线有公共点,则k 的取值范围是( )A.1,13⎡⎤⎢⎥⎣⎦ B.1,13⎛⎫ ⎪⎝⎭ C. )1,1,3⎛⎤⎡-∞⋃+∞ ⎣⎥⎝⎦ D. ()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭二、填空题(本大题共4小题,共20分)13.命题“20,0x x x ∀>+>”的否定为______________________________ .14.已知x 与y 之间的一组数据:,已求得关于y 与x 的线性回归方程 1.20.55x =+,则a 的值为______ .15.若,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为______.16.椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,焦距为2c. 若直线y =3(x +c)与椭圆的一个交点M满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.三、解答题(本大题共6小题,共70分)17.(本小题10分)已知直线l 的方程为210x y -+=. (1)求过点A (3,2),且与直线l 垂直的直线1l 的方程; (2)求与直线l 平行,且到点P (3,0)的距离2l 的方程.18.(本小题12分)设命题:p 实数x 满足22430x ax a -+<(0a >);命题:q 实数x 满足32x x -+<0. (1)若1a =且p ∧q 为真,求实数x 的取值范围;(2)若¬q 是¬p 的充分不必要条件,求实数a 的取值范围.19.(本小题12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1), …[4,4.5]分成9组,制成了如图所示的频率分布直方图. (1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (3)估计居民月均用水量的中位数.20.(本小题12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x 、y . 奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.21.(本小题12分)已知曲线方程为:22240x y x y m +--+=. (1)若此曲线是圆,求m 的取值范围;(2)若(1)中的圆与直线240x y +-=相交于M 、N 两点,且OM⊥ON(O 为坐标原点),求m 的值.22.(本小题12分)已知1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上. (1)求椭圆C 的方程;(2)直线:l y kx m =+(m >0)与椭圆C 有且仅有一个公共点,且与x 轴和y 轴分别交于点M ,N ,当△OMN 面积取最小值时,求此时直线l 的方程.数学参考答案13.20000,0x x x ∃>+≤14. 2.1515. -5117.(1)设与直线l :2x -y +1=0垂直的直线1l 的方程为:x +2y +m =0,-------------------------2分把点A (3,2)代入可得,3+2×2+m =0,解得m =-7.-------------------------------4分 ∴过点A (3,2)且与直线l 垂直的直线1l 方程为:x +2y -7=0;----------------------5分(2)设与直线l :2x -y +1=0平行的直线2l 的方程为:2x -y +c =0,----------------------------7分∵点P (3,0)到直线2l =,解得c =-1或-11.-----------------------------------------------8分∴直线2l 方程为:2x -y -1=0或2x -y -11=0.-------------------------------------------10分18.(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,又a >0,所以a <x <3a ,.------------------------------------------------------2分 当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.由实数x 满足302x x -<+ 得-2<x <3,即q 为真时实数x 的取值范围是-2<x <3.------4分 若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是1<x <3.---------------------------------------------- 6分(2)¬q 是¬p 的充分不必要条件,即p 是q 的充分不必要条件 -----------------------------8分由a >0,及3a ≤3得0<a ≤1,所以实数a 的取值范围是0<a ≤1.-------------------------------------------------12分19.(1)∵1=(0.08+0.16+a +0.40+0.52+a +0.12+0.08+0.04)×0.5,------------------------2分整理可得:2=1.4+2a ,∴解得:a =0.3-----------------------------------------------------------------4分(2)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量为30万-----6分 则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.---------------------------8分 (3)根据频率分布直方图,得0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5, 0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x ,---------------------------------------10分 令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x =0.5, 解得x =0.06;∴中位数是2+0.06=2.06.