一元一次不等式组(1)

合集下载

一元一次不等式组的方公式(一)

一元一次不等式组的方公式(一)

一元一次不等式组的方公式(一)一元一次不等式组的方公式什么是一元一次不等式组一元一次不等式组是指形如ax + b > c或ax + b < c的一组方程,其中a、b、c都是已知的常数。

它解决的问题类似于一元一次方程组,但是方程的解是不等式关系而不是等式关系。

方公式一:加减法原理加减法原理是一元一次不等式组的基本解题原则之一。

根据加减法原理,我们可以对不等式组的两边同时加减一个数,而不改变不等式的方向。

举个例子来说明:例题:解不等式组: - 2x - 3 > 5 - x + 1 > 2解答:首先,将每个不等式转化为等价的形式: - 2x - 3 - 5 > 0 => 2x - 8 > 0 - x + 1 - 2 > 0 => x - 1 > 0然后,根据加减法原理,我们可以同时对两个不等式的两边减去一个数,而不改变不等式的方向: - 2x - 8 - (x - 1) > 0 化简得:x - 7 > 0所以,解为:x > 7方公式二:乘除法原理乘除法原理是一元一次不等式组的另一个重要解题原则。

根据乘除法原理,我们可以对不等式组的两边同时乘除一个正数,而不改变不等式的方向;而如果乘除的是一个负数,就需要改变不等式的方向。

举个例子来说明:例题:解不等式组: - 3x + 4 > 10 - 2x - 3 > -5解答:首先,将每个不等式转化为等价的形式: - 3x + 4 -10 > 0 => 3x - 6 > 0 - 2x - 3 + 5 > 0 => 2x + 2 > 0然后,根据乘除法原理,我们可以同时对两个不等式的两边除以一个正数,而不改变不等式的方向: - (3x - 6) / 3 > 0 化简得:x - 2 > 0同时,对第二个不等式的两边乘以一个正数,也不改变不等式的方向: - 2x + 2 > 0所以,解为:x > 2方公式三:绝对值法则绝对值法则是一元一次不等式组的另一个解题技巧。

