太阳能电池材料ppt课件
合集下载
钙钛矿太阳能电池课件PPT
![钙钛矿太阳能电池课件PPT](https://img.taocdn.com/s3/m/05f98804c950ad02de80d4d8d15abe23482f03f7.png)
Efficient planar heterojunction perovskite solar cells by vapour deposition
Nature 501, 395 (202X) 英国牛津大学Henry Snaith小 组,15.4%
Sequential deposition as a route to high-performance perovskite-sensitized solar cells
染料敏化电池的研发方向和内容
光阳极膜性能的提高。制备电子传导率高、抑制电荷 复合的高性能多孔半导体膜,并优化膜的性能;改进 制膜的方法,使其工艺更简单、成本更低;寻找其它 可代替TiO2 的氧化物半导体。
染料敏化效果的提高。设计、合成高性能的染料分子, 并改善分子结构,提高电荷分离效率,使染料具有更 优异的吸收性能和光谱吸收范围;充分利用多种染料 的特征吸收光谱的不同,研究染料的协同敏化,拓宽 染料对太阳光的吸收光谱。
光敏层,即钙钛矿光吸收层,接受光照激发产生光电 子,注入到多孔半导体层。后来的研究发现,该光敏 层同时具有电子传输功能。
空穴传输材料,捕获空穴,代替传统染料敏化电池中 的电解液,对于制造全固态敏化电池是一个大的突破。
金属电极,即背电极,在染料敏化电池结构中相当于 对电极。
Michael Gratzel小组的最新成果
钙钛矿太阳能电池
《科学》杂志评选202X年度十大科学突 破,第3项。钙钛矿型太阳能电池: 一种 新时代的太阳能电池材料在过去的这一 年中获得了大量的关注,它们比那些传 统的硅电池要更便宜且更容易生产。钙 钛矿电池还没有像商用太阳能电池那样 有效,但它们正在快速不断地得到改善。
美国宾州大学的Andrew Rappe研究组,将钙 钛矿结构的铁电晶体用于光伏转换,提高光吸 收效率,号称转换效率可达50%以上。目前只 是材料和结构的设想,尚未制作出实际器件。
Nature 501, 395 (202X) 英国牛津大学Henry Snaith小 组,15.4%
Sequential deposition as a route to high-performance perovskite-sensitized solar cells
染料敏化电池的研发方向和内容
光阳极膜性能的提高。制备电子传导率高、抑制电荷 复合的高性能多孔半导体膜,并优化膜的性能;改进 制膜的方法,使其工艺更简单、成本更低;寻找其它 可代替TiO2 的氧化物半导体。
染料敏化效果的提高。设计、合成高性能的染料分子, 并改善分子结构,提高电荷分离效率,使染料具有更 优异的吸收性能和光谱吸收范围;充分利用多种染料 的特征吸收光谱的不同,研究染料的协同敏化,拓宽 染料对太阳光的吸收光谱。
光敏层,即钙钛矿光吸收层,接受光照激发产生光电 子,注入到多孔半导体层。后来的研究发现,该光敏 层同时具有电子传输功能。
空穴传输材料,捕获空穴,代替传统染料敏化电池中 的电解液,对于制造全固态敏化电池是一个大的突破。
金属电极,即背电极,在染料敏化电池结构中相当于 对电极。
Michael Gratzel小组的最新成果
钙钛矿太阳能电池
《科学》杂志评选202X年度十大科学突 破,第3项。钙钛矿型太阳能电池: 一种 新时代的太阳能电池材料在过去的这一 年中获得了大量的关注,它们比那些传 统的硅电池要更便宜且更容易生产。钙 钛矿电池还没有像商用太阳能电池那样 有效,但它们正在快速不断地得到改善。
美国宾州大学的Andrew Rappe研究组,将钙 钛矿结构的铁电晶体用于光伏转换,提高光吸 收效率,号称转换效率可达50%以上。目前只 是材料和结构的设想,尚未制作出实际器件。
《有机太阳能电池》课件
![《有机太阳能电池》课件](https://img.taocdn.com/s3/m/e29aa82a0a1c59eef8c75fbfc77da26924c59650.png)
当前研究
重点在于提高光电转换效率和稳定 性,以及探索新型有机材料和结构 。
未来展望
随着技术的不断进步,有机太阳能 电池有望在可穿戴设备、便携式电 源等领域得到广泛应用。
02
有机太阳能电池的材料
电子给体材料
电子给体材料是用于吸收太阳光并将电子转移到受体材料的有机材料。常见的电子 给体材料包括聚合物和低分子量有机化合物。
工作原理
光吸收
有机太阳能电池中的有机材料能够吸收 太阳光。
激子产生
吸收的光能转化为激子,即电子-空穴 对。
激子分离与传输
激子在有机材料中分离并向电极传输。
电极收集
传输的电子和空穴分别被阴极和阳极收 集,形成电流。
历史与发展
起源
有机太阳能电池的研究始于20世纪 70年代。
早期研究
主要集中在染料敏化太阳能电池和 导电聚合物太阳能电池。Βιβλιοθήκη 未来发展与挑战01
02
03
04
技术创新
随着材料科学和制造技术的进 步,有机太阳能电池的效率和 稳定性将得到进一步提升。
