检测粉末流动性的方法有哪些
药物制剂中的粉末流动性研究与优化
药物制剂中的粉末流动性研究与优化随着科技的发展和人们对健康生活的追求,药物制剂的研究与开发也日益重要。
在药物制剂的研究过程中,粉末流动性一直是一个关键的考量指标。
本文将探讨药物制剂中的粉末流动性的研究与优化方法,希望能对药品产业的发展作出一定的贡献。
一、粉末流动性的重要性粉末药物是一种常见的药物制剂形式,广泛应用于片剂、胶囊剂、颗粒剂等药物制剂中。
而药物粉末在制剂过程中的流动性直接关系到颗粒的均匀性和产品质量,因此粉末流动性的研究与优化是药物制剂工艺的重要环节。
二、影响粉末流动性的因素1. 粒径大小:粒径大小是影响粉末流动性的重要因素,一般来说,粒径越小,粉末的流动性越差。
因此,在粉末制剂的研究中,需要对粉末的粒径大小进行分析和控制。
2. 粒度分布:除了粒径大小,粉末的粒度分布对其流动性也有很大影响。
如果粉末的粒度分布不均匀,会导致粉末流动性变差,增加制剂过程的困难。
3. 粘附性:粉末的粘附性对流动性也有一定的影响。
粉末颗粒间的黏附力越大,流动性越差。
因此,控制粉末的粘附性,减少颗粒间的黏附力,是提高粉末流动性的关键。
4. 湿气含量:湿气含量是影响粉末流动性的重要指标之一。
湿气会引起粉末颗粒的结块和团聚,从而降低其流动性。
因此,在药物制剂过程中,需要控制湿气含量,防止湿气对粉末流动性的影响。
三、粉末流动性的研究方法1. 流动角度测定法:流动角度测定法是一种常用的测量粉末流动性的方法。
通过测量粉末在一个固定角度下的流动性能,可以评估粉末的流动性好坏。
2. 堵塞方法:堵塞方法是一种通过测量粉末在特定条件下的堵塞时间来评估其流动性的方法。
通常使用流量仪或流变仪等仪器来进行测量。
3. 流动指数测定法:流动指数测定法是一种通过测量粉末在特定条件下的流动指数来评估其流动性的方法。
该方法可以定量地评估粉末的流动性能。
四、优化粉末流动性的方法1. 选择合适的成分:在药物制剂中,选择合适的成分可以改善粉末的流动性。
粉体流动性测试方法
粉体的流动性2012-01-16 12:01:04粉体的流动性与粒子的形状、大小、表面状态、密度、空隙率等有关粉体的流动性(flowability)与粒子的形状、大小、表面状态、密度、空隙率等有关,加上颗粒之间的内摩擦力和粘附力等的复杂关系,粉体的流动性无法用单一的物性值来表达。
然而粉体的流动性对颗粒剂、胶囊剂、片剂等制剂的重量差异影响较大,是保证产品质量的重要环节。
粉体的流动形式很多,如重力流动、振动流动、压缩流动、流态化流动等,相对应的流动性的评价方法也有所不同,当定量地测量粉体的流动性时最好采用与处理过程相对应的方法,表12-7列出了流动形式与相应流动性的评价方法。
流动形式与其相对应的流动性评价方法种类现象或操作流动性的评价方法重力流动瓶或加料斗中的流出旋转容器型混合器,充填流出速度,壁面摩擦角休止角,流出界限孔径振动流动振动加料,振动筛充填,流出休止角,流出速度,压缩度,表观密度压缩流动压缩成形(压片)压缩度,壁面摩擦角内部摩擦角流态化流动流化层干燥,流化层造粒颗粒或片剂的空气输送休止角,最小流化速度(一)流动性的评价与测定方法1.休止角休止角(angle of repose)是粉体堆积层的自由斜面与水平面形成的最大角。
常用的测定方法有注入法,排出法,倾斜角法等,如图12-10所示。
休止角不仅可以直接测定,而且可以测定粉体层的高度和圆盘半径后计算而得。
即tanθ=高度/半径。
休止角是粒子在粉体堆体积层的自由斜面上滑动时所受重力和粒子间摩擦力达到平衡而处于静止状态下测得,是检验粉体流动性的好坏的最简便的方法。
休止角越小,摩擦力越小,流动性越好,一般认为θ≤40°时可以满足生产流动性的需要。
粘附性粉体(sticky powder)或粒子径小于100~200μm以下粉体的粒子间相互作用力较大而流动性差,相应地所测休止角较大。
值得注意的是,测量方法不同所得数据有所不同,重现性差,所以不能把它看作粉体的一个物理常数。
药剂学实验:实验七 粉体流动性的测定
分别以不同量的滑石粉作为助流剂,与颗粒混合 ,测定休止角各三次。
10
四、实验结果
表一 淀粉和糊精休止角测定结果:
测定项目
淀粉
1
2
3
糊精
1
2
3
粉末高度 h (cm)
Tan = h/r
休止角 (°)
平均休止角 (°)
11
四、实验结果
表二 淀粉和糊精压缩度测定结果:
1%
3% 5%
13
五、思考题
分析影响粉体流动性的因素。 分析助流剂的助流原理。
14
三、实验内容
挤压制粒的关键和准则:
挤压制粒的关键步骤是制软材(捏合) 软材质量以“轻握成团,轻压即散”为准则。 在制软材过程中选择适宜粘合剂和适宜用量是非
常重要的。 将软材挤压通过筛网的颗粒,若含细粉过多,说