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。

如:,。

要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。

知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。

(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。

解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。

知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。

要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。

一元一次不等式组测试题

一元一次不等式组测试题

测试5 一元一次不等式组(一)学习要求会解一元一次不等式组,并会利用数轴正确表示出解集.课堂学习检测一、填空题1.解不等式组⎩⎨⎧>--<+②①223,423x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-②①21,3212x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______. 3.用字母x 的范围表示下列数轴上所表示的公共部分:二、选择题4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4(B)x >2 (C)-4<x <2 (D)无解 5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ). (A)x >1 (B)132<<-x (C)32-<x (D)无解三、解下列不等式组,并把解集表示在数轴上6.⎩⎨⎧≥-≥-.04,012x x 7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-<-.3342,121x x x x 9.-5<6-2x <3.四、解答题10.解不等式组⎪⎩⎪⎨⎧<-+≤+321),2(352x x x x 并写出不等式组的整数解.综合、运用、诊断一、填空题11.当x 满足______时,235x-的值大于-5而小于7.12.不等式组⎪⎪⎩⎪⎪⎨⎧≤-+<2512,912x x x x 的整数解为______.二、选择题13.如果a >b ,那么不等式组⎩⎨⎧<<b x a x ,的解集是( ).(A)x <a (B)x <b (C)b <x <a (D)无解14.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1三、解答题15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.拓展、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.20.关于x的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.测试6 一元一次不等式组(二)学习要求进一步掌握一元一次不等式组.课堂学习检测一、填空题1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______; (2)⎩⎨⎧-<<3,2x x 的解集是______; (3)⎩⎨⎧-><3,2x x 的解集是_______; (4)⎩⎨⎧-<>3,2x x 的解集是______. 2.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是______.二、选择题3.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个(B)2个 (C)3个 (D)4个 4.若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2 (B)k ≥2(C)k <1 (D)1≤k <2 三、解下列不等式组,并把解集在数轴上表示出来5.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x 6.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x7.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x 8..234512x x x -≤-≤-综合、运用、诊断一、填空题9.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______. 10.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式组11.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x12.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题13.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?14.已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.拓展、探究、思考15.若关于x的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利用不等关系分析实际问题学习要求利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用.课堂学习检测列不等式(组)解应用题1.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?2.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?3.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?4.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?综合、运用、诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.拓展、探究、思考6.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:A 型板房 54 m 226 m 25 B 型板房78 m 241 m 28问:这400间板房最多能安置多少灾民?参考答案 测试51..2;21;2-<<-<x x x 2..361;3;61≤≤≤≥x x x 3.(1)x >-1; (2)0<x <2; (3)无解. 4.B . 5.B . 6.421≤≤x ,解集表示为7.x ≥0,解集表示为8.无解. 9.1.5<x <5.5解集表示为10.-1≤x <3,整数解为-1、0、1、2. 11.-3<x <5. 12.-2,-1,0. 13.B . 14.C . 15.-10<x ≤-4,整数解为-9,-8,-7,-6,-5,-4. 16.-1<x <4. 17.-721<k <25.(⎩⎨⎧<--=<-=015213,02513k y k x )18.①-②得:y -x =2k -1,∵0<y -x <1 ∴0<2k -1<1 ∴.121<<k19.解得⎪⎩⎪⎨⎧>+≥.2,34x a x 于是234≤+a ,故a ≤2;因为a 是自然数,所以a =0,1或2.20.不等式组的解集为a ≤x <2,-4<a ≤-3.测试61.(1)x >2;(2)x <-3;(3)-3<x <2;(4)无解. 2.31<x <76. 3.B . 4.A .5.(1)x >6,解集表示为6.-6<x <6,解集表示为7.x <-12,解集表示为 8.x ≤-4,解集表示为9.7;0. 10.-1<k <3. 11.无解. 12.x >8. 13.由2<x =328-k <10,得1<k <4,故整数k =2或3.14..532.5,23<<-⎩⎨⎧-=+=m m y m x 15.不等式组的解集为2-3a <x <21,有四个整数解,所以x =17,18,19,20,所以16≤2-3a <17,解得⋅-≤<-3145a测试71.设以后几天平均每天挖掘x m 3的土方,则(10-2-2)x ≥600-120,解得x ≥80. 2.设该市由甲厂处理x 吨垃圾,则7150)700(4549555550≤-+x x ,解得x ≥550.3.解:设宿舍共有x 间.⎩⎨⎧+<-+>.204)1(8,2048x x x x 解得5<x <7.∵x 为整数,∴x =6,4x +20=44(人).4.(1)二班3000元,三班2700元;(2)设一班学生有x 人,则⎩⎨⎧><200051200048x x 解得3241511139<<x ∵x 为整数.∴x =40或41.5.(1)61942385=÷ 单独租用42座客车需10辆.租金为320×10=3200;125660385=÷ 单独租用60座客车需7辆.租金为460×7=3220.(2)设租用42座客车x 辆,则60座客车需(8-x )辆.⎩⎨⎧<-+≥-+.3200)8(460320,385)8(6042x x x x 解得⋅≤<1855733x x 取整数,x =4,5.当x =4时,租金为3120元;x =5时,租金为2980元.所以租5辆42座,3辆60座最省钱.6.设生产A 型板房m 间,B 型板房(400-m )间.所以⎩⎨⎧≤-+≤-+.12000)400(4126,24000)400(7854m m m m 解得m ≥300.所以最多安置2300人.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( ) A .-3℃ B .8℃ C .-8℃D .11℃2.下列立体图形中,从上面看能得到正方形的是( )3.下列方程是一元一次方程的是( )A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为( ) A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是( )A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是( ) A.x=y B.ax+1=ay-1 C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是( )A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12; ②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b>0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________. 13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x -22-1=x +13-x +86.21.先化简,再求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =1,y =-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A 8.D 9.C 10.B二、11.23;5 12.-8 13.-514.19°31′13″15.3 16.717.> 18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy. 当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α. 所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m.由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

