两个计数原理与排列组合知识点及例题

合集下载

两个原理及排列组合经典例题

两个原理及排列组合经典例题

计数原理排列组合小节与复习一、 学习目标:进一步掌握计数原理、排列、组合的常规题型及综合问题,注意两个原理的区别,排列与组合的区别,积累解决排列组合应用问题的思想方法。

二、 典型示例:例1.(染色问题)有4种颜色(供选),给下列图形中各区域染色,要求相邻区域不同色,有多少种染色方法?(1)(2)(3)(4)例2.(排数字问题)有0,1,2,3,4,5,6,七个数字。

(1) 可组成多少个无重复数字的三位偶数;(2) 可组成多少个无重复数字且能被5整除的三位数;(3) 可组成多少个无重复数字且能被3整除的三位数;(4) 可组成多少个无重复数字且比315小的三位数。

例3.(排队照相问题)解决下列问题,掌握解决问题的方法。

(1)7名学生站成一排照相,其中甲不站左端,乙不站右端,有多少种站法?(2)7名学生站成一排照相,其中甲、乙相邻且都与丙不相邻,有多少种站法?(3)7名学生站成一排照相,其中甲、乙在丙的同侧,有多少种站法?(4)7名学生站成一排照相,7人身高各不相同,要求中间高两边低,有多少种站法?(5)8名学生站成两排照相,要求后排4人都比前排对应的4人高,有多少种站法?例4.(小球分配问题)解决下列问题,注意它们的区别并掌握解决问题的方法。

(1)把3个不同的小球放入4个不同的盒子中,有多少种不同放法?(2)把3个不同的小球放入4个不同的盒子中,每个盒子最多放1个,有多少种不同放法?(3)把4个不同的小球放入3个不同的盒子中,有多少种不同放法?(4)把4个不同的小球放入3个不同的盒子中,每个盒子最少放一个,有多少种不同放法?(5)把4个相同的小球放入3个不同的盒子中,每个盒子最少放一个,有多少种不同放法?(7个小球呢?)(6)把4个相同的小球放入3个不同的盒子中,盒子可空,有多少种不同放法?(7)把4个不同的小球放入3个相同的盒子中,有多少种不同放法?三、 补充练习:(1) (2013山东理)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279(2) (2013福建理)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10(3) (2013四川理)从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .20(4) (2013大纲文)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)(5) (2013上海春)36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22(122)(133)91++++=参照上述方法,可求得2000的所有正约数之和为_________.(6) (2013浙江理)将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同 的排法共有________种(用数字作答) .(7) (2013北京理)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.(8) (2013大纲理)6个人排成一行,其中甲、乙两人不相邻的不同排法共有_______种.(用数字作答).(9) 以正方体的顶点为顶点的四面体有 个.(10) 如图,用四种不同的颜色给图中的,,,,,A B C D E F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有________种(用数字作答).四、总结: B C F E D A。

35:排列组合和二项式定理高三复习数学知识点总结(全)

35:排列组合和二项式定理高三复习数学知识点总结(全)

排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。

两个计数原理,排列与组合,二项式定理知识点

两个计数原理,排列与组合,二项式定理知识点

排列,组合,二项式定理一.两个基本计数原理㈠分类计数原理(加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +++= 21种不同的方法.㈡分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有n m m m N ⨯⨯⨯= 21种不同的方法.㈢分类计数原理和分步计数原理的联系与区别:两个原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题.1.它们的共同点都是把一个事件分成若干个分事件来进行计算.2.只不过利用分类计算原理时,每一种方法都可能独立完成事件;如需连续若干步才能完成的则是分步.利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性.比较复杂的问题,常先分类再分步.★乘法原理:可.以有..重复..元素..的排列(“邮筒投信”问题) ★从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数为m·m·… m = m n ...1例将n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法?(解:n m 种).2例有5封不同的信,投入3个不同的信箱中,那么不同的投信方法总数为多少?(解:53种)三.排列与排列数(1)排列的概念:从n 个不同元素中,任取)(n m m ≤个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出)(n m m ≤个元素的一个排列.(2)排列数的定义:从n 个不同元素中,任取)(n m m ≤个元素的所有排列的个数叫做从n 个不同元素中取出)(n m m ≤个元素的排列数。

清单35 两个计数原理、排列与组合(原卷版)-2022年新高考数学一轮复习知识方法清单与跟踪训练

清单35 两个计数原理、排列与组合(原卷版)-2022年新高考数学一轮复习知识方法清单与跟踪训练

清单35 两个计数原理、排列组合一、知识与方法清单1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.【对点训练1】定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.【对点训练2】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.93.分类加法计数原理和分步乘法计数原理的区别两个原理的区别在于一个与分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事,求完成这件事的方法种数,就用分类加法计数原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成n个步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步乘法计数原理.【对点训练3】(1)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48 B.18C.24 D.36(2)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是() A.60 B.48C.36 D.244.分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.【对点训练4】从3名骨科,4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答).5.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.【对点训练5】给一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有多少种?6.利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.【对点训练6】某小区一号楼共有7层,每层只有1家住户,已知任意相邻两层数的住户在同一天至多一家有快递,且任意相邻三层楼的住户在同一天至少一家有快递,则在同一天这7家住户有无快递的可能情况共有________种.7.排列与组合的概念作中的一种,现已确定这6人中的甲必须选上且专门从事翻译工作,则不同的选派方案有()(2)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,用C m n表示.【对点训练8】寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种.(用数字作答)9.排列数、组合数的公式及性质2n nA.1B.8C.9D.1010.应用排列、组合数公式解此类方程时,应注意验证所得结果能使各式有意义.应用组合数+C m n时,应注意其结构特征:右边下标相同,上标相差1;左边(相对于右性质C m n+1=C m-1n边)下标加1,上标取大.使用该公式,像拉手风琴,既可从左拉到右,越拉越长,又可以从右推到左,越推越短.【对点训练10】(1)解方程:3A3x=2A2x+1+6A2x;(2)计算:C22+C23+C24+…+C2100.11.排列应用问题的分类与解法排列、组合之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行全排列,因此,分析解决排列的基本思路是“先选,后排”.【对点训练11】有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次.A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名.请你分析一下,这五位学生的名次排列的种数为()A.6 B.18C.20 D.2412.限制元素(位置)优先法:①元素优先法:先考虑有限制条件的元素,再考虑其他元素;②位置优先法:先考虑有限制条件的位置,再考虑其他位置.【对点训练12】六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A .192种B .216种C .240种D .288种13.正难则反排异法:有些问题,正面考虑情况复杂,可以反面入手把不符合条件的所有情况从总体中去掉.【对点训练13】从3名骨科,4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答).14.复杂问题分类分步法:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.在解题过程中,常常既要分类,也要分步,其原则是先分类,再分步.【对点训练14】设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( )A .32B .56C .72D .8415.相离问题插空法:某些元素不能相邻或要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间.【对点训练15】(2022届广东省珠海市高三上学期10月月考)五名同学国庆假期相约去珠海野狸岛日月贝采风观景,结束后五名同学排成一排照相留念,若甲、乙二人不相邻,则不同的排法共有( )A .36种B .48种C .72种D .120种16.