明粘合剂用量过少;若呈线条状,说明粘合剂用 量过多。
9
三、实验内容
考察不同量助流剂滑石粉对阿司匹林颗粒 的流动性影响
5
三、实验内容
测定粉末的休止角 测定粉末的压缩度 制备阿司匹林颗粒(建议:干燥需等待,可先做) 考察不同量助流剂滑石粉对阿司匹林颗粒的流
动性影响
6
三、实验内容
测定粉末的休止角 tan=h/r
称取淀粉和糊精各15g,过60目筛,分别测定休止角各 三次。
测定粉末的压缩度 C=(h0-hf)/h0×100%
粉体流动性的评价 休止角(angle of repose) 压缩度( compressibility) 流出速度(flow velocity)
3
二、实验原理
休止角测定
制药工程中固体粉末流动性测试与数据分析方法
制药工程中固体粉末流动性测试与数据分析方法制药工程中,固体粉末的流动性是一个重要的性质,对于生产工艺的设计和产品质量的控制具有重要意义。
固体粉末的流动性测试与数据分析是评估粉末流动性的标准化方法,能够为工程师提供需要的信息以准确分析并优化制药工艺的参数。
固体粉末的流动性是指粉末在一定条件下的流动性能。
粉末在制药过程中可能会遇到不同的流动条件,如斜面流动、漏斗流动、倾倒流动等,因此准确测量和分析固体粉末的流动性非常重要。
一种常用的固体粉末流动性测试方法是哈雷斯定指数法,它可以通过测量固体粉末在某个试验设备中的流动时间与参考物质的流动时间进行比较来评估粉末的流动性能。
该方法简便易行,可以快速获得流动性的定量数据。
然而,哈雷斯定指数法有一定的局限性,因为它只能提供单一的流动性指标,并不能全面评估粉末流动性的各个方面。
为了更全面地评估固体粉末的流动性,研究人员开发了一系列基于流动性测试的数据分析方法。
其中一个常用的方法是流变学方法,通过测量粉末在剪切力作用下的变形行为来描述其流动性。
流变学方法可以提供流变学参数,如流变指数、剪切应力和动态黏度,这些参数可以更详细地描述粉末的流动性和变形特性。
然而,流变学方法需要复杂的仪器设备和较长的测量时间,不适用于一些实际生产环境中的快速分析。
除了流变学方法,还有一些数据分析方法可以进一步评估固体粉末的流动性。
例如,可以使用统计学方法,通过测量多个样品并统计其流动性指标的变异性来评估粉末的均匀性和一致性。
另一种方法是使用图像处理技术,通过分析粉末颗粒的形状、大小和分布来评估其流动性。
这些数据分析方法可以为制药工程师提供更全面的流动性信息,帮助他们更好地理解粉末的流动性及其影响因素。
在固体粉末流动性测试和数据分析方面,还有一些注意事项需要特别关注。
首先,测试条件应该与实际生产环境尽可能接近,以保证数据的准确性和可靠性。
其次,应选择合适的样品制备方法和测试设备,以避免因样品不均匀或测试装置不适用而导致的误差。
流动性的测定方法
流动性的测定方法
流动性的测定方法有多种,常见的有以下几种:
1. 粘度测定法:粘度是流体流动阻力的一种度量,可以通过测定流体在特定温度下通过试验装置的流动速度来确定。
常见的粘度测定方法有旋转式粘度计、滴定式粘度计等。
2. 流变性测定法:流变性是指物质在受力作用下产生的变形性质,可以通过测定物质在不同剪切速率下的应力-应变关系来确定。
常见的流变性测定方法有转式流变仪、剪切模式流变仪等。
3. 渗透性测定法:渗透性是指流体在固体介质中的渗透能力,可以通过测定流体在一定压力下通过孔隙介质的速率来确定。
常见的渗透性测定方法有渗透试验、渗透流速试验等。
4. 流速测定法:流速是指流体单位时间通过某一截面的体积或质量,可以通过测定单位时间内通过某一截面的流体量来确定。
常见的流速测定方法有流量计、涡街流量计等。
5. 温度变化测定法:流体的温度变化也可以间接反映其流动性,通常可以通过测定流体在温度变化条件下的流动速度来确定。
需要根据具体的流体性质和测定要求选择适当的方法进行测定。
粉煤灰流动度试验方法
粉煤灰流动度试验方法
1. 实验原理,粉煤灰流动度试验旨在测定粉煤灰在特定条件下的流动性能,主要是通过测量其在规定试验条件下的流动性能指标来评估其工程应用的适用性。
流动度试验通常采用流动度杯法,通过测量粉煤灰在一定时间内通过流动度杯的孔隙所需的时间或者流动度指数来评估其流动性能。
2. 试验步骤:
a. 准备工作,准备好所需的粉煤灰样品、流动度杯、振实器等实验设备,并根据标准要求对实验条件进行准备。
b. 样品处理,将粉煤灰样品按照标准要求进行干燥处理和筛分,以确保样品的均匀性和一致性。
c. 实验操作,将经过处理的粉煤灰样品倒入流动度杯中,并按照标准要求进行振实和表面修整。
d. 测量流动性能,将流动度杯放置在规定的位置,打开孔隙,记录粉煤灰通过孔隙所需的时间或者流动度指数。
3. 数据分析,根据实验测得的数据,计算粉煤灰的流动性能指标,如流动度指数等,并与标准要求进行比较分析,以评估粉煤灰