--------------------------------------------------------12分 20.(1)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4),共16个, ----------------------------2分 满足xy ≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个, ----------4分∴小亮获得玩具的概率为516; -------------------------------------------------------6分 (2)满足xy ≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个, ----8分∴小亮获得水杯的概率为616; --------------------------------------------------------9分 小亮获得饮料的概率为5651161616--=,----------------------------------------------11分 ∴小亮获得水杯大于获得饮料的概率.-------------------------------------------------12分21.(1)由曲线方程x 2+y 2-2x -4y +m =0.整理得:(x -1)2+(y -2)2=5-m ,------------------------------------------------2分 又曲线为圆,则5-m >0,解得:m <5.------------------------------------------------------------------4分(2)设直线x +2y -4=0与圆:x 2+y 2-2x -4y +m =0的交点为M (x 1,y 1)N (x 2,y 2).则:22240240x y x y x y m +-=⎧⎨+--+=⎩,消去x 整理得:5y 2-16y +8+m =0, 则:1212168,55m y y y y ++==,------------------------------------------------6分 由OM ⊥ON (O 为坐标原点),可得x 1x 2+y 1y 2=0,-------------------------------------8分又x 1=4-2y 1,x 2=4-2y 2,则(4-2y 1)(4-2y 2)+y 1y 2=0.---------------------------------------------------10分 解得:85m =,故m 的值为85.--------------------------------------------------12分 22.(1)∵1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上,∴依题意,1c =,又3242a ==,故2a =.---------------------2分由222b c a +=得b 2=3.-----------------------------------------------------------3分故所求椭圆C 的方程为22143x y +=.-----------------------------------------------4分(2)由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消y 得(4k 2+3)x 2+8kmx +4m 2-12=0,由直线l 与椭圆C 仅有一个公共点知,△=64k 2m 2-4(4k 2+3)(4m 2-12)=0,整理得m 2=4k 2+3.-----------------------------6分 由条件可得k ≠0,(,0)mM k-,N (0,m ). 所以.①------------------------------8分将m 2=4k 2+3代入①,得.因为|k |>0,所以,-------------------------------10分当且仅当34k k=,则,即时等号成立,S △OMN 有最小值.-----11分因为m 2=4k 2+3,所以m 2=6,又m >0,解得.故所求直线方程为或.----------------------------12分高二级第一学期期末质量检测数学试卷本试卷分两部分,共4页,满分150分。
高二数学上学期期末考试题精选及答案
高二数学上学期期末考试题精选及答案一、选择题1. 有七名同学站成一排拍毕业照,其中甲必须站在正中间,乙和丙两位同学必须站在一起,则不同的站法一共有()A. 180种B. 90种C. 60种D. 30种答案:B2. 若函数f(x) = x^3 + ax + b在区间(-∞,+∞)上是增函数,则实数a的取值范围是()A. a ≥ 0B. a ≤ 0C. a > 0D. a < 0答案:C3. 若函数f(x) = 2x - k(x - 2)^2 在区间(1,+∞)上是减函数,则实数k的取值范围是()A. k ≤ 0B. k > 0C. k < 0D. k ≥ 0答案:C4. 设函数f(x) = x^2 + 2x + c,若f(x)在区间(-∞,+∞)上单调递增,则实数c的取值范围是()A. c ≥ 0B. c ≤ 0C. c > 0D. c < 0答案:A二、填空题5. 若函数f(x) = |x - 2| + |x + 1| 的最小值为3,则实数x的取值范围是______。
答案:x ∈ [-1, 2]6. 已知函数f(x) = x^3 - 6x + 9,求f(x)的单调递增区间为______。
答案:(-∞, 2] ∪ [3, +∞)7. 若函数f(x) = x^2 + mx + 1 在区间(1,+∞)上是减函数,则实数m的取值范围是______。
答案:m < -28. 已知函数f(x) = 3x^3 - 4x^2 + 1,求f(x)的单调递减区间为______。
答案:[0, 2/3]三、解答题9. 设函数f(x) = x^3 - 6x + a,其中a是常数。
(1)求f(x)的单调递增区间;(2)若f(x)在区间(-∞,+∞)上是减函数,求实数a的取值范围。
