第六部分异方差与自相关讲解

合集下载

第六章 自相关(序列相关)

第六章 自相关(序列相关)

2 横截面数据中的自相关:一般来说截面数据不容
易出现自相关,但相邻的观测单位之间也可能存在 “溢出效应”(neighborhood effect)。例如,相邻 省份、国家之间的经济活动相互影响(通过贸易、 投资、劳动力流动等);相邻地区的农业产量受到 类似的天气影响而相关;同一社区内的房屋价格存 在相关性;相邻地区的消费倾向有相关性
图 中 实 线 表 示 真 实 的 总 体 回 归 线 。 假 设 扰 动 项 存 在
正 自 相 关 , 即 E ij X >0 , 若 1>0 ( 图 中 左 边 小 椭 圆 形 ) 由 于 存 在 正 自 相 关 , 则 2 >0 的 可 能 性 也 就 很 大 ; 而 若


n-1<0 ( 图 中 右 边 小 椭 圆 形 ) 则 n <0 的 可 能 性 也 就 很 大
此 检 验 被 称 为 B GB 检 验 ( r e u s c h - G o d f r e y )
3B 、 o x P i e r c e Q 检 验
定义残差的各阶样本自相关系数为
t=j+1 ˆ j n
e e
t=1
n
t t-j
2 e t
(j=1,2, ,p)
d ˆ 且 n 正 态 分 布 , j = 1 , 2 , , p j
3 设 定 误 差 m i s s p e c i f i c a t i o n : 如 果 模 型 设 定 中 遗 漏 会 引 起 扰 动 项 的 自 相 关 。
了 某 个 自 相 关 的 解 释 变 量 , 并 被 纳 入 到 扰 动 项 中 , 则
三 、 自 相 关 的 检 验
X X X X n 1 j ˆ ˆ Q = S+ 1 - etet-j xt x + xt-jx t-j t n j= p+1 1i=j+1 p

自相关和异方差处理顺序

自相关和异方差处理顺序

自相关和异方差处理顺序引言自相关和异方差是时间序列分析中常见的两种问题,它们影响了模型的准确性和可靠性。

在进行时间序列建模时,需要处理这些问题,以确保模型的有效性。

本文将深入探讨自相关和异方差处理的顺序,并讨论不同处理顺序的影响。

什么是自相关和异方差自相关自相关是指时间序列中当前观测值与之前观测值之间的相关性。

它衡量的是时间序列中各个观测值之间的依赖关系。

自相关可以用自相关函数(ACF)图来表示,通过观察ACF图,可以判断时间序列是否存在自相关。

异方差异方差是指时间序列中方差不稳定的特征。

在时间序列中,方差可能随着时间的推移发生变化,这会导致模型的拟合不准确。

异方差可以用方差函数(VCF)图来表示,通过观察VCF图,可以判断时间序列是否存在异方差。

自相关和异方差处理的重要性自相关和异方差对时间序列建模的准确性和可靠性有重要影响,它们需要被处理以获得可靠的模型结果。

•自相关的存在会导致参数估计不准确,预测结果失真。

如果存在自相关,模型会无法捕捉到序列的真实动态,导致预测结果不准确。

•异方差使得模型的残差不符合正态分布,违背了建模的基本假设。

这会使得模型的显著性检验和置信区间估计不可靠,影响模型的有效性。

因此,为了获得可靠的模型结果,需要对自相关和异方差进行处理。

自相关和异方差处理顺序的影响自相关和异方差的处理顺序会对最终的模型结果产生影响。

不同的处理顺序可能导致不同的模型结构和参数估计。

先处理自相关后处理异方差如果先处理自相关再处理异方差,可能会导致如下影响:1.自相关处理可能会改变时间序列的动态特征。

当我们去除自相关时,可能会削弱序列中的一些重要信息,导致模型无法准确捕捉到序列的动态变化。

2.异方差处理可能会影响自相关的结构。

当我们对残差进行异方差处理时,可能会改变残差序列的结构,从而使得自相关的估计失真。

先处理异方差后处理自相关如果先处理异方差再处理自相关,可能会产生如下影响:1.异方差处理可能改变原始序列的动态特征。

计量经济学第六章自相关

计量经济学第六章自相关

计量经济学第六章自相关自相关是计量经济学中一种重要的现象,它指的是一个变量与其自己在过去时间点上的相关性。

自相关在实证研究中十分常见,对经济学家来说,了解和掌握自相关性质是至关重要的。

1. 引言自相关作为计量经济学的一项基础概念,是经济学研究中不可或缺的一个重要方法。

自相关性的存在通常会引起回归结果的偏误,而忽略自相关性可能导致估计不准确的结果。

因此,探讨自相关性的性质和应对方法是计量经济学的重点之一。

2. 自相关的定义和表示自相关是指一个变量与其自身在过去时间点上的相关性。

假设我们有一个时间序列数据集,其中变量yt表示一个时间点上的观测值,t表示时间索引。

自相关系数可以通过计算观测值yt与其在过去某一时间点上的观测值yt-k(k为时间滞后期数)的相关性来得到。

数学上,自相关系数可以用公式表示为:ρ(k) = Cov(yt, yt-k) / (σ(yt) * σ(yt-k))其中,ρ(k)表示第k期的自相关系数,Cov表示协方差,σ表示标准差。

