碳量子点光催化

合集下载

碳量子点的光催化

碳量子点的光催化

Journal of
Materials Chemistry A
PAPER
Published on 29 June 2015. Downloaded by Dalian Polytechnic University on 19/03/2016 00:56:31.
View Article Online
Aneeya K. Samantara,ab Subash Chandra Sahu,ab Arnab Ghoshc and Bikash Kumar Jena*ab
Here, a hybrid material composed of sandwiched reduced graphene oxide (rGO) and N,S co-doped carbon quantum dots (N,S-CQDs) was prepared following a facile synthetic route. This metal-free composite has demonstrated their dual performance as an electrode material for supercapacitors and fuel cell catalysts. It shows robust cyclic stability with high energy and power density without any binders. The enhanced activity of the composite can be ascribed to the CQDs present within the interlayer of the rGO which enhance the accessibility of the charged ions and increase the capacitance of the composite. In addition, the electrocatalytic activity of the composite has been assessed as a metal-free cathode catalyst towards the oxygen reduction reaction (ORR) for fuel cell applications. It shows better performance in terms of high reduction potential and high reduction current as compared to rGO. This can be ascribed to the

碳量子点简介

碳量子点简介

基于碳量子点的复合物
碳量子点/金属复合物 碳量子点的金属复合物主要包括碳量子点与金、银
或铂的复合物。 孙亚平等在光照下用碳量子点还原氯金酸或氯铂酸
直接制备了表面金或铂涂敷的碳量子点,可有效 地光催化转化二氧化碳或产氢。在碳量子点的银 复合物中,主要探究了银对碳量子点荧光强度的 影响
碳量子点/金属氧化物复合物
碳量子点的化学修饰
化学修饰碳量子点实现表面钝化
化学修饰碳量子点实现发光调控
不同温度下制备的氨基 化碳量子点水溶液
化学修饰碳量子点实现功Ds 的透射电镜照片 CQDs 和 N-CQDs 的光致发光谱和在自然光以
(a)和(b)和尺寸分布图(c)
及紫外灯下的照片
碳量子点具有独特的光电效应,可以将光能转化成电能或 化学能,且量子点制备方法简单,成本低廉,使得量子点 在光电化学领域得到广泛的应用。但是由于其自身复合率 高,光电活性不稳定,光生 e--h+的寿命并不长,光电转化 效率并不高等原因限制其在光催化发面的应用,通过将碳 量子点与其他物质复合等途径降低电子与空穴的自身复合 率,并结合光电化学传感器的原理及光催化降解或制氢使 其在光电催化领域有更广阔的应用前景。
CQDs/CuSx的SEM及HRTEM
Nanoscale,2015,7, 11321–11327 Applied Catalysis B: Environmental 181 (2016) 260–269 Applied Surface Science. /10. 1016/j.apsusc.
碳量子点电子转移的机制
当一个具有能量的光子射入碳量子点时,其会产生光生电子-空 穴对,光激发产生的电子空穴对有两个主要变化结果:
(1)激发态的电子经过热振动移动到激发态的最底端,然后回 到基态与空穴相结合,一部分发生辐射复合放出光子。(复合)