相邻问题捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”作全排列,最后再“松绑”——将“捆绑”元素在这些位置上作全排列.【对点训练16】(2022届河北省唐县高三上学期9月月考)7个人站成一排准备照一张合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有( )A .400种B .720种C .960种D .1200种17.定序问题用除法:对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数,也可看作组合问题.【对点训练17】(2022届广东省深圳市高三上学期月考)某次演出有5个节目,若甲、乙、丙3个节目间的先后顺序已确定,则不同的排法有( )A .120种B .80种C .20种D .48种18.相同元素隔板法:隔板模型是解决排列组合问题的一种基本方法,常常用于解决一类相同元素分给不同对象的分配问题,运用隔板法必须同时具备以下三个条件:①所有元素必须相同;②所有元素必须分完;③每组至少有一个元素.【对点训练18】(1)将10个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?(2) 将10个优秀的指标分配给3个班级,每班至少一个,则共有多少种分配方法?(3)求方程10=+++w z y x 的正整数解的个数.19.“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.【对点训练19】(2021届福建省福州高三上学期质量检测)某市近几年大力改善城市环境,全面实现创建生态园林城市计划,现省专家组评审该市是否达到“生态园林城市”的标准,从包含甲、乙两位专家在内的8人中选出4人组成评审委员会,若甲、乙两位专家至少一人被邀请,则组成该评审委员会的不同方式共有( )A .70种B .55种C .40种D .25种20.分组、分配问题的求解策略①对不同元素的分配问题a .对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n (n 为均分的组数),避免重复计数.b .对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c .对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.【对点训练20】(2022届贵州省贵阳第一中学高三上学期月考)2021年暑假,贵阳一中继续组织学生开展“百行体验”社会实践活动.现高三年级某班有6名学生需要去敬老院、社区医院、儿童福利院三个机构开展活动,要求每个机构去2名学生,且学生甲不去敬老院,则不同的安排共有( )A .60种B .360种C .15种D .100种二、跟踪检测一、单选题1.(2022届四川省巴中市高三上学期“零诊”)接种疫苗是预防控制新冠疫情最有效的方法.我国自2021年1月9日起实施全民免费接种新冠疫苗工作,截止到2021年5月底,国家已推出了三种新冠疫苗(腺病毒载体疫苗、新冠病毒灭活疫苗、重组新型冠病毒疫苗)供接种者选择,每位接种者仼选其中一种.若甲、乙、丙、丁4人去接种新冠疫苗,则恰有两人接种同一种疫苗的概率为( )A .49B .916C .23D .892.(2022届山东省济南市高三上学期开学考试)某校甲、乙、丙、丁四位同学报名参加A ,B ,C 三所高校的强基计划考试,每所高校报名人数不限,因为三所高校的考试时间相同,所以甲、乙、丙、丁只能随机各自报考其中一所高校,则恰有两人报考同一所高校的报名种数为()A.24B.36C.64D.723.(2022届浙江省五校高三上学期联考)有10台不同的电视机,其中甲型3台,乙型3台,丙型4台.现从中任意取出3台,若其中至少含有两种不同的型号,则不同的取法共有()A.96种B.108种C.114种D.118种4.(2022届广东省广州市高三上学期10月调研)把标号为1,2,3,4的四个小球分别放入标号为1,2,3,4的四个盒子,每个盒子只放一个小球,则1号球和2号球都不放入1号盒子的方法共有()A.18种B.12种C.9种D.6种5.(广东省花都区2022届高三上学期8月调研)现将8张连号的门票按需求分配给5个家庭,甲家庭需要3张连号的门票,乙家庭需要2张连号的门票,剩余的3张随机分给剩余的3个家庭,则这8张门票不同的分配方法的种数为()A.71B.96C.108D.1206.(2022届宁夏银川一中高三上学期月考)有12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.168 B.260 C.840 D.5607.(2022届江苏省南通市高三上学期9月质量监测)某亲子栏目中,节目组给6位小朋友布置一项搜寻空投食物的任务.已知:①食物投掷点有远、近两处;②由于小朋友甲年纪尚小,所以要么不参与该项任务,要么参与搜寻近处投掷点的食物,但不参与时另需1位小朋友在大本营陪同;③所有参与搜寻任务的小朋友被均匀分成两组,一组去远处,一组去近处.那么不同的搜寻方案有()A.10种B.40种C.70种D.80种8.《数术记遗》是东汉时期徐岳编撰的一本数学专著,该书介绍了我国古代14种算法,其中积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算13种均需要计算器械.某研究性学习小组3人分工搜集整理这13种计算器械的相关资料,其中一人搜集5种,另两人每人搜集4种,则不同的分配方法种数为()A.54431384322C C C AAB.54421384233C C C AAC.544138422C C CAD.5441384C C C9.(2022届广东省广州市高三上学期综合测试)通常,我国民用汽车号牌的编号由两部分组成:第一部分为汉字表示的省、自治区、直辖市简称和用英文字母表示的发牌机关代号,笫二部分为由阿拉伯数字与英文字母组成的序号.其中序号的编码规则为:①由0,1,2,…,9这10个阿拉伯数字与除I,O之外的24个英文字母组成;②最多只能有2个位置是英文字母,如:粤A326S0,则采用5位序号编码的粤A 牌照最多能发放的汽车号牌数为( ) A .586万张 B .682万张 C .696万张 D .706万张 10.重庆11中本学期接收了5名西藏学生,学校准备把他们分配到A ,B ,C 三个班级,每个班级至少分配1人,则其中学生甲不分配到A 班的分配方案种数是( )A .720B .100C .150D .34511.(2022届湖南省岳阳市高三上学期入学考试)如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是( )A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有64种C .甲、乙两人在2A 处相遇的概率为81400 D .甲、乙两人相遇的概率为1212.(2021届山东省高考考前热身押题卷)为迎接第24届冬季奥林匹克运动会,某校安排甲、乙、丙、丁、戊共五名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人.则学生甲不会被安排到冰球比赛项目做志愿者的概率为( )A .34B .23C .56D .12 二、多选题13.(2021届辽宁省实验中学高三考前模拟)一个布袋内装除颜色外完全相同的4个红球和3个蓝球.现从袋中摸出4个球,则( )A .摸出4个红球的概率是135B .摸出3个红球和1个蓝球的概率是1235C .摸出2个红球和2个蓝球的概率是1835D .摸出1个红球和3个蓝球的概率是13514.把座位号为1、2、3、4、5的五张电影票全部分给甲、乙、丙三个人,每人至少一张,且分给同一人的多张票必须连号,那么不同的分法种数为N种,则N的值不可能为(). A.18 B.24 C.36 D.4815.(2021届广东省梅州市高三下学期3月质检)某校实行选课走班制度,张毅同学选择的是地理、生物、政治这三科,且生物在B层,该校周一上午选课走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则下列说法正确的是()C.自习不可能安排在第2节D.自习可安排在4节课中的任一节16.2020年3月,为促进疫情后复工复产期间安全生产,滨州市某医院派出甲、乙、丙、丁4名医生到A,B,C三家企业开展“新冠肺炎”防护排查工作,每名医生只能到一家企业工作,则下列结论正确的是()A.若C企业最多派1名医生,则所有不同分派方案共48种B.若每家企业至少分派1名医生,则所有不同分派方案共36种C.若每家企业至少分派1名医生,且医生甲必须到A企业,则所有不同分派方案共12种D.所有不同分派方案共34种三、填空题17.(2022届云南省师范大学附属中学高三月考)洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象如图,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数(图中白圈为阳数,黑点为阴数).现利用阴数和阳数构成一个四位数,规则如下:(从左往右数)第一位数是阳数,第二位数是阴数,第三位数和第四位数一阴一阳和为7,则这样的四位数有___________个18.(2022届江苏省常州市高三上学期10月学情检测)为调查新冠疫苗的接种情况,需从5名志愿者中选取3人到3个社区进行走访调查,每个社区一人.若甲乙两人至少有一人入选,则不同的选派方法有_____________.19.(2022届四川省成都石室中学高三上学期10月月考)一条路上有10盏路灯,为节约资源,准备关闭其中的3盏.为安全起见,不能关闭两端的路灯,也不能关闭任意相邻的两盏路灯.则不同的关闭路灯的方法有________种.20.从6种不同的蔬菜种子a ,b ,c ,d ,e ,f 中选出4种,分别种在4块不同的土壤A ,B ,C ,D 中进行试验,已有资料表明A 土壤不宜种植a ,B 土壤不宜种植b ,但a 、b 品种产量高.现a 、b 品种必种的试验方案有________种.四、解答题21.一个盒子里有9个球,其中有6个白球,3个黑球现每次从盒子洞口随机摸出一个球且不放回,如果9个球都被摸出,以X 表示6个白球被3个黑球所隔成的段数.例如,摸出顺序为“白黑白白黑白白白黑",则此时X =3,摸出顺序为“黑黑黑白白白白白白”,则此时x =1. (1)求三个黑球相连在一起被摸出的概率;(2)求X 的分布列和数学期望.22.(2021届广东省揭阳市高三上学期第月考)某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日送礼,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶1A ,2A ,3A 中的一个,每个乙系列盲盒可以开出玩偶1B ,2B 中的一个.(1)记事件n E :一次性购买n 个甲系列盲盒后集齐玩偶1A ,2A ,3A 玩偶;事件n F :一次性购买n 个乙系列盲盒后集齐1B ,2B 玩偶;求概率()5P E 及()4P F ;(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为23,购买乙系列的概率为13;而前一次购买甲系列的消费者下一次购买甲系列的概率为14,购买乙系列的概率为34,前一次购买乙系列的消费者下一次购买甲系列的概率为12,购买乙系列的概率为12;如此往复,记某人第n 次购买甲系列的概率为n Q .①求{}n Q 的通项公式;②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.。