的流动性能和工程应用适用性。
4. 结论和报告,根据试验结果得出结论,并撰写实验报告,包
括试验方法、操作步骤、数据处理和分析结果等内容。
总之,粉煤灰流动度试验方法是通过测定粉煤灰在特定条件下
的流动性能指标来评估其工程应用的适用性,是评价粉煤灰质量和
选用的重要依据。
在进行试验时,需要严格按照标准要求进行操作,确保实验结果的准确性和可靠性。
国家标准《金属粉末流动性的测定-标准漏斗法(古斯塔弗森流速计)》-编制说明(送审稿)
国家标准金属粉末流动性的测定-标准漏斗法(古斯塔弗森流速计)编制说明(送审稿)《金属粉末流动性的测定-标准漏斗法(古斯塔弗森流速计)》编制说明一、工作简况1 任务来源本项目是根据国标委发〔2019〕29 号通知精神进行制定,项目计划编号为20193116-T-610,项目名称“金属粉末流动性的测定-标准漏斗法(古斯塔弗森流速计)”,主要起草单位:东睦新材料集团股份有限公司等,计划应完成时间为2020年。
2 项目概况生产粉末冶金烧结件的先决条件是金属混合粉末能够自由流动充填模具,以使压制过程得以进行,因此混合粉末的良好流动性是生产率和产品一致性的保证。
粉末流动性还直接影响压制过程的装粉自动化和均匀性,进而影响压制工艺的自动化和压坯的密度均匀性。
因此,对金属粉末的流动性进行量化测试和监控,是粉末冶金工业提高生产效率和产品质量的关键工艺环节之一。
粉末流动性与颗粒密度、松装密度、颗粒形貌、粒径搭配和颗粒表面状态等均有密切相关性,需规定统一的测试指标,以简洁清晰的测试值表明粉末流动性的高低,适用于工业生产。
几十年来,粉末冶金行业一直采用霍尔流量计测量粉末的流动性,即以50g金属粉末流过规定孔径的标准漏斗所需要的时间来表示流速,同时测试其松装密度,此方法对于不含或含少量有机添加剂(例如润滑剂等)的金属粉末来说是适用的。
然而,在粉末冶金机械零件的生产中,正在越来越多地使用含有较高比例石墨、润滑剂或其他细颗粒添加剂的混合粉末。
对于此类混合粉,采用霍尔流量计是不合适的,因其不能自由地流过霍尔流量计标准漏斗,无法测试到其流速,不利于混合粉末性能的检测与对比。
为了解决这个问题,国际上规定了一种新的流量计——古斯塔弗森流速计,此种流速计适用于含有较高比例石墨、润滑剂或其他细颗粒添加剂的混合粉末流动性的检测,解决了这一困扰多年的问题。
由于古斯塔弗森流速计法与霍尔流速计法在方法和使用范围等方面的区别,国际粉末冶金标准化组织特别新增ISO 13517标准,用以规范这一测试方法,并在国际上得到广泛应用。
检测粉末流动性的方法有哪些
检测粉末流动性的方法有哪些检测粉末的流动的方法有那些对于这个疑问困扰着很多做粉末的客户,一些食品、药品、生物制药行业粉末各行各业都有这样的一些疑问,今天呢,针对这些疑问,我写了一篇我自己的感想和经验在里面,如果有兴趣的话也可以添加我的微信了解更多哦。
关于粉体流动特性主要用于评价粉体流动特性,我们厂用的检测方法是休止角、崩溃角、平板角、分散度、松装密度、振实密度等参数。
我把这些相关的定义发给你们了解下,这样的话对于粉末的研究是很有帮助的。
振实密度:振实密度是指粉体装填在特定容器后,对容器进行振动,从而破坏粉体中的空隙,使粉体处于紧密填充状态后的密度。
通过测量振实密度可以知道粉体的流动性和空隙率等数据。
(注:金属粉等特殊粉体的振实密度按相应的标准执行)。
松装密度:松装密度是指粉体在特定容器中处于自然充满状态后的密度。
该指标对存储容器和包装袋的设计很重要。
(注:金属粉等特殊粉体的松装密度按相应的标准执行)。
休止角:粉体堆积层的自由表面在静平衡状态下,与水平面形成的最大角度叫做休止角。
它是通过特定方式使粉体自然下落到特定平台上形成的。
休止角对粉体的流动性影响最大,休止角越小,粉体的流动性越好。
休止角也称安息角、自然坡度角等。
崩溃角:给测量休止角的堆积粉体以一定的冲击,使其表面崩溃后圆锥体的底角称为崩溃角。
平板角:将埋在粉体中的平板向上垂直提起,粉体在平板上的自由表面(斜面)和平板之间的夹角与受到震动后的夹角的平均值称为平板角。
在实际测量过程中,平板角是以平板提起后的角度和平板受到冲击后除掉不稳定粉体的角度的平均值来表示的。
平板角越小粉体的流动性越强。
一般地,平板角大于休止角。
分散度:粉体在空气中分散的难易程度称为分散度。
测量方法是将10 克试样从一定高度落下后,测量接料盘外试样占试样总量的百分数。
分散度与试样的分散性、漂浮性和飞溅性有关。
如果分散度超过50%,说明该样品具有很强的飞溅倾向。
说了这么多的定义之后,小伙伴们你们有什么感触呢,是不是感觉到一下子就懂得了粉末流动性意义呢?。
散装固体颗粒物料流动测试方法