降低成本
通过规模化生产和优化工艺, 降低有机太阳能电池的生产成 本,使其更具市场竞争力。
环境影响
关注有机太阳能电池的废弃处 理和循环再利用,减少对环境
的负面影响。
并网与储能
解决有机太阳能电池的并网控 制和储能技术问题,提高其在 可再生能源系统中的稳定性。
水。
活性层制备
03
共混法
交替堆叠法
热聚合法
将给体和受体材料混合在一起形成活性层 ,是最常用的方法之一。
将给体和受体材料交替堆叠形成多层结构 ,可以提高光电转换效率。
在高能辐射或加热条件下使聚合物材料形 成微晶或高分子链聚集态,具有较高的光 电转换效率和稳定性。
《太阳能电池板》课件
![《太阳能电池板》课件](https://img.taocdn.com/s3/m/52941c880408763231126edb6f1aff00bed57038.png)
太阳能充电器:利用太阳能电池板将光能转化为电能,通过充电器将电能 储存到电池中,为各种设备提供充电功能
太阳能储能系统:利用太阳能电池板将光能转化为电能,通过储能系统将 电能储存起来,以备在需要时使用
太阳能光伏电站:利用太阳能电池板将光能转化为电能,通过光伏电站将 电能输送到电网中,为整个地区提供电力供应
太阳能热水器
优点:环保、节能、安全、 可靠
工作原理:利用太阳能光热 转换技术,将太阳能转化为 热能
应用领域:家庭、酒店、医 院等场所
发展趋势:智能化、多功能 化、个性化
太阳能灯具
太阳能灯具的应用领域
太阳能灯具的种类和特点
太阳能灯具的安装和使用方 法
太阳能灯具的优缺点及市场 前景
太阳能充电设备
太阳能充电板:利用太阳能光照射在太阳能电池板上,将光能转化为电能, 为各种电子设备提供充电功能
能量转换比:太阳能电池板单位面积产生的电能与太阳能辐射量的比值,是评价太阳能电池板性能的重 要指标。 以上内容仅供参考,具体参数和评价标准可能因不同品牌和型号的太阳能电池板而有所差异。 以上内容仅供参考,具体参数和评价标准可能因不同品牌和型号的太阳能电池板而有所差异。
耐候性、稳定性和可靠性等评价标准
合要求
安装位置选择: 选择阳光充足、 通风良好的位 置,确保电池 板能够充分吸
收阳光
安装过程:按 照厂家提供的 指南,逐步完 成安装,确保 电池板稳定、
安全
注意事项:注 意安全,避免 触电等意外情 况发生,同时 注意保护电池 板,避免损坏
常见故障分析与排除方法
* 原因分析:电池板表面有灰尘、污垢或遮挡物 * 排除方法:定期清洁电池板表面,确保没有遮挡物
转换效率:太阳能电池板的转换效 率是指其将太阳能转换为电能的效 率,通常以百分比表示
太阳能储能系统:利用太阳能电池板将光能转化为电能,通过储能系统将 电能储存起来,以备在需要时使用
太阳能光伏电站:利用太阳能电池板将光能转化为电能,通过光伏电站将 电能输送到电网中,为整个地区提供电力供应
太阳能热水器
优点:环保、节能、安全、 可靠
工作原理:利用太阳能光热 转换技术,将太阳能转化为 热能
应用领域:家庭、酒店、医 院等场所
发展趋势:智能化、多功能 化、个性化
太阳能灯具
太阳能灯具的应用领域
太阳能灯具的种类和特点
太阳能灯具的安装和使用方 法
太阳能灯具的优缺点及市场 前景
太阳能充电设备
太阳能充电板:利用太阳能光照射在太阳能电池板上,将光能转化为电能, 为各种电子设备提供充电功能
能量转换比:太阳能电池板单位面积产生的电能与太阳能辐射量的比值,是评价太阳能电池板性能的重 要指标。 以上内容仅供参考,具体参数和评价标准可能因不同品牌和型号的太阳能电池板而有所差异。 以上内容仅供参考,具体参数和评价标准可能因不同品牌和型号的太阳能电池板而有所差异。
耐候性、稳定性和可靠性等评价标准
合要求
安装位置选择: 选择阳光充足、 通风良好的位 置,确保电池 板能够充分吸
收阳光
安装过程:按 照厂家提供的 指南,逐步完 成安装,确保 电池板稳定、
安全
注意事项:注 意安全,避免 触电等意外情 况发生,同时 注意保护电池 板,避免损坏
常见故障分析与排除方法
* 原因分析:电池板表面有灰尘、污垢或遮挡物 * 排除方法:定期清洁电池板表面,确保没有遮挡物
转换效率:太阳能电池板的转换效 率是指其将太阳能转换为电能的效 率,通常以百分比表示
太阳能电池优秀课件
![太阳能电池优秀课件](https://img.taocdn.com/s3/m/62de7ab2112de2bd960590c69ec3d5bbfc0ada18.png)
2 、光电导效应
电子能量
在光线作用下,电子吸收光
子能量从束缚状态过渡到自由
hv
状态,而引起材料电导率的变
导带 Eg
价带
化,这种现象被称为光电导效
应。
当光照射到半导体光电导材料上时,若光辐
射能量足够强,材料价带上的电子将被激发到导
带,从而使材料中的自由载流子增加,致使材料
的电导变大。
光电导产生的条件
6、温度效应
太阳能电池用半导体的禁带 宽度的温度系数为负,随温度 上升带隙变窄,会使短路电流 略有上升,但同时会使I0增加, Voc下降。
综合所有参数,转换效率随 温度上升而下降。
7、辐照效应 作为卫星和飞船的电源,太阳电池必然暴露