新高考数学题型全归纳之排列组合 专题01 两个计数原理(解析版)

新高考数学题型全归纳之排列组合 专题01 两个计数原理(解析版)

专题1 两个计数原理类型一、加法原理【例1】高二年级一班有女生18人,男生38人,从中选取一名学生作代表,参加学校组织的调查团,问选取代表的方法有几种. 【解析】18+38=56.【例2】若a 、b 是正整数,且6a b ≤+,则以()a b ,为坐标的点共有多少个? 【解析】66=36´.【例3】用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .328C .360D .648【解析】由题意知本题要分类来解, 当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有884256创= 当尾数为0时,百位有9种选法,十位有8种结果, 共有98172创=根据分类计数原理知共有25672328+= 故选:B .【例4】用数字12345,,,,组成的无重复数字的四位偶数的个数为( )A .8B .24C .48D .120【解析】由题意知本题需要分步计数,2和4排在末位时,共有122A =种排法, 其余三位数从余下的四个数中任取三个有3443224A =创=种排法, 根据由分步计数原理得到符合题意的偶数共有22448?(个).故选:C .【例5】用012345,,,,,这6个数字,可以组成____个大于3000,小于5421的数字不重复的四位数.【解析】分四类:①千位数字为3,4之一时,百十个位数只要不重复即可,有352120A =个; ②千位数字为5时,百位数字为0,1,2,3之一时,有124448A A =个;③千位数字为5时,百位数字是4,十位数字是0,1之一时,有11236A A =个;最后还有5420也满足题意. 所以,所求四位数共有120+48+6+1=175个. 故答案为 175. 类型二、乘法原理【例6】公园有4个门,从一个门进,一个门出,共有_____种不同的走法. 【解析】根据题意,要求从从任一门进,从任一门出, 则进门的方法有4种,出门的方法也有4种, 则不同的走法有4416?种【例7】将3个不同的小球放入4个盒子中,则不同放法种数有_______. 【解析】根据题意,依次对3个小球进行讨论:第一个小球可以放入任意一个盒子,即有4种不同的放法, 同理第二个小球也有4种不同的放法, 第三个小球也有4种不同的放法, 即每个小球都有4种可能的放法,根据分步计数原理知共有即44464创=不同的放法, 故答案为:64.【例8】如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安排方法共有 种.【解析】分两步完成,第一步先安排甲学校参观,共六种安排方法;第二步安排另外两所学校,共有25A 安排方法,故不同的安排种法有256120A ?,故答案为120.【例9】高二年级一班有女生18人,男生38人,从中选取一名男生和一名女生作代表,参加学校组织的调查团,问选取代表的方法有几种.【解析】111838684C C = 【例10】六名同学报名参加三项体育比赛,每人限报一项,共有多少种不同的报名结果?【解析】每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得共有不同的报名方法63729=种.【例11】六名同学参加三项比赛,三个项目比赛冠军的不同结果有多少种? 【解析】由题意,每项比赛的冠军都有6种可能,因为有3项体育比赛,所以冠军获奖者共有36666创=种可能【例12】用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【解析】解析:可分三步来做这件事: 第一步:先将3、5排列,共有22A 种排法;第二步:再将4、6插空排列,插空时要满足奇偶性不同的要求,共有222A 种排法;第三步:将1、2放到3、5、4、6形成的空中,共有15C 种排法.由分步乘法计数原理得共有221225240A A C =(种). 答案为:40【例13】从集合{12311},,,,中任选两个元素作为椭圆方程22221x y m n +=中的m 和n ,则能组成落在矩形区域{()|||11B x y x ,,=<且||9}y <内的椭圆个数为( ) A .43B .72C .86D .90【解析】椭圆落在矩形内,满足题意必须有,m n ¹,所以有两类, 一类是m ,n 从{1,2,3,6¼,7,8}任选两个不同数字,方法有2856A = 令一类是m 从9,10,两个数字中选一个,n 从{1,2,3,6¼,7,8}中选一个 方法是:2816?所以满足题意的椭圆个数是:561672+= 故选:B .【例14】若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为2y x =-,值域为{19},--的“同族函数”共有( )A .7个B .8个C .9个D .10个【解析】定义域是集合的子集,且子集中至少应该含有1-、1中的一个和3-、3中的一个,满足条件的定义有:{1-,3}-、{1-,3}、{1,3}-、{1,3}、{1-,1,3}-、{1-,1,3}、{1-,3-,3}、{1,3-,3}、{1-,1,3-,3},共9个.故选:C .【例15】某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位和个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0,并且千位、百位上都能取0.这样设计出来的密码共有( )A .90个B .99个C .100个D .112个【例16】从集合{4321012345},,,,,,,,,----中,选出5个数组成子集,使得这5个数中的任何两个数之和不等于1,则取出这样的子集的个数为( )A .10B .32C .110D .220【解析】从集合{1-,2-,3-,4-,0,1,2,3,4,5}中,随机选出5个数组成 子集,共有105C 种取法,即可组成105C 个子集,记“这5个数中的任何两个数之和不等于1”为事件A ,而两数之和为1的数组分别为(1,2)-,(2,3)-,(3-,4)(4-,5),(0,1),A 包含的结果有①只有有一组数的和为1,有5422213111160C C C C C =种结果②有两组数之和为1,有562160C C =种, 则A 包含的结果共有220种 故答案为:220.【例17】若x 、y 是整数,且6x ≤,6x ≤,则以()x y ,为坐标的不同的点共有多少个? 【解析】整数x ,y 满足6x ≤,6x ≤ 则{6,5,4,3x A?----,2-,1-,0,1,2,3,4,5,6},{6,5,4y B?---,3-,2-,1-,0,1,2,3,4,5,6},从A 种选一个共有13种方法,从B 选一个共有13种方法, 故有1313169?种.故答案为:169.【例18】用0,1,2,3,4,5这6个数字:⑴可以组成______________个数字不重复的三位数. ⑵可以组成______________个数字允许重复的三位数.【解析】(1)根据题意,分2步分析:①、先选百位,百位可以在1、2、3、4、5中任选1个,则百位有5种方法, ②、在剩下的5个数字中任选2个,安排在十位、个位,有2520A =种选法, 则可以组成520100?个无重复数字的三位数(2)分3步进行分析:①、先选百位,百位可以在1、2、3、4、5中任选1个,则百位有5种选法,②、再选十位,十位可以在0、1、2、3、4、5中任选1个,则十位有6种选法, ③、最后分析个位,个位可以在0、1、2、3、4、5中任选1个,则个位有6种选法, 则可以组成566180创=个数字允许重复的三位数;【例19】六名同学报名参加三项体育比赛,共有多少种不同的报名结果? 【解析】63333333创创?【例20】将3名教师分配到2所中学任教,每所中学至少一名教师,则不同的分配方案共有( )种.A .5B .6C .7D .8【解析】将3名教师分配到2所中学任教,每所中学至少1名教师, 只有一种结果1,2,首先从3个人中选2个作为一个元素, 使它与其他两个元素在一起进行排列,共有22326C A =种结果, 故选:B .类型三、基本计数原理的综合应用【例21】用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是_________.(用数字作答) 【解析】按首位数字的奇偶性分两类: 一类是首位是奇数的,有:2323A A ;另一类是首位是偶数,有:322322()A A A -则这样的五位数的个数是:2332223322()20A A A A A +-=. 故答案为:20.【例22】若自然数n 使得作竖式加法(1)(2)n n n ++++均不产生进位现象.则称n 为“可连数”.例如:32是“可连数”,因323334++不产生进位现象;23不是“可连数”,因232425++产生进位现象.那么,小于1000的“可连数”的个数为( )A .27B .36C .39D .48【解析】如果n 是良数,则n 的个位数字只能是0,1,2,非个位数字只能是0,1,2,3(首位不为0), 而小于1000的数至多三位, 一位的良数有0,1,2,共3个二位的良数个位可取0,1,2,十位可取1,2,3,共有339?个三位的良数个位可取0,1,2,十位可取0,1,2,3,百位可取1,2,3,共有34336创=个. 综上,小于1000的“良数”的个数为393648++=个 故选:D .【例23】由正方体的8个顶点可确定多少个不同的平面?【解析】依题意,正方体的8个顶点所确定的平面有:6个表面,6个对角面,8个正三角形平面共20个. 故答案为:20【例24】分母是385的最简真分数一共有多少个?并求它们的和.【解析】因为3855711=⨯⨯,在1~385这385个自然数中,5的倍数有385[]775=(个), 7的倍数有385[]557=(个),11的倍数有385[]3511=(个),5735⨯=的倍数有385[]1135=(个),51155⨯=的倍数有385[]755=(个), 71177⨯=的倍数有385[]577=(个),385的倍数有1个. 由容斥原理知,在1~385中能被5、7或11整除的数有775535(1175)1145++−+++=(个), 而5、7、11互质的数有385145240−=(个).即分母为385的真分数有240(个). 如果有一个真分数为385a,则必还有另一个真分数385385a −,即以385为分母的最简真分数是成对出现的, 而每一对之和恰为1.故以385为分母的240最简分数可以分成120时,它们的和为1120120⨯=. 【例25】用0,1,2,3,4,5这6个数字,可以组成_______个大于3000,小于5421的数字不重复的四位数.【解析】分四类:①千位数字为3,4之一时,百十个位数只要不重复即可,有352120A =个; ②千位数字为5时,百位数字为0,1,2,3之一时,有124448A A =个;③千位数字为5时,百位数字是4,十位数字是0,1之一时,有11236A A =个;最后还有5420也满足题意. 所以,所求四位数共有120+48+6+1=175个. 故答案为 175.【例26】某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“0000创创创?”到“9999创创创?”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( )A .2000B .4096C .5904D .8320【解析】10000个号码中不含4、7的有484096=, \ “优惠卡”的个数为1000040965904-=,故选:C .【例27】同室4人各写1张贺年卡,先集中起来,然后每人从中各拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有( )A .6B .9种C .11种D .23种【解析】设四人分别为a 、b 、c 、d ,写的卡片分别为A 、B 、C 、D , 由于每个人都要拿别人写的,即不能拿自己写的,故a 有三种拿法,不妨设a 拿了B ,则b 可以拿剩下三张中的任一张,也有三种拿法,c 和d 只能有一种拿法, 所以共有33119创?种分配方式,故选:B.【例28】某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为()A.504B.210C.336D.120【解析】由题意知将这3个节目插入节目单中,原来的节目顺序不变,\三个新节目一个一个插入节目单中,原来的6个节目形成7个空,在这7个位置上插入第一个节目,共有7种结果,原来的6个和刚插入的一个,形成8个空,有8种结果,同理最后一个节目有9种结果根据分步计数原理得到共有插法种数为789504创=,故选:A.【例29】某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共()A.15种B.12种C.9种D.6种【解析】同种树苗不相邻且第一个树坑和第5个树坑只能种甲种树苗,\只有中间三个坑需要选择树苗,当中间一个种甲时,第二和第四个坑都有2种选法,共有4种结果,当中间一个不种甲时,则中间一个种乙或丙,当中间这个种乙时,第二和第四个位置树苗确定,当中间一个种丙时,第二和第四个位置树苗确定,共有2种结果,\总上可知共有426+-种结果,故选:D.【例30】用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.648【解析】由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有884256创=当尾数为0时,百位有9种选法,十位有8种结果,共有98172创=根据分类计数原理知共有25672328+=故选:B.【例31】足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有( )A.3种B.4种C.5种D.6种【解析】得3分最多6场,则1分的1场,剩余的场次均得0分;若3分的共5场,则1分的共4场;若3分的共4场,则1分的共7场;若得3分的共3场,则1分的共9场;若得3分的2场,则1分的13场,不合题意,故选B.。

高考数学专题复习《两个基本计数原理、排列与组合》PPT课件

高考数学专题复习《两个基本计数原理、排列与组合》PPT课件

5.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取
法的种数是
.
答案 6
解析 从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类:第1类,取出
的两数都是偶数,共有3种方法;第2类,取出的两数都是奇数,共有3种方法.
故由分类加法计数原理,不同的取法种数为N=3+3=6.
取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数
字不能取与这三个数字重复的数字.根据分步乘法计数原理,有
3×4×5×4=240(个)数.第2类,当千位数字为偶数且不为0时,即取2,4,6中的
任意一个时,个位数字可以取除首位数字外的任意一个偶数数字,百位数字
不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数
不同的方法
依据 能否独立完成整件事

完成这件事共有
N=
m1×m2×…×mn

能否逐步完成整件事
种不同的方
2.两个计数原理的区别与联系
名称
分类加法计数原理
分步乘法计数原理
相同点
都是用来计算完成一件事的不同方法种类的计数方法
针对“分类”问题,各种方法相互 针对“分步”问题,各个步骤中的
不同点
注意点
独立,每一类办法中的每一种方 方法互相依存,只有每一个步骤
(5)若组合式C = C ,则 x=m 成立.( × )
2.A24 + C73 =(
)
A.35
B.47
C.45
答案 B
解析
A24
+
C73
=
4!
7!
+
=12+35=47.

计数原理与排列组合(基础篇)

计数原理与排列组合(基础篇)

计数原理与排列组合我们先对所学知识进行一个简单的梳理:分类加法计数原理和分步乘法计数原理是排列组合组合的基础,只有我们对这两种计数原理理解到位,我们才能更好、更深刻理解排列组合,并利用它们解决一些相关问题。

进一步讲,只有较好理解了组合的意义,我们才能对“二项式”展开有更加建党而清晰的理解——组合的基本操作在于“选择”,而二项式展开正是运用选择的思想进行的。

另外,排列组合是我们学好后期“概率问题”的一个基础。

好了,我们开始吧。

基础篇:1、 两种计数原理: 1.1加法计数原理问题引入:在200321,,,, 中,能够被5整除的数共有几个?分类加法计数原理:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.(也称加法原理)1.2乘法计数原理问题引入:从A 村道B 村的道路有3条,从B 村去C 村的路有2条,从C 村去D 的道路有3条,小明要从A 村经过B 村,再经过C 村,最后到D 村,一共有多少条路线可以选择?从A 村经 B 村去D 村分作 3 步:第一步, 由A 村去B 村有 3 种方法, 第二步, 由B 村去C 村有 2 种方法,第三步,从C 村到D村有3种方法分步乘法计数原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.(也称乘法原理) 2、排列与组合基础准备:阶乘n的阶乘:正整数1到n的连乘积,叫做n的阶乘记为:n!即:n*(n-1)*(n-2)......2*1=n!2.1、排列:从n个不同元素中,任取m(m£n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.排列数:简单来说就是所有不同排列的个数。

高二数学两个基本计数原理及排列组合

高二数学两个基本计数原理及排列组合

一、两个基本计数原理(一)知识点1.分类计数原理完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……,在第n类方式中有mn种不同的方法,那么完成这件事共有N=m1+m2+...+m n种不同的方法.2.分步计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有mn种不同的方法,那么完成这件事共有N=m1*m2*...*m n种不同的方法.(二)运用与方法检测:1、要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少中不同的选法?从3名工人中选1名上白班和1名上晚班,可以分成先选1名上白班,再选1名上晚班这两个步骤完成.先选1名上白班,共有3种选法;上白班的人选定后,上晚班的工人有2种选法.根据分步计数原理,所求的不同的选法数是3×2=6(种).2、有5封不同的信,投入3个不同的信箱中,那么不同的投信方法总数为多少?3的五次3、(1)一件工作可以用两种方法完成,有5人会用第1种方法完成,有4人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的总数是分两类.第一类有5种选法;第二类有4种选法.共9种(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经过B 村去C村不同走法的总数是 3×2=6所有六条路*4、从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列共有多少个?这样的等比数列有:1、2、4;4、2、1;2、4、8;8、4、2;1、3、9;9、3、1;4、6、9;9、6、4,共计8个,故答案为:8.5、有不同的中文书9本,不同的英文书7本,不同的日文书5本,欲从中取出不是同一国文字的两本书,共有多少种不同的取法?取中文和英文:9*7=63取中文和日文:9*5=45取英文和日文:7*5=35总共:63+45+35=143二、排列与组合(一)知识点1.排列(1)排列的定义:一般地,从n个不同的元素中取出m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. (2)排列数的定义:一般地,从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A n m表示.(4)从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。