答案:(1)f(x)的单调递增区间为:(-∞, 2] ∪ [3, +∞)(2)由于f(x)在区间(-∞,+∞)上是减函数,所以f'(x) ≤ 0,即3x^2 - 6 ≤ 0。
【必考题】高二数学上期末试卷带答案(1)
必考题】高二数学上期末试卷带答案(1)一、选择题1.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于220C . 现有甲、乙、丙三地连续5 天的日平均气温的记录数据(记录数据都是正整数):①甲地:5 个数据是中位数为24,众数为22;②乙地:5 个数据是中位数为27,总体均值为24;③丙地:5 个数据中有一个数据是32,总体均值为26,总体方差为10.8 则肯定进入夏季的地区有()A.①②③B.①③C.②③D.① 2.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是()3732A.B.C.D.20 20 16 5 3.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的S 2(单位:升),则输入k 的值为A.6 B.7 C.8 D.94.大学生小明与另外3 名大学生一起分配到某乡镇甲、乙丙3 个村小学进行支教,若每个村小学至少分配1 名大学生,则小明恰好分配到甲村小学的概率为()1 1 1 1 A.B.C.D.12 2 3 65.日本数学家角谷静夫发现的“ 3x 1 猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以2 ,如果它是奇数我们就把它乘3 再加上1,在这样一个变换下,我们就得到了一个新的自然数.如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为1,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的N 6 ,则输出i 值为()C.D.9 )0 D.-2a 的值大于 100 ,那么判断框内的条件为 ( )C . k 6?D . k 6?9.已知具有线性相关的两个变量 x,y 之间的一组数据如下表所示:xy若 x, y 满足回归方程 y? 1.5x a? ,则以下为真命题的是( )A . x 每增加 1 个单位长度,则 y 一定增加 1.5 个单位长度B . x 每增加 1 个单位长度, y 就减少 1.5 个单位长度C .所有样本点的中心为 (1,4.5)D .当 x 8时, y 的预测值为 13.510. 赵爽是我国古代数学家、天文学家大约在公元 222 年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图” (以弦为边长得到的正方形是由 4 个全等的 直角三角形再加上中间的一个小正方形组成的 ) 类比“赵爽弦图”,赵爽弦图可类似地构造 如图所示的图形,它是由个 3 全等的等边三角形与中间的一个小等边三角形组成的一个大 等边三角形,设 DF 2AF ,若在大等边三角形中随机取一点,则此点取自小等边三角形的A .﹣11B .2 C .2 D .18.执行如图的程序框图,如果输出奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有、填空题13.执行如图所示的程序框图若输人x 的值为3 ,则输出y 的值为__概率是( )11.从1,2,3 ,⋯,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个个偶数.在上述事件中,是对立事件的是A.①B.②④(C.③4 ,则输入的整数C.6).D.①③ p的最小值是( )D.1514.某程序框图如图所示,若输入的t 4 ,则输出的k ____15.某班60 名学生参加普法知识竞赛,成绩都在区间[40 ,100]上,其频率分布直方图如图所示,则成绩不低于60 分的人数为___.16.现有编号为1,2,3,⋯,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7 所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码. 例如,编号为52 的锁所对应的开锁密码是123,开锁密码为232 所对应的锁的编号是23. 若一把锁的开锁密码为203,则这把锁的编号是17.如图是一个算法流程图,则输出的S 的值为18.如图所示,在边长为1的正方形OABC中任取一点M.则点M 恰好取自阴影部分的概19.取一根长度为3 米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A )的概率为______20.已知由样本数据点集合x i, y i |i 1,2,3, L L ,n ,求得的回归直线方程为,且x 4 。
【必考题】高二数学上期末试题(附答案)
【必考题】高二数学上期末试题(附答案)一、选择题1.把“二进制”数101101(2)化为“八进制”数是()A.40(8)B.45(8)C.50(8)D.55(8)2.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A.B.C.D.3.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率分布直方图如图所示则下列说法正确的是()A.频率分布直方图中a的值为 0.040B.样本数据低于130分的频率为 0.3C.总体的中位数(保留1位小数)估计为123.3分D.总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等4.某工厂对一批新产品的长度(单位:mm)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75 5.设A为定圆C圆周上一点,在圆周上等可能地任取一点与A2倍的概率()A.34B.35C.13D.126.在半径为2圆形纸板中间,有一个边长为2的正方形孔,现向纸板中随机投飞针,则飞针能从正方形孔中穿过的概率为()A .4πB .3πC .2πD .1π 7.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈ ⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα8.设数据123,,,,n x x x x L 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变9.