在外层空间的高能粒子的辐照下。高能粒子 辐照时通过与晶格原子的碰撞,将能量传给 晶格,当传递的能量大于某一阈值时,便使 晶格原子发生位移,产生晶格缺陷。这些缺 陷将起复合中心的作用,从而降低少子寿命。 大量研究工作表明,寿命参数对辐照缺陷最 为灵敏,也正因为辐照影响了寿命值,从而 使太阳电池性能下降。
理想情况下的效率
舍弃太阳光中波长大于长波限的光 谱,在理想情况下,能量大于禁带宽 度的光子全部被材料吸收形成光电流, 显然,最大短路电流Isc仅与材料的带隙 有关。
理想情况下Voc为:
Voc
kT q
ln
I ph I0
1
式中Iph为光生电流,I0为二 极管饱和电流:
I0
A
qDn
n2 i
LN nA
图一
将表面制成金字塔型的组织结构,以减少光的反射 量。
将金属电极埋入基板中,以减少串联电阻。(图二)
图二
减少背电极与硅的接触面积,以减少因金属与硅的 接合处引入的缺陷, (图三)
有机太阳能电池PPT课件
![有机太阳能电池PPT课件](https://img.taocdn.com/s3/m/7472e3e2dc3383c4bb4cf7ec4afe04a1b071b00c.png)
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2000年,5.R.Forrest研究小组通过在有机小分子制备的双层结构太阳能电池器件 的有机层和金属阴极之间插入BCP(Bathocuproine)薄膜层,使得器件的光电转换 效率提高到了2.4%,并且改善了器件的伏安特性曲线,提高了器件的稳定性。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1.有机太阳能电池的简介:
定义:有机太阳能电池,就是由有机材料构成核心部分,基于有机 半导体的光生伏特效应,通过有机材料吸收光子从而实现光电转换 的太阳能电池。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
➢聚合物材料:太阳能电池上应用的聚合物首先必须是导电高分子,并 且聚合物的微观结构和宏观结构都对聚合物材料的光电特性有较大影响。 导电性聚合物的分子结构特征是含有大的π电子共扼体系,而聚合物材 料的分子量影响着共扼体系的程度。材料的凝聚状态(非晶和结晶)、结 晶度、晶面取向和结晶形态都会对器件光电流的大小有影响。主要的聚 合物材料有聚对苯乙烯(PPv)、聚苯胺(队Nl)和聚唆吩(PTh)以及它们的 衍生物等。
与前述“肖特基型”电池相比,此种结 构的特点在于引入了电荷分离的机制, 使得在有机材料中产生的激子,可以较 容易地在两种材料的界面处解离以实现 电荷分离,极大的提高了激子解离的效 率,从而获得电池器件效率的增大。
太阳能电池介绍ppt课件
![太阳能电池介绍ppt课件](https://img.taocdn.com/s3/m/9601cc6aae45b307e87101f69e3143323968f5e4.png)
金属与半导体的区别: 金属的导带和价带重叠在一起,不存在禁带,在一切条件 下具有良好的导电性。 半导体有一定的禁带宽度,价电子必须获得一定的能量 (>Eg)“激发”到导带才具有导电能力。激发的能量可以 是热或光的作用。 常温下,每立方厘米的硅晶体,导带上约有l010个电子, 每立方厘米的导体晶体的导带中约有1022个电子。 绝缘体禁带宽度远大于半导体,常温下激发到导带上的电 子非常少,固其电导率很低 。
3.1 太阳能光伏发电原理
硅晶体和所有的晶体都是由原子(或离子、分子)在空间按 一定规则排列而成。这种对称的、有规则的排列叫做晶体 的晶格。一块晶体如果从头到尾都按一种方向重复排列, 即长程有序,就称其为单晶体。在硅晶体中,每个硅原子 近邻有四个硅原子,每两个相邻原子之间有一对电子,它 们与两个相邻原子核都有相互作用,称为共价键。正是靠 共价键的作用,使硅原子紧紧结合在一起,构成了晶体。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
3.1 太阳能光伏发电原理
8.载流子的输运 半导体中存在能够导电的自由电子和空穴,这些载流子 有两种输运方式:漂移运动和扩散运动。 载流子在热平衡时作不规则的热运动,与晶格、杂质、 缺陷发生碰撞,运动方向不断改变,平均位移等于零,这 种现象叫做散射。散射不会形成电流。 半导体中载流子在外加电场的作用下,按照一定方向的 运动称为漂移运动。外界电场的存在使载流子作定向的漂 移运动,并形成电流。 扩散运动是半导体在因外加因素使载流子浓度不均匀而 引起的载流子从浓度高处向浓度低处的迁移运动。 扩散运动和漂移运动不同,它不是由于电场力的作用产 生的,而是由于载流子浓度差的引起的。
3.1 太阳能光伏发电原理
硅晶体和所有的晶体都是由原子(或离子、分子)在空间按 一定规则排列而成。这种对称的、有规则的排列叫做晶体 的晶格。一块晶体如果从头到尾都按一种方向重复排列, 即长程有序,就称其为单晶体。在硅晶体中,每个硅原子 近邻有四个硅原子,每两个相邻原子之间有一对电子,它 们与两个相邻原子核都有相互作用,称为共价键。正是靠 共价键的作用,使硅原子紧紧结合在一起,构成了晶体。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