散装固体颗粒物料流动测试方法目前国内测试粉体的流动性能力采用的都是比较传统的定量分析,这种方法对研究性的科研部门来说,数据太过于表面,无法对粉体本身的内在性质进行深入分析,本文将为广大粉体从业者或者研究性机构提供新的国际上通用的粉体分析方法通过对粉体的流动函数,内摩擦角,壁摩擦角及体积密度这个四个函数的分析来描述粉体的流动能力及分析粉体的潜在性质.本测试方法涵盖了用于测量散装固体在连续流动和储存后静止两者之中的无侧限屈服强度的设备和程序。
此外,包括测量内耗,堆积密度,和各种壁面壁摩擦。
此信息最常见的用于设计储物箱和料斗,以防止由于结拱和鼠拱而流动停止,包括坡度和料斗壁光滑度以提供质量流量。
这种设备的结构设计参数也可来源于这些数据。
定义:1.1内摩擦角-横坐标和屈服轨迹的切线之间的角。
1.2壁摩擦角-壁剪切应力与壁正应力比率的反正切。
1.3料仓-盛放散装固体的箱子或容器,通常由一个垂直的圆筒带一个会聚功能的料斗组成。
有时被称为筒仓,料坑或电梯。
1.4堆积密度--散装固体数量除以其总体积的质量。
1.5散装固体-由足够数量的固体颗粒组成其特性是颗粒堆整体的特性而不是每单个颗粒的特性。
它也可以称为颗粒材料,微粒固体或粉末。
例如糖、面粉和矿石。
1.6料坑-料仓的同义词,但有时理解为料仓不带任何或料斗顶部只有一个小的垂直部分。
1本试验方法属于ASTM委员会D18对土壤和岩石的管辖和小组委员会D18.24直接负责粉末和散装固体的特性和处理。
1997年5月10日批准的现行版。
1998年10月出版。
2这种方法是基于“利用Jenike剪切盒固体颗粒的标准剪切试验技术”,欧洲化学工程联合会工作组对颗粒固体力学上的报告。
版权由化学工程师学会和欧洲化学工程联合会所有。
1.7固结-增大散装固体强度的过程。
1.8有效摩擦角--由Jenike定义的有效屈服轨迹的倾斜角(EYL)。
1.9有效屈服轨迹(EYL)-直线通过正应力的原点,t-平面,并与稳定状态的莫尔圆相切,符合给定堆积密度的散装固体的稳态流动条件。
粉体流动性测定指导原则公示稿
附件:粉体流动性测定指导原则公示稿粉体流动性测定指导原则粉体流动性与制剂生产过程及制剂产品质量密切相关,因此在制药工业中应用广泛。
目前,粉体流动性的表征方法有很多,而且影响因素较多,这对准确表征粉体流动性带来一定困难。
本指导原则旨在描述药学领域中最常用的粉体流动性表征方法。
虽然没有一种单一而简单的测定方法能够充分表征药用粉体的流动性,但本指导原则提供了在药品研发和生产过程中可参考的标准化测定方法。
常用于测定粉体流动性的基本方法有四种:(1)休止角,(2)压缩度和豪斯纳(Hausner)比,(3)流出速度,(4)剪切池法。
每种方法都有多个变量。
考虑到不同测定方法的相关变量,尽量使测定方法标准化是非常必要的。
因此,本指导原则重点讨论了最常用的测定方法,阐明了重要的试验注意事项,并提出了方法的标准化建议。
一般而言,任何测定粉体流动性的方法都应具有实用性、有用性、可重现性、灵敏性,并能获得有意义的结果。
需要说明的是,没有任何一种简单的粉体流动性测定方法能够充分而全面地表征制药工业中所涉及的所有粉体的流动性。
建议根据科学研究的需要,使用多种标准化的测定方法从不同的方面来表征粉体的流动特性。
休止角休止角已被广泛用于多个分支学科以表征固体的流动特性,是一种与颗粒间摩擦力或颗粒间相对运动阻力相关的特性参数,其测定结果很大程度取决于所使用的测定方法。
在锥体的形成过程中由于粉体的离析、聚结或粉体中空气的混入而增加试验的难度。
尽管存在很多困难,但这种方法仍然在制药工业中广泛应用,许多研究实例都证明了休止角在预测生产过程中可能出现的流动性问题具有一定的实用价值。
休止角是物料以圆锥体呈现时所形成的稳定的三维角(相对于水平基座),圆锥体可通过以下几种方法中的任何一种形成。
基本方法休止角的测定方法有多种。
测定静态休止角最常用的方法可以基于以下两个重要的试验变量来分类:(1)粉体通过“漏斗”的高度相对于底盘而言是固定的,或者其高度可以随着锥体的形成而变化。
粉体流动性概念及粉体流动性检测方法
粉体流动性概念及粉体流动性检测方法粉* 体* 圈粉体流动性概念及粉体流动性检测方法一、粉体流动性基本概念粉体的流动性与粒子的形状、大小、表面状态、密度、空隙率等有关。
对颗粒制备的重量差异以及正常的操作影响很大。
粉体的流动包括重力流动、压缩流动、流态化流动等多种形式。
粉体之所以流动,其本质是粉体中粒子受力的不平衡,对粒子受力分析可知,粒子的作用力有重力、颗粒间的黏附力、摩擦力、静电力等,对粉体流动影响最大的是重力和颗粒间的黏附力。
影响粉体流动性的因素非常复杂,粒径分布和颗粒形状对粉体的流动性具有重要影响。
此外,温度、含水量、静电电压、空隙率、堆密度、粘结指数、内部摩擦系数、空气中的湿度等因素也对粉体的流动性产生影响。