碳量子点的制备与介绍

碳量子点的制备与介绍

碳量子点的制备与介绍碳量子点(Carbon Quantum Dots,CQDs)是一种直径小于10纳米的碳基纳米材料。

它们具有许多优良的性质,如较高的化学稳定性、优异的光学性能和生物相容性,因此在生物医学、能源存储和光电器件等领域具有广泛的应用潜力。

本文将介绍碳量子点的制备方法以及它们的一些主要特性。

首先,我们来看一下碳量子点的制备方法。

目前有几种常用的方法用于合成碳量子点,包括炭化物热解法、水热法和微波辐射法等。

下面分别介绍这些方法。

炭化物热解法是一种将有机化合物热解得到碳量子点的方法。

一般来说,选择含有碳、氮和氧等原子的有机化合物作为前体材料,通过高温热解反应将有机分子分解生成碳量子点。

这种方法可以制备出具有较窄的光谱带宽、较高的量子产率和较好的稳定性的碳量子点。

水热法是一种简单易行的方法用于制备碳量子点。

简单而言,将有机化合物溶解于溶剂中,加入适量的酸碱物质进行反应,在高温高压的条件下,有机分子会发生裂解生成碳量子点。

这种方法制备的碳量子点具有较高的荧光量子产率、较大的布朗运动和较好的稳定性。

微波辐射法是一种利用微波辐射加热的方法制备碳量子点。

通过将有机化合物溶解于溶剂中,放入微波反应器中,利用微波辐射来加热溶液,有机分子会裂解生成碳量子点。

这种方法制备的碳量子点具有较快的反应速率、较窄的发射峰宽度和较高的量子产率。

接下来,我们来看一下碳量子点的一些主要特性。

首先,碳量子点具有较高的化学稳定性,能够在不同的环境条件下保持其光学性能和稳定性。

其次,碳量子点具有优异的光学性能,具有较高的荧光量子产率和较窄的发射峰宽度,可以在可见光范围内发光。

此外,碳量子点还具有较好的生物相容性,可以应用于生物医学领域,如成像和药物传递等。

最后,碳量子点还可以应用于能源存储和光电器件等领域,如太阳能电池和光电催化等。

综上所述,碳量子点是一种新型的纳米材料,具有许多优秀的性质和潜在应用。

随着对其制备方法的不断优化和对其性质的深入研究,相信碳量子点在各个领域中的应用将得到更大的拓展和发展。

碳量子点光催化

碳量子点光催化

碳量子点光催化
碳量子点光催化是一种基于碳量子点的光化学反应技术。

碳量子点具有优异的光电性能、催化活性和生物相容性,可以作为一种新型的光催化剂应用于环境保护、能源转化和生物医学等领域。

碳量子点光催化技术主要利用碳量子点的光催化性质,在光的作用下通过光化学反应来实现某些化学反应,例如水的光解、二氧化碳的还原、有机物的降解等。

此外,碳量子点光催化技术还可以用于制备高效的光催化剂,并且具有较低的成本和良好的环境友好性。

目前,碳量子点光催化技术已经在许多领域得到广泛应用,例如环境污染治理、太阳能电池、人工光合成等。

未来,随着碳量子点光催化技术的不断发展和应用,它将在更多领域发挥重要作用,为人类的可持续发展作出贡献。

- 1 -。

碳量子点综述

碳量子点综述

碳量子点综述胡东旭 2014级环境工程卓越班 201475050112摘要:碳量子点(CQDs, C-dots or CDs)是一种新型的碳纳米材料,尺寸在10 nm以下,具有良好的水溶性、化学惰性、低毒性、易于功能化和抗光漂白性、光稳定性等优异性能,是碳纳米家族中的一颗闪亮的明星。