3.1 太阳能光伏发电原理
8.载流子的输运 半导体中存在能够导电的自由电子和空穴,这些载流子 有两种输运方式:漂移运动和扩散运动。 载流子在热平衡时作不规则的热运动,与晶格、杂质、 缺陷发生碰撞,运动方向不断改变,平均位移等于零,这 种现象叫做散射。散射不会形成电流。 半导体中载流子在外加电场的作用下,按照一定方向的 运动称为漂移运动。外界电场的存在使载流子作定向的漂 移运动,并形成电流。 扩散运动是半导体在因外加因素使载流子浓度不均匀而 引起的载流子从浓度高处向浓度低处的迁移运动。 扩散运动和漂移运动不同,它不是由于电场力的作用产 生的,而是由于载流子浓度差的引起的。
钙钛矿太阳能电池PPT课件
![钙钛矿太阳能电池PPT课件](https://img.taocdn.com/s3/m/e79b39062a160b4e767f5acfa1c7aa00b42a9d41.png)
户外装备
钙钛矿太阳能电池还可用 于为户外装备提供电力, 如帐篷、野营灯等,为户 外活动提供便利。
在太空探测领域的应用
太空飞行器能源
钙钛矿太阳能电池具有高效能量 转换和轻量化的特点,适用于太 空飞行器的能源供应,为太空探 测任务提供稳定、可靠的能源支
持。
月球基地能源
在月球基地建设中,钙钛矿太阳 能电池可以作为可持续的能源解 决方案,为月球基地提供长期、
面临的挑战
稳定性
钙钛矿太阳能电池的稳定性问题是 目前最大的挑战之一,需要进一步 研究以提高其长期使用的可靠性。
毒性
部分钙钛矿材料可能对人体和 环境有害,需要寻找无毒或低 毒的替代品。
大面积制备
目前钙钛矿太阳能电池的大面 积制备还存在一定的技术难度 和挑战。
效率衰退
钙钛矿太阳能电池在长时间使 用后可能会出现效率衰退的问 题,需要进一步研究和解决。
项目目标
本项目旨在研发高效钙钛矿太阳能电池,实现产业化生产和应用,推动新能源技术的进步 和发展。
技术路线与实施方案
技术路线
本项目采用新型钙钛矿材料,通过材料合成、器件制备、性 能测试等技术手段,研发出高效钙钛矿太阳能电池。
实施方案
本项目分为材料合成、器件制备、性能测试、产业化生产四 个阶段。在每个阶段,我们将严格按照技术路线图进行实验 和测试,确保项目顺利实施。
低成本制造工艺
钙钛矿太阳能电池的制造工艺相对简 单,成本较低,有利于大规模生产和 应用。
02
钙钛矿太阳能电池的原理
钙钛矿的结构与性质
钙钛矿材料具有ABX3型晶体结 构,其中A为有机阳离子,B为 金属阳离子,X为卤素阴离子。
钙钛矿材料具有直接带隙半导 体特性,光吸收系数高,吸光 能力强。
钙太矿太阳能电池PPT课件
![钙太矿太阳能电池PPT课件](https://img.taocdn.com/s3/m/ae939b28793e0912a21614791711cc7930b77857.png)
钙钛矿材料易于合成,可采用溶液法制备大面积、低成本的光电薄膜。
钙钛矿太阳能电池的工作原理
01
当太阳光照射到钙钛矿 层时,光子被吸收并产 和空穴在钙钛矿层 中通过扩散传输到异质 结界面。
在异质结界面,电子和空 穴被传输到相邻的电子传 输层和空穴传输层。
电子和空穴在传输层中被 分离,并分别收集到负极 和正极,形成光电流。
促进可持续发展
钙钛矿太阳能电池的应用 有助于推动经济、社会和 环境的可持续发展,实现 人类与自然的和谐共生。
提升能源安全
发展钙钛矿太阳能电池可 以降低一个国家对传统能 源的依赖,提升能源安全。
06
结论
钙钛矿太阳能电池的研究成果总结
高光电转换效率
低制造成本
钙钛矿太阳能电池具有较高的光电转换效 率,可达到20%以上,远高于传统硅基太 阳能电池。
THANKS
感谢观看
钙钛矿太阳能电池的效率
钙钛矿太阳能电池的效率已经 达到了25%以上,远高于传统 的硅基太阳能电池。
钙钛矿太阳能电池的效率主要 受到材料质量、界面性质、载 流子输运等因素的影响。
为了进一步提高钙钛矿太阳能 电池的效率,需要深入研究这 些因素,并采取有效的措施进 行优化。
03
钙钛矿太阳能电池的制造 工艺
大面积制备难度
目前钙钛矿太阳能电池的大规模制备 技术尚不成熟,提高大面积器件的性 能是一大挑战。
制造成本不均
虽然钙钛矿材料成本较低,但其他组 件和制造过程的成本较高,影响了整 体成本的降低。
未来的发展方向
提高稳定性
通过改进材料和优化器件结构,提高钙钛矿 太阳能电池的长期稳定性是关键。
大面积制备技术
基底选择
选择合适的导电基底,如FTO、ITO等, 确保良好的导电性和透过性。
钙钛矿太阳能电池的工作原理
01
当太阳光照射到钙钛矿 层时,光子被吸收并产 和空穴在钙钛矿层 中通过扩散传输到异质 结界面。
在异质结界面,电子和空 穴被传输到相邻的电子传 输层和空穴传输层。
电子和空穴在传输层中被 分离,并分别收集到负极 和正极,形成光电流。
促进可持续发展
钙钛矿太阳能电池的应用 有助于推动经济、社会和 环境的可持续发展,实现 人类与自然的和谐共生。