二、影响粉体流动性的主要因素1、粉体的粒度分布:随着粉体粒度的减小,粉体之间分子引力、静电引力作用逐渐增大,降低粉体颗粒的流动性;其次,粉体粒度越小,粒子间越容易吸附、聚集成团,黏结性增大,导致休止角增大,流动性变差;再次,粉体粒度减小,颗粒间容易形成紧密堆积,使得透气率下降,压缩率增加,粉体的流动性下降。
2、粉体颗粒形貌形:除了颗粒粒径意外,颗粒形态对流动性的影响也非常显著。
粒径大小相等,形状不同的粉末其流动性也不同。
显而易见,球形粒子相互间的接触面积最小,其流动性最好。
针片状的粒子表面有大量的平面接触点,以及不规则粒子间的剪切力,故流动性差3、粉体温度:热处理可使粉末的松装密度和振实密度会增加。
因为,温度升高后粉末颗粒的致密度提高。
但是当温度升高到一定程度后,粉体的流动性会下降,因在高温下粉体的黏附性明显增加,粉粒与粉体之间或者粉体与器壁之间发生黏附,使得粉体流动性降低。
如果温度超过粉体熔点时,粉体会变成液体,使黏附作用更强4、粉体的水分含量:粉末干燥状态时,流动性一般较好,如果过于干燥,则会因为静电作用导致颗粒相互吸引,使流动性变差。
当含有少量水分时,水分被吸附颗粒表面,以表面吸附水的形式存在,对粉体的流动性影响不大。
饲料粉料流动性测定方法
饲料粉料流动性测定方法1、适用范围粉状原料、成品、半成品的流动性粗测定2、仪器设备支架、漏斗、圆平板、刻度尺、量筒、电子天平、40目、60目、100目筛各一个。
3、测定方法3.1 休止角的测定休止角是粉料堆积层的自由斜面在静止的平衡状态下,与水平面所形成的最大角。
(休止角示意图)用支架将漏斗固定,将粉料样品倒入漏斗中,使样品轻轻地、均匀地落入漏斗下方直径为20mm的圆平板中心部上,粉料逐渐堆积,当物料从粉体斜边沿圆盘边缘中自由落下时停止加料。
从刻度尺上读出粉堆高度h,按公式求出休止角θtgθ=h/r (1)式中,r——圆平板半径,mm。
3.2 刮铲角的测定将刻度尺水平插入一堆待测物料中,然后垂直升举到脱离物料堆,此时留在直尺上的物料所呈现的堆积角度即为刮铲角(计算方法同3.1)。
3.3 压缩度的测定将欲测定物料精密称定重量M(15g),轻轻加入量筒中,测定体积,记录最松密度ρ0;轻敲震动多次,直至体积不变为止,测量体积,记录最紧密度ρ1。
根据公式计算压缩度Cρ=M/V (2)C=(ρ1-ρ0)/ρ1×100% (3)3.4 凝集度的测定将筛子清洗整洁待用。
用万分之一的天平称取2g粉料样品放在40目筛上,下面连接60目、100目筛子和底盘,加盖后震动过筛,充分震动过筛后,称量每层筛子上残留的粉料样品。
在40目筛子上每残留0.1g样品乘以系数5%,在60目筛子上每残留0.1g样品乘以系数3%,在100目筛子上每残留0.1g样品乘以系数1%。
按公式求出凝集度C凝集度C=C1+C2+C3 (4)式中C1=W40/0.1×5%,C2=W60/0.1×3%,C3=W100/0.1×1%,4、评价根据已测定样品的休止角、刮铲角、压缩度、凝集度测定值,在粉体流动性评价表上查出相应的分数,然后相加总分,即可得出粉料的流动性水平。
附1:参考资料1、王树传等.含水量和粒度对粉粒状物料流动性的影响.大连:大连轻工业学院学报,19962、胡庆轩等.有机粉体流动性的测定.北京:中国粉体技术,1999部分资料试验结论:1)、休止角与流动性的关系用休止角评价粉料的流动性能,只能大致定性地表示流动性的好坏,或者用于比较同种粉料因水分和粒度等引起的流动性差别。
实验十九粉体流动性的测定
粉体的流动性
种类 重力流动 振动流动 压缩流动
现象或操作 瓶或加料斗中的流出 旋转容器型混合器,充填
振动加料,振动筛 充填,流出
压缩成形(压片)
流态化流动
流化层干燥,流化层造粒 颗粒或片剂的空气输送
流动性的评价方法 流出速度,壁面摩擦角 休止角,流出界限孔径 休止角,流出速度,
压缩度,表观密度 压缩度,壁面摩擦角
(二)流出速度的测定
1.物料 微晶纤维素粉末,微晶纤维素的球形颗粒,淀粉。
2.测定内容 分别称15g 微晶纤维素粉末、微晶纤维素球形颗 粒和淀粉,测定流出速度,比较不同形状与大小 或不同物料的流出速度。
(三)压缩度的测定
1. 物料 微晶纤维素粉末、微晶纤维素球形颗粒、淀粉。
2.测定内容 取微晶纤维素粉末、微晶纤维素球形颗粒和淀粉 各15g,测定压缩度,比较不同形状与大小或不 同物料的振动流动性。
3.测定方法 将欲测定物料分别精密称定,轻轻加入量筒 中,测量体积,记录最松密度;安装于轻敲测 定仪中进行多次轻敲,直至体积不变为止,测 量体积,记录最紧密度。 根据公式计算压缩度C。
实验十九 粉体流动性的测定
实验目的
熟悉测定粉体流动性的测定方 法及影响流动性的因素
寻找改善流动性的方法
验原理
粉体是由无数个固体粒子组成的集合体。在制药行 业中常用的粉体的粒子大小范围为1μm~10 mm。