排列组合题型全归纳 专题01 两个计数原理(解析版)

排列组合题型全归纳 专题01 两个计数原理(解析版)

专题01两个计数原理类型一、加法原理例1.(2023·全国·高三专题练习)某奥运村有A,B,C三个运动员生活区,其中A区住有30人,B区住有15人,C区住有10人.已知三个区在一条直线上,位置如图所示.奥运村公交车拟在此间设一个停靠点,为使所有运动员步行到停靠点路程总和最小,那么停靠点位置应在()A.A区B.B区C.C区D.A,B两区之间【答案】A⨯+⨯=【解析】若停靠点为A区时,所有运动员步行到停靠点的路程和为:15100103004500米;⨯+⨯=米;若停靠点为B区时,所有运动员步行到停靠点的路程和为:30100102005000⨯+⨯=米;若停靠点为C区时,所有运动员步行到停靠点的路程和为:303001520012000若停靠点为A区和B区之间时,设距离A区为x米,所有运动员步行到停靠点的路程和为:()(),+⨯-+⨯+-=+x x x x30151001010020054500x=取最小值,故停靠点为A区.当0故选:A例2.(2023·全国·高三专题练习)现有5幅不同的油画,2幅不同的国画,7幅不同的水彩画,从这些画中选一幅布置房间,则不同的选法共有()A.7种B.9种C.14种D.70种【答案】C【解析】分为三类:从国画中选,有2种不同的选法;从油画中选,有5种不同的选法;从水彩画中选,有7种不同的选法,根据分类加法计数原理,共有5+2+7=14(种)不同的选法;故选:C例3.(2023·全国·高三专题练习)2010年世界杯足球赛预计共有24个球队参加比赛,第一轮分成6个组进行单循环赛(在同一组的每两个队都要比赛),决出每个组的一、二名,然后又在剩下的12个队中按积分取4个队(不比赛),共计16个队进行淘汰赛来确定冠亚军,则一共需比赛()场次.A.53B.52C.51D.50【答案】C【解析】第一轮分成6个组进行单循环赛共需要246C 36=场比赛,淘汰赛有如下情况:16进8需要8场比赛,8进4需要4场比赛,4进2需要2场比赛,确定冠亚军需要1场比赛,共需要36842151++++=场比赛故选:C .例4.(2023·全国·高三专题练习)在北京冬奥会短道速滑混合团体2000米接力决赛中,中国队成功夺冠,为中国体育代表团夺得本届冬奥会首金.短道速滑男女接力赛要求每队四名运动员,两男两女,假设男女队员间隔接力,且每位队员只上场一次,则不同的上场次序的种数为()A .8B .16C .18D .24【答案】A【解析】把问题分类:(1)以男运动员排第一位,上场次序的种数为:1122C C 4=;(2)以女运动员排第一位,上场次序的种数为:1122C C 4=;总的上场次序种数合计为:448+=故选:A例5.(2023·高二单元测试)某学校为落实“双减政策,在每天放学后开设拓展课程供学生自愿选择,开学第一周的安排如下表.小明同学要在这一周内选择编程、书法、足球三门课,不同的选课方案共有()周一周二周三周四周五演讲、绘画、舞蹈、足球编程、绘画、舞蹈、足球编程、书法、舞蹈、足球书法、演讲、舞蹈、足球书法、演讲、舞蹈、足球注:每位同学每天最多选一门课,每门课一周内最多选一次.A .15种B .10种C .8种D .5种【答案】A【解析】若周二选编程,则选课方案有1133C C 9=(种);若周三选编程,则选课方案有1123C C 6=(种).综上,不同的选课方案共有9615+=(种).故选:A.类型二、乘法原理例6.(2023·高二课时练习)一次时装表演,有7顶不同款式的帽子,12件不同款式的上衣和8条不同款式的裤子.一位模特要从这些帽子、上衣和裤子中各选1款穿戴,则有______种不同的选法.【答案】672【解析】模特完成穿戴需要分三步:第一步,选择帽子,共有7种选择;第二步,选择上衣,共有12种选择;第三步,选择裤子,共有8种选择;根据乘法原理,共有7128672⨯⨯=种.故答案为:672例7.(2023·高二课时练习)4个学生各写一张贺卡放在一起,然后每人从中各取一张,要求不能取自己写的那张贺卡,但有1个学生取错了,则不同的取法共有______种.【答案】8【解析】有1个学生取错了,有14C4=种可能,另外三人假设为甲、乙、丙,按要求取贺卡,甲先去拿一个贺卡,有2种取法,假设甲拿的是乙写的贺卡,接下来让乙去拿,乙此时只能⨯=种.拿丙的贺卡,而丙最后拿甲的贺卡,则不同的取法共428故答案为:8.例8.(2023·高二课时练习)有四位学生参加三项竞赛,要求每位学生必须参加其中一项竞赛,有______种参赛情况.【答案】81=种.【解析】根据乘法分步原理,每位学生都有三种选择方案,故有4381故答案为:81例9.(2023·高二课时练习)有四位学生参加三项竞赛,要求每项竞赛只需其中一位学生参加,有______种参赛情况.【答案】64=种参赛情况.【解析】根据题意,每一项竞赛都有4位同学可以选择,故有3464故答案为:64例10.(2023·高二课时练习)甲、乙、丙、丁四个人各写一张贺卡,放在一起,再各取一张不是自己所写的贺卡,共有______种不同的取法.【答案】9【解析】第一步甲取1张不是自己所写的那张贺卡,有3种取法;第二步由甲取出的那张贺卡的供卡人取,也有3种不同取法;第三步由剩余两人中任1个人取,此时只有1种取法;⨯⨯⨯=种.第四步最后1个人取,只有1种取法.根据分步计数原理可得33119故答案为:9例11.(2023·高二课时练习)某酒店的大楼有18层,每层12个房间,如果每个房间都安装一个电话分机,那么用1、2、3、4、5、6这六个数字所组成的三位数作为各分机的号码,是否够用?【解析】由题知,房间数为1812216⨯=,⨯⨯=,这六个数字组成的号码个数为666216所以号码刚好够用.例12.按序给出a,b两类元素,a类中的元素排序为甲、乙、丙、丁、戊、己、庚、辛、壬、癸,b类中的元素排序为子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.在a,b两类中各取1个元素组成1个排列,求a类中选取的元素排在首位,b类中选取的元素排在末位的排列的个数.a类的10个元素叫作天干,b类的12个元素叫作地支.两者按固定顺序相配,形成古代纪年历法,求天干各地支相配可形成的纪年历法可以表示多少年.【解析】从a类中选取一个元素排在首位的选法有10种,从b类中选取一个元素排在末位的选法有12种,由分步乘法计数原理可得所有排列的个数为120种.例13.某班有男生30名、女生24名,从中任选男生和女生各1名代表班级参加比赛,共有多少种不同的选法?【答案】720.【解析】第一步,从30名男生中选出1人,有30种不同选法;第二步,从24名女生中选出1人,有24种不同选法.⨯=.根据分步乘法计数原理,共有不同选法的种数有3024720所以共有720种不同的选法.类型三、基本计数原理的综合应用例14.(2023秋·河北·高二河北省文安县第一中学校考期末)如图,要让电路从A处到B处接通,不同的路径条数为()A.5B.7C.8D.12【答案】C⨯+⨯=.【解析】要让电路从A处到B处接通,不同的路径条数为21238故选:C.例15.(2023·高二单元测试)一杂技团有8名会表演魔术或口技的演员,其中有6人会表演口技,有5人会表演魔术,现从这8人中选出2人上台表演,1人表演口技,1人表演魔术,则不同的安排方法有______种.【答案】27【解析】由题可知有2人只会表演魔术,3人只会表演口技,3人既会表演魔术又会表演口技,针对只会表演魔术的人讨论,先从只会表演魔术的人表演魔术有2种选择,再从其他的6⨯=种选择;人选1人表演口技有6种选择,故共有2612不选只会表演魔术的人,从既会表演魔术又会表演口技的3人中选1人表演魔术,有3种选择,再从只会表演口技的3人和既会表演魔术又会表演口技的剩余2人选1人表演口技,有5种选择,⨯=种选择;故共有3515+=种.所以不同的安排方法有121527故答案为:27.例16.(2023·全国·高三专题练习)如图,一条电路从A处到B处接通时,可以有_____________条不同的线路(每条线路仅含一条通路).【答案】9【解析】依题意按上、中、下三条线路可分为三类,上线路中有2种,中线路中只有1种,下线路中有236⨯=(种).++=(种).根据分类计数原理,共有2169故答案为:9.例17.(2023春·四川绵阳·高三绵阳中学校考阶段练习)小小的火柴棒可以拼成几何图形,也可以拼成数字.如下图所示,我们可以用火柴棒拼出1至9这9个数字比如:“1”需要2根火柴棒,“7”需要3根火柴棒.若用8根火柴棒以适当的方式全部放入右面的表格中(没有放入火柴棒的空位表示数字“0”),那么最多可以表示无重复数字的三位数有______个【答案】20【解析】由题意可得,用2根火柴棒表示数字1,3根火柴棒表示数字7,4根火柴棒表示数字4,5根火柴棒表示数字2,3或5,6根火柴棒表示数字6或9,7根火柴棒表示数字8,数字不重复,因此8根火柴棒只能分成两类:2和6,3和5,组成两个数字,还有数字只能为0,这样组成的无重复数字的三位数个数为:112112222232C C A+C C A=20.故答案为:20例18.(2023·全国·高三专题练习)某学校每天安排4项课后服务供学生自愿选择参加.学校规定:(1)每位学生每天最多选择1项;(2)每位学生每项一周最多选择1次.学校提供的安排表如下:时间周一周二周三周四周五课后服务音乐、阅读、体育、编程口语、阅读、编程、美术手工、阅读、科技、体育口语、阅读、体育、编程音乐、口语、美术、科技若某学生在一周内共选择了阅读、体育、编程3项,则不同的选择方案共有______种.(用数值表示)【答案】14【解析】由题知:周一、二、三、四均可选阅读,体育在周一、三、四,编程在周一、二、四.①若周一选编程,则体育在周三或周四,故为2种,阅读在剩下的两天中选为2种,共有224⨯=种方案.②若周二选编程,则体育在周一,周三或周四,故为3种,阅读在剩下的两天中选为2种,共有326⨯=种方案.③若周四选编程,则体育在周一或周三,故为2种,阅读在剩下的两天中选为2种,共有224⨯=种方案.综上,共有46414++=种方案.故答案为:14例19.(2023·高二课时练习)书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)从这些书中任取一本,有多少种不同的取法?(2)从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?(3)从这些书中取不同科目的书共两本,有多少种不同的取法?【解析】(1)由于书架上有35614++=本书,则从中任取一本,共有14种不同的取法.(2)由题意分步完成,第一步:取任取一本数学书,有3种取法;第二步:取任取一本语文书,有5种取法;第三步:取任取一本英语书,有6种取法;由分步乘法计数原理得共有35690⨯⨯=种不同的取法.(3)取两本不同科目的数,可以分三种情况:①一本数学书和一本语文书,有3515⨯=种情况;②一本数学书和一本英语书,有1863=⨯种情况;③一本语文书和一本英语书,有5630⨯=种情况;根据分类加法计数原理,共有15183063++=种情况.例20.(2023·高二单元测试)在某次国际高峰论坛上,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这3个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数是多少?【解析】由题,根据选取方式可分为2种情况:2个国内媒体团和1个国外媒体团,选取方式有2163C C 种,提问方式有22A 种,共212632C C A 90=种;1个国内媒体团和2个国外媒体团,选取方式有1263C C 种,提问方式有33A 种,共123633C C A 108=种.综上,共90108198+=种。