最近几年的研究报道了各种方法制备的CQDs在生物医学、光催化、光电子、传感等领域中都有重要的应用价值。

这篇综述主要总结了关于CQDs的最近的发展,介绍了CQDs的合成方法、物理化学性质以及在生物医学、光催化、环境检测等领域的应用。

1 引言在过去的20年间,鉴于量子点特殊的性质,尤其是量子点相对于有机染料而言,容易调节的光学性质和抗光降解性质,使量子点得到了广泛的关注。

如果量子点可以克服造价昂贵、合成条件严格和众所周知的高毒性等缺点,则有望广泛地应用于生物传感和上物成像领域。

最近几年,量子点的研究非常活跃,尤其是关于它在生物和医学中的应用。

量子点一般是从铅、镉和硅的混合物中提取出来的,但是这些材料一般有毒,对环境也有危害。

所以科学家们开始在一些良性化合物中提取量子点。

因此,很多的研究均围绕着合成毒性更低的其它材料量子点来进行,这些替代材料的碳量子点,如硅纳米粒子、碳量子点均具有优异的光学性质。

相对金属量子点而言,碳量子点无毒害作用,对环境的危害很小,制备成本低廉。

它的研究代表了发光纳米粒子研究进入了一个新的阶段。

2 碳量子点的合成大多数的碳量子点主要是由无定形的碳到晶化的碳核组成的以sp2杂化为主的碳,碳量子点的晶格间距和石墨碳或者无定形层状碳的结构一致。

如果没有其他修饰试剂的修饰碳量子点表面会含有一些含氧基团,而含氧基团的多少和种类与实验条件相关。

发光碳量子点的合成方法可以分为两大类(图一),化学法和物理法。

图一碳量子点的制备方法2.1化学法2.1.1电化学法Zhou利用离子液体辅助电解高纯石墨棒和高温热解纯定向石墨(HOPG)于离子液体和水溶液中,通过控制离子了液体中水的含量得到不同荧光性质的荧光纳米粒子、纳米带、石墨等产物。