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是 ( ). A .① B .②④ C .③D .①③10.如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率π的近似值为( )A .3.1B .3.2C .3.3D .3.411.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40337=+.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是( )A .12B .13C .14D .1512.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是( )A .25B .35C .23D .15二、填空题13.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).14.如果执行如图的程序框图,那么输出的S =__________.15.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.16.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =)满足4115i i x==∑,4112i i y ==∑,若广告费用x 和销售额y 之间具有线性相关关系,且回归直线方程为^y bx a =+,0.6b =,那么广告费用为5千元时,可预测的销售额为___万元.17.已知下列命题:①ˆ856yx =+意味着每增加一个单位,y 平均增加8个单位 ②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件 ③互斥事件不一定是对立事件,但对立事件一定是互斥事件④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型其中正确的命题有__________________.18.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______.19.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.20.已知由样本数据点集合(){},|1,2,3,,i i x y i n =L L ,求得的回归直线方程为1.230.08y x Λ=+ ,且4x =。
高二数学上学期期末考试试题含解析试题
卜人入州八九几市潮王学校房山区2021--2021第一学期期末检测试卷高二数学一、选择题:本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项符合题目要求.1.椭圆2243x y+=1的离心率是〔〕A.2B.2C.13D.12【答案】D 【解析】【分析】由椭圆22143x y+=方程可知a、b、c的值,由离心率cea=求出结果.【详解】解:由椭圆22143x y+=可知,2a=,b=1c=,∴离心率12cea==,应选:D.【点睛】此题考察椭圆的HY方程,以及椭圆的简单性质的应用,求出a、c的值是解题的关键,属于根底题.2.在空间假设把平行于同一平面且长度相等的所有非零向量的起点放在同一点,那么这些向量的终点构成的图形是〔〕A.一个球B.一个圆C.半圆D.一个点【答案】B【解析】 【分析】利用一共面向量的概念及向量的模即可得答案.【详解】解:平行于同一平面的所有非零向量是一共面向量,把它们的起点放在同一点,那么终点在同一平面内,又这些向量的长度相等,那么终点到起点的间隔为定值.故在空间把平行于同一平面且长度相等的所有非零向量的起点放在同一点,那么这些向量的终点构成的图形是一个圆. 应选:B .【点睛】此题考察方程,关键是理解一共面向量的概念,属于根底题.3.双曲线2214y x -=的渐近线方程为()A.2y x =±B.y =C.12y x=±D.2y x =±【答案】A 【解析】 【分析】直接利用双曲线的HY 方程22221x y a b -=的渐近线方程为b y x a =±,求出双曲线的渐近线方程即可. 【详解】解:因为双曲线的HY 方程为2214y x -=,那么它的渐近线方程为:2y x =±. 应选:A .【点睛】此题考察双曲线的渐近线方程的求法,考察计算才能,属于根底题. 4.向量()2,3,5a =-与向量()4,,1b x =-垂直,那么实数x 的值是〔〕A.﹣1B.1C.﹣6D.6【答案】B 【解析】 【分析】根据数量积的坐标计算公式代入可得x 的值. 【详解】解:向量()2,3,5a =-,与向量()4,,1b x =-垂直,那么0a b =,由数量积的坐标公式可得:24(3)5(1)0x ⨯+-⨯+⨯-=, 解得1x =, 应选:B .【点睛】此题考察空间向量的坐标运算,以及数量积的坐标公式,属于根底题.5.双曲线226436x y -=1的焦点为F 1,F 2,P 为其上一点.假设点P 到F 1的间隔为15,那么点P 到F 2的间隔是〔〕 A.31 B.1C.﹣1D.﹣1或者31 【答案】A 【解析】 【分析】直接利用双曲线的定义,转化求解即可.【详解】解:双曲线2216436x y -=的焦点为1F ,2F ,P 为其上一点.所以12216PF PF a -==,假设点P 到1F 的间隔为115PF =,21516PF ∴-=,解得231PF =或者21PF =-〔舍去〕, 所以点P 到2F 的间隔是:31. 应选:A .【点睛】此题考察双曲线的简单性质的应用,双曲线的定义的应用,属于根底题.6.直线l 的方向向量()1,2,1a =-,平面α的法向量()2,4,2b =-,那么直线l 与平面α的位置关系是()A.//l αB.lα⊥ C.l α⊂ D.l α∈【答案】B 【解析】 【分析】由可求2b a =,判断b 与a 一共线,即可得解l a ⊥.【详解】解:直线l 的方向向量()1,2,1a =-,平面α的法向量()2,4,2b =-,∴2b a =,∴那么b 与a 一共线,可得:l a ⊥.应选:B .【点睛】此题考察满足线面平行的条件的判断,考察线面垂直的性质等根底知识,考察运算求解才能,属于根底题.7.在正方体ABCD ﹣A 1B 1C 1D 1中,向量AB 与向量11C A 的夹角是〔〕A.150°B.135°C.45°D.30°【答案】B 【解析】【分析】由题意利用正方体的性质,求出向量AB 与向量11C A 的夹角.