粉体的第一性质: 组成粉体的单一粒子的性质,如粒子的形状、 大小、粒度分布、粒密度等; 粉体的第二性质: 粉体集合体的性质,如粉体的流动性、填充 性、堆密度、压缩成形性等。
内部摩擦角
休止角,最小流化速度
休止角
休止角是粉体堆积层的自由斜面在静止的平 衡状态下,与水平面所形成的最大角。 休止角的测定方法有: 注入法、排出法、容器倾斜法等等。
球形碳化钛(TiC)粉末流动性测试
球形碳化钛(TiC)粉末流动性测试介绍球形碳化钛(TiC)粉末是一种常用的化学品,在许多工业和实验室应用中都会被使用。
为了确保其最佳性能,需要对其流动性进行测试,以了解其在生产过程中的推进性和灌装性。
本文将介绍球形碳化钛粉末流动性的测试方法和结果。
球形碳化钛粉末流动性测试方法球形碳化钛粉末流动性测试方法采用了一种称为震荡漏斗法的测试方法。
该方法适用于粒度在100微米以上、密度在0.3-2.0克/厘米立方米的球形粉末。
测试设备包括一个可拆卸的漏斗和一台电动振动台。
测试步骤如下:1.振动台平放,漏斗固定在台上2.将球形碳化钛粉末倒入漏斗上方的均匀料斗中3.打开振动台并调整振幅、振频和时间,使震动速度稳定在50 Hz左右4.记录漏斗底部开口的流速并计算出流动角度和流动时间5.重复以上步骤4次并计算出平均值球形碳化钛粉末流动性测试结果分析经过多次测试,得到了球形碳化钛粉末的流动性数据。
测试次数流速(g/s)流动角度(°)流动时间(s)1 1.67 21.3 30.42 1.72 20.6 30.63 1.65 22.0 30.34 1.70 21.0 30.5平均值 1.68 21.2 30.4从上表可以看出,球形碳化钛粉末的流动性良好,平均流速为1.68 g/s,平均流动角度为21.2°,平均流动时间为30.4 s。
该结果表明,球形碳化钛粉末适合灌装和加工,并且在生产过程中可以较好地推进和输送。
结论采用震荡漏斗法测试球形碳化钛粉末的流动性,得出了较好的流动性数据,表明其适合在生产过程中使用。
球形碳化钛粉末是一种常用而重要的化学品,对其流动性进行测试可以确保其最佳性能和推进性,在加工和生产过程中有着重要的意义。
粉末流动性浅析
粉末流动性浅析一、粉末流动性的重要性粉末流动性是粉末的基本特性,是指粉末流动的难易程度。
粉末流动性能与很多因素有关,如粉末颗粒尺寸、形状、粗糙度、干湿度等。
一般地说,增加颗粒间的摩擦系数会使粉末流动困难。
通常球形颗粒的粉末流动性最好,而颗粒形状不规则、尺寸小、表面粗糙的粉末,其流动性差。
另外,粉末流动性受颗粒间粘附作用的影响,颗粒表面如果吸附水分、气体或加入成形剂会降低粉末的流动性,粉末流动性直接影响混合均匀性,流动性太差,在混合时容易粘附、抱团无法将其混合均匀,但是流动性太好,也不易混合均匀,流动性太好,容易与其他粉末分离,即使混合均匀,在出料、运输、装粉等过程中,均容易导致分层,因此,粉末的流动性是生产工艺中必须考虑的重要性能。
二、测量粉末流动性方法:1、标准漏斗法(霍尔流速计)国标:GB/T1482-2010该方法主要用来检测金属粉末的流动性,测量50g金属粉末流过标准尺寸漏斗孔所需的时间,单位s/50g,用时越长,则表示流动性越差,反之则流动性越好。
上图为标准尺寸流速计2、自然堆积角(安息角、堆粉角)让粉末通过一组筛网自然流下并堆积在直径为1英寸的平整圆板上,当粉末堆满圆板后,以粉末锥的底角称为安息角或堆粉角。
堆粉角越大,则表示粉末的流动性越差,反之则流动性越好。
当堆粉角大于40°时,流动性就比较差了,而普通的三维混合机很难将堆粉角45°以上的粉末混合均匀,而且这种流动性差的粉末在仓储时也会存在许多问题。
如下图:流动性好的粉末从仓内流出时是整体流动,如上图a ,仓内不会存料;流动性差的粉末则会出现上图b、c两种情况,b中心流粉末还能流出,但是仓周围内侧的粉末不易流出,操中不便利;c起拱现象更为严重,粉末只能流出一部分,其余粉末则聚集在出口,形成拱形,无法出料,则需要借助于其他方式将仓内粉末取出,需要消耗更多的成本。
三、粉末流动性在加工过程的影响1、决定了混合效果是否达到理想效果上诉已提到,流动性的好坏直接影响混合的均匀性,只有找到适宜的粉末流动性,用机械式混合才能达到理想的效果;2、在储存、运输或振动时的影响流动性太差,不能有效的流出料斗,运输、振动时容易导致结块、团聚现象,如果已混合均匀的粉末流动性太好,在出料、受到振动时会出现偏析、分层现象;3、在填料或分装时能否达到准确或恒定的加料量粉末流动性直接影响填料或分装时精确度,只有知道了粉末的流动性,才能有效的控制生产过程。
制药工程中粉体流动性及其测量方法研究
制药工程中粉体流动性及其测量方法研究一、引言制药工程中,粉体材料在生产、制备、加工、储存等过程中广泛应用。
粉体材料的流动性在生产效率、质量、产品成本等方面都有着重要的影响。