一元一次不等式的所有解组成的集合是一元一次不等式的解集。

注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。

有些问题用方程不能解决,而用不等式却能轻易解决。

北师大版八年级数学下册《一元一次不等式组(第1课时)》精品教案

北师大版八年级数学下册《一元一次不等式组(第1课时)》精品教案

问题.
不等式;
(2)如果还要求购买甲、乙两种原料的费用不超过 72 元,
那么你能写出 x(kg)应满足的另一个不等式吗?
甲种原料
乙种原料
维生素 C(/ 单位/kg) 600
100
原料价格/(元/kg) 8
4
想一想:(1)如果要配制的饮料同时满足两个小题的条
件,那么你能列出一个不等式组吗?
600x 100(10 x) 4200
《一元一次不等式组》精品教案
课题 2.6 一元一次不等式组(1) 单元 第二章
学科
数学 年级 八年级
学习 目标
知识与技能:.理解一元一次不等式组的概念,初步掌握解一元一次不等式组方法,并利用 数轴表示一元一次不等式组的解集; 过程与方法:通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解 出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集及解不等 式组的步骤; 情感态度与价值观:结合 “数形结合”的思想,锻炼学生数形结合的能力,提高学习兴趣, 树立学好数学的信心.
重点 掌握一元一次不等式组的解法及解集的表示方法.
难点 一元一次不等式组的解集的求法
教学环节 新知导入
新知讲解
教学过程
教师活动
学生活动 设计意图
同学们,我们上节课学习了不等式,请同学们回答下面的 学生根据老 通过回顾
问题:
师的提问回 不等式的
问题 1、什么是一元一次不等式?
答问题.
概念及解
答案:不等式的左右两边都是整式,只含有一个未知数,
答案:一元一次不等式组中各个不等式的解集的公共部
分,叫做这个一元一次不等式组的解集.
问题 3、说一说解一元一次不等式组的步骤?

一元一次不等式组

一元一次不等式组

解一元一次不等式组一、两个概念1.一元一次不等式组:类似于方程组,把含同一个未知数的两个或两个以上的一元一次不等式合在一起,就组成了一个一元一次不等式组.2.一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做这个一元一次不等式组的解集.二、解一元一次不等式组的一般步骤及解集类型1.一般步骤2.由两个一元一次不等式组成的不等式组的解集通常有如下四种类型(其中a<b):不等式组数轴表示解集顺口溜x>b 大大取较大x<a 小小取较小a<x<b 大小、小大中间找无解大大、小小解不了一元一次不等式组解每个一元一次不等式在数轴上表示各不等式的解集确定各不等式解集的公共部分写出一元一次不等式组的解集x>a x>b x<a x<b x>a x<b x<a x>b逆用不等式组解集解题我们知道,由任意两个一元一次不等式组成的不等式组,最终都可转化为以下四种基本形式(其中a<b):①,,x ax b>⎧⎨>⎩⇒x>b;②,,x ax b<⎧⎨<⎩⇒x<a;③,,x ax b>⎧⎨<⎩⇒a<x<b;④,,x ax b<⎧⎨>⎩⇒无解.如能逆用上述结论,便可顺利解答某些字母范围(或取值)问题.请看下面的例题:例1:已知不等式组311,5xx a-⎧>⎪⎨⎪>⎩的解集为x>2,则().(A)a<2 (B)a≤2 (C)a>2 (D)a≥2例2:若关于x的不等式组41,32x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,则a的取值范围是.例3:如果不等式组340,xx a-≤⎧⎨-≥⎩无解,则a的取值范围是.例4:已知不等式组3(2)(1)9,3212x xx mx+--≥⎧⎪⎨+>-⎪⎩的解集是1≤x<2,求m的取值.小试牛刀:1.已知不等式组()324,213x xa xx--≤⎧⎪⎨+>-⎪⎩的解集是1≤x<2,求a的值.2.如果不等式组230,xx m-≥⎧⎨≤⎩无解,则m的取值范围是___________.3.若关于x 的不等式组31,43x xx a+⎧>-⎪⎨⎪+<⎩的解集为x<-1,则a的值为_____.不等式组在实际中应用------方案设计彰显魅力1:今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往深圳.已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝、香蕉各2吨.该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来.2:某校初三同学考试结束后要去旅游,需租用客车.若租40座客车若干辆正好坐满;若租50座客车则可少租一辆,最后一辆车还剩下不到20个空座.已知40座客车的租金是每辆150元,50座客车的租金是每辆170元,只选租其中一种车,问租那种车省钱?3: 2009年某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级1班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?4、某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机进货量的一半.电视机与洗衣机的进价和售价如下表:类别电视机洗衣机进价(元/台)1800 1500售价(元/台)2000 1600计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.5、某公司为了扩大经营,决定购进6台机器用于生产某种活塞,现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表,经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?。

