等腰三角形的性质的说课

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等腰三角形的性质》说课稿

西亭初中王雪芹

一、教材分析

1、教学内容分析:

本节课是义务教育课程标准实验教材数学八年级上册第十四章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。它是轴对称图形,具有对称性,本节课就是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。

2、在教材中的地位与作用:

本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。

3、教学对象分析

八年级学生的抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理论证,掌握了一般三角形和轴对称的知识。因此,在本节课的教学中,可让学生从已有的生活经验出发,参与知识的产生过程,在实践操作、自主探索、思考讨论、合作交流等数学活动中,理解和掌握数学知识和技能,形成数学思想和方法,让每个学生在数学上得到不同的发展,人人都获得必需的数学。

二、教学目标:

1.知识与能力

理解并掌握等腰三角形的定义,探索等腰三角形的性质;能够用等腰三角形的知识解决相应的数学问题.

2.过程与方法

在探索等腰三角形的性质和判定的过程中体会知识间的关系,感受数学与生活的联系.培养学生添加辅助线解决问题的能力。

3.情感、态度与价值观

培养学生分析解决问题的能力,使学生养成良好的学习习惯.

三、教学重点与难点:

重点:等腰三角形的性质的探索和应用。

难点:等腰三角形的性质的验证和辅助线的添置

教学准备:CAI课件,长方形的纸片,剪刀,常用画图工具。

获得必需的数学。

四、教学过程

(一)教学流程

活动1 观察图片,认识等腰三角形

活动2 探索等腰三角形的性质

活动3 等腰三角形的性质定理的证明

活动4 等腰三角形性质定理的应用

活动5 反馈练习

活动6 自主探究等腰三角形中有关相等的线段和角

活动7 小结与作业

(一)创设情境,认识图形

1、课件出示人字型屋顶和金字塔的图象,让学生观察找出其中的几何图形?(1)它有什么特征?(2)它是轴对称图形吗?对称轴是哪一条?(由日常生活中的等腰三角形引出课题,目的在于让学生体会数学来源于生活,培养学生从实际问题中抽象出数学问题的能力,同时,为学习新知创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题(2),其实就是等腰三角形三线合一性质的伏笔。)

2 动手操作,揭示课题

剪一剪:教师引导学生将课前准备的长方形纸片按教材要求对折后剪下,再把它展开,看得到了一个什么图形?(通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲。)

3 认识等腰三角形,介绍“腰”、“底边”、“顶角”、“底角”等概念。

(二)探索等腰三角形的性质

1、分组讨论研究(1)想一想,等腰三角形除两腰相等的性质外,还有没有其他特殊性质。若让你研究,你觉得要从哪些要素加以研究?(初二学生虽然已经具备一定的逻辑思维能力,但获取知识的主要途径仍然是通过直观感知,因此,我决定让学生动手操作,观察,分析,尝试总结经验。)

(2)受刚才折纸的启发,让学生用直尺和圆规画一个等腰三角形。

(3)多媒体演示等腰三角形的折叠过程。(以直观的图形和学生的动手操作相结合,为探究性质做好准备。)

(4)学生归纳得出等腰三角形的性质(通过教师的引导,学生利用等腰三角形的对称性,讨论、归纳出等腰三角形的两条性质,在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维。)

(三)等腰三角形性质定理的证明

1、用全等三角形的知识验证等腰三角形的性质

(1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何表达条件和结论?如何证明?

教师引导学生根据猜想的结论画出相应的图形,写出已知和求证,师生共同分析证明思路,强调以下两点:

①利用三角形的全等来证明两角相等,为证∠B=∠C,需证明以∠B、∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。

②添加辅助线的方法有很多种,常见的有作顶角∠BAC的平分线,或作底边BC上的中线,或作底边BC上的高等,让学生选择一种辅助线并完成证明过程。

(2)回顾性质1的证明方法,你能用这种方法证明性质2(等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合)吗?

让学生模仿证明性质2,并鼓励学生用多种方法证明。

(等腰三角形的性质的探索与验证是本节课的重点和难点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突破了教学难点,培养了学生的合情推理能力和演绎推理的能力。)(四)应用性质

1、课件出示:某房屋的顶角∠BAC=100°,过屋顶A 的立柱AD ⊥BC ,屋椽AB=AC ,求顶架上的∠B 、∠C 、∠CAD 的度数。

(本节课从居民建筑人字梁结构中抽象出几何问题,通过实践探究活动得出等腰三角形的性质这一结论,在此,再将得到的结论应用到实践中,解决人字梁结构中的实际问题,这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于增强学生的数学应用意识。)

2、课件出示:如图

1、若等腰三角形的一个顶角为30o ,则它的底角为( ),若有

一角为40o ,则另外两角为( )

o

).

2、⑴∵AB=AC ,AD ⊥BC

∴∠_=∠_,_=_; ⑵∵AB=AC ,BD=DC

∴∠_=∠_,_⊥_;

⑶∵AB=AC ,AD 平分∠BAC ∴_⊥_,_=_

所学知识,了解学生的学习效果,增强学生应用知识的能力。)

3、课件出示:如图,在⊿ABC 中,AB=AC ,点D 在AC 上,且⑴图中共有几个等腰三角形?分别写出它们的顶角与底角;

⑵你能求出各角的度数吗?

具体度数,但由于未知数过多,需根据已知各边的关系寻找到⊿ABC 的各角关系,由图中的三个等腰三角形的底角及外角性质,可设∠A=X °,列方程解决。⑵强调此题图形特殊,只有顶角为36°的等腰三角形才能满足。

(改编课本例题,使问题更富层次性与探究性,使学生认识到从复杂图形中分解出等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想。)

等腰三角形的性质的应用,是这节课的又一重点,本环节就是通过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心。

(五)拓展与延伸(5′)

⑴等腰三角形底边中点到两腰的距离相等吗?

教师指导学生动手画图,折纸,思考,讨论得出结论,并用适当的方法验证这一结论。

⑵利用类似的方法,还可以得到等腰三角形中哪些线段相等?

教师引导学生寻找等腰三角形中其他相等的线段,如:两腰上的高,两腰上的中线,两底角的平分线等。

(通过学生动手实践,增强学生动手能力,引导学生合作探究,更深入地认识等腰三角形和性质,启迪学生的发散思维。)

(六)心得与体会(4′)

这节课我们主要研究了什么内容?你有哪些收获?

请用“通过今天这堂课的研究,我明白了( ),我的收获与感受有( ),我还有疑惑之处是( )”的模式来总结、评价这堂课的学

相关文档
最新文档