两个计数原理与排列、组合的基本问题

两个计数原理与排列、组合的基本问题
组合
从n个不同的元素中取出m个元素 (m≤n),不考虑顺序的不同,叫 做从n个元素中取出m个元素的一 个组合。
常见问题类型及解决方法
相邻问题
不相邻问题
定序问题
分组问题
对于某几个元素要求相邻的问 题,可以先将这几个元素看作 一个整体,然后再进行排列。
对于某几个元素要求不相邻的 问题,可以先将其他元素排好 ,然后再将这几个元素插入到 空位中。
01
02
03
编码方式数量
在编码理论中,计数原理 用于计算给定信息量的编 码方式总数。
错误检测和纠正
在错误检测和纠正中,利 用计数原理可以确定给定 编码方式下可检测或纠正 的错误数量。
码字重量分布
码字重量分布问题涉及计 算给定编码方式下,具有 特定重量的码字数量,这 也需要用到计数原理。
其他领域应用举例
A(4,4)=24种排法。因此,总的排列数为2×24=48种。 • 例题2:7个人站成一排,其中甲、乙两人不能站在一起的排列数有多少种? • 解答:先考虑7个人全排列的情况,有A(7,7)=5040种排法。再考虑甲、乙两人站在一起的情况,将甲、乙两
人看作一个整体进行排列,有A(2,2)=2种排法。再将这个整体与其余5人进行排列,有A(6,6)=720种排法。因 此,甲、乙两人站在一起的总排列数为2×720=1440种。所以,甲、乙两人不能站在一起的排列数为50401440=3600种。
02
根据选取元素的方式和限制条件 的不同,计数原理可以分为加法 原理和乘法原理两大类。
加法原理与乘法原理
加法原理
如果完成一件事情有n类方法,第一类方法有m1种不同的方式, 第二类方法有m2种不同的方式,……,第n类方法有mn种不同 的方式,那么完成这件事情共有m1+m2+…+mn种不同的方法。

复数与计数原理,排列组合

复数与计数原理,排列组合

考点一:复数的概念1、复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部.2、分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数; 0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数.3、复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.4、共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.5、复平面:建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴除去原点的部分叫做虚轴。

6、两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

考点二:复数的运算1.复数的加,减,乘,除按以下法则进行设12,(,,,)z a bi z c di a b c d R =+=+∈则12()()z z a c b d i ±=±+±12()()z z ac bd ad bc i ∙=-++12222()()(0)z ac bd ad bc i z z c d -++=≠+ 2,几个重要的结论(1) 2222121212||||2(||||)z z z z z z ++-=+ (2) 22||||z z z z ∙==(3)若z 为虚数,则22||z z ≠3.运算律(1) m n m n z z z +∙=;(2) ()m n mn z z =;(3)1212()(,)n n n z z z z m n R ∙=∙∈4.关于虚数单位i 的一些固定结论:(1)21i =- (2)3i i =- (3)41i = (2)2340n n n n i ii i ++++++=1. 已知i 是虚数单位,则31i i+-= A .1-2i B.2-i C.2+i D .1+2i2.下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 343.复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -4.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数b a i +为纯虚数”的( ) A.充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b6.若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i --选修2-3知识点第一章 计数原理知识点:(3) 分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

排列组合知识点和例题

排列组合知识点和例题

排列组合知识点和例题1.分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,,在第n类办法中有mn种不同的方法,那么完成这件事共有N=n1+n2+n3++nM种不同的方法.2.分步计数原理:完成一件事,需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,,做第n步有mn种不同的方法,那么完成这件事共有N=n1·n2·n3·nM种不同的方法.注:分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。

它们的共同点都是把一个事件分成若干个分事件来进行计算。

只不过利用分类计算原理时,每一种方法都独立完成事件;如需连续若干步才能完成的则是分步。

利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性.比较复杂的问题,常先分类再分步。

3.排列的定义:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元......素的一个排列.排列数的定义:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列.从nm个不同元素中取出m个元素的一个排列数,用符号An表示.其中n,m∈N,并且m≤n.m排列数公式:Ann(n1)(nm1)n!(m≤n,n,mN)(nm)!当m=n时,排列称为全排列,排列数为n=n(n1)An21记为n!,且规定O!=1.mm1注:nn!(n1)!n!;AnnAn14.组合的定义:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.组合数的定义:从n个不同的元素中取出m(m≤n)个元素的所有组合数,叫做从n个不同元素中取出m个元素的组合数.用符号Cn表示.mAn!组合数公式:Cnn(n1)(nm1).Amm!m!(nm)!mmnm规定Cn1,其中m,n∈N+,m≤n.注:排列是“排成一排”,组合是“并成一组”,前者有序而后者无序.组合数的两个性质:①Cmn因此从n个不同元素中取出n-m个元素的方法Cnmn;从n个不同元素中取出m个元素后就剩下n-m个元素,是一一对应的,因此是一样多的.②Cm1nmCmnCn1根据组合定义与加法原理得;在确定n+1个不同元素中取m个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C需从剩余n个元素中取出m个元素,所以共有Cn种,依分类原理有Cmm1mmnCnCn1.m1n,如果不取这一元素,则常年授课开设班型:一对一和4-8人小班1业精于勤而荒于嬉行成于思而毁于随5.解排列、组合题的基本策略与方法(Ⅰ)排列、组合问题几大解题方法:①直接法;②排除法;③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有Ann种,m(mn)个元素的全排列有Amm种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排成一列,其中m个元素次序一定,共有AnnAmm种排列方法.(Ⅱ)排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);④正难则反,等价转化策略;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略.1.1两个计数原理(1)例1、某班共有男生28名,女生20名,从该班选出学生代表参加校学代会。

(完整版)两个计数原理与排列组合知识点及例题(最新整理)

(完整版)两个计数原理与排列组合知识点及例题(最新整理)

m
1
mm
1
2m
1n
m
1
m
n!
1!n
m
1 ! n
2n
1
m
n 1 !n
2!
m
1 !
C m1 n2

另法:利用公式
C
m n
Cm n1
C
m1 n1
推得

C m1 n
C nm
C
m n
C m1 n
C m1 n1
Cn n1
C m1 n2

点评:证明排列、组合恒等式通常利用排列数、组合数公式及组合数基本性质
并列需要分类计算
解:(1)A 中每个元都可选 0,1,2 三者之一为像,由分步计数原理,共有 3 3 3 3 34 个不同
映射
(2)根据 a, b, c, d 对应的像为 2 的个数来分类,可分为三类:
第一类:没有元素的像为 2,其和又为 4,必然其像均为 1,这样的映射只有一个;
第二类:一个元素的像是
(1)6 名学生排 3 排,前排 1 人,中排 2 人,后排 3 人; (2)6 名学生排成一排,甲不在排头也不在排尾; (3)从 6 名运动员中选出 4 人参加 4×100 米接力赛,甲不跑第一棒,乙不跑第四棒; (4)6 人排成一排,甲、乙必须相邻; (5)6 人排成一排,甲、乙不相邻; (6)6 人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以不相邻)
根据分类计数原理和点 A 共面三点取法共有 3C53 3 33 种
(2)取出的 4 点不共面比取出的 4 点共面的情形要复杂,故采用间接法:先不加限制任取 4 点( C140
例 1 完成下列选择题与填空题

计数原理与排列组合知识点总结

计数原理与排列组合知识点总结

计数原理与排列组合知识点总结在数学的领域中,计数原理与排列组合是非常重要的概念,它们在解决许多实际问题和理论研究中都有着广泛的应用。

接下来,咱们就一起深入地探讨一下这部分的知识。

一、计数原理1、分类加法计数原理完成一件事,如果有 n 类办法,在第 1 类办法中有 m1 种不同的方法,在第 2 类办法中有 m2 种不同的方法,……,在第 n 类办法中有mn 种不同的方法,那么完成这件事共有 N = m1 + m2 +… + mn 种不同的方法。

比如说,从甲地到乙地,可以坐火车、汽车或者飞机。

如果坐火车有 3 种车次可选,坐汽车有 2 种路线可选,坐飞机有 1 种航班可选,那么从甲地到乙地一共有 3 + 2 + 1 = 6 种不同的出行方式。

2、分步乘法计数原理完成一件事,如果需要分成 n 个步骤,做第 1 步有 m1 种不同的方法,做第 2 步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事共有 N =m1×m2×…×mn 种不同的方法。

例如,从 A 城市到 C 城市需要在 B 城市中转。

从 A 到 B 有 2 条路线可走,从 B 到 C 有 3 条路线可走,那么从 A 到 C 一共有 2×3 = 6 条不同的路线。

这两个计数原理的区别在于:分类加法计数原理是“分类完成”,每一类中的方法都能独立完成这件事;分步乘法计数原理是“分步完成”,每个步骤相互依存,只有每个步骤都完成了,这件事才算完成。

二、排列1、排列的定义从 n 个不同元素中取出 m(m≤n)个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。

比如,从 1、2、3 这三个数字中取出 2 个数字进行排列,有 12、21、13、31、23、32 这六种情况。

2、排列数的定义从 n 个不同元素中取出 m(m≤n)个元素的所有排列的个数,叫做从 n 个不同元素中取出 m 个元素的排列数,用符号 A(n, m)表示。

完整版)高考排列组合知识点归纳

完整版)高考排列组合知识点归纳

完整版)高考排列组合知识点归纳第四讲:排列组合一、分类计数原理与分步计数原理1.分类加法计数原理:对于一件事情,有两种不同的方案,第一类方案有m种不同的方法,第二类方案有n种不同的方法,那么完成这件事情共有m+n种不同的方法。