一元一次不等式组(共19张PPT)

一元一次不等式组(共19张PPT)

与 1 x 1 7 3 x都成立?
2
2
15
问题探究
例2
x取哪些整数值时,1 2x 5 7
成立?
这个式子是 什么含义?
16
巩固练习 练习
x取哪些正整数值时,不等式 x 3 6
与 2x 110 都成立?
17
归纳总结
(1)你怎么理解一元一次不等式组的概念, 它的解集是什么含义? (2)如何解一个一元一次不等式组?具体 步骤有哪些? (3)在用数轴确定不等式组的解集时,有 哪些需要注意的问题?
9.3 一元一次不等式组 (第1课时)
1
课件说明
学习目标: (1)了解一元一次不等式组的概念及其解集的 含义. (2)会用数轴确定一元一次不等式组的解集, 体会数形结合的思想方法.
学习重点: 求解一元一次不等式组.
2
1.探究新知 用每分钟可抽30 t水的抽水机来抽污
水管道里积存的污水,估计积存的污水超 过1 200 t而不足1 500 t,那么将污水抽完 所用时间的范围是什么?
3
探究新知
两个 等量关系
两个 不等关系
方程组
同时 满足
不等式组
4
探究新知
30x 1200 x 40
30x 1500 x 50
40
50
5
探究新知
由同一未知数的几个一元 一次不等式所组成的一组不等 式,叫做一元一次不等式组.
注意:1.几个指两个或两个以上; 2.不等式组中只有一个未知数; 3.由一元一次不等式组成;
6
考考你 下列各式哪些是一元一次不等式
组,哪些不是.
x2(x1)814xx11,; 是
X>3, (2)
X<6;

一元一次不等式组(第1课时)八年级数学

一元一次不等式组(第1课时)八年级数学

设足球场的长为x m,那么它的周长就是2(x+70)m, 面积为70x m2.
根据已知条件,我们知道x的取值范围要使
2(x+70)>350 和70x<7630
这两个不等式同时成立.
为此,我们用大括号把上述两个不等式联立起来,得
2
(
x
70
)
350,
70x
7630.
探究新知
总结:
4(
x
+5)
>100
的解集,在数轴上表示
正确的是( D )
A.
B.
C.
D.
课堂检测
基础巩固题
1.不等式组
x 1 0,
x
2
的解集是
(C
)
A.x≤2
B.x>1
C.1<x≤2
D.无解
课堂检测
基础巩固题
2.下列说法正确的是 ( C )
x 3,
A. x 5 的解集是5<x<3
C.
x x
22,的解集是x=2
xx 1 (2)x 2
x 2 1
(3)1 x
1
×
2a 7 1 (4)3a 3 0
√ √
探究新知
知识点 2 一元一次不等式组的解法
思考:通常我们运用数轴表示不等式的解集,那么我们能用
它直接表示不等式组的解集吗? 试一试:用数轴表示出不等式组
x≤3 x > -3

未知数x同时满足① ②两个条件,把① ②两个不等式 合在一起,就组成一个一元一次不等式组.
探究新知
一个长方形足球场的宽为70m,如果它的周长大于350m, 面积小于7630m2,求这个足球场的长的取值范围,并判断这个 足球场是否可以进行国际足球比赛.(注:用于国际比赛的足球场 的长在100至110m之间,宽在64至75m之间).

《一元一次不等式组》教案

《一元一次不等式组》教案

《一元一次不等式组》教案(1)教学目标1、经历实际问题中的数量关系的分析、抽象、建立不等式组模型的过程。

2、知道一元一次不等式组及其解集的意义,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

3、通过用不等式组解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.教学重点:一元一次不等式组及其解集的意义教学难点:用数轴确定解集教学方法:讨论探索法.教学过程一、创设问题情境,引入新课某种杜鹃花适宜生长在平均气温为17~20℃的山区,已知这一地区海拔每升高100m,气温下降℃,现测出山脚下的气温是23℃。