3. 自相关性的性质自相关性具有以下几个性质:3.1 一阶自相关性一阶自相关性是指变量值yt与前一期的观测值yt-1之间的相关性。

一阶自相关系数ρ(1)通常用来检验时间序列数据是否存在自相关性。

若ρ(1)大于零且显著,则表明存在正的一阶自相关性;若ρ(1)小于零且显著,则表明存在负的一阶自相关性。

3.2 高阶自相关性除了一阶自相关性,时间序列数据还可能存在高阶自相关性。

高阶自相关性是指变量值yt与过去第k期的观测值yt-k之间的相关性。

通过计算不同滞后期的自相关系数ρ(k),可以了解数据在不同时间跨度上的自相关性情况。

3.3 异方差自相关性异方差自相关性是指时间序列数据中的方差不仅与自身相关,还与过去观测值的相关性有关。

异方差自相关性可能导致在回归分析中的标准误差失效,从而产生无效的回归结果。

因此,在处理存在异方差自相关性的数据时要采取合适的修正方法。

4. 自相关性的检验方法在实证研究中,经济学家通常使用多种方法来检验数据中的自相关性,常用的方法包括:4.1 Durbin-Watson检验Durbin-Watson检验是一种常用的检验自相关性的方法,其基本思想是通过检验误差项的相关性来判断自相关是否存在。

第六章 自相关性

第六章  自相关性
则称随机误差项序列存在一阶自相关。
进一步,如果
ut ut 1 t
其中
1,t满足E(t ) 0,Var(t )


2

,
cov(t , s ) 0, (t s)
则称ut是一阶线性自相关。
二、自相关性产生的原因
1、经济变量惯性的作用 2、经济行为的滞后性 3、一些随机偶然因素的干扰或影响 4、模型设定的偏误 5、蛛网现象模型
例如:“真实”的边际成本与产量之间的函数关
系式应为:
Yt
1

2 X t

3 X
2 t

ut
其中Yt表示边际成本,X t表示产量,由于认识上的偏
误可能建立如下模型: Yt 1 2 X t vt
其中vt

3
X
2 t

ut,这时由于vt中包含了带有X
2对边
t
际成本的系统影响,使得vt很有可能出现自相关性。
3、一些随机偶然因素的干扰或影响 通常偶然因素是指战争、自然灾害、政策制定
的错误后果、面对一些现象人们的心理因素等等, 这些因素可能影响若干时期,反映在模型中很容 易形成随机误差序列的自相关。
4、设定偏误:
所谓设定偏误是指所建模型“不真实”或“不正 确”。引起设定偏误的主要原因有:模型函数的形式 不正确或遗漏了主要变量。
1、经济变量惯性的作用 大多数经济时间数据都有一个明显的特点,就是
它的惯性,表现在时间序列数据不同时间的前后关联 上。
例如,绝对收入假设下居民总消费函数模型:
Ct=0+1Yt+t
t=1,2,…,n
由于消费习惯的影响被包含在随机误差项中, 则可能出现序列相关性(往往是正相关 )。

