指数对数的导数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求指数、对数函数的导数
例 求下列函数的导数:
1.1ln 2+=x y ;2.)132(log 22++=x x y ;
3.)sin(b ax e y +=; 4.).12cos(3+=x a y x
分析:对于比较复杂的函数求导,除了利用指数、对数函数求导公式之外,还需要考虑应用复合函数的求导法则来进行.求导过程中,可以先适当进行变形化简,将对数函数的真数位置转化为有理函数的形式后再求导数.
解:1.解法一:可看成1,,ln 2+===x v v u u y 复合而成.
.1
11 2)1(2
111 )2(2
11222212221
+=+⋅+=⋅+⋅+=⋅⋅='⋅'⋅'='--x x x x x
x x x x v u v u y y x v u x 解法二:[])1(11
1ln 222'++='+='x x x y
.121121
11)1()1(2111
22222122+=⋅+⋅
+='+⋅+⋅+=
-x x x x x x x x 解法三:)1ln(2
11ln 22+=+=x x y , []
.1122)1(1121)1ln(2122222+=+='+⋅+⋅='+='x x x x x x x y
2.解法一:设132,log 2
2++==x x u u y ,则 )34(log 12+⋅⋅='⋅'='x e u
u y y x u x .1
32log )34()34(132log 2222++⋅+=+++⋅=x x e x x x x e 解法二:[]
)132(1
32log )132(log 22222'++⋅++='++='x x x x e x x y .132log )34()34(132log 2222+++=+⋅++=x x e x x x x e 3.解法一:设b ax v v u e y u
+===,sin ,,则
)sin()cos( cos b ax u x v u x e
b ax a a
v e u u y y +⋅+=⋅⋅='⋅'⋅'=' 解法二:[][]'+⋅='='++)sin()sin()sin(b ax e e
y b ax b ax )
sin()sin()cos()()cos(b ax b ax e b ax a b ax b ax e ++⋅+='
+⋅+⋅= 4.])12cos([3'+='x a y x
)].12s i n (2)12c o s (ln 3[)
12sin(2)12cos(ln 3)12)](12sin([)12cos()3(ln ])12[cos()12cos()(3333333+-+⋅=+⋅-+⋅='
++-++'⋅⋅='
+⋅++'=x x a a x a x a a x x a x x a a x a x a x x x x x x x
说明:深刻理解,掌握指数函数和对数函数的求导公式的结构规律,是解决问题的关键,解答本题所使用的知识,方法都是最基本的,但解法的构思是灵魂,有了它才能运用知识为解题服务,在求导过程中,学生易犯漏掉符合或混淆系数的错误,使解题走入困境.
解题时,能认真观察函数的结构特征,积极地进行联想化归,才能抓住问题的本质,把解题思路放开.
变形函数解析式求导
例 求下列函数的导数:
(1)12223+-++=x x x x y ; (2)x
x y +-=11ln ; (3)x x y sin )(tan =; (4)62--=x x y .
分析:先将函数适当变形,化为更易于求导的形式,可减少计算量.
解:(1).1
2122223+-++=+-++=x x x x x x x x y 2
22222)1(11)1()12(11+-+-+=+---+-+='x x x x x x x x x y . (2))]1ln()1[ln(2
1x x y +--=, .1
1)1)(1(11211111212-=+--++-=⎪⎭⎫ ⎝⎛+---='x x x x x x x y (3))ln(tan sin e x x y =
])ln(tan [sin e )ln(tan sin '='x x y x x
⎥⎦
⎤⎢⎣⎡
'+=)(tan tan 1sin )ln(tan cos )(tan sin x x x x x x x ⎥⎥⎦
⎤⎢⎢⎣⎡'⎪⎭⎫ ⎝⎛+=cos sin cos )ln(tan cos )(tan sin x x x x x ⎥⎦
⎤⎢⎣⎡--+=x x x x x x x x cos )sin (sin cos )ln(tan )(tan cos 2sin .cos 1)ln(tan )(tan cos sin ⎥⎦⎤⎢⎣⎡+=x x x x x
(4)[]⎪⎩⎪⎨⎧-∈---∈++-=].
3,2[ ,6,3,2 ,622x x x x x x y ⎩
⎨⎧+∞--∞∈-∈+-=').,3()2,( ,12),3,2( ,12 x x x x y 当3,2-=x 时y '不存在.
说明:求)
()(x Q x P y =(其中)()(x Q x P 、为多项式)的导数时,若)(x P 的次数不小于)(x Q 的次数,则由多项式除法可知,存在)()(x R x S 、,使)()()()(x R x S x Q x P +=.从而)
()()()()(x Q x R x S x R x P +=,这里)()(x R x S 、均为多项式,且)(x R 的次数小于)(x Q 的次数.再求导可减少计算量.
对函数变形要注意定义域.如)1ln()1lg(+--=x x y ,则定义域变为),1(+∞∈x ,所以虽然)1l n ()1l n (++-=x x y 的导数1211112-=++-x x x x 与x x y +-=11ln 的导数1
2)1()1()1(11111122-=+--+--+=⎪⎭⎫ ⎝⎛+--+x x x x x x x x x x x 结果相同,但我们还是应避免这种解法.
函数求导法则的综合运用
例 求下列函数的导数:
1.21x x y +=;2.x
e x x y 22)32(⋅+-=;