估计适宜种植这种杜鹃花的山坡的高度。

二、探索活动1、由几个含有的组成的不等式组叫做一元一次不等式组。

答:同一个未知数、一次不等式。

2、不等式组中所有不等式的解集的,叫做这个不等式组的解集。

答:公共部分。

3、求不等式组的的过程,叫做解不等式组。

答:解集4、一元一次不等式组的两个步骤:(1)求出这个不等式组中各个;(2)利用求出这些不等式的解集的公共部分,即求出这个不等式组的。

答:不等式的解集;数轴;解集。

⎪⎩⎪⎨⎧<--+-≥-②① 1213124326x x x x 三、分组讨论如何求一元一次不等式组的解集呢?(1)不等式组⎩⎨⎧-≥>12x x 的解集是 。

(2)不等式组⎩⎨⎧-<-<12x x 的解集是 。

(3)不等式组⎩⎨⎧><14x x 的解集是 。

(4)不等式组⎩⎨⎧-<>45x x 的解集是 。

答:(1);(2)2x <-;(3)1x 4;(4)无解你能得到什么结论?四、例题教学例1、解不等式组21131x x +<-⎧⎨-≥⎩例2、 解不等式组:,并把它的解集在数轴上表示出来。

例3、解不等式:531x 23≤-<。

思路点拨:(1)本题实质是一个不等式组⎪⎪⎩⎪⎪⎨⎧≤->-②① 5312 3312x x然后解不等式①②,再求出解集的公共部分即原不等式组的解。

2021年华东师大版七年级数学下册第八章《8.3 一元一次不等式组》公开课课件(57张PPT)

2021年华东师大版七年级数学下册第八章《8.3 一元一次不等式组》公开课课件(57张PPT)
-3、-2、-1.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
8.3 一元一次不等式组
第2课时 解一元一次不等式组(2)
华东师大·七年级下册
新课导入
1.什么是一元一次不等式组? 2.什么是一元一次不等式组的解集? 3.你能用什么方法确定一元一次不等式组的解
集?
推进新课
随堂演练
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这 批饮用水和蔬菜全部运往该乡中小学.已知每辆甲 种货车最多可装饮用水40件和蔬菜10件,每辆乙种 货车最多可装饮用水和蔬菜各20件,有哪几种方案 可供选择?
(3)在(2)的条件下,如果甲种货车每辆需付运费 400元,乙种货车每辆需付运费360元.运输部门应 选择哪种方案可使运费最少?最少运费是多少元?
分析:设需要x分钟能将污水抽完,那么总的抽 水量为30x吨,由题意可知
在这个实际问题中,未知量x应同时满足这两个不等 式,我们把这两个一元一次不等式合在一起,就得 到一个一元一次不等式组:
分别求这两个不等式的解集,得
在同一数轴上表示出这两个不等式的解集,可 知其公共部分是40和50之间的数(包括40 和50),记作 40≤x≤50.
(1)某校九年级某班课外活动小组承接了这个园艺 造型搭配方案的设计,问符合题意的搭配方案有几 种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个 B种造型的成本是360元,试说明(1)中哪种方案 成本最低,最低成本是多少元?
分析:本题的不等关系比较隐蔽,好像与不等 式没有什么关系,但仔细分析题意并结合实 际可知:A、B两种造型所需甲种花卉不能 超过349盆,乙种花卉不能超过295盆,依 此便能够建立不等式组求解.

一元一次不等式组(一)

一元一次不等式组(一)

试一试:你能写出两个一元一次不等式组 成,巩固已 吗? 讨论:如何求一元一次不等式组的解集? (1) 解一元一次不等式组的步骤是什么? (2) 什么是不等式组的解集?怎样寻找和 表示出它的解集? 师:请同学们把(1)(2)两个不等式分别 、 解出 生:由(1)得 x≤1000,由(2)得 x≥500 师:这里的 x 要同时满足上面两个不等式的 解集,可以把这两个不等式的解集表示在(同 学生讨论, 一条)数轴上,求出它们解集的公共部分。请 教师总结 同学们自己动手,在纸上画出这两个不等式的 解集,观察其公共部分是哪一段? 学知识
的解集分别是什么? 生:①x>b,②x<a,③ a<x<b,④无解。 教师【出示】
不等式组(a <b 数轴表示 解 集
)
x > a x > b x < a x < b x > a x < b
a b x>b
记忆口 诀
把具体数字
同大取 大
换成字母仍 需借助数轴
a
b
同小取 小 x<a
-8-
运用能力
木 架 . 问 第 三 根 木 条 的 长 度 应 在 什 么 范 围 培养了学生 内? 对知识的应 用能力 4.泡咖啡时,当每杯咖啡用水约为 130ML 时, 所使用的糖 xg、咖啡粉 yg 与泡出来的咖啡甜 度 c 有如下的关系: =c 某咖啡馆经过问卷调查后发现,当咖啡的甜 度是 1 时,客人最喜欢喝,不过只要咖啡甜度 在 0.5~1.5 时,客人都能接受。如果一杯咖 啡用了 12g 咖啡粉,那么在客人能接受的范围 内,这杯咖啡应该用多少糖? 课堂小结 (1)这节课你学到了什么? 2 分钟 布置作业 1 分钟 教学反思 1、教学“不等式组的解集”时,用数形结合的方法,通 过借助数轴找出公共部分解出解集,这是最容易理解的方 法,也是最适用的方法。 (2)你还有哪些不懂的问题? 补充习题 7.6(1) 学生口答