异方差自相关豪斯曼检验

异方差自相关豪斯曼检验

异方差自相关豪斯曼检验异方差性(Heteroscedasticity)是指数据的方差不是常数,而是随着自变量的变化而变化。

当数据呈现异方差性时,固定效应模型可能会产生无偏但不一致的估计,而随机效应模型通常能够更好地处理异方差性。

因此,豪斯曼检验可以帮助确定在存在异方差性时应该选择哪种模型。

同时,时间序列数据中还可能存在自相关性(Autocorrelation),即误差项之间存在相关性。

如果数据中存在自相关性,那么OLS估计量可能不再是最佳线性无偏估计。

通过进行豪斯曼检验,可以确定在存在自相关性时是否需要使用修正的OLS估计方法。

要进行豪斯曼检验,首先需要建立两个模型:一个固定效应模型和一个随机效应模型。

然后通过计算两个模型的估计值的差异来进行检验。

在检验中,我们感兴趣的是这个差异是否由异方差性或自相关性引起的。

具体来说,豪斯曼检验的原假设是两个模型没有系统性的差异。

如果原假设被拒绝,说明两个模型之间存在显著差异,这可能是由于异方差性或自相关性导致的。

为了说明豪斯曼检验的方法和步骤,我们将考虑一个实际的研究示例。

假设我们对一个国家的 GDP 进行研究,我们想分析GDP 与劳动力投入之间的关系。

我们建立了一个固定效应模型和一个随机效应模型,用来估计 GDP 对劳动力投入的影响。

在固定效应模型中,我们假设不同国家之间的劳动力投入是不同的,即随着时间的推移,劳动力投入在各国之间也可能存在差异。

而在随机效应模型中,我们假设劳动力投入在各国之间是同质的,即不同的劳动力投入只是由于随机误差所致。

接下来,我们用豪斯曼检验来检验这两个模型之间的差异。

我们首先估计这两个模型,并计算它们之间的差异。

接着,我们对这些差异进行统计检验,以确定差异是否显著。

如果实证结果表明固定效应模型比随机效应模型更好,那么我们可以得出结论,数据中存在异方差性和自相关性。

在这种情况下,我们可能需要对模型进行修正,以更准确地描述数据。

总的来说,豪斯曼检验是一种在经济学和其他社会科学研究中经常使用的方法,用于检验两个模型之间的差异。

第五讲-多重共线性、异方差、自相关

第五讲-多重共线性、异方差、自相关

表 4.3.3 中国粮食生产与相关投入资料
农业化肥施 粮食播种面 受灾面积 农业机械总
用量 X 1
(万公斤)
积X 2
(千公顷)
X3
(公顷)
动力X 4
(万千瓦)
1659.8
114047 16209.3
18022
1739.8
11288பைடு நூலகம் 15264.0
19497
1775.8
108845 22705.3
20913
0.9752 1.53
t值
0.85
19.6 3.35 -3.57
Y=f(X1,X2,X3,X4) -13056 6.17 0.42 -0.17 -0.09
0.9775 1.80
t值
-0.97 9.61 3.57 -3.09 -1.55
Y=f(X1,X3,X4,X5) -12690 5.22 0.40 -0.20
含义:解释变量的样本向量近似线性相关。
多重共线性来源:
(1)解释变量x受到同一个因素的影响; 例如:政治事件对很多变量都产生影响,这些变量同时上升 或同时下降。
(2)解释变量x自己的当期和滞后期;
(3)错误设定。
二、多重共线性的后果
1、完全共线性下参数估计量不存在
Y X
的OLS估计量为: βˆ (XX) 1 XY
1、检验多重共线性是否存在
(1)对两个解释变量的模型,采用简单相关系数法 求出X1与X2的简单相关系数r,若|r|接近1,则说
明两变量存在较强的多重共线性。
(2)对多个解释变量的模型,采用综合统计检验法
若 在OLS法下:R2与F值较大,但t检验值较小, 说明各解释变量对Y的联合线性作用显著,但各解 释变量间存在共线性而使得它们对Y的独立作用不 能分辨,故t检验不显著。

统计分析与方法-第七章 回归分析2-异方差与自相关

统计分析与方法-第七章 回归分析2-异方差与自相关

1.000 . 15 .443 .098 15 .721** .002 15
**. Correlation is significant at the 0.01 level (2-tailed).
因此选取注册资本构造权函数
最优权数的幂指数确定
Source variable.. 注册资本 Dependent variable.. 销销收收 Log-likelihood Function = -125.581891 POWER value = -2.000 Log-likelihood Function = -122.148284 POWER value = -1.500 Log-likelihood Function = -118.756247 POWER value = -1.000 Log-likelihood Function = -115.440464 POWER value = -.500 Log-likelihood Function = -112.257523 POWER value = .000 Log-likelihood Function = -109.297553 POWER value = .500 Log-likelihood Function = -106.695645 POWER value = 1.000 Log-likelihood Function = -104.627066 POWER value = 1.500 Log-likelihood Function = -103.261903 POWER value = 2.000 Log-likelihood Function = -102.682848 POWER value = 2.500 Log-likelihood Function = -102.833168 POWER value = 3.000 The Value of POWER Maximizing Log-likelihood Function = 2.500

eviews异方差、自相关检验与解决办法

eviews异方差、自相关检验与解决办法

eviews异方差、自相关检验与解决办法一、异方差检验:1.相关图检验法LS Y C X 对模型进行参数估计GENR E=RESID 求出残差序列GENR E2=E^2 求出残差的平方序列SORT X 对解释变量X排序SCAT X E2 画出残差平方与解释变量X的相关图2.戈德菲尔德——匡特检验已知样本容量n=26,去掉中间6个样本点(即约n/4),形成两个样本容量均为10的子样本。

SORT X 将样本数据关于X排序SMPL 1 10 确定子样本1LS Y C X 求出子样本1的回归平方和RSS1SMPL 17 26 确定子样本2LS Y C X 求出子样本2的回归平方和RSS2计算F统计量并做出判断。

解决办法3.加权最小二乘法LS Y C X 最小二乘法估计,得到残差序列GRNR E1=ABS(RESID) 生成残差绝对值序列LS(W=1/E1) Y C X 以E1为权数进行加权最小二成估计二、自相关1.图示法检验LS Y C X 最小二乘法估计,得到残差序列GENR E=RESID 生成残差序列SCAT E(-1) E et—et-1的散点图PLOT E 还可绘制et的趋势图2.广义差分法LS Y C X AR(1) AR(2)首先,你要对广义差分法熟悉,不是了解,如果你是外行,我奉劝你还是用eviews来做就行了,其实我想老师要你用spss无非是想看你是否掌握广义差分,好了,废话不多说了。

接着,使用spss16来解决自相关。

第一步,输入变量,做线性回归,注意在Liner Regression 中的Statistics中勾上DW,在save中勾Standardized,查看结果,显然肯定是有自相关的(看dw值)。

第二步,做滞后一期的残差,直接COPY数据(别告诉我不会啊),然后将残差和滞后一期的残差做回归,记下它们之间的B指(就是斜率)。

第三步,再做滞后一期的X1和Y1,即自变量和因变量的滞后一期的值,也是直接COPY。

第六节自相关

第六节自相关
图示法是一种直观的诊断方法, 图示法是一种直观的诊断方法,它是把给定的 回归模直接用普通最小二乘法估计参数, 回归模直接用普通最小二乘法估计参数,求出 残差项 et ,et 作为 ut 随机项的真实估计值, 随机项的真实估计值, 的散点图, 再描绘 et的散点图,根据散点图来判断 et 的 相关性。 相关性。残差 et的散点图通常有两种绘制方 式 。
et
t
图 6.4
et 的分布
的变化逐次变化并不频繁地改变符号, 如果 et 随着 t 的变化逐次变化并不频繁地改变符号,而是 后面跟着几个负的, 几个正的 et后面跟着几个负的,则表明随机误差项 ut 存 在正自相关。 在正自相关。
绘制
et-1, et
的散点图。 的散点图。用
(et-1, et )
杜宾-瓦森(Durbin-Watson) 2、杜宾-瓦森(Durbin-Watson)检验
DW 检验是 检验是J.Durbin(杜宾 和G.S.Watson(沃特 杜宾)和 杜宾 沃特 森)于1951年提出的一种适用于小样本的检验方 于 年提出的一种适用于小样本的检验方 检验只能用于检验随机误差项具有一阶 法。DW检验只能用于检验随机误差项具有一阶 检验只能用于检验随机误差项具有 自回归形式的自相关问题。 自回归形式的自相关问题。这种检验方法是建 立经济计量模型中最常用的方法, 立经济计量模型中最常用的方法,一般的计算 机软件都可以计算出DW 值。 机软件都可以计算出
( et - et -1 ) 2 ∑ DW =
t=2 n
et2 ∑
t =1
n
et2 + ∑et2-1 - 2∑et et -1 ∑ DW =
t =2 t =2 t =2 n 2 t
n