提升能源安全
发展钙钛矿太阳能电池可 以降低一个国家对传统能 源的依赖,提升能源安全。
06
结论
钙钛矿太阳能电池的研究成果总结
高光电转换效率
低制造成本
钙钛矿太阳能电池具有较高的光电转换效 率,可达到20%以上,远高于传统硅基太 阳能电池。
THANKS
感谢观看
钙钛矿太阳能电池的效率
钙钛矿太阳能电池的效率已经 达到了25%以上,远高于传统 的硅基太阳能电池。
钙钛矿太阳能电池的效率主要 受到材料质量、界面性质、载 流子输运等因素的影响。
为了进一步提高钙钛矿太阳能 电池的效率,需要深入研究这 些因素,并采取有效的措施进 行优化。
03
钙钛矿太阳能电池的制造 工艺
大面积制备难度
目前钙钛矿太阳能电池的大规模制备 技术尚不成熟,提高大面积器件的性 能是一大挑战。
制造成本不均
虽然钙钛矿材料成本较低,但其他组 件和制造过程的成本较高,影响了整 体成本的降低。
未来的发展方向
提高稳定性
通过改进材料和优化器件结构,提高钙钛矿 太阳能电池的长期稳定性是关键。
大面积制备技术
基底选择
选择合适的导电基底,如FTO、ITO等, 确保良好的导电性和透过性。
《太阳能电池》课件
![《太阳能电池》课件](https://img.taocdn.com/s3/m/458dbf5f5e0e7cd184254b35eefdc8d376ee14b4.png)
交通工具用电
太阳能汽车
利用太阳能电池板为电动汽车提供动力,减少对传统能源的依赖。
太阳能飞机
在飞机上安装太阳能电池板,为飞机提供辅助动力,减少燃油消耗。
04
太阳能电池的优缺点
优点
环保性
太阳能电池利用太阳能 进行发电,不产生任何 污染物,对环境友好。
可持续性
太阳能资源丰富,且可 再生,使用太阳能电池 有助于实现能源的可持
多元化应用
除了家庭和工业应用外,太阳 能电池在交通、航空航天等领
域的应用也将得到拓展。
05
太阳能电池的制造与维护
制造过程
制造流程
制造设备
从原材料的选取、加工、组装到成品 测试,太阳能电池的制造过程需要经 过多个环节。
制造太阳能电池需要一系列专业设备 ,包括晶体生长炉、表面处理设备、 电极制备设备等。
更换损坏组件
对于损坏或老化严重的组件,需要及时更换,以保证整个系统的 稳定性和效率。
使用注意事项
安装角度与方向
安装太阳能电池板时,应考虑当地的气候和太阳高度角,使电池 板与太阳光垂直,以获得最大的能量转换效率。
避免遮挡
确保太阳能电池板周围没有遮挡物,以免影响光线的照射和能量的 转换。
定期检查系统
定期检查整个太阳能发电系统,包括电池板、控制器和储能设备等 ,确保系统正常运行并延长使用寿命。
商业用电
商业屋顶光伏电站
大型商业建筑如商场、办公楼等可安 装太阳能电池板,满足部分电力需求 ,降低运营成本。
光伏照明系统
太阳能路灯、景观灯等为商业区提供 照明,节能环保且维护成本低。
公共设施用电
01
公共建筑如图书馆、博物馆等可 利用太阳能电池板提供部分电力 ,降低建筑运营成本。
太阳能电池的分类-及光伏发电的优缺点PPT课件
![太阳能电池的分类-及光伏发电的优缺点PPT课件](https://img.taocdn.com/s3/m/91202ec9cd22bcd126fff705cc17552706225e41.png)
多元化合物太阳能电池
硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,在广泛深入 的应用研究基础上,国际上许多国家的碲化镉薄膜太阳电池已由实验室研究阶段开始走向规模工业化生产。 1、硫化镉太阳能电池:虽然光电效率已提高到9%,但是仍无法与多晶硅太阳能电池竞争。与非晶硅薄膜 电池相比,制造工艺比较简单。 2、砷化镓太阳能电池:砷化镓与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性 能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳能电池。由于镓比较稀缺,砷有毒, 制造成本高,此种太阳能电池的发展受到影响。 3、铜铟硒太阳能电池:以铜、铟、硒三元化合物半导体为基本材料制成的太阳能电池。它是一种多晶薄 膜结构,材料消耗少,成本低,性能稳定,光电转换效率在10%以上。因此是一种可与非晶硅薄膜太阳能 电池相竞争的新型太阳能电池。
纳米晶体化学太阳能电池
染料敏化纳米晶体太阳能电池(DSSCs)主要包括镀有透明导电膜的玻璃基底, 染料敏化的半导体材料、对电极以及电解质等几部分。其阳极为染料敏化半导 体薄膜(TiO2膜),阴极为镀铂的导电玻璃。纳米晶体TiO2太阳能电池的优点 在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上, 制作成本仅为硅太阳电池的1/5~1/10,.寿命能达到20年以上。
柔性太阳能电池
柔性太阳能电池板采用高晶硅材料制成,并用高强度、透光性 能强的太阳能专用钢化玻璃以及高性能、耐紫外线辐射的专用 密封材料层压制而成,有能抗冰雪、抗震、防压等多种优点, 即使在温度剧变的恶劣条件下也能正常使用,。所以柔性电池 能用在平板类太阳能电池难以胜任的许多领域,例如太阳能汽 车、飞机、飞艇、建筑、纺织品、帐篷、服装、头盔,玩具等 特殊曲面上。