2.分步乘法计数原理:完成一件事情需要两个步骤,第一步有m种不同的方法,第二步有n种不同的方法,那么完成这件事情共有m×n种不同的方法。

二、排列数1.组合:从n个元素中取出m个元素,记作Cnmn!/m!(n-m)!2.排列:1)全排列:将n个元素全排列,记作Ann!2)从n个元素中取出m个元素,并将这m个元素全排列,记作Anmn!/ (n-m)!三、二项式定理a+b)nC n 0 a n b 0C n 1 a n-1 b 1 C n n abn1.二次项系数之和:Cnr2.展开式的第r项:Tr+1Cnr例题1:(x-1)4的展开式中的常数项是()A、6.B、4.C、-4.D、-6例题2:在二项式(x-2y) 5的展开式中,含x2y3的项的系数是()A、-20.B、-3.C、6.D、20 随堂训练:1、在二项式(x21)5的展开式中,含x4的项的系数是()A、-10.B、10.C、-5.D、52、(1/x-2x25的展开式中的常数项是()A、5.B、-5.C、10.D、-103、在二项式(x+3y)6的展开式中,含x2y4的项的系数是()A、45.B、90.C、135.D、2704、已知关于x的二项式(x+3an的展开式的二项式系数之和为32,常数项为80,则a的值为()A、1.B、±1.C、2.D、±25、(1-2x)(1-3x)4的展开式中,x2的系数等于?6、(ax21/2x-2)7的展开式中各项系数的和为243,则该展开式中常数项为?7、(x22)2x的展开式中常数项是70,则n=?若展开式(ax+)(2x+)5中常数项为-40,则a=?四、排列组合题型总结解决排列组合综合性问题的一般过程如下:1.认真审题,弄清要做什么事;2.确定采取分步还是分类,或分步与分类同时进行,确定分多少步及多少类;3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素;4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

排列组合二项式定理知识点以及典型例题总结排列组合二项式定理知识点

排列组合二项式定理知识点以及典型例题总结排列组合二项式定理知识点

排列组合二项式定理知识点以及典型例题总结考纲要求:1.知道分类计数原理与分步计数原理的区别,会用两个原理分析和解决一些简单的问题2.知道排列和组合的区别和联系,记住排列数和组合数公式,能用它们解决一些简单的应3.知道一些组合数性质的应用.4.了解二项式定理及其展开式5.记住二项式展开式的通项公式,并能够运用它求展开式中指定的项6.了解二项式系数的性质,能够利用二项式展开式的通项公式求出展开式中二项式系数最大的项.7.了解二项式的展开式中二项式系数与项的系数的区别知识点一:计数原理1.分类加法计数原理如果完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.两个基本计数原理的区别:分类计数原理——每一类办法都能把事单独完成;分步计数原理——缺少任何一个步骤都无法把事完成.2.分步乘法计数原理如果完成一件事,需分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1·m2·…·m n种不同的方法.知识点二:排列1.排列的定义:一般地,从n个不同的元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫作从n个不同元素中取出m 个元素的一个排列.如果m <n ,这样的排列叫作选排列.如果m =n ,这样的排列叫作全排列.2. 排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫作从n 个不同元素中取出m 个元素的排列数,用符号P mn 表示.3. 排列数的公式: (1) P m n =n ·(n -1)·(n -2)·…·(n -m +1);(2) P m n =()!!n n m -; 规定:0!=1.知识点三:组合1.组合的定义:一般地,从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.3. 组合数公式: (1)()()()121P C P !m mn n m n n n n n m m ---+==(2)()!C !!m n n m n m =-(n ,m ∈N +,且m ≤n ) 4. 组合数性质:(1) C =C m n m n n -;(2) 111C +C C mm m n n n +++=知识点四:二项式定理1. 二项式定理(a +b )n =011222C C C C C n n n m n m nn n n n n n a a b a b a b b ---++++++, n ∈N +其中C m n (m =0,1,2,…,n )叫做二项式系数;T m +1=C m n m m n a b -叫做二项式展开式的通项公式.2. 二项式系数的性质:(1)每一行的两端都是1,其余每一个数都是它“肩上”两个数的和;(2)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C C r n r n n -=(3)如果二项式的幂指数n 是偶数,那么中间一项即第12n +项的系数最大;如果二项式的幂指数n 是奇数,那么中间两项即第12n +项和第32n +项的二项式系数相等且最大; (4)(a +b )n 的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ; (5)(a +b )n 的二项展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和,都等12n -,024C C C +n n n ++135C +C C n n n =++12n -=.题型一 分类加法计数原理例1 一个盒子里有4个不同的红球,3个不同的黄球和5个不同的蓝球.从盒子中任取一个球,有多少种不同的取法?分析:盒子中取出一个球就可以完成任务,所以考察分类加法计数原理.解答:从盒子中任取一个球,共有三类方案:第一类方案,从4个不同的红球中任取一球,有4种方法;第二类方案,从3个不同的黄球中任取一球,有3种方法;第三类方案,从5个不同的蓝球中任取一球,有5种方法.所以,选一个班担任升旗任务的方法共有:12+10+10=32(种)题型二分步乘法计数原理例2 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中取红球、黄球和蓝球各一个,有多少种不同的取法?分析:盒子中各取出一个球需要分三步,所以考察分步乘法计数原理.解答:完成这件事需要分三步.第一步,从4个不同的红球中任取一球,有4种方法;第二步,从3个不同的黄球中任取一球,有3种方法;第三步,从5个不同的蓝球中任取一球,有5种方法.由分步乘法计数原理,从盒子中取红球、黄球和蓝球各一个共有⨯⨯435=60种不同的取法.例3 邮政大厅有4个邮筒,现将三封信逐一投入邮筒,共有多少种投法?分析:三封信逐一投入邮筒分成三个步骤,每个步骤投一封信,分别均有4种方法.解答:应用分步计数原理,投法共有44464⨯⨯=种.题型三分类分步混合运算例4 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中任取2个颜色不同的球,有多少种不同的取法?分析分类计数原理与分步计数原理混合使用的问题,一般要“先分类,后分步”.解答:可按所选两球的颜色分为如下3类.第1类:红球、黄球各一个,有4×7=28种选法;第2类:红球、蓝球各一个,有4×5=20种选法;第3类:黄球、蓝球各一个,有7×5=35种选法.根据分类计数原理,不同的选法种数为N =28+20+35=83(种).知识点二 排列题型一 排列数公式的运用例5 已知221P P n n +-=10,则n 的值为( ). A .4 B .5 C .6 D .7解答:由221P P n n +-=10,得(n +1)n -n (n -1)=10,解得n =5.故选B .题型二 排列的运用例6 小华准备从7本世界名著中任选3本,分别送给甲、乙、丙3位同学,每人1本,共有多少种选法?分析 选出3本不同的书,分别送给甲乙丙3位同学,书的不同排序,结果是不同的.因此选法的种数是从7个不同元素中取出3个元素的排列数.解答:不同的送法的种数是 37P 765210=⨯⨯=.即共有210种不同送法.题型三 某元素一定在某位置例7 4名男生和3名女生排成一排照相,分别按下列要求,求各有多少种不同的排法.(1)男生甲一定在中间位置;(2)男生甲不在中间位置.分析 本题是有限制条件的排列问题,若有特殊元素优先考虑特殊元素,若有特殊位置,优先考虑特殊位置.(1)分两步完成:第一步,男生站在中间位置,有一种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有661P 720⨯=种排法.(2)分两步完成:第一步,男生不在中间位置,有5种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有665P 3600⨯=种排法. 题型四 某几个元素相邻例8 4名男生和3名女生排成一排照相,同学甲、乙相邻有多少种排法?分析:解决“相邻”问题采用的是“捆绑法”解答:第一步,把甲、乙看成一个元素,与其他5人共6个元素进行全排列;第二步,甲、乙二人进行全排列.即6262P P =720×2=1440(种).题型五 某几个元素不相邻例9 4名男生和3名女生排成一排照相,同学甲、乙不相邻有多少种排法?分析:解决“不相邻”问题采用的是“插空法”.解答:第一步,把甲、乙之外的5名同学进行全排列;第二步,在5名同学之间或两端共6个空中插入甲、乙两名同学.即5256P P =120×30=3600(种). 例10 4名男生和3名女生排成一排照相,男女同学相间排列,有多少种排法? 分析:“相间”是特殊的“不相邻”问题解答:第一步,男生全排列,有44P 种排法;第二步,女生全排列,有33P 种排法;第三步,相间插入有2中插入方法.即男女同学相间排列,有4343P P 2576⨯=种种排法.题型六 数字的排列问题例11 用数字0,1,2,3,4组成没有重复数字的三位数,求:(1)组成的三位数的个数;(2)组成的三位数中偶数的个数;分析:对数字进行排列时,如果数字中含有0,应区别对待.因为0作为特殊元素,不能在首位出现.解答:(1)应采用特殊位置优先法.因为0不能为首位(百位),所以首位的排法有14P 种,其他两位是从剩余的4个数字中选2个的一个排列,有24P 种,所以共有1244P P =48(种).(2)由于0的存在,应分两类:第一类个位是0,有24P 个;第二类,个位不是0,先确定个位,从2,4中选一个,有12P 种,再确定首位,有13P 种,剩余的一位是从3个数中选1个,有13P 种.所以共有21114233P P P P +=30(种). 知识点三 组合题型一 组合的应用例12 学校组织一项活动,要从5名男同学,3名女同学中选4名.共有多少种选法? 分析: 从5名男同学,3名女同学中选4名, 选出的4名同学任务是一样的,因此选法的种数是从8个不同元素中取出4个元素的组合数. 解答:不同的选法种数是488765C 704321⨯⨯⨯==⨯⨯⨯种. 题型二 一定包含或一定不包含某元素例13 学校组织一项活动,要从5名男同学,3名女同学中选4名.(1)若甲同学必须去,有多少种选法?(2)若甲同学一定不去,有多少种选法?分析:若甲同学必须去,再从其他7人中选3人即可.解答:(1)共有37765C 321⨯⨯=⨯⨯=35种选法. 分析:若甲同学一定不去,从其他7人中选4人即可.解答:(2)共有47C 35=种选法.题型三 至多、至少问题例14 学校组织一项活动,要从5名男同学,3名女同学中选4名.若男生甲、女生乙至少有一个被选中,有多少种选法?分析:至多、至少问题从正面解,一般情况先分类,再求解.当从正面求解困难时,可从对立面求解.解答:方法一 男生甲、女生乙至少有一个被选中,分成两类:第一类 男生甲、女生乙只有一个人被选中,有1326C C 260120=⨯=种选法; 第二类 男生甲、女生乙都被选中,有2226C C 21530=⨯=种选法.所以,男生甲、女生乙至少有一个被选中,共有120+30=150种不同的选法.题型四 组合数性质的的相关计算例15 若44511C C C n n n --=+,求n .分析:考察组合数的性质111C +C C m m m n nn +++=;C =C m n m n n-. 解答:45511C +C =C ,n n n --∴45C =C ,n n∴n =4+5=9.题型四 排列、组合混合应用例16 从6名男生和5名女生中选出3名男生和2名女生排成一行,有多少种不同排法? 分析:可以首先将男生选出,再将女生选出,然后对选出的5名学生排序.解 不同排法的总数为32565565454C C P 543212400032121⨯⨯⨯⋅⋅=⨯⨯⨯⨯⨯⨯=⨯⨯⨯(种). 知识点四 二项式定理题型一 求二项式展开式的指定项例17 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中第4项. 分析:.二项式103x x ⎛⎫- ⎪⎝⎭的展开式第4项,则n 的值为10,m 的值为3,可直接用二项式的通项T m +1=C m n m m n a b -求解.解答:T 4=T 3+1=337103C x x ⎛⎫- ⎪⎝⎭=-3240x 4, ∴第4项是-3240x 4.. 例18 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项. 分析:二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项,则n 的值为10,m 的值未知.此类问题应先写出二项式的通项,结合条件“含x 6的项”确定出m 的值.从而求出含x 6的项.解答: ∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 令10-2m =6,得m =2.∴含x 6的项为T 3=T 2+1=(-3)2210C x 6=405x 6. 例19 在二项式103x x ⎛⎫- ⎪⎝⎭的展开式,求: (1)常数项;(2)二项式系数最大的项.分析:(1)求常数项,因为不知道m 的值,要根据“常数项”之一条件确定m 的值.所以,与例18过程相似;(2)可计算出第10162+=项为二项式系数最大的项,其实就是求第6项,所以与例17过程相似.解答:(1)∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 10-2m =0,即m =5.∴展开式的第6项是常数项,即T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. (2)∵n =10,∴展开式有11项,中间一项的二项式系数最大,中间一项为第6项. ∴T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. 题型二 求二项式展开式的某一项系数与某一项的二项式系数.例20 求92)x -(的二项展开式中6x 的系数和该项的二项式系数. 分析:二项展开式中某项的的系数与这一项二项式系数是两个不同的概念. 某项的系数是除字母外的所有数乘积的结果,某项的二项式系数是该项的组合数,和其他无关. 解答: 92)x -(的展开式的通项公式为99199C (2)C (1)2m m m m m m m m T x x --+=-=-⋅⋅ 由9-m =6,得m =3.即二项展开式中含6x 的项为第4项.故这一项的系数是3339987C (1)2(8)672321⨯⨯⨯-⨯=⨯-=-⨯⨯.该项的二项式系数为39987C 84321⨯⨯==⨯⨯. 题型三 二项式各项系数和与二项式系数和例21 在(1-x )5的二项展开式中,各项系数和为____________;所有项的二项式系数之和为____________.分析:在二项式中令式子中的字母为1,可得各项系数和;所有项的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ,故所有项的二项式系数之和只和n 有关.解答:在(1-x )5中,令x =1,可得各项系数和为0.(1-x )5的二项式系数之和为25=32.。