【总结】计量经济学异方差性、多重共线性、自相关的联系与区别知识总结

【总结】计量经济学异方差性、多重共线性、自相关的联系与区别知识总结

《计量经济学》中多重共线性、异方差性、自相关三者之间的联系与区别首先我们先来回顾一下经典线性回归模型的基本假设:1、为什么会出现异方差性我们可以从一下两方面来分析:第一,因为随即误差项包括了测量误差和模型中被省略的一些因素对因变量的影响;第二,来自不同抽样单元的因变量观察值之间可能差别很大。

因此,异方差性多出现在截面样本之中。

至于时间序列,则由于因变量观察值来自不同时期的同一样本单元,通常因变量的不同观察值之间的差别不是很大,所以异方差性一般不明显。

含义及影响:y=X β+ε,var(εi )var(εj ), ij ,E(ε)=0,或者记为212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭即违背假设3。

用OLS 估计,所得b 是无偏的,但不是有效的。

111(')'(')'()(')'b X X X y X X X X X X X βεβε---==+=+由于E(ε)=0,所以有E(b )=β。

即满足无偏性。

但是,b 的方差为1111121var(|)[()()'][(')''(')|] (')'['|](') (')'()(')b X E b b E X X X X X X X X X X E X X X X X X X X X X ββεεεεσ------=--===Ω其中212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭2、自相关产生的原因:(1)、经济数据的固有的惯性带来的相关 (2)、模型设定误差带来的相关 (3)、数据的加工带来的相关 含义及影响:cov(,)0,i j i j εε≠≠影响:和异方差一样,系数的ls 估计是无偏的,但不是有效的。

D -W 检验(Durbin -Watson )221212222121212222112112122211221122121()()()2()()222222(1)n i i i n i i n n n i i i i i i i n i i n n n i i i i i i i n n i i n i i i nn n i i i i nn i ie e d e e e e e e e e e e e e e e e e e e e e e e ρρ=-===-=-====-==-===∑-=∑∑+∑-∑=∑∑+∑-∑--=∑∑+=--∑∑+=--∑≈-其中2121n i i i n i ie e e ρ=-=∑=∑是样本一阶自相关函数。

异方差性、自相关以及广义最小二乘(GLS)

异方差性、自相关以及广义最小二乘(GLS)
如果f(b)是一组关于最小二乘估计量J个连续的线性或非线性的函数并令
G是J×K矩阵,其中第j行是第j个函数关于b的导数。利用(4-21)的斯拉茨基(Slutsky)定理,
并且

于是
(0)
实际上,渐近协方差矩阵的估计量是
如果某个函数是非线性的,则b的无偏的性质不会传给f(b)。不过从(0)中可得f(b)是f(β)的一致估计量,而且渐近协方差矩阵很容易获得。对f(β)的检验也很容易。
可行的最小二乘ቤተ መጻሕፍቲ ባይዱ计(FGLS)
具有代表性的问题涉及到一小组参数 ,满足 。例如, 只有一个未知数 ,其常见的表达形式是

其中,也只有一个附加的未知参数。一个也只包含一个新参数的异方差模型是
接下来,假定 是 的一致估计量(如果我们知道如何求得这样的估计量)为了使GLS估计可行,我们将使用
替代真正的 。我们所考虑的问题是利用 是否要求我们改变上节的某些结果。
三)可行的最小二乘估计(FGLS)
上一节的结果是基于Ω必须是已知的条件基础上的。如果Ω含有必须估计的未知参数,则GLS是不可行的。但在无约束的情况下, 中有n(n+1)/2个附加参数。这对于用n个观测值来估计这么多的参数是不现实的。只有当模型中需要估计的参数较少时,即模型中Ω某种结构要简化,才可以找到求解的方法。
这些是必须逐个情况进行核实的条件。但在大多数情况中,它们的确成立。如果我们假设它们成立,基于 的FGLS估计量与GLS估计量具有同样的渐近性质。这是一个相当有用的结果。特别地,注意以下结论:
1、一个渐近有效的FLGS估计量不要求我们有 的有效估计量,只需要一个一致估计量。
2、除了最简单的情况,FGLS估计量的有限样本性质和精确分布是未知的。FGLS估计量的渐近有效性在小样本的情况下可能不再成立,这是因为由估计的 引入的易变性。对于异方差情况的一些分析由泰勒(1977年)给出。自相关的模型由格涅里切斯和拉奥(1969年)做了分析。在这两项研究中,他们发现对于许多类型的参数,FGLS比最小二乘更为有效。但是,如果偏离古典假设不太严重,在小样本情况下最小二乘可能比FGLS更有效。

