对称性和布拉维格子的分类

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称性和布拉维格子的分类
本节主要内容:
一、群的知识简介 二、点群和七个晶系
三、空间群和14种布拉维格子
四、点群对称性和晶体的物理性质
对称性和布拉维格子的分类 布拉维格子是按其对称性(symmetry)来分类的: 所谓对称性是指在一定的几何操作下,物 体保持不变的特性。 对称性在物理学中是一个非常重要的概念, 它可使复杂物理现象的描述变得简单、明了。 因为对称性的本质是指系统中的一些要素是等 价的。对称性越高的系统,需要独立表征的系 统要素就越少,因而描述起来就越简单。 我们这里要讨论的主要是晶格(或点阵)的 对称性(symmetry of lattice).
因为B 和A 完全等价,所有旋转同样可以绕B 进行. 由此可设想绕B 转角,这将使A 格点转到 A的 位臵。同样 A处原来也必定有一个格点
在晶体的几何对称性的研究中,每一个能 使晶体复原的对称操作,都满足上述群中的 元素的要求,由这些元素(或操作)所构成的 群叫对称性群(symmetry group),包括点群 (point group)和空间群(space group)
1830年,赫塞耳(Johann Friedrich Christian Hessel)首先导出了32种点群,由32种点群出发, 可以对布拉维点阵进行分类,这正是1850年布 拉维所作的工作,他证明了只有7个晶系。(点 群不含平移对称操作,因为平移导致任何格点 都要动,而点群必须至少有一个格点不动) 熊夫利(Schoenflies1891)和费奥多罗夫 (Fedorove 1892) 为了研究复式晶格(几套简单 格子的平移)的分类,考虑了平移对称操作, 提出了空间群的概念,并证明只有230种独立 的空间群。 1850年布拉维由此证明只有14种 三维布拉维点阵
此外,为了方便,人们制定了标示晶体类型 的符号,一套是熊夫利制订的,称为熊夫利符 号;一套是海尔曼(Hermann)和毛衮(Mauguin) 制订的,称为国际符号 我们这一节主要介绍这些人得到的结果
二、点群和七个晶系
1. 点群
保持空间某一点固定不动的对称操作,称为 点对称操作。在点对称操作基础上构成的对称 操作群称为点群
点对称操作的类型和对称元素: 对于晶体而言,对称操作就是对晶体进行 几何变换而能复原的操作。晶体中的基本的点 对称操作有三种: 正当转动操作,即绕固定轴的转动 (rotation about an axis) ; 镜面反映 (Reflection across a plane); 中心反演(inversion through a point) ; 相应的对称元素有:对称轴;对称面;对称中心 一个旋转对称操作(rotational symmetry operation)意味着将点阵绕着某个轴旋转某个 角度 或- 以后,点阵保持不变。
群论作为数学的分支,是处理有一定对称性 的物理体系的有力工具,可以简化复杂的计算, 也可以预言物理过程的发展趋势,还可以对体 系的许多性质作出定性的了解。 群及其表示理论是物理系研究生的一门重要 基础课,对于本科生不作要求。因此,我们不 打算在这里讲过多的群论的知识。只是简单介 绍一下,让大家对群的概念有一个认识。 一、群的知识简介 1. 群的定义 所谓群(group)就是一些元素(elements)或操 作的集合,常用符号 G 来表示。
构成群的元素要满足以下条件: 设 A1 , A2 , A3 等表示群G中所包含的元素 或操作
Ai G, i 1, 2,3, G {Ai } 即:
必须满足下列条件: 1). 封闭性(closure property) 按照给定的乘法规则,群G中任何两个元素 相乘,得到的还是该群的一个元素。
显然n=1,相当于不动操作(元素)E, n=2,3,4,6的转轴分别称为二度、三度、四度、 六度转轴
晶体的对称性定律的证明
B
A
如图,A为格点,B为离A最近 a a 的格点之一,则与 AB 平行的 格点之间的距离一定是 AB a B A 的整数倍。 如果绕A转角,晶格保持不变(对称操作).则该 操作将使B格点转到B’ 位臵,则由于转动对称操作 不改变格子,在 B’ 处必定原来就有一个格点。
x x a11 y y a21 z z a 31
a12 a22 a32
ຫໍສະໝຸດ Baidu
a13 x a23 y ; z a33
正交矩阵 参考方俊鑫固物p32-36 ;或方可固物p13-16
在晶格这个物理系统中,一种对称性是指某些 要素互相等价,而用来描述晶格的要素,无非就 是:点、线、面。而保持这些要素等价的操作---对称操作有三种:平移、旋转、镜反射。假设 在某一个操作过后,点阵保持不变,也就是每个 格点的位臵都得到重复,那么这个相应的平移、 旋转或镜反射操作就叫作一个点阵对称操作。其 中的点、线、面分别叫做对称中心、对称轴、对 称面----称为对称元素 从数学角度来看,晶体的对称性是对晶体进 行几何变换而能保持晶体性质的不变性,相当于 一个正交线性变换。一个变换就是一种操作。
2.
为了保持在旋转对称操作后点阵不变,在二 维晶格中,旋转轴一定要通过某一个格点而且 垂直平面;在三维晶格中,旋转轴一定要通过 某一个格点而且平行于某一个晶向。 由于晶体周期性的限制,转角只能是:
2 , n 1, 2,3, 4, 6 n
即:晶体中允许的转动对称轴只能是1,2, 3,4和6重轴 称为晶体的对称性定律
Ai Aj Ak , i j or i j
2). 群中一定包含一个不变元素(单位元素) E E G, EAi Ai E Ai 3). 存在逆元素 Ai G, Ai1 Ai Ai1 Ai1 Ai E
4). 满足组合定则
( Ai Aj ) Ak Ai ( Aj Ak )
相关文档
最新文档