(完整版)计数原理及排列组合典型问题-(含答案)

(完整版)计数原理及排列组合典型问题-(含答案)

(完整版)计数原理及排列组合典型问题-(含答案)计数原理及排列组合典型问题一、计数原理:某城市在中心广场建造一个花圃,花圃分为6个部分(如右图)现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有______种.(以数字作答)【答案】 120二、排列问题:1、限定顺序问题:(1) 7位同学站成一排.甲必须站在乙的左边? 【答案】7722=2520A A(2) 7位同学站成一排.甲、乙和丙三个同学由左到右排列? 【答案】8403377=A A (3)7位同学站成一排.甲和乙在丙的同侧?【答案】33602、相邻问题:7位同学站成一排,甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起排法共有多少种?【答案】将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,∴一共有排法种数:(种)3、不相邻问题:7位同学站成一排,甲、乙和丙三个同学都不能相邻的排法共有多少种?【答案】先将其余四个同学排好有种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有种方法,所以一共有=1440种.4、限制位置问题:7位同学站成一排,甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?【答案】将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2种方法,所以,丙不能站在排头和排尾的排法342342288A A A =44A 35A 44A 35A 55A 654321有三、组合问题:1、等分问题:(1)今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法?【答案】62221064233=3150C C C C A(2)今有10件不同奖品, 从中选6件分给甲乙丙三人,每人2件, 有几种分法?【答案】622210642=18900C C C C2、不等分问题:(1)今有10件不同奖品, 从中选6件分给三份,其中1份一件,1份二件,1份三件, 有多少种分法?【答案】612310653=12600C C C C(2)今有10件不同奖品, 从中选6件分给甲乙丙三人,其中1人一件,1人二件,1人三件, 有多少种分法?【答案】61233106533=75600C C C C A3、元素相同问题:从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?【答案】529=118755C 960)2(225566 =?-A A A。

排列组合之两个计数原理

排列组合之两个计数原理

排列組合之兩個計數原理分類加法原理,分類乘法原理1.某次學科競試﹐高一甲班45 人當中﹐數學﹑英文﹑國文及格者分別是28 人﹑29 人﹑30 人﹐而英數﹑國數﹑國英兩科都及格者分別是23 人﹑22 人﹑24 人﹐國﹑英﹑數三科都及格者共有20 人﹐那麼三科都不及格的人數共有____________人﹒2. 在圖(一)與圖(二)中﹐求從A 走到B 的捷徑有多少條?(1)圖(一)﹐捷徑有____________條﹒(2)圖(二)﹐捷徑有____________條﹒3. 50元鈔票一張﹐兌換成10元與5元的硬幣﹐則: (1)有____________種方法﹒ (2)如果兌換成10元﹐5元及1元的硬幣﹐每種硬幣至少有一個﹐有____________種方法﹒4. 甲地與乙地之間共有六條道路﹐其中三條是雙向道﹐兩條是甲地到乙地的單向道﹐一條是乙地到甲地的單向道﹒今有一人從甲地騎車到乙地﹐請問:(1)有____________條路徑供他選擇﹒(2)如果他從甲地騎車到乙地﹐再騎回甲地﹐那麼他有____________種方法﹒5. 301 至600 之間的正整數﹐則: (1)有____________個2 或3 或5 的倍數﹒ (2)有____________個4 或6 或15 的倍數﹒6. 3600 (1)有____________個正因數﹒ (2)這些正因數中﹐有____________個是30 的倍數﹒7. 在圖(一)與圖(二)中﹐A﹐B﹐C﹐D﹐E 等5 個區域﹐用4 種顏色著色﹐4 色都用﹐且相鄰的區域不同色﹐則:(1) 圖(一)有____________種方法﹒(2)圖(二)有____________種方法﹒8.周長為30 且三邊長都是整數的等腰三角形有____________個﹒9. 以紅﹑藍﹑黃﹑綠﹑橙﹑紫﹑黑七色塗下圖之A﹐B﹐C﹐D﹐E﹐F 六部分﹐每一部分僅以一色塗之﹐顏色可重複使用﹐相鄰部分必頇不同色﹐則有____________種塗法﹒10.如圖﹐由A 到B 只可向(↑)(↓)(→)走的走法 (1)有____________種﹒(2)不經過P點﹐則走法有____________種﹒11. 自附圖四面體ABCD之A出發﹐各頂點只能經過一次﹐則:(1)自A至B共有____________種走法﹒(2)走過之頂點不重複共有____________種走法﹒12.某自助餐廳備有肉4種﹐魚3種﹐蔬菜5種﹐一位客人預計各點一種肉﹑魚和蔬菜﹐請問他有____________種點菜的方式﹒13.教室有四門﹐甲﹑乙二人由不同門進入﹐由不同門出來﹐且各人不可由同一門進出﹐則有____________種走法﹒14. 1 到1000 中﹐求: (1)3 或5 的倍數有____________個﹒ (2)不是6 也不是4 的倍數有____________個﹒15.由一個正六面體的一頂點A 沿著稜線走到對角線的另一頂點G﹐每一個頂點只能經過一次﹐有____________種走法﹒16.如圖﹐以5 種不同顏色塗在下圖區域中﹐相鄰區域顏色頇相異﹐則有____________種塗法﹒17.如圖﹐是邊長5的正方形﹐將它分割成邊長為1的正方形﹐則圖中有____________個正方形﹒18.設有8 粒牛奶糖﹐要分裝成3 包(每包至少1 粒)﹐有幾種分法?19. 540的正因數 (1)有____________個﹒ (2)其總和 ____________﹒20. 1~1000 的自然數中﹐不含3 的數有____________個﹒21. 在一場宴會中﹐與會的30 人彼此兩兩握手寒暄﹐如果大家都與自己除外的每一個人握到一次手﹐則此次宴會中所有人共計握手了____________次﹒22. 如圖﹐(1)由A 走到B﹐只能向上或向右的走法有____________種﹒(2)由A 走到B﹐只能向上﹑向下或向右﹐且走過的路亦不可重複走﹐則其走法有____________種﹒23. 職棒四年季後冠軍爭霸戰﹐是由季內賽前兩名﹐作七戰四勝的比賽﹐爭年度總冠軍﹐現已賽畢三場﹐兄弟象二勝一敗領先統一獅﹐則往後的比賽有____________種結果以決定冠軍﹒24. 7200 之正因數中為5 的倍數但不為9 的倍數者有____________個﹒25. 自1 寫到999 的正整數﹐共寫了____________個7﹒26.用1 克﹐2 克﹐4 克﹐8 克﹐16 克五個砝碼之中的幾個(至少一個)﹐則:(1)可秤出____________種不同重量﹒(2)這些可秤得的克數之總和____________﹒27. 某次數學競試有100 個學生參加﹐試題僅A﹐B﹐C 三題﹐測驗結果如下:答對A 者有51 人﹐答對B 者有36 人﹐只答對C 者有16 人﹐答對B﹐C 兩題者有13 人﹐答對A 或C 者有75 人﹐答對B 或C 者有59 人﹐而只答對A﹐B﹐C 三題之一者有66 人﹐則:(1)只答對A 者有____________人﹒(2)三題都答錯者有____________人﹒28. 有紙幣一元的2 張﹐五元的3 張﹐十元的2 張﹐五十元的1 張﹐這些紙幣可形成____________種不同的幣值﹒29. 1 至800 的自然數中與42 互質者有____________個﹒30. 由1﹐2﹐3﹐4﹐5﹐…到1357﹐共1357 個正整數中﹐共出現____________個0﹒31. 設一室有5個門﹐兄弟二人由不同門進入﹐不同門出來﹐則:(1)自己可以由相同門進出時﹐其方法有____________種﹒(2)自己不可以由相同門進出時﹐其方法有____________種﹒32. 自然數158760的正因數中﹐求:(1)為完全平方數者有____________個﹒(2)完全立方數者有____________個﹒33. 每次用20 根相同火柴棒圍成一個三角形﹐共可圍成____________個不全等的三角形﹒34. 甲﹑乙﹑丙﹑丁﹑戊等5 人﹐每人都會洗碗﹐也會做飯﹐但每餐飯﹐做飯者不洗碗﹐某假日午﹑晚兩餐﹐做飯者非同一人﹐洗碗者也非同一人﹐問有____________種情形﹒35. 以正九邊形的頂點為頂點﹐可做出____________個鈍角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两个计数原理与排列组合知识点及例题两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.例题分析例1 某学校食堂备有5种素菜、3种荤菜、2种汤。