9.第六讲 异方差

9.第六讲 异方差

高斯—马尔可夫定理需要极为严格的假设条 件,如果部分条件不满足,定理将会失效。 例如:如果u存在异方差问题,回归结果将 不再是BLUE的。
一般情况下:异方差的概念
对于模型
Yi 0 1 X ii 2 X 2i k X ki i
如果出现
Var (i ) i2
实际经济问题中的异方差性
例1:截面资料下研究居民家庭的储蓄行为:
Yi=0+1Xi+i
Yi :第i个家庭的储蓄额 Xi:第i个家庭的可支配收
入。 高收入家庭:储蓄的差异较大 低收入家庭:储蓄则更有规律性,差异较小 因此:可以认为i的方差呈现单调递增型变化。
例2:以某一行业的企业为样本建立企业生产 函数模型: Yi=Ai1 Ki2 Li3ei 被解释变量:产出量Y 解释变量:资本K、劳动L、技术A, 那么:每个企业所处的外部环境对产出量 的影响被包含在随机误差项中。
公式1
公式2
由于在推导过程中把异方差作为一般情况进 行考虑,所以不管是样本数据是误差同方差 还是异方差,公式1和公式2始终成立。因 此,将其称为异方差稳健标准误差。 其含义是,在大样本情况下,不管误差同方 差还是异方差,公式1和公式2始终是正确 的。
同方差的情况
如果通过检测数据样本是误差同方差的情况。 1. OLS的结果是BLUE的(无偏、一致、有 效)。 2. 系数的方差公式(公式3、公式4 )将变得 非常简单。特别值得注意的是,这两个公式仅 仅用于误差同方差的情况,在误差异方差的情 况下将失效,因此我们称之为同方差适用标准 误差。
关于同方差和异方差的理论分析
由于OLS的三条经典假设中对条件方差没有 限制,所以它们适用于异方差的一般情况, 也适用于同方差的特殊情况。因此,不管是 同方差还是异方差,OLS估计量仍然是无偏 的、一致的。同时,在大样本下仍然服从正 态分布。 不管误差同方差还是异方差,OLS估计量

第六部分异方差与自相关讲解

第六部分异方差与自相关讲解

七、 异方差与自相关一、背景我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。

二、知识要点1、引起异方差的原因及其对参数估计的影响2、异方差的检验(发现异方差)3、异方差问题的解决办法4、引起自相关的原因及其对参数估计的影响5、自相关的检验(发现自相关)6、自相关问题的解决办法 (时间序列部分讲解) 三、要点细纲1、引起异方差的原因及其对参数估计的影响原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。