人教版初中数学七年级下册9.3.1《一元一次不等式组》课件(共19张PPT)

人教版初中数学七年级下册9.3.1《一元一次不等式组》课件(共19张PPT)
3、不等式组的解法:
(1)求出不等式组中各个不等式的解集 (2) 利用数轴找出这几个不等式解集的公共部分 (3)根据几个不等式解集的公共部分,写出这个 不等式组的解集。
五、当堂检测
独立完成课本129页练习第1、2题.
2、学生分组完成后交流展示
要求:找出下列不等式组的公共部分
动手画一画, 一起找一找。
第一组
x 3, (1)x 7.
第二组
x 3, (3) x 7.
第三组
(5)
x x
3, 7.
第四组
(7)
x x
3, 7.
(2)
x x
1, 4.
x 1, (4) x 4.
x 1, (6) x 4.
x 1, (8) x 4.
让我们一起动手共同完成…
求下列不等式组的解集:(第一小组)
(1)xx
3, 7.
0 1 2 3 45 6 7 89
解:原不等式组的解集为
x7
x 1, (2) x 4 -3 -2 -1 0 1 2 3 4 5
解:原不等式组的解集为
x4
求下列不等式组的解集:(第二小组)
下列不等式中哪些是一元一次不等式?
2 y 7 6
x 1
(1)3x 3 1 (否) (2)x 2(是)
x 2 1
(3) 1 x
1
(否)
(4)32aa
7 3
(1是)
0
{3+x(1<)每4+个2不x等式必须为一元一次不等式;
(5) 5x-(32<)不4x等-1式必(须是是)只含有同一个未知数;
在同一个数轴上表示不等式①,②的解集为
0 —45 1
2

人教版七年级下册数学课件:9.3一元一次不等式组(共32张PPT)

人教版七年级下册数学课件:9.3一元一次不等式组(共32张PPT)
不等式组的解集为空集 即:不等式组无解
大大小小解不了
例1:利用数轴判断下列不等式组是否有解集?如有,请写出。
x 2 (1)x 3
-2 0 3
不等式组的解集是X>3
(2)xx
2 3
-2 0 3
不等式组的解集是X< -2
x 2 (3)x 3
-2 0 3
不等式的解集是-2<X<3
x 2
(4)x 3
是 1、0、-1、-2、-3
∴m 必须满足-4<m≤-3
x ≥-5 (1)不等式组 x> -2 的解集是 ( B )
A. x ≥-5 B. x >-2 C. 无解 D.5 x 2
(2)不等式组
x≥2
x≤1
的解集是( C )
x x A. ≥2 B. x≤2 C. 无解 D. =2.
(3)不等式组
不等式组的解集为 x< 1
两小取小
例2.写出下列不等式组的解集:
x 1 (2)x 3
01 2 3
不等式组的解集为 x>3
两大取大
例2.写出下列不等式组的解集:
x 1 (3)x 3
01 2 3
不等式组的解集为 1<x< 3
大小小大中间找
例2.写出下列不等式组的解集:
x 1 (4)x 3
01 2 3
1、
1 2
x
1
7
3 2
x
2 (x+2) < x+5
2、
3 (x-2)+8 >2x
5x 2 3(x 1) ①
1 2
x
1
7
3 2
x