现要配成一荤一素一汤的套餐。

问可以配制出多少种不同的品种(分析:1、完成的这件事是什么2、如何完成这件事(配一个荤菜、配一个素菜、配一汤)3、它们属于分类还是分步(是否独立完成)4、运用哪个计数原理5、进行计算.解:属于分步:第一步配一个荤菜有3种选择第二步配一个素菜有5种选择。

第三步配一个汤有2种选择共有N=3×5×2=30(种)例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。

(1)从书架上任取一本书,有多少种不同的取法*(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法(1)分析:1、完成的这件事是什么2、如何完成这件事3、它们属于分类还是分步(是否独立完成)4、运用哪个计数原理5、进行计算。

解:属于分类:第一类从上层取一本书有5种选择、第二类从下层取一本书有4种选择共有N=5+4=9(种)(2)分析:1、完成的这件事是什么2、如何完成这件事3、它们属于分类还是分步(是否独立完成)4、运用哪个计数原理5、进行计算.—解:属于分步:第一步从上层取一本书有5种选择第二步从下层取一本书有4种选择共有N=5×4=20(种)例3、有1、2、3、4、5五个数字.(1)可以组成多少个不同的三位数(2)可以组成多少个无重复数字的三位数(3)可以组成多少个无重复数字的偶数的三位数—(1)分析:1、完成的这件事是什么2、如何完成这件事(配百位数、配十位数、配个位数)3、它们属于分类还是分步(是否独立完成)4、运用哪个计数原理5、进行计算.略解:N=5×5×5=125(个):【例题解析】1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法(2、有一个班级共有46名学生,其中男生有21名.(1)现要选派一名学生代表班级参加学校的学代会,有多少种不同的选派方法(2)若要选派男、女各一名学生代表班级参加学校的学代会,有多少种不同的选派方法!3、有0、1、2、3、4、5六个数字.(1)可以组成多少个不同的三位数(2)可以组成多少个无重复数字的三位数(3)可以组成多少个无重复数字的偶数的三位数`排列与组合1.排列的概念:从n个不同元素中,任取m(m n≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m个元素的一个排列....2.排列数的定义:从n个不同元素中,任取m(m n≤)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示3.排列数公式:(1)(2)(1)mnA n n n n m=---+(,,m n N m n*∈≤)4.阶乘:!n表示正整数1到n的连乘积,叫做n的阶乘规定0!1=.…5.排列数的另一个计算公式:mnA=!()!nn m-6.组合概念:从n个不同元素中取出m()m n≤个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合7.组合数的概念:从n个不同元素中取出m()m n≤个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数....用符号m n C表示.8.组合数公式:(1)(2)(1)!mm nn mmA n n n n mCA m---+==或)!(!!mnmnC mn-=,,(nmNmn≤∈*且9.组合数的性质1:m nnmnCC-=.规定:10=nC;10.组合数的性质2:mnC1+=mnC+1-mnC C n0+C n1+…+C n n=2n)题型讲解例1 分别求出符合下列要求的不同排法的种数(1)6名学生排3排,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)从6名运动员中选出4人参加4×100米接力赛,甲不跑第一棒,乙不跑第四棒;(4)6人排成一排,甲、乙必须相邻; 】(5)6人排成一排,甲、乙不相邻;(6)6人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以不相邻)解:(1)分排坐法与直排坐法一一对应,故排法种数为72066=A(2)甲不能排头尾,让受特殊限制的甲先选位置,有14A 种选法,然后其他5人选,有55A 种选法,故排法种数为4805514=A A(3)有两棒受限制,以第一棒的人选来分类:①乙跑第一棒,其余棒次则不受限制,排法数为35A ;②乙不跑第一棒,则跑第一棒的人有14A 种选法,第四棒除了乙和第一棒选定的人外,也有14A 种选法,其余两棒次不受限制,故有221414A A A 种排法,、由分类计数原理,共有25224141435=+A A A A 种排法(4)将甲乙“捆绑”成“一个元”与其他4人一起作全排列共有2405522=A A 种排法(5)甲乙不相邻,第一步除甲乙外的其余4人先排好;第二步,甲、乙选择已排好的4人的左、右及之间的空挡插位,共有2544A A (或用6人的排列数减去问题(2)后排列数为48024066=-A )(6)三人的顺序定,实质是从6个位置中选出三个位置,然后排按规定的顺序放置这三人,其余3人在3个位置上全排列,故有排法1203336=A C 种点评:排队问题是一类典型的排列问题,常见的附加条件是定位与限位、相邻与不相邻}例2 假设在100件产品中有3件是次品,从中任意抽取5件,求下列抽取方法各多少种 (1)没有次品;(2)恰有两件是次品;(3)至少有两件是次品 #解:(1)没有次品的抽法就是从97件正品中抽取5件的抽法,共有64446024597=C 种(2)恰有2件是次品的抽法就是从97件正品中抽取3件,并从3件次品中抽2件的抽法,共有44232023397=C C 种(3)至少有2件次品的抽法,按次品件数来分有二类:第一类,从97件正品中抽取3件,并从3件次品中抽取2件,有32973C C 种第二类从97件正品中抽取2件,并将3件次品全部抽取,有23973C C 种按分类计数原理有4469763329723397=+C C C C 种点评:此题是只选“元”而不排“序”的典型的组合问题,附加的条件是从不同种类的元素中抽取,应当注意:如果第(3)题采用先从3件次品抽取2件(以保证至少有2件是次品),再从余下的98件产品中任意抽取3件的抽法,那么所得结果是46628839823=C C 种,其结论是错误的,错在“重复”:假设3件次品是A 、B 、C ,第一步先抽A 、B 第二步再抽C 和其余2件正品,与第一步先抽A 、C (或B 、C ),第二步再抽B (或A )和其余2件正品是同一种抽法,但在算式39823C C 中算作3种不同抽法 !例3 求证:①m n m n m n A mA A =+---111 ;②12112++-+=++m n m n m n m n C C C C证明:①利用排列数公式左()()()()1!1!1!!n m n n m n m -⋅-=+--- ()()()()1!1!!n m n m n n m --+⋅-==-()==-m n A m n n !!右另一种证法:(利用排列的定义理解)从n 个元素中取m 个元素排列可以分成两类: ①第一类不含某特殊元素a 的排列有mn A 1-第二类含元素a 的排列则先从()1-n 个元素中取出()1-m 个元素排列有11--m n A 种,然后将a 插入,共有m 个空档,故有11--⋅m n A m 种,因此mn m n m n A A m A =⋅+---111%②利用组合数公式 左()()()()()!!2!11!1!1!m n m n m n m n m n m n -++--+--+=()()()()()()()[]11211!1!1!+-+++++--⋅+-+m n m m m m n m n m n m n =()()()()()()()==+-++=+++-+=++12!1!1!212!1!1!m n C m n m n n n m n m n 右另法:利用公式111---+=m n m n m n C C C 推得 左()()==+=+++=+++++-+1211111m n n n m n m n m n m n m n C C C C C C C 右点评:证明排列、组合恒等式通常利用排列数、组合数公式及组合数基本性质例4 已知f 是集合{}d c b a A ,,,=到集合{}2,1,0=B 的映射 (1)不同的映射f 有多少个(2)若要求()()()()4=+++d f c f b f a f 则不同的映射f 有多少个.分析:(1)确定一个映射f ,需要确定d c b a ,,,的像(2)d c b a ,,,的象元之和为4,则加数可能出现多种情况,即4有多种分析方案,各方案独立且并列需要分类计算解:(1)A 中每个元都可选0,1,2三者之一为像,由分步计数原理,共有433333=⋅⋅⋅个不同映射(2)根据d c b a ,,,对应的像为2的个数来分类,可分为三类:第一类:没有元素的像为2,其和又为4,必然其像均为1,这样的映射只有一个;第二类:一个元素的像是2,其余三个元素的像必为0,1,1,这样的映射有121314=P C 个;第三类:二个元素的像是2,另两个元素的像必为0,这样的映射有624=C 个(由分类计数原理共有1+12+6=19(个)点评:问题(1)可套用投信模型:n 封不同的信投入m 个不同的信箱,有nm 种方法;问题(2)的关键结合映射概念恰当确定分类标准,做到不重、不漏例5 四面体的顶点和各棱的中点共10个点(1)设一个顶点为A ,从其他9点中取3个点,使它们和点A 在同一平面上,不同的取法有多少种(2)在这10点中取4个不共面的点,不同的取法有多少种/解:(1)如图,含顶点A 的四面体的三个面上,除点A 外都有5个点,从中取出3点必与点A 共面,共有353C 种取法含顶点A 的棱有三条,每条棱上有3个点,它们与所对棱的中点共面,共有3种取法]根据分类计数原理和点A 共面三点取法共有333335=+C 种(2)取出的4点不共面比取出的4点共面的情形要复杂,故采用间接法:先不加限制任取4点(410C 种取法)减去4点共面的取法取出的4点共面有三类:第一类:从四面体的同一个面上的6点取出4点共面,有464C 种取法 第二类:每条棱上的3个点与所对棱的中点共面,有6种取法第三类:从6条棱的中点取4个点共面,有3种取法根据分类计数原理4点共面取法共有6936446=++C`故取4个点不共面的不同取法有()14136446410=++-C C (种)点评:由点构成直线、平面、几何体等图形是一类典型的组合问题,附加的条件是点共线与不共线,点共面与不共面,线共面与不共面等 小结 :⑴m个不同的元素必须相邻,有m mP种“捆绑”方法⑵m个不同元素互不相邻,分别“插入”到n个“间隙”中的m个位置有 m n P 种不同的“插入”方法⑶m个相同的元素互不相邻,分别“插入”到n个“间隙”中的m个位置,有mnC 种不同的“插入”方法⑷若干个不同的元素“等分”为 m个组,要将选取出每一个组的组合数的乘积除以mmP?【例题解析】例1 完成下列选择题与填空题(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有 种。

相关文档
最新文档