这样,遗漏的变量就进入了模型的残差项中。

当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。

二是截面数据中总体各单位的差异。

后果:异方差对参数估计的影响主要是对参数估计有效性的影响。

在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。

一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。

2、异方差的检验 (1)图示检验法由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。

具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量i x 为横坐标,画散点图。

如果散点图表现出一定的趋势,则可以判断存在异方差。

(2)Goldfeld-Quandt 检验Goldfeld-Quandt 检验又称为样本分段法、集团法,由Goldfeld 和Quandt 1965年提出。

这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。

用两个子样本分别进行回归,并计算残差平方和。

自相关和异方差处理顺序

自相关和异方差处理顺序

自相关和异方差处理顺序在统计学和计量经济学中,自相关和异方差是两个常见的问题,需要进行相应的处理才能保证模型的准确性和可靠性。

本文将以人类的视角,采用准确的中文进行描述,详细介绍自相关和异方差的处理顺序及其重要性。

一、自相关处理自相关是指时间序列数据中观测值之间存在的相关性。

当序列中的观测值之间存在一定的相关性时,会导致统计模型的参数估计不准确,假设检验无效,预测结果不可靠。

因此,需要进行自相关的处理。

自相关处理的一种常见方法是使用自相关函数(ACF)和偏自相关函数(PACF)进行分析。

ACF表示观测值与不同滞后期的观测值之间的相关性,PACF表示观测值与滞后期观测值之间的相关性,探究观测值之间的相关性结构。

在进行自相关处理时,可以采取以下步骤:1. 绘制时间序列图,观察序列的趋势和波动性。

2. 进行序列的平稳性检验,确保序列满足平稳性的要求。

3. 绘制ACF和PACF图,分析观测值之间的相关性结构。

4. 根据ACF和PACF的图形特征,选择合适的自回归移动平均模型(ARMA模型)。

5. 估计模型参数,进行模型拟合。

6. 检验模型的残差序列是否存在自相关,如果存在,则返回第3步,重新选择模型。

通过以上步骤,可以有效地处理自相关问题,提高模型的准确性和可靠性。

二、异方差处理异方差是指随着自变量的变化,因变量的方差也发生变化。

当存在异方差时,会导致模型的参数估计不准确,假设检验无效,预测结果不可靠。

因此,需要进行异方差的处理。

异方差处理的一种常见方法是使用加权最小二乘法(Weighted Least Squares, WLS)。

WLS是一种在回归分析中常用的方法,通过对误差项进行加权,降低异方差对回归结果的影响。

在进行异方差处理时,可以采取以下步骤:1. 绘制残差图,观察残差的分布特征。

2. 进行异方差检验,判断是否存在异方差。

3. 如果存在异方差,可以使用加权最小二乘法进行回归估计。

4. 根据异方差的特点,选择合适的加权函数,对误差项进行加权。

自相关和异方差处理顺序

自相关和异方差处理顺序

自相关和异方差处理顺序自相关和异方差是统计学中常见的两个问题,它们在数据分析和建模中起着重要的作用。

在本文中,我们将讨论自相关和异方差的处理顺序,并介绍一些常用的方法和技巧。

一、自相关的处理自相关是指同一时间序列数据中不同时间点之间的相关性。

在时间序列分析中,我们经常会遇到自相关的问题,这会影响到模型的准确性和可靠性。

为了解决自相关问题,我们可以采取以下几种方法:1. 平稳化处理:对于非平稳的时间序列数据,我们可以通过差分、对数变换或者其他方法来使其变得平稳。

平稳化后的数据能够更好地满足模型的假设条件,从而减小自相关的影响。

2. 引入滞后项:在建立模型时,我们可以引入滞后项来考虑时间序列数据中不同时间点之间的相关性。

常用的方法有自回归(AR)模型和移动平均(MA)模型等。

3. 模型诊断:在建立模型后,我们需要对模型进行诊断,检验是否存在自相关。

常用的方法有自相关图和部分自相关图等。

如果发现存在自相关,我们可以进一步调整模型的参数或者引入其他变量来解决自相关问题。

二、异方差的处理异方差是指同一时间序列数据中不同时间点之间方差不相等的现象。

异方差会导致模型的预测结果不准确,因此需要进行处理。

以下是一些处理异方差的方法:1. 变换方法:对于存在异方差的数据,我们可以通过对数变换、平方根变换或者倒数变换等方法来使其变得更加稳定。

变换后的数据能够更好地满足模型的假设条件,从而减小异方差的影响。

2. 加权最小二乘法:在建立模型时,我们可以采用加权最小二乘法来解决异方差问题。

加权最小二乘法能够根据不同时间点的方差大小来调整模型的参数,从而减小异方差的影响。

3. 残差诊断:在建立模型后,我们需要对模型的残差进行诊断,检验是否存在异方差。

常用的方法有残差图和方差稳定性检验等。

如果发现存在异方差,我们可以进一步调整模型的参数或者引入其他变量来解决异方差问题。

自相关和异方差是统计学中常见的问题,它们在数据分析和建模中起着重要的作用。

第五讲 异方差和自相关.

第五讲 异方差和自相关.

2。利用广义最小二乘法(GLS)
广义最小二乘法是对原模型加权,使之变成一个新 的不存在异方差性的模型,然后采用普通最小二乘 法估计其参数。 其含义为 Var(b) =σ2 (X'X)-1(X'Σ X) (X'X)-1 通过加权使得Σ =I 因此,GLS和WLS要求Σ 已知。
加权最小二乘法(WLS):
4-DL
4
经验上DW值1.8---2.2之间接受原假设, 不存在一阶自相关。 DW值接近于0或者接近于4,拒绝原假 设,存在一阶自相关。
4。Q检验和Bartlett检验 reg D.rs LD.r20 predict e2,res wntestq e2 wntestq e2,lag(2) wntestb e2
r 20t 1 r 20t 1 r 20t 2
rst rst rst 1
回归方程为: use ukrates,clear tsset month reg D.rs LD.r20
自相关的检验
1。图形法:自相关系数和偏自相关系数 predict e1,res ac e1 pac e1 corrgram e1,lag(10)
3。DW检验:只能检验一阶自相关的序列相 关形式,并且要求解释变量严格外生。
根据样本个数和自由度查表得到DL和DU,并 且构造不同的区域。
reg D.rs LD.r20 dwstat
Reject H0
Uncertainty
Accept H0
Uncertainty
Reject H0
0
DL
DU
4-DU
0 . 0
2 1
0
2 2
. 0
0 0 ... . 2 ... n .. ...

第六章自相关

第六章自相关
k
ρ k xt xt + k 的符号难以断定,用 的符号难以断定, ∑∑
t =1 k =1
σ u2
xi2 ∑
也可能高估OLS估计 估计 也可能高估
量的真实方差,但对OLS估计量方差的估计也是有偏的。 量的真实方差,但对 估计量方差的估计也是有偏的。 估计量方差的估计也是有偏的
真实方差 :
2σ u2 ˆ Var ( β 2 ) = +[ 2 xt xt2 ∑ ∑
3 2
=⋯
ut = ρ ut −1 + ε t = ∑ ρ k ε t −k 一般关系: 一般关系:
k =0 ∞
期望
E (ut ) = ∑ ρ k E (ε t −k ) = 0
k =0

方差
σ = Var (ut ) = Var (∑ ρ ε t − k ) =∑ ρ 2 kVar (ε t − k )
i≠ j 2 2 i
ˆ Var ( β 2 ) =
xi2 E (ui2 ) ∑ (∑ x )
2 2 i
=
σ2
xi2 ∑
在异方差但无自相关 异方差但无自相关时 异方差但无自相关
[ E (u ) = σ , E (ui u j ) = 0]
2 i 2 i
ˆ Var ( β 2 ) =
xi2 E (ui2 ) ∑ (∑ x )
2 u k t =0 t =0


σ ε2 = σ ε2 (1 + ρ 2 + ρ 4 + ⋯) = 1− ρ 2
证明) 协方差(P162证明 证明 k = 1时 类推可得
σ ε2 2 Cov (ut , ut −1 ) = ρ (σ ε2 + ρ 2σ ε2 + ρ 4σ ε2 + ⋯) = ρ = ρσ u 1− ρ2

异方差、自相关及结构性断点检验

异方差、自相关及结构性断点检验
et2 ˆ 2 和 (n为样本容量) n 第二步,构造辅助回归函数
(3.10)
式中 t 为随机误差项。
et2 0 11t 2 2t p pt t 2 (3.11) ˆ
22
第三步,用OLS方法估计式(3.11)中的未知参 数,计算解释的平方和ESS,可以证明当有同方 差性,且n无限增大时有 ESS 2 ~ p 2
满足条件:观测值的数目至少是参数的二倍;随机
项没有自相关并且服从正态分布。 统计假设:零假设 H 0 : i 是同方差(i=1,2,…,n)
备择假设 H1 :i 具有异方差
11
Goldfeld-Quandt检验法涉及对两个最小二乘回归 直线的计算,一个回归直线采用我们认为随机项
方差较小的数据,另一个采用我们认为随机项方
ˆ i 1 vi Xi
ˆ i X i vi ˆ i X 2i vi
19
Glejser检验方法的优点是允许在更大的范围内寻 找异方差性的结构函数。缺点是难于确定 X i 的适 当的幂次,这往往需要进行大量的计算。从实际 方面考虑,该方法可用于大样本,而在小样本中,
差较大的数据。如果各回归直线残差的方差大致 相等,则不能拒绝同方差的原假设,但是如果残 差的方差增加很多,就可能拒绝原假设。步骤为:
12
第一步,处理观测值。 将某个解释变量的观测值按由小到大的 顺序排列,然后将居中的d项观测数据除 去,其中d的大小可以选择,比如取样本 容量的1/4。再将剩余的(n-d)个数据 分为数目相等的二组。
18
(三)Glejser检验法
这种方法类似于Park检验。首先从OLS回归取得 ˆ ˆ 残差 i 之后,用 i 的绝对值对被认为与 i 2 密切 相关的X变量作回归。 有如下几种函数形式(其中 vi 是误差项):