【详解】解:如图,正方体1111ABCD A B C D -中,11//AB A B ,11//AC A C ,111C A B ∴∠的补角即为向量AB 与向量11C A 的夹角.111C A B ∆为等腰直角三角形,11145C A B ∴∠=︒,∴量AB 与向量11C A 的夹角为18045135︒-︒=︒,应选:B .【点睛】此题主要考察两个向量的夹角,正方体的性质,属于中档题. 8.抛物线216y x =上的点P 到抛物线焦点的间隔10m =,那么点P 到y 轴的间隔d 等于〔〕A.12B.9C.6D.3【答案】C 【解析】 【分析】由抛物线的性质可得到焦点的间隔等于到准线的间隔,求出P 的横坐标,即为P 到y 轴的间隔.【详解】解:由抛物线的方程可得准线方程为:4x =-,设P 的横坐标为0x ,由抛物线的性质可得0410x +=,所以06x =,所以P 到y 轴的间隔为6,应选:C .【点睛】考察抛物线的定义的理解,属于根底题.9.双曲线2214x y k+=的离心率2e <,那么实数k 的取值范围是()A.k 0<或者3k >B.30k -<<C.120k -<<D.83k -<<【答案】C 【解析】 【分析】直接利用双曲线的方程,求出离心率,利用条件求解即可.【详解】解:双曲线2214x y k+=可知k 0<,并且2a =,c ,双曲线的离心率为:e , 12e <<,∴12<,解得120k -<<,综上120k -<<. 应选:C .【点睛】此题考察双曲线的根本性质的应用,注意双曲线方程的判断,属于根底题. 10.假设抛物线24y x =的焦点为F .点M 为该抛物线上的动点,又点(1,0)A -.那么||||MF MA 的最大值是()A.12B.2D.1【答案】D 【解析】 【分析】 由题意可得A 在抛物线的准线上,由抛物线的性质可得抛物线上的点到焦点的间隔等于到准线的间隔可得||||MF MN MA AM =,所以||||MF MA 的最大值时,A ,M ,F 三点一共线,可得结果. 【详解】解:由抛物线的方程可得,焦点(1,0)F ,准线方程为:1x =-,(1,0)A -点在准线上,作MN ⊥准线交于N ,由抛物线的性质可得|||MF MN =,所以||||||||MF MN MA MA =, 在三角形AMN 中,cos MNMAF MA=∠,所以||||MF MA 的最大值时,FAM ∠最小,当A ,M ,F 上的一共线时,FAM ∠最小,所以这时||||MF MA 的最大值为1,应选:D .【点睛】考察抛物线简单几何性质,属于根底题. 11.“方程221mxny +=表示焦点在y 轴上的椭圆〞的充要条件是()A.0m n >>B.0n m >>C.0mn >D.0mn <【答案】A 【解析】 【分析】根据椭圆的HY 方程,即可得到结论.【详解】解:假设方程表示椭圆,那么m ,0n ≠,那么方程等价为22111x y m n+=, 假设方程表示焦点在y 轴上椭圆,那么等价为110n m>>, 解得:0m n >>, 应选:A .【点睛】此题主要考察椭圆的定义和方程,将条件转化为HY 方程形式是解决此题的关键,属于根底题. 12.在正方体ABCD ﹣A 1B 1C 1D 1中,点Q 是平面A 1BCD 1内的动点,且点Q 到直线AB 1和直线BC 的间隔相等,那么动点Q 的轨迹是〔〕 A.圆的一局部 B.椭圆的一局部 C.双曲线的一局部 D.抛物线的一局部【答案】D 【解析】 【分析】由题意画出图形,证明Q 到直线1AB 的间隔为Q 到G 点的间隔,再由抛物线的定义得动点Q 的轨迹.【详解】解:如图, 在正方体1111ABCD A B C D -中,有11A D ⊥平面11AA B B ,那么111A D AB ⊥,又11AB A B ⊥,1111A B A D A =,1A B ⊂平面11A BCD ,11A D ⊂平面11A BCD ,1AB ∴⊥平面11A BCD ,设11A BAB G =,连接QG ,那么1QG AB ⊥,垂直为G ,而G 与BC 在平面11A BCD 内,且G BC ∉, 又点Q 到直线1AB 和直线BC 的间隔相等,即点Q 到G 的间隔与到直线BC 的间隔相等,由抛物线定义可知,动点Q 的轨迹是抛物线的一局部. 应选:D .【点睛】此题考察轨迹方程的求法,考察空间想象才能与思维才能,考察抛物线定义的应用,属于中档题. 二、填空题:本大题一一共6小题,每一小题5分,一共30分. 13.设θ是直线与平面所成的角,那么角θ的取值范围是_____. 【答案】[0,2π]. 【解析】 【分析】当直线在平面内或者直线平行于平面时,θ取最小值0,当直线与平面垂直时,θ取最大值2π,由此能求出角θ的取值范围.【详解】解:θ是直线与平面所成的角,当直线在平面内或者直线平行于平面时,θ取最小值0, 当直线与平面垂直时,θ取最大值2π, ∴角θ的取值范围是0,2π⎡⎤⎢⎥⎣⎦.故答案为:0,2π⎡⎤⎢⎥⎣⎦.【点睛】此题考察线面角的取值范围的求法,考察空间中线线、线面、面面间的位置关系等根底知识,考察运算求解才能,属于根底题.14.双曲线22169y x -=1的实轴长为_____.【答案】8. 【解析】 【分析】直接利用双曲线HY 方程,求出实轴长即可.【详解】解:双曲线221169y x -=的实轴长为:2248a =⨯=.故答案为:8.【点睛】此题考察双曲线的简单性质的应用,是根本知识的考察,属于根底题. 15.抛物线28xy 的准线方程是_____,焦点坐标是_____.【答案】(1).y =2(2).〔0,﹣2〕. 【解析】【分析】由抛物线的方程直接可得p 的值及焦点所在轴,求出结果.【详解】解:由抛物线28x y 可得:28p =,所以4p =,且焦点在y 轴的负半轴上,所以焦点0,2p ⎛⎫- ⎪⎝⎭即:()0,2-,准线22p y ==, 故答案分别为:2y =;()0,2-.【点睛】考察抛物线的HY 方程求焦点坐标及准线方程,属于根底题. 16. ①设A ,B 为两个定点,k 为非零常数,假设||||PA PB k -=,那么动点P 的轨迹为双曲线;②方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率;③双曲线221259x y -=与椭圆22135x y +=有一样的焦点..【答案】②③. 【解析】 【分析】〔1〕根据双曲线的定义知①不正确,〔2〕解方程知两个正根,一根大于1作双曲线的离心率,一根小于1作椭圆的离心率,断定②正确;,〔3〕求出双曲线的焦点与椭圆的焦点,断定③正确.