因此,研究粉体流动性及其测量方法具有重要的理论和实际意义。
二、粉体流动性及其影响因素1. 粉体流动性的定义粉体流动性是指粒子间相互作用条件下,粉体在管道或容器中通过的能力。
通俗来说,就是流体通过空间的能力。
粉体流动性的好坏直接影响粉体的输送、搅拌等工艺过程,并且还与粉体的堆积密度、比表面积、形状和大小分布等因素有关。
2. 影响粉体流动性的因素(1)粉体本身的特性:如质量分数、密度、比表面积、含水率、颗粒形状等。
(2)粉体的运动状态:如粉体的堆积密度、振实密度、离散度、流动方式等。
(3)外部环境:如温度、湿度、空气流通等。
三、粉体流动性的测量方法1. 测量粉体堆积密度粉体堆积密度是指一定体积的粉体在加压后所获得的密度。
常见的测量方法有振实密度法和压实法。
2. 测量粉体流动性参数(1)流动角度:流动角度是指一个静置的粉体振荡一定角度之后,粉体开始流动的最小角度。
测量方法有越重法、扭矩法、倾角法等。
(2)干流速和张力指数:干流速是指一定高度和管径上的流速,张力指数是指粉体在流动时的剪切应力与剪切应变率之间的关系。
测量方法有差压法、恒压法、视觉法等。
四、粉体流动性的改良方法(1)改变粉体粒径分布和颗粒形状;(2)添加流化助剂或润滑剂;(3)控制外部环境,如温度和湿度;(4)选择合适的流动设备和管道。
五、结论粉体流动性是制药工程中非常重要的一项指标,影响着制品的生产效率、质量、产品成本等。
粉体流动性的测量方法主要有堆积密度法、流动角度法、干流速法和张力指数测量法等。
改善粉体流动性可以选择改变粉体本身的属性、添加流化助剂或润滑剂、控制环境和选择合适的流动设备等方法。
粉体流动性测试方法
2012-01-16 12:01:04粉体的流动性与粒子的形状、大小、表面状态、密度、空隙率等有关粉体的流动性(flowability)与粒子的形状、大小、表面状态、密度、空隙率等有关,加上颗粒之间的内摩擦力和粘附力等的复杂关系,粉体的流动性无法用单一的物性值来表达。
然而粉体的流动性对颗粒剂、胶囊剂、片剂等制剂的重量差异影响较大,是保证产品质量的重要环节。
粉体的流动形式很多,如重力流动、振动流动、压缩流动、流态化流动等,相对应的流动性的评价方法也有所不同,当定量地测量粉体的流动性时最好采用与处理过程相对应的方法,表12-7列出了流动形式与相应流动性的评价方法。
流动形式与其相对应的流动性评价方法种类现象或操作流动性的评价方法重力流动瓶或加料斗中的流出旋转容器型混合器,充填流出速度,壁面摩擦角休止角,流出界限孔径振动流动振动加料,振动筛充填,流出休止角,流出速度,压缩度,表观密度压缩流动压缩成形(压片)压缩度,壁面摩擦角内部摩擦角流态化流动流化层干燥,流化层造粒颗粒或片剂的空气输送休止角,最小流化速度(一)流动性的评价与测定方法1.休止角休止角(angle of repose)是粉体堆积层的自由斜面与水平面形成的最大角。
常用的测定方法有注入法,排出法,倾斜角法等,如图12-10所示。
休止角不仅可以直接测定,而且可以测定粉体层的高度和圆盘半径后计算而得。
即tanθ=高度/半径。
休止角是粒子在粉体堆体积层的自由斜面上滑动时所受重力和粒子间摩擦力达到平衡而处于静止状态下测得,是检验粉体流动性的好坏的最简便的方法。
休止角越小,摩擦力越小,流动性越好,一般认为θ≤40°时可以满足生产流动性的需要。
粘附性粉体(sticky powder)或粒子径小于100~200μm以下粉体的粒子间相互作用力较大而流动性差,相应地所测休止角较大。
值得注意的是,测量方法不同所得数据有所不同,重现性差,所以不能把它看作粉体的一个物理常数。
粉体的流动性
上圆筒(装有10目的筛网) 下圆筒(体积为15cm3) 刮刀等
综合指数的测定
4、称量后的样品放入上圆筒中,并加满粉体样品; 5、放入电磁振动器上振动5分钟,取下; 6、刮刀刮去多余粉体,称量样品质量。
压缩率的测定
1、压缩率越小,粉体的流动性越好; 2、Q>40%,粉体的流动性急剧恶化。
充填密 =度 充填 容粉 积体=M 质 1充 5量
谢谢观赏
由图2-27 的几何关系可得
OA1 2
fc
=
fc
2sini
2-38
OA1 2
fc
= fc
2sini
拱自由表面的应力状态
s =t=0
c
OA =
2-39
tan i
从上两式可得粉体的开放屈服强度fc为
fc
= 2 cosi 1 sin i
c
2-40
• 0 =0,fc=0
• 0 不等于0,fc=常数
fc随0 的增加而增加
水泥粉体物料是不均匀的,是无限多种粒度、形状和空隙的组合体,因而我们可以用连续 介质的方法进行分析研究。 W.Jenike等人提出了粉体的连续介质塑料模型,并发展了流动— 不流动的判据,创建了一套科学地表示散状物料流动性能的指标,并且根据散状物料流动理 论导出一套能根据所测得这些流动性的指标设计料仓等容器的实用方法。