计量经济学第六章-自相关

计量经济学第六章-自相关

et et 1 ˆ • 定义 ρ 2 为样本的一阶自相关系数,作为 et
ˆ) 的估计量。则有, DW 2(1
• 因为-1 1,所以,0 能检出
正自相关 0
无自相关
负自相关
dL
dU
2
4- dU
4- dL
4
依据显著水平、变量个数(k)和样本大小(n) 一般要求样本容量至少为 15。
自相关也可能出现在横截面数据中,但主要出现在时 间序列数据中。
二、一阶自回归
线性回归模型 Yt=bo + b1Xt + ut 若 ut 的取值只与它的前一期取值有关,即 ut = f (ut-1 ) 则称为一阶自相关 经典经济计量学对自相关的分析仅限于一阶自 回归形式: ut = ut-1 +εt 为自相关系数 > 0 为正自相关 || 1 < 0 为负自相关

(3) 对上述各种拟合形式进行显著性检验,从而确定误差项 ut 存在哪一种形式的自相关。 回归检验法的优点是, (1)适合于任何形式的自相关检验, ( 2)若结论是存在自相关, 则同时能提供出自相关的具体形式与参数的估计值。缺点是计算量大。
四、偏相关系数检验 高阶自相关的形式为:
t 1t 1 2 t 2 p t p vt
这表明 ut 不存在 p 阶自相关。
LM 检验的步骤: 1、用 OLS 估计上述模型 2、得到的残差建立辅助回归式
et 1et 1 2 et 2 p et p vt
3、构造 LM 统计量,
LM p nR2 ~ 2 p
其中 n 表示原模型的样本容量。R 为辅助回归的可决系数。 其中 p 自回归阶数。 判别规则是,若 LM 2(p),接受 H0;若 LM > 2(p),拒绝 H0;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七、 异方差与自相关一、背景我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。

二、知识要点1、引起异方差的原因及其对参数估计的影响2、异方差的检验(发现异方差)3、异方差问题的解决办法4、引起自相关的原因及其对参数估计的影响5、自相关的检验(发现自相关)6、自相关问题的解决办法 (时间序列部分讲解) 三、要点细纲1、引起异方差的原因及其对参数估计的影响原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。

这样,遗漏的变量就进入了模型的残差项中。

当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。

二是截面数据中总体各单位的差异。

后果:异方差对参数估计的影响主要是对参数估计有效性的影响。

在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。

一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。

2、异方差的检验 (1)图示检验法由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。

具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量i x 为横坐标,画散点图。

如果散点图表现出一定的趋势,则可以判断存在异方差。

(2)Goldfeld-Quandt 检验Goldfeld-Quandt 检验又称为样本分段法、集团法,由Goldfeld 和Quandt 1965年提出。

这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。

用两个子样本分别进行回归,并计算残差平方和。

用两个残差平方和构造检验异方差的统计量。

Goldfeld-Quandt 检验有两个前提条件,一是该检验只应用于大样本(n>30),并且要求满足条件:观测值的数目至少是参数的二倍; 二是除了同方差假定不成立以外,要求其他假设都成立,随机项没有自相关并且服从正态分布。

Goldfeld-Quandt 检验假设检验设定为:H 0:具有同方差, H 1:具有递增型异方差。

具体实施步骤为:①将观测值按照解释变量x 的大小顺序排列。

②将排在中间部分的c 个(约n/4)观测值删去,再将剩余的观测值分成两个部分,每个部分的个数分别为n 1、n 2。

③分别对上述两个部分的观测值进行回归,得到两个部分的回归残差平方和。

④构造F 统计量222111/()/()e e n k F e e n k '-='-,其中 k 为模型中被估参数个数。

在H 0成立条件下,21(,)FF n k n k --⑤判别规则如下,若 F ≤ F α (n 2 - k , n 1 - k ), 接受H 0(具有同方差) 若 F > F α(n 2 - k , n 1 - k ), 拒绝H 0(递增型异方差)注意:① 当摸型含有多个解释变量时,应以每一个解释变量为基准检验异方差。

② 此法只适用于递增型异方差。

(3)Breusch -Pagan/Godfrey LM 检验该方法的基本思想是构造残差平方序列与解释变量之间的辅助函数,得到回归平方和ESS ,从而判断异方差性存在的显著性。

该检验假设异方差的形式为:220()i f σσα'=+i αz 其中i z 是解释变量构成的向量,当=α0时,模型是同方差的。

具体设模型为:表示是某个解释变量或全部。

同样,该检验也可以通过一个简单的回归来实现。

提出原假设为, 01234567050100150200X Y Y12233i i i k ik i Y u ββββ=+X +X +⋅⋅⋅+X +201122var()i i i i p ip i u v σαααα==+Z +Z +⋅⋅⋅+Z +12,,p Z Z ⋅⋅⋅⋅⋅⋅Z 012:0p αααH ==⋅⋅⋅==具体步骤如下:①构造变量2()i e n 'e e :用OLS 方法估计方程中的未知参数,得和 (n 为样本容量) ②以2()i e n 'e e 为被解释变量,i z 为解释变量进行回归,并计算回归平方和ESS 。

构造辅助回归函数③构造LM 统计量为:LM =12ESS当有同方差性,且n 无限增大时有 ④对于给定显著性水平 ,如果2()2ESS p αχ>,则拒绝原假设,表明模型中存在异方差。