【详解】解:①平面内与两个定点1F ,2F 的间隔的差的绝对值等于常数12(||)k k F F <的点的轨迹叫做双曲线,当0||k AB <<时是双曲线的一支,当||k AB =时,表示射线,∴①不正确; ②方程22520x x -+=的两根是2和12,2可作为双曲线的离心率,12可作为椭圆的离心率,②正确;③双曲线221259x y -=与椭圆22135x y +=的焦点都是(),有一样的焦点,③正确;故答案为:②③.【点睛】此题考察了椭圆与双曲线的定义、焦点坐标和离心率等知识,属于根底题. 17.在长方体1111ABCD A B C D -中,13AB A A ==,那么二面角1A BC A --的大小为_____.【答案】45°. 【解析】 【分析】 设AD a =,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1A BC A --的大小.【详解】解:设AD a =,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 那么平面ABC 的法向量()0,0,1m =,()1,0,3A a ,(),3,0B a ,()0,3,0C,(BC a =-,0,0),1(0BA =,3-,3),设平面1A BC 的法向量(),,n x y z =,那么1·0·330n BC ax n BA y z ⎧=-=⎪⎨=-+=⎪⎩,取1y =,得(0n =,1,1),设二面角1A BC A --的大小为θ,那么||2cos 2||||m n m n θ==, 45θ∴=︒.∴二面角1A BC A --的大小为45︒.故答案为:45︒【点睛】此题考察二面角的求法,考察空间中线线、线面、面面间的位置关系等根底知识,考察运算求解才能,属于中档题.18.椭圆E :22221x y a b+=,0a b >>的右焦点为()3,0F ,过点F 的直线交椭圆E 于A 、B 两点.假设AB 的中点坐标为()1,1-,那么E 的方程为__________.【答案】221189x y +=【解析】 【分析】设()11,A x y ,()22,B x y ,采用“点差法〞,得212212y y b x x a -=-,再根据直线过点()3,0F,和AB 的中点坐标()1,1-,得121212y y x x -=-,结合椭圆中a ,b ,c 的关系,可求得29b =,218a =,即可得E 的方程.【详解】3c =,设()11,A x y ,()22,B x y ,那么2211221x y a b +=①,2222221x y a b+=②,AB 的中点坐标为()121,1?2x x -+=,则,122y y +=-, ①-②得()()()()12121212220x x x x y y y y a b +-+-+=,∴()222121222212121y y x x b b b x x a y y a a-+=-⋅=-⨯-=-+,∵1212011312y y x x -+==--,∴2212b a =,即222a b =, 又22229a bc b =+=+,∴29b =,218a =,即E 的方程为221189x y +=.【点睛】此题考察了求椭圆的HY 方程,考察了弦的中点有关问题;在中点弦或者弦的中点问题中,常采用“点差法〞和中点坐标公式、斜率的计算公式求解.三、解答题:本大题一一共4小题,每一小题15分,一共60分.19.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =,点D 是AB 的中点. 〔1〕求异面直线AC 与1BC 所成的角;〔2〕求证:1//AC 平面1CDB .【答案】〔1〕2π〔2〕证明见解析 【解析】 【分析】 〔1〕因为3AC =,4BC =,5AB =,利用勾股定理的逆定理可得ABC ∆是直角三角形,AC BC ⊥.因为三棱柱111ABC A B C -为直三棱柱,可得1C C ⊥平面ABC ,建立空间直角坐标系,利用向量夹角公式即可得出.〔2〕建立空间直角坐标系,利用直线方向向量、平面的法向量关系即可得出. 【详解】解:〔1〕因为3AC =,4BC =,5AB =,所以222AC BC AB +=,所以ABC ∆是直角三角形,所以2ACB π=,所以AC BC ⊥因为三棱柱111ABC A B C -为直三棱柱,所以1C C ⊥平面ABC ,所以1C CAC ⊥,1C C BC ⊥以C 为原点,分别以CA 、CB 、1CC 为x 轴、y 轴、z 轴,建立空间直角坐标系,那么(0C ,0,0),(3A ,0,0),(0B ,4,0),1(0C ,0,4) 所以直线AC 的方向向量为(3,0,0)CA =,直线1BC 的方向向量为1(0,4,4)BC =-, 设异面直线AC 与1BC 所成的角为θ,因为10CA BC =, 所以cos 0θ=,所以异面直线AC 与1BC 所成的角为2π. 〔2〕由〔1〕可知3,2,02D ⎛⎫⎪⎝⎭,1(0B ,4,4),那么3,2,02CD ⎛⎫= ⎪⎝⎭,1(0,4,4)CB = 设平面1CDB 的法向量为(,,)n x y z =,那么1·0·0CD n CB n ⎧=⎪⎨=⎪⎩,所以3202440x y y z ⎧+=⎪⎨⎪+=⎩令4x=,那么3y =-,3z =,所以(4,3,3)n =-直线1AC 的方向向量为1(3,0,4)AC =-,因为10AC n =,1AC ⊄平面1CDB ,所以1//AC 平面1CDB .【点睛】此题考察了空间位置关系、线面面面平行与垂直的断定性质定理、三角形中位线定理、法向量的应用、向量夹角公式,考察了推理才能与计算才能,属于中档题.20.在平面直角坐标系xOy 中,点1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,顶点B 的坐标为(0,)b ,且2||2BF 41,33C ⎛⎫⎪⎝⎭是椭圆E 上一点,直线2CF 交椭圆于点A . 〔1〕求椭圆E 的方程; 〔2〕求ABC ∆的面积.【答案】〔1〕2212x y +=〔2〕43【解析】〔1〕根据椭圆的性质,将C 代入椭圆方程,即可求得b 的值,求得椭圆方程; 〔2〕由〔1〕可知,求得直线2CF 的方程,代入椭圆方程,求得A 点坐标,求得||AB ,即可求得ABC∆的面积.【详解】解:〔1〕因为顶点B 的坐标为(0,)b,2||BF所以2||BF a ===因为点41,33C ⎛⎫⎪⎝⎭在椭圆上,所以22161991a b +=,解得21b =, 故所求椭圆的方程为2212x y +=.