《太阳能电池》PPT课件
![《太阳能电池》PPT课件](https://img.taocdn.com/s3/m/b9ce7713195f312b3069a59d.png)
精选ppt
6
太阳能电池的原理
• 最基本的原理——光伏效应(Photovoltaic Effect缩写PV)
• 太阳能电池(光伏)材料主要包括:产生光 伏 效应的半导体材料、薄膜衬底材料、减反 射膜材料、电极与导线材料、组件封装材 料等。
精选ppt
7
• 电池的分类 单晶硅太阳能电池 多晶硅太阳能电池 薄膜光伏电池
目前对于某一种光电池材料,只是与其对应的光 谱段。所以,对单晶硅能量转化的效率的理论极限为 27.8%。太阳光中有大量的低能长波光子,降低了太阳 能电池的效率。
提高转换效率和降低成本是太阳能电池制备中考 虑的两个因素,对于目前的硅系太能电池,要想再进 一步提高转换效率是比较困难的。
精选ppt
22
新型太阳能电池 ——铁电太阳能电池
精选ppt
8
单晶硅太阳能电池
• P型晶体硅经过掺杂磷可 得N型硅,形成P-N结。
• 当光线照射太阳电池 表面 时,一部分光子被硅材料 吸收;光子的能量传递给 了硅原子,使电子发生了 越迁,成为自由电子在PN结两侧集聚形成了电位 差,当外部接通电路时, 在该电压的作用下,将会 有电流流过外部电路产生 一定的输出功率。
精选ppt
12
在军事上的应用
精选ppt
13
在航空领域的应用
精选ppt
14
卫星上的太阳能电池
精选ppt
15
在生活中的应用
精选ppt
16
精选ppt
17
汽车上的太阳能电池
精选ppt
18
电动玩具上的太阳能电池
精选ppt
19
在公共设施上的应用
精选ppt
20
在工农业上的应用
《太阳能电池材料》课件
![《太阳能电池材料》课件](https://img.taocdn.com/s3/m/e4c2863f1611cc7931b765ce050876323012744b.png)
薄膜太阳能电池
利用薄层材料制作,材料用量少,制造成本低,但转 换效率相对较低。
太阳能电池的应用
光伏发电站
利用大规模的太阳能电池阵列 ,将光能转换为电能,通过电
网输送给用户。
分布式发电系统
利用小型太阳能电池系统,为 建筑物、家庭、企业等提供电 力,可与电网并网运行。
移动能源应用
利用太阳能电池为电动汽车、 无人机、船舶等提供动力或辅 助能源。
将组件放入层压机中加热加压,使组件内的电池片、电极和 玻璃紧密结合在一起,同时保护电池片免受外界环境的影响 。
05
CATALOGUE
太阳能电池的未来发展
提高光电转换效率
研发新型材料
探索和开发新型太阳能电池材料,如钙钛矿 太阳能电池等,以提高光电转换效率。
优化结构设计
通过改进太阳能电池的结构设计,如采用多结太阳 能电池、叠层太阳能电池等,提高光电转换效率。
缺陷和杂质检测
利用电子显微镜、X射线衍射等方法检测太阳能电池材料中的缺陷和杂质。
电池片制造
表面处理
对硅片进行抛光、蚀刻等处理,提高其表面质量。
扩散制结
通过扩散工艺在硅片表面形成PN结,是太阳能电池制造中的关键步骤。
组件封装
焊接和串焊
将电池片连接起来形成组件,通过焊接或串焊的方式实现电 气连接。
层压和密封
是指当太阳光照射在半导体材料 上时,光子能量会激发电子从束 缚状态进入自由状态,从而产生 电流的物理现象。
太阳能电池的分类
单晶硅太阳能电池
利用高纯度单晶硅作为基底,通过掺杂其他元素提高 导电性能。转换效率较高,但制造成本也较高。
多晶硅太阳能电池
利用多晶硅材料制作,晶粒较小,制造成本相对较低 ,但转换效率略低于单晶硅。
利用薄层材料制作,材料用量少,制造成本低,但转 换效率相对较低。
太阳能电池的应用
光伏发电站
利用大规模的太阳能电池阵列 ,将光能转换为电能,通过电
网输送给用户。
分布式发电系统
利用小型太阳能电池系统,为 建筑物、家庭、企业等提供电 力,可与电网并网运行。
移动能源应用
利用太阳能电池为电动汽车、 无人机、船舶等提供动力或辅 助能源。
将组件放入层压机中加热加压,使组件内的电池片、电极和 玻璃紧密结合在一起,同时保护电池片免受外界环境的影响 。
05
CATALOGUE
太阳能电池的未来发展
提高光电转换效率
研发新型材料
探索和开发新型太阳能电池材料,如钙钛矿 太阳能电池等,以提高光电转换效率。
优化结构设计
通过改进太阳能电池的结构设计,如采用多结太阳 能电池、叠层太阳能电池等,提高光电转换效率。
缺陷和杂质检测
利用电子显微镜、X射线衍射等方法检测太阳能电池材料中的缺陷和杂质。
电池片制造
表面处理
对硅片进行抛光、蚀刻等处理,提高其表面质量。
扩散制结
通过扩散工艺在硅片表面形成PN结,是太阳能电池制造中的关键步骤。
组件封装
焊接和串焊
将电池片连接起来形成组件,通过焊接或串焊的方式实现电 气连接。
层压和密封
是指当太阳光照射在半导体材料 上时,光子能量会激发电子从束 缚状态进入自由状态,从而产生 电流的物理现象。
太阳能电池的分类
单晶硅太阳能电池