为了计算的简便,LM 统计量的构造也可以采取如下形式:1[]2LM '''=-1g Z(Z Z)Z g其中,Z 是关于(1,)i z 的n P ⨯观测值矩阵, g 是观测值21()i i e g n =-'e e 排成的列向量。

由于上述统计量的构造过分依赖于残差的正态性假定,因此,Koenker 和Bassett 对该统计量进行了修正,令2211()n i i V e n n ='⎡⎤=-⎣⎦∑e e u ()n '=e e 则1()LM V ⎡⎤'''=⎢⎥⎣⎦-1u -u)Z(Z Z)Z (u -u(4)White 检验White 检验由H. White 1980年提出。

和Goldfeld-Quandt 检验相比,White 检验不需要对观测值排序,也不依赖于随机误差项服从正态分布,它是通过一个辅助回归式构造 χ2 统计量进行异方差检验。

White 检验的提出避免了122ˆˆˆi i i k ik e Y βββ=--X -⋅⋅⋅-X 22ˆi e nσ∑=2011222ˆi i i p ip ie v αααασ=+Z +Z +⋅⋅⋅+Z +2~2p ESS χαBreusch-Pagan 检验一定要已知随机误差的方差产生的原因且要求随机误差服从正态分布。

White 检验与Breusch-Pagan 检验很相似,但它不需要关于异方差的任何先验知识,只要求在大样本的情况下。

White 的检验的思想直接来源于其异方差一致估计。

当存在异方差时,传统的方差估计式21(|)()Var b X X X σ-'=不再是估计量方差的一致估计,而应该使用White 一致性估计:21()ni i i i e =''∑-1-1(X X)(X X)x 'x 。

通过检验21()X X σ-'是不是参数估计方差的一致估计,可以检验是否存在异方差。

在实际的应用过程中,可以通过回归的步骤来简单的实现上述思想。

以二元回归模型y i = β0 +β1 x i 1 +β2 x i 2 + u i 为例,White 检验的具体步骤如下: ①首先对上式进行OLS 回归,求残差平方2i e 。

②做如下辅助回归式,2i e = α0 +α1 x i 1 +α2 x i 2 + α3 x i 12 +α4 x i 22 + α5 x i 1 x i 2 + v i 即用残差平方2i e 对原回归式中的各解释变量、解释变量的平方项、交叉乘积项进行OLS 回归。

注意,上式中要保留常数项。

求辅助回归式的可决系数R 2。

③White 检验的原假设和备择假设是H 0:u i 不存在异方差, H 1:u i 存在异方差④利用回归②得到的2R ,计算统计量2nR 。

在同方差假设条件下,统计量 nR 2 ~ χ 2(5)其中n 表示样本容量,R 2是辅助回归式的OLS 估计的可决系数。

自由度5表示辅助回归式中解释变量项数(注意,不计算常数项)。

n R 2属于LM 统计量。

统计量2nR 渐进服从自由度为1k -的卡方分布,其中k 是辅助回归中参数的个数(包括常数项)。

⑤判别规则是若 n R 2 ≤ χ2α (5), 接受H 0(u i 具有同方差) 若 n R 2 > χ2α (5), 拒绝H 0(u i 具有异方差)(5)ARCH 检验自回归条件异方差(ARCH )检验主要用于检验时间序列中存在的异方差。

ARCH 检验的思想是,在时间序列数据中,可认为存在的异方差性为ARCH 过程,并通过检验这一过程是否成立来判断时间序列是否存在异方差。

ARCH 过程可以表述为:222011t t p t p t v σαασασ--=++++其中p 是ARCH 过程的阶数,并且00α>,0,(1,2,)i i p α≥=;t v 为随机误差。

ARCH 检验的基本步骤如下: ①提出假设:012:0;p H ααα===1:(1,2,)j H j p α=中至少一个不为零。

②对原模型做OLS 估计,求出残差t e ,并计算残差平方序列2(1,2,)t e t T =,分别作为对2t σ的估计。

③作辅助回归222011ˆˆˆt t p t p e e e ααα--=+++ 并计算上式的可决系数2R ,可以证明,在原假设成立的情况下,基于大样本,有2()T p R -近似服从自由度为p 的卡方分布。

如果22()()T p R p αχ->,则拒绝原假设,表明原模型的误差项存在异方差。

(6)Park 检验法Park 检验法就是将残差图法公式化,提出 是解释变量 的某个函数,然后通过检验这个函数形式是否显著,来判定是否具有异方差性及其异方差性的函数结构。

(7)Glejser 检验法这种方法类似于Park 检验。

首先从OLS 回归取得残差 i e 之后,用 i e 的绝对值对被认为与方差密切相关的X 变量作回归。

3、异方差的解决办法 (详细见板书)对异方差的传统解决办法是通过加权最小二乘WLS 将残差向同方差转换。

2i σi x一般认为,异方差的产生是由于残差项中包含了解释变量的相关信息,也就是说,可以将残差项e表达成解释变量x的函数:e g x=()其中x是1kg可以是关于x的线性函数,也可以是非线性的。

如果⨯的向量,()知道()g x的函数形式,那么可以通过加权最小二乘的方法对模型进行修正,在不存在自相关的假定下,在回归方程()=+两边同乘以y f xε差进行修正,从而消除残差的异方差性使得OLS估计量仍然具有有效性。

但是,这样的方法却有两个方面的问题——首先,是()g的形式难以确定(为了简便,我们往往假设()g是关于x的线性函数,但实际上真实的函数形式很可能是非线性的),从而相应的WLS的权重设定也就往往是不正确的了;其次,即使知道()g x 的真实函数形式,通过加权得出的参数估计也已经不是原来的关注参数了;最后,ε=不满足的条件下,WLS估计量也往往是不一致的。

相关文档
最新文档