〔2〕因为点C 的坐标为41,33⎛⎫⎪⎝⎭,点2F 的坐标为(1,0), 所以直线2CF 的斜率131413k ==-,所以直线2CF 的方程为1y x =-,由221220y x x y =-⎧⎨+-=⎩得,2340x x -=,所以01x y =⎧⎨=-⎩或者4313x y ⎧=⎪⎪⎨⎪=⎪⎩, 所以点A 的坐标为(0,1)-,所以||2AB =,所以1442233ABC S ∆=⨯⨯=. 【点睛】此题考察椭圆的HY 方程,直线与椭圆的位置关系,直线的斜率公式,考察转化思想,计算才能,属于中档题. 21.F 为抛物线2:2(0)C y px p =>的焦点,过点F 的直线交抛物线于A ,B 两点,O 为坐标原点.〔1〕当抛物线C 过点(1,2)M -时,求抛物线C 的方程; 〔2〕证明:OAOB 是定值.【答案】〔1〕y 2=4x 〔2〕证明见解析【分析】〔1〕将M 点代入抛物线方程,即可求得p 的值,求得抛物线方程;〔2〕分类讨论,当直线的斜率存在时,设直线l 的方程,代入抛物线方程,根据韦达定理及向量的坐标运算,即可证明OAOB 是定值.【详解】解:〔1〕因为抛物线2:2(0)C y px p =>过点(1,2)M -,所以42p =,2p =,所以抛物线C 的方程24y x =;〔2〕证明:当直线l 斜率存在时,(,0)2p F ,设直线l 的方程为()2py k x =-,那么2()(1)22(2)p y k x y px ⎧=-⋯⎪⎨⎪=⋯⎩, 将〔1〕代入〔2〕得,222kp kx px ⎛⎫-= ⎪⎝⎭,化简得222(2)04k p kx k p p x -++=, 设A ,B 的坐标分别为()11,x y ,()22,x y ,那么2124p x x =,因为点A ,B 都在抛物线22y px =上,所以2112y px =,2222y px =,所以22212122y y p x x =,所以22412y y p =, 因为点A ,B 分布在x 轴的两侧,所以120y y <,所以212y y p =-,所以11(,)OA x y =,22(,)OB x y =,所以2121234OA OB x x y y p =+=-,是定值. 当直线l 无斜率时,(,0)2p F ,设A ,B 的坐标分别为1(x ,1)y ,2(x ,2)y ,那么122p x x ==,代入抛物线方程22y px =得,221y p =,222y p =,所以22412y y p =,因为点A ,B 分布在x 轴的两侧,所以120y y <,所以212y y p =-,所以11(,)OA x y =,22(,)OB x y =,所以2121234OA OB x x y y p =+=-,是定值.综上,234p OA OB =-,是定值.【点睛】此题考察抛物线的HY 方程及简单几何性质,直线与抛物线的位置关系,考察韦达定理,考察分类讨论思想,计算才能,属于中档题.22.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,AB =PA =1,AD =F 是PB 中点,E 为BC 上一点.〔1〕求证:AF ⊥平面PBC ;〔2〕当BE 为何值时,二面角C ﹣PE ﹣D 为45°.【答案】〔1〕证明见解析〔2〕BE =【解析】 【分析】 〔1〕以A 为原点,AD 为x 轴,AB 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能证明AF ⊥平面PBC .〔2〕设BEa =,(),1,0E a ,求出平面PDE 的法向量和平面PCE 的法向量,利用向量法能求出当BE C PE D --为45︒. 【详解】解:〔1〕证明:以A 为原点,AD 为x 轴,AB 为y 轴,AP 为z 轴,建立空间直角坐标系,1AB PA ==,AD =,F 是PB 中点,(0A ∴,0,0),(0P ,0,1),(0B ,1,0),C 1,0),)D ,(0,1,1)PB =-,(3,1,1)PC =-,(0F ,12,1)2, (0AF =,12,1)2,0AF PB =,0AF PC =,AF PB ∴⊥,AF PC ⊥, AF ∴⊥平面PBC .〔2〕设BE a =,(E a ∴,1,0),(3,1,0)DE a =-,(3,0,1)PD =-,设平面PDE 的法向量(,,)n x y z =,那么·(3)0·30n DE a x y n PD x z ⎧=-+=⎪⎨=-=⎪⎩,取1x =,得(1n=,3a -,3),平面PCE 的法向量为11(0,,)22AF =, 二面角C PE D --为45︒,21322cos ,222372an AF a a -∴<>==-+, 解得536a =, ∴当536BE =时,二面角C PE D --为45︒.【点睛】此题考察直线与平面垂直的证明,考察使得二面角为45︒的线段长的求法,解题时要认真审题,注意向量法的合理运用,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.利用计算机产生0~1之间的均匀机数 ,则使关于 的一元二次方程 无实根的概率为______.
16.如图所示,在边长为1的正方形OABC中任取一点M.则点M恰好取自阴影部分的概率是.
附: ,其中 .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
直接根据程序框图依次计算得到答案.
【详解】
模拟执行程序,可得
,
不满足条件 , ,满足条件 ,
不满足条件 , ,满足条件 ,
满足条件 , ,满足条件 ,
满足条件 , ,不满足条件 ,退出循环,输出t的值为7.
(1)求 的值;
(2)根据已知条件完成下面的 列联表,并判断是否有 以上的把握认为“读书之星”与性别有关?
非读书之星
读书之星
总计
男
女
总计
(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取 名学生,每次抽取 名,已知每个人是否被抽到互不影响,记被抽取的“读书之星”人数为随机变量 ,求 的分布列和期望
14.【解析】【分析】将所有的基本事件全部列举出来确定基本事件的总数并确定所求事件所包含的基本事件数然后利用古典概型的概率公式求出答案【详解】所有的基本事件有:(甲乙丙)(乙甲丙)(丙甲乙)(甲乙丙)(甲
解析:
【解析】
【分析】
将所有的基本事件全部列举出来,确定基本事件的总数,并确定所求事件所包含的基本事件数,然后利用古典概型的概率公式求出答案.