解:解不等式①,得 x 5 2

一元一次不等式组教案6篇

一元一次不等式组教案6篇

一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。

40道一元一次不等式组计算及答案

40道一元一次不等式组计算及答案

(1)2X-4秋+2 与X為解集为3秋詬(2)2X-1 > 1与4-2X切解集为无解(3)3X+2 >5 与5-2 羽解集为 1 VX<2(4)X - 1 V 2 与2X+3 >2+X 解集为-1 V X V 3(5)X+3 > 1 与X + 2 (X-1 ) < 解集为-2 V X<(6)2X+1 <3 与X>-3 解集为1>-3(7)2X+5 > 1 与3X+7X <0 解集为 1 冰>2(8)2X-1 >X+1 与X+8 V4X-1 解集为X>3(9)1-2 (X-1) <5与2/ (3X-2) V X+1/2 解集为-1 V 3(10)2X<4+X 与X+2 V4X-1 解集为 1 V X<1(11)2-X > 0 与2/ (5X+1 ) +1 冯/ (2X-1 ) 解集为-1 «V 2(12)1-X V0 与2/ (X-2) V 1 解集为 1 V X V4(13)2-X V3与2-X为解集为2冰> 1(14)2X+10 >-5 与6X-7 羽0 解集为X> 17/6(15)6X+6 >8 与3X+10 V 5 解集为-(3/5) > X>-3(16)6X+6X24 与10X+ (1/2) X V -42 解集为无解(17)24X-20X >4 与8X+4X <24解集为 2 冰> 1(18)9X-5X V 8 与15X+5X >80 解集为无解(19)X+X < 与2X+ (1/2) X > 100 解集为无解(20)2011X-2012X W1 与2013X-2012X 羽解集为 1 秋(21)4X-X > 6 与10X+5X V 15 解集为无解(22)-5X-6X <22 与5X-9X ^24 解集为无解 (23) (1/5)X+ (1/5 ) X > 2/5 与X+10X > 22 解集为X > 2(24)55X+55X V 220 与66X+10X V 38 解集为X V 1/2(25)70X+1 <71 与53X-13X <40 解集为X <1(26)X+1 V 7与X-1 > 10解集为无解(27)5X+5 > 5 与2X+3X > 9 解集为X > 9/5 (28) 85X-5X V 8 与50X+30X V 5 解集为X V 1/16 (29) 2X <14 与6X V 6解集为X V 1(30)15X+15 ^30与6X-8X纽解集为-2冰羽(31)2X 羽60 与4X 冯16 解集为X%0 (32) 35X-27X > 136 与20X+20X V 800 解集为20 > X > 17(33)55X <165 与56X > 112 解集为 2 V X <5(34)20X+18X身6 与2X场解集为X缎(35)59X+X > 600 与55X+35X V 1350 解集为10 V X V 15(36)60X V 120 与5X+5X V 10 解集为X V 1(37)100X V 20X+1200 与2X V 30X+10 解集为X V 5/14 ((38)50X羽00与50X为0 解集为X羽(39)25X > 250 与26X > 26解集为X > 10 (40) 2X > 2与3X V -5解集为无解。

《一元一次不等式与不等式组》知识讲解(1)

《一元一次不等式与不等式组》知识讲解(1)
【答案】D
3
初一实验班——荣伟伟
一元一次不等式的解法
要点一、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,
2 x 50 是一个一元一次不等式. 3
要点诠释: (1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);
②只含有一个未知数; ③未知数的最高次数为 1. (2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是 1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”或“>”连接,不等号有方向;一 元一次方程表示相等关系,由等号“=”连接,等号没有方向.
移项、合并同类项得: − 3 x 6 4
系数化 1,得 x −8 故原不等式的解集是 x −8
例 3.m 为何值时,关于 x 的方程: x − 6m −1 = x − 5m −1 的解大于 1?
63
2
【答案与解析】
解: x-12m+2=6x-15m+3
5x=3m-1
x = 3m −1 5
要点二、一元一次不等式的解法 1.解不等式:求不等式解的过程叫做解不等式. 2.一元一次不等式的解法:
与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为: x a (或 x a )的形式,解一元一次不等式的一般步骤为:
(1)去分母; (2)去括号; (3)移项;
(4)化为 ax b (或 ax b )的形式(其中 a 0 );

4.若关于
x、y
的二元一次方程组
3x + y x + 3y
=1+ =3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档