利用高纯度单晶硅作为基底,通过掺杂其他元素提高 导电性能。转换效率较高,但制造成本也较高。
多晶硅太阳能电池
利用多晶硅材料制作,晶粒较小,制造成本相对较低 ,但转换效率略低于单晶硅。
钙钛矿太阳能电池课件
![钙钛矿太阳能电池课件](https://img.taocdn.com/s3/m/67fb1904e418964bcf84b9d528ea81c758f52e33.png)
差、寿命短等技术挑战。
未来展望
随着科研工作的不断深入和技术 难题的逐步解决,钙钛矿太阳能 电池有望在未来成为主流的太阳
能电池技术之一。
案例三
应用场景
太空探测器需要在极端环境下工作,因此需要高效、可靠的能源系统。钙钛矿太阳能电池 作为一种新型的太阳能电池技术,在太空探测中具有广泛的应用前景。
技术优势
工作原理
钙钛矿太阳能电池利用钙钛矿材料的 光吸收特性,将太阳光转化为电能。 其工作原理包括光吸收、载流子产生、 载流子分离和收集等过程。
历史与发展
历史
钙钛矿太阳能电池的研究始于2009年,经过不断发展,其光电转换效率不断提 高,已成为当前研究的热点。
发展
目前,钙钛矿太阳能电池的研究方向主要包括提高光电转换效率、稳定性、降 低成本等方面,未来有望成为主流的太阳能电池技术之一。
03
未来发展
随着技术的进一步优化和成本的降低,钙钛矿太阳能电池在商业领域的
应用前景将更加广阔。
案例二:科研实验室的钙钛矿太阳能电池研究
科研进展
在科研实验室中,研究者们不断 探索钙钛矿太阳能电池的新材料、
新结构和新技术,以提高其光电 转换效率和稳定性。
技术挑战
尽管钙钛矿太阳能电池具有许多 优势,但它们仍然面临着稳定性
测试设备
电学性能测试仪、光谱 分析仪、表面形貌分析
仪等。
其他工具
清洗刷、刮刀、量筒、 烧杯等实验器具。
04 钙钛矿太阳能电池的性能优化
材料优化
总结词
通过选择合适的材料,可以显著提高钙 钛矿太阳能电池的光电性能和稳定性。
VS
详细描述
材料优化是提高钙钛矿太阳能电池性能的 关键手段之一。通过调整材料的组分、结 构和形貌,可以改善光吸收、载流子传输 和界面性质,从而提高电池的光电转换效 率和稳定性。例如,通过掺杂不同元素或 合成新型钙钛矿材料,可以优化带隙、吸 收系数和载流子寿命等关键参数。
未来展望
随着科研工作的不断深入和技术 难题的逐步解决,钙钛矿太阳能 电池有望在未来成为主流的太阳
能电池技术之一。
案例三
应用场景
太空探测器需要在极端环境下工作,因此需要高效、可靠的能源系统。钙钛矿太阳能电池 作为一种新型的太阳能电池技术,在太空探测中具有广泛的应用前景。
技术优势
工作原理
钙钛矿太阳能电池利用钙钛矿材料的 光吸收特性,将太阳光转化为电能。 其工作原理包括光吸收、载流子产生、 载流子分离和收集等过程。
历史与发展
历史
钙钛矿太阳能电池的研究始于2009年,经过不断发展,其光电转换效率不断提 高,已成为当前研究的热点。
发展
目前,钙钛矿太阳能电池的研究方向主要包括提高光电转换效率、稳定性、降 低成本等方面,未来有望成为主流的太阳能电池技术之一。
03
未来发展
随着技术的进一步优化和成本的降低,钙钛矿太阳能电池在商业领域的
应用前景将更加广阔。
案例二:科研实验室的钙钛矿太阳能电池研究
科研进展
在科研实验室中,研究者们不断 探索钙钛矿太阳能电池的新材料、
新结构和新技术,以提高其光电 转换效率和稳定性。
技术挑战
尽管钙钛矿太阳能电池具有许多 优势,但它们仍然面临着稳定性
测试设备
电学性能测试仪、光谱 分析仪、表面形貌分析
仪等。
其他工具
清洗刷、刮刀、量筒、 烧杯等实验器具。
04 钙钛矿太阳能电池的性能优化
材料优化
总结词
通过选择合适的材料,可以显著提高钙 钛矿太阳能电池的光电性能和稳定性。
VS
详细描述
材料优化是提高钙钛矿太阳能电池性能的 关键手段之一。通过调整材料的组分、结 构和形貌,可以改善光吸收、载流子传输 和界面性质,从而提高电池的光电转换效 率和稳定性。例如,通过掺杂不同元素或 合成新型钙钛矿材料,可以优化带隙、吸 收系数和载流子寿命等关键参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CxHy + O2
H2O + CO2 + SO2 + NOx
太阳能电池发展背景
太阳能的优点
? 资源丰富
? 40分钟照射地球辐射的能量 =全球人类一年的能量需求
? 洁净能源
?与 石 油、煤炭等矿物燃料不同,不会导致“温室效应”, 也不会造成环境污染
? 使用方便 ?同水能、风能等新能源相比,不受地域的限制,利用 成本低。
基于薄膜技术基础之上,主要采用非晶硅及氧化物等为 材料。效率比第一代低,但生产成本最低。
? 第三代:化合物薄膜太阳能电池(铜铟硒 (CIS))等及薄膜 Si系太阳能电池。
转化效率高,低成本,存在潜在庞大的经济效应。
硅太阳能电池 ——(按基体材料分 )
(1)单晶硅太阳能电池 (Single C rystaline-Si)
图1.6 PN结的形成
P型半导体
+
+
+ +
+
++
+
+- +- +-
n型半导体
- -
-
- --- -
V