7.B
解析:B
【解析】
由题意可得:初如值S=2,k=2015,
S=-1,k=2016<2018
S= ,k=2017<2018
输出2,选C.
8.C
解析:C
【解析】
【分析】
根据系统抽样知,组距为 ,即可根据第一组所求编号,求出各组所抽编号.
【详解】
学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为 ,
【常考题】高二数学上期末试题及答案
一、选择题
1.执行如图的程序框图,若输入 ,则输出t的值等于( )
A.3B.5C.7D.15
2.如图, 和 都是圆内接正三角形,且 ,将一颗豆子随机地扔到该圆内,用 表示事件“豆子落在 内”, 表示事件“豆子落在 内”,则 ( )
A. B. C. D.
3.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于 .现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数):
【详解】
各数据为:122031323445454547474850506163,
最中间的数为:45,所以,中位数为45.
本题选择A选项.
【点睛】
本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.
6.C
解析:C
【解析】
根据平均数的概念,其平均数为 ,方差为 ,故选C.
【详解】
所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口区调研的专家),共 个,
故选:C.
【点睛】
本题考查了程序框图,意在考查学生的计算能力和理解能力.
2.D
解析:D
【解析】
如图所示,作三条辅助线,根据已知条件,这些小三角形全等, 包含 个小三角形,同时又在 内的小三角形共有 个,所以 ,故选D.
3.B
解析:B
【解析】
试题分析:由统计知识①甲地: 个数据的中位数为 ,众数为 可知①符合题意;而②乙地: 个数据的中位数为 ,总体均值为 中有可能某一天的气温低于 ,故不符合题意,③丙地: 个数据中有一个数据是 ,总体均值为 ,总体方差为 .若由有某一天的气温低于 则总体方差就大于 ,故满足题意,选C
5.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )
A.45B.47C.48D.63
6.如果数据 的平均数为 ,方差为 ,则 , ,…, 的平均数和方差分别为( )
A. , B. , C. , D. ,
7.执行如图的程序框图,那么输出的S的值是( )
12.B
解析:B
【解析】
【分析】
由 ,求出 ,计算出数据落在区间 内的频率,即可求解.
【详解】
由 ,
解得 ,
所以数据落在区间 内的频率为 ,
所以数据落在区间 内的频数 ,
故选B.
【点睛】
本题主要考查了频率分布直方图,频率、频数,属于中档题.
二、填空题
13.【解析】【分析】先利用辅助角公式将函数的解析式化简根据三角函数的变化规律求出函数的解析式即可计算出的值【详解】由题意可得因此故答案为【点睛】本题考查辅助角公式化简三角函数图象变换在三角图象相位变换的
解析:
【解析】
【分析】
先利用辅助角公式将函数 的解析式化简,根据三角函数的变化规律求出函数 的解析式,即可计算出 的值.
【详解】
,
由题意可得 ,
因此, ,
故答案为 .
【点睛】
本题考查辅助角公式化简、三角函数图象变换,在三角图象相位变换的问题中,首先应该将三角函数的解析式化为 (或 )的形式,其次要注意左加右减指的是在自变量 上进行加减,考查计算能力,属于中等题.
三、解答题
21.为了了解某省各景区在大众中的熟知度,随机从本省 岁的人群中抽取了 人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家 级旅游景区?”,统计结果如下表所示:
组号
分组
回答正确的人数
回答正确的人数占本组的频率
第 组
第 组
第 组
第 组
第 组
(1)分别求出 的值;
年龄(岁)
频数
14
12
8
6
知道的人数
3
4
8
7
3
2
(1)求上表中的 的值,并补全右图所示的的频率直方图;
(2)在被调查的居民中,若从年龄在 的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.
25.从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束
已知03号,18号被抽取,所以应该抽取 号,
故选C.
【点睛】
本题主要考查了抽样,系统抽样,属于中档题.
9.A
解析:A
【解析】
【分析】
根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项 , , 都错误.
考点:统计初步
4.A
解析:A
【解析】
【分析】
利用茎叶图、平均数的性质直接求解.
【详解】
由一组数据的茎叶图得:
该组数据的平均数为:
.
故选:A.
【点睛】
本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.
5.A
解析:A
【解析】
【分析】
由茎叶图确定所给的所有数据,然后确定中位数即可.
(2)从第 组回答正确的人中用分层抽样的方法抽取 人,求第 组每组抽取的人数;
(3)在(2)中抽取的 人中随机抽取 人,求所抽取的人中恰好没有年龄段在 的概率
22.在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成 , , , , 5组,绘制成如图所示的频率分布直方图.
(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);
(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在 的概率.
23.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
【详解】
根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;
每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小; , , 都错误,故选 .
【点睛】
本题主要考查对销量百分比堆积图的理解.
10.A
A.﹣1B. C.2D.1
8.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是()
A.31号B.32号C.33号D.34号
9.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )
A. B. C. D.
12.有一个容量为200的样本,样本数据分组为 , , , , ,其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间 内的频数为( )