粉体的流动性
研究粉体流动性的意义
粉体的流动性在粉体工程设计中应用范围 很广,粉体的流动性对其生产、输送、储 存、装填以及工业中的粉末冶金、医药中 不同组分的混合、农林业中杀虫剂的喷撒 等工艺过程都具有重要的意义。 在水泥厂中,许多操作过程都会涉及到粉 体的重力流动。研究粉体的流动性能,对于 粉体设备的设计,都具有十分重要的意义。
木粉磨制机械的粉体流动性分析
木粉磨制机械的粉体流动性分析近年来,随着环保概念的普及和人们对可再生资源利用的重视,木粉作为一种常见的可再生资源受到了广泛的关注和应用。
木粉在建筑材料、纸浆和木质制品等领域具有广泛的应用前景。
然而,木粉的应用受到粉体流动性能的制约,因此对木粉磨制机械的粉体流动性进行分析和优化具有重要的意义。
一、粉体流动性的定义与测定方法粉体的流动性是指粉体在外力作用下,单个颗粒或整个颗粒堆中颗粒之间相互滑动的能力。
粉体流动性好的特点包括排空性好、流动性好和稳定性好等,而流动性差的粉体会出现堵塞、流动不稳定等问题。
常见的测定粉体流动性的方法包括流动角度测定、质量法、振荡法和流变学方法等。
流动角度测定法是通过测定颗粒在堆积时形成的锥形堆体的坡度角来判断流动性能。
质量法通过测量在一定时间内粉体从容器中流出的质量来评估粉体的流动性能。
振荡法是将容器中的粉体在水平方向上来回震动一定次数,然后测量震动后粉体剩余体积的变化来评估流动性能。
而流变学方法则是通过施加剪切力来研究粉体的流动行为。
二、影响木粉流动性的因素1. 粒径分布:粒径分布对粉体流动性有着重要的影响。
较大的颗粒会阻碍流体的流动,而较小的颗粒则容易引起粉体的聚结。
2. 颗粒形状:颗粒的形状也会影响粉体的流动性能。
较规则的颗粒形状容易形成较好的排空结构,有利于流动,而不规则形状的颗粒则会造成颗粒间的堵塞现象,影响流动性。
3. 颗粒表面性质:颗粒表面的粗糙度和润湿性会影响粉体的流动性。
较粗糙的颗粒表面会增加颗粒间的摩擦力,从而影响流动性能。
而润湿性差的颗粒表面则容易引起颗粒间的聚结。
4. 粉体含水率:粉体的含水率也会对流动性能产生影响。
适当的含水率可以增强粉体的流动性,但过高的含水率会引起颗粒间的粘结,影响流动性。
5. 细粉掺量:细粉的掺量也会对流动性产生一定的影响。
少量的细粉可以填充颗粒间的空隙,有利于粉体的流动;但过多的细粉则会增加粘结力,造成流动性的下降。
三、优化木粉磨制机械的粉体流动性1. 优化磨制机械结构:通过调整磨制机械的结构参数,如转速、研磨介质等,可以改善颗粒的粒径分布和形状,从而提高粉体的流动性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检测粉末的流动的方法有那些
对于这个疑问困扰着很多做粉末的客户,一些食品、药品、生物制药行业粉末各行各业都有这样的一些疑问,今天呢,针对这些疑问,我写了一篇我自己的感想和经验在里面,如果有兴趣的话也可以添加我的微信了解更多哦。
关于粉体流动特性主要用于评价粉体流动特性,我们厂用的检测方法是休止角、崩溃角、平板角、分散度、松装密度、振实密度等参数。
我把这些相关的定义发给你们了解下,这样的话对于粉末的研究是很有帮助的。
振实密度:振实密度是指粉体装填在特定容器后,对容器进行振动,从而破坏
粉体中的空隙,使粉体处于紧密填充状态后的密度。
通过测量振实密度可以知
道粉体的流动性和空隙率等数据。
(注:金属粉等特殊粉体的振实密度按相应的
标准执行)。
松装密度:松装密度是指粉体在特定容器中处于自然充满状态后的密度。
该指
标对存储容器和包装袋的设计很重要。
(注:金属粉等特殊粉体的松装密度按相
应的标准执行)。
休止角:粉体堆积层的自由表面在静平衡状态下,与水平面形成的最大角度叫
做休止角。
它是通过特定方式使粉体自然下落到特定平台上形成的休止角对粉体的流动性影响最大,休止角越小,粉体的流动性越好。
休止角也称安息
角、
自然坡度角等。
崩溃角:给测量休止角的堆积粉体以一定的冲击,使其表面崩溃后圆锥体的底
角称为崩溃角。
平板角:将埋在粉体中的平板向上垂直提起,粉体在平板上的自由表面(斜面)
和平板之间的夹角与受到震动后的夹角的平均值称为平板角。
在实际测量过程
中,平板角是以平板提起后的角度和平板受到冲击后除掉不稳定粉体的角度的
平均值来表示的。
平板角越小粉体的流动性越强。
一般地,平板角大于休止角。
分散度:粉体在空气中分散的难易程度称为分散度。
测量方法是将10克试样从
一定高度落下后,测量接料盘外试样占试样总量的百分数。
分散度与试样的分
散性、漂浮性和飞溅性有关。
如果分散度超过50% ,说明该样品具有很强的飞溅
倾向。
说了这么多的定义之后,小伙伴们你们有什么感触呢,是不是感觉到一下子就懂得了粉末流动性意义呢?。