当太阳光入射到太阳电池表面上后,所吸收得能量大于禁带 宽度,在p-n结中产生电子-空穴对,在p-n结内建电场作用下, 空穴向p区移动,电子向n区移动,从而在p区形成空穴积累,在 n区形成电子积累。若电路闭合,形成电流。
太阳能电池基本原理
1 本征半导体
完全纯净的、结构完整的半导体材料 称为本征半导体。
? 本征半导体的原子结构及共价键
共价键内的两个电子由相邻的原子各 用一个价电子组成,称为束缚电子。图1.1 所示为硅和锗的原子结构和共价键结构。
图1.1 硅和锗的原子结构和共价键结构
? 本征激发和两种载流子
温度越高,半导体材料中产生的自由电子便越多。 束缚电子脱离共价键成为自由电子后,在原来的位置留 有一个空位,称此空位为空穴。
太阳能电池
太阳能电池的分类 (按基体材料分 )
硅太阳能电池
结晶系太阳能电池 非晶硅太阳能电池
单晶硅太阳能电池 多晶硅太阳能电池
无机化合物太阳能电池 有机化合物太阳能电池
单晶化合物太阳能电池 多晶化合物太阳能电池
太阳能电池的分类
? 第一代:单晶硅和多太阳能电池
第五章 太阳能O电ut池lin材e 料
1 背景及发展历程
2
基本原理
3
电池应用
4
电池分类
5
发展前景
太阳能电池发展背景
能源枯竭 环境污染
石油:42年,天然气:67年,煤:200年 。
每年排放的二氧化碳达210万吨,并呈上升趋势,造成 全球气候变暖;空气中大量二氧化碳,粉尘含量己严重 影响人们的身体健康和人类赖以生存的自然环境。
图1.4 P型半导体共价键结构
3. PN结的形成
多数载流子因浓度上的差异而形成的运动称为扩散运动,如图 1.5所示。
图1.5 P型和N型半导体交界处载流子的扩散
由于空穴和自由电子均是带电的粒子,所以扩散的 结果使P区和N区原来的电中性被破坏,在交界面的两侧 形成一个不能移动的带异性电荷的离子层,称此离子层 为空间电荷区,这就是所谓的PN结,如图1.6所示。
在制作多晶硅太阳能电池时,作为 原料的高纯硅不是拉成单晶,而是熔化 后浇铸成正方形的硅锭,然后使用切割 机切成薄片,再加工成电池。
多晶硅薄膜是由许多大小不等和具 有不同晶面取向的小晶粒构成的。其晶 粒尺寸一般约在几十至几百nm级,大 颗粒尺寸可达μm级。
(3)非晶硅太阳能电池(Amorphous-Si)
微晶硅太阳能电池
(4)微晶硅(μc-Si)太阳能电池 非晶硅对红外区域太阳辐射不
敏感,本身具有光致衰退效应,稳 定性不好,在非晶硅薄膜基础上经 退火处理得到微晶硅薄膜太阳能电 池,稳定性和光转换效率得到提高。 (禁带宽度接近单晶硅,为1.12e V)。
非晶硅(又称? -Si)太阳能电池一 般是用高频辉光放电等方法使硅烷(Si H )气体分解沉积而成的。非晶硅的禁 带4宽度为1.7eV,通过掺硼或掺磷可得 到P型? -Si或N型? -Si。
非晶硅中由于原子排列缺少结晶 硅中的规则性,缺陷多,因此单纯的 非晶硅P-N结中,隧道电流往往占主 导地位,使其呈现无整流特性,不能 制作太阳能电池。
本征半导体中,自由电子和空穴成对出现,数目相 同。图1.2所示为本征激发所产生的电子空穴对。
图1.2 本征激发产生电子空穴对
2 杂质半导体
在本征半导体中加入微量杂质,可使其导电性能显 著改变。根据掺入杂质的性质不同,杂质半导体分为两 类:电子型(N型)半导体和空穴型(P型)半导体。
? N型半导体 在硅(或锗)半导体晶体中,掺入微量的五价元素,如
磷(P)、砷(As)等,则构成N型半导体。
N型半导体中,自由电子为多数载流子(多子),空穴 为少数载流子(少子)。N型半导体主要靠自由电子导电。
图1.3 N型半导体的共价键结构
? P型半导体 在硅(或锗)半导体晶体中,掺入微量的三价元素,
如硼(B)、铟(In)等,则构成P型半导体。
P型半导体中,空穴为多数载流子(多子),自由电 子为少数载流子(少子)。P型半导体主要靠空穴导电。
单晶硅太阳能电池制造工程由 电池片工程和模板工程组成。
?电池片工程大致可分为如下 三部分:
从原材料制造单晶硅棒。 将单晶硅棒切断,加工成半圆片 状。 片形。成pn结、加入电极,制成电池
生产工艺: 导电玻璃
单晶硅太阳能电池
膜切割
清洗
检测
镀铝电极
沉积PN结
老化
检测 封装
成品检测
多晶硅太阳能电池
(2)多晶硅太阳能电池(Polycrystaline-Si)
三种硅基太阳能电池性能分析
种类 单晶硅太阳能电池
多晶硅太阳能电池
优势 转化效率最高,技术最为
成熟
转化效率较高
劣势
硅消耗量大,成本高,工艺 复杂
多晶硅生产工艺复杂,供应 受限制
转换效率 16%-20% 14%-16%
非晶硅薄膜太阳能 电池
成本低,可大规模生产
转换效率不高,光致衰退效 应
9%-13%
太阳能电池发展历史
? 1893年 法国科学家贝克勒尔发现“光生伏特效应”,即“光 伏效应”。
? 1954年 恰宾和皮尔松在美国贝尔实验室,首次制成了实用的 单晶太阳能电池,效率为6%。 同年,韦克尔首次发现了砷化 镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第一块薄 膜太阳能电池。
? 1958年 太阳能电池首次在空间应用,装备美国先锋1号卫星 电源。