碳基量子点的制备与修饰探讨

碳基量子点的制备与修饰探讨

碳基量子点的制备与修饰探讨碳基量子点是一种新型的纳米材料,具有优异的光电性能和化学稳定性,在生物医学、光电子器件、传感器等领域具有广泛的应用前景。

研究碳基量子点的制备与修饰对于拓展其应用领域具有重要意义。

本文将对碳基量子点的制备方法和修饰途径进行探讨,以期为碳基量子点的深入研究和应用提供参考。

一、碳基量子点的制备方法1. 氧化还原法氧化还原法是目前制备碳基量子点的常用方法之一。

该方法将碳源(如葡萄糖、柠檬酸等)与氧化剂(如硝酸)在高温条件下反应,生成碳基量子点。

该方法简单易行,但需要高温条件和较长的反应时间,且产物中可能含有杂质。

2. 水热法水热法是一种简单有效的碳基量子点制备方法。

该方法将碳源与溶剂在高温高压条件下反应,生成碳基量子点。

水热法制备的碳基量子点具有较小的粒径和较高的荧光量子产率,适用于大规模生产。

二、碳基量子点的修饰途径1. 表面修饰表面修饰是改善碳基量子点性能的重要途径。

通过改变碳基量子点表面的官能团结构,可以调控其荧光性能、分散性和生物相容性。

常用的表面修饰方法包括硫化、氮掺杂、羧基化、胺化等。

这些方法可以赋予碳基量子点新的功能,如提高其在水溶液中的稳定性、增强其在生物体内的生物标记效应等。

2. 掺杂修饰掺杂修饰是通过向碳基量子点中引入其他元素,改变其能带结构和电子结构,从而调控其光电性能。

常用的掺杂元素包括氮、硫、硒等。

掺杂修饰可以提高碳基量子点的光催化性能、增强其在光电子器件中的应用潜力。

3. 表面功能化表面功能化是在碳基量子点表面引入特定的官能团,赋予其特定的化学性质和生物活性。

常用的表面功能化方法包括点击化学、偶联反应、修饰基团引入等。

表面功能化可以拓展碳基量子点的应用领域,如生物成像、生物传感、药物载体等。

三、碳基量子点的应用展望1. 生物医学领域碳基量子点具有良好的生物相容性和荧光性能,可用于生物标记、生物成像、药物传输等领域。

经过表面修饰和功能化处理的碳基量子点,可以实现在细胞内或动物体内的高灵敏成像,为生物医学研究提供新的工具和方法。

碳量子点(cqds) 石墨炔量子点

碳量子点(cqds) 石墨炔量子点

碳量子点(cqds)是一种具有纳米尺度的碳基材料,具有优异的光电性能和化学稳定性,近年来受到了广泛关注。

其中,石墨炔量子点作为一种特殊的碳量子点,在光催化、光电器件、生物成像等领域展现出了巨大的应用潜力。

本文将从以下几个方面详细介绍碳量子点和石墨炔量子点的相关研究进展。

一、碳量子点的制备方法碳量子点的制备方法包括化学氧化方法、电化学法、微波辐射法、激光剥离法、等离子体法等多种途径。

其中,化学氧化方法是最为常见的制备方法之一,通过碳前体的酸碱处理、氧化剥离等步骤,可制备出具有一定量子效应的碳量子点。

二、石墨炔量子点的结构与性质石墨炔量子点具有类似于石墨炔结构的碳原子排列,拥有较小的带隙、较高的导电性和光催化活性。

石墨炔结构的引入使得石墨炔量子点在光电器件中表现出了良好的性能,同时在生物成像领域也表现出了巨大的潜力。

三、碳量子点在光催化中的应用碳量子点作为一种优异的光催化剂,可用于水分解、二氧化碳还原、有机污染物降解等反应。

石墨炔量子点在光催化中的应用研究表明,其具有较高的光催化活性和稳定性,为光催化反应的高效进行提供了可能。

四、石墨炔量子点在生物成像中的应用石墨炔量子点具有较好的生物相容性和荧光性能,被广泛应用于生物成像领域。

其在细胞标记、组织成像、药物传递等方面的应用研究成果丰硕,为生物医学领域的发展带来了新的机遇和挑战。

五、碳量子点的应用前景碳量子点及其衍生物在光电器件、生物成像、光催化等领域的广泛应用展现出了巨大的潜力,但也面临着制备方法简单化、性能稳定化、应用系统化等方面的挑战。

未来的研究方向将集中在碳量子点的制备与改性、性能调控与机制解析、应用拓展与产业化等方面,以期为碳量子点的应用提供更为坚实的基础和保障。

碳量子点和石墨炔量子点作为当前领域的研究热点,其在光电器件、生物成像、光催化等领域的应用前景广阔,但仍需加大基础研究和工程应用方面的投入,以推动碳量子点在相关领域的深入应用与开发。

希望本文的内容能为相关研究和应用工作提供一定的参考和借鉴,期待碳量子点在未来能够迎来更加灿烂的发展。

研究方向 碳量子点 催化和生物医学

研究方向 碳量子点 催化和生物医学

碳量子点是一种新型纳米材料,在催化和生物医学领域具有广泛的应用前景。

本文将从碳量子点的结构特征、催化应用和生物医学应用三个方面进行阐述。

一、碳量子点的结构特征碳量子点是一种直径在1纳米以下的碳基纳米材料,具有优异的光电性能和生物相容性。

其结构特征包括:1. 大小均一:碳量子点的直径一般在1纳米左右,具有较高的大小均一性;2. 量子尺寸效应:由于其尺寸小于激子束缚半径,因此呈现出量子尺寸效应,表现出特殊的光电性能;3. 表面官能团:碳量子点表面富含羟基、羰基等官能团,使其具有良好的分散性和生物相容性。

二、碳量子点在催化应用中的研究进展碳量子点在催化领域具有广泛的应用前景,主要体现在以下几个方面:1. 电催化剂:碳量子点通过调控其能带结构和表面官能团,可用作氧还原、析氢和二氧化碳还原等电催化反应的催化剂;2. 光催化剂:利用碳量子点的光电性能,可构建光催化体系,实现光解水、光催化CO2还原等反应;3. 催化剂载体:碳量子点表面富含官能团,具有良好的活性位点,可用作金属纳米粒子的载体,提高其在催化反应中的稳定性和活性。

三、碳量子点在生物医学应用中的研究进展碳量子点在生物医学领域具有诸多应用,包括:1. 生物成像:碳量子点由于其较好的荧光性能和生物相容性,可用于细胞成像、组织成像等生物成像领域;2. 肿瘤治疗:碳量子点可通过光热和光动力等方式对肿瘤进行治疗,具有较好的治疗效果和生物安全性;3. 药物传输:利用碳量子点的荧光特性和载药功能,可实现药物的靶向输送和释放,提高药物的疗效和减轻副作用。

碳量子点作为新型纳米材料,在催化和生物医学领域具有广泛的应用前景。

随着对其结构特征和性能的深入研究,相信碳量子点将在未来得到更广泛的应用和发展。

(扩写部分)四、碳量子点在催化应用中的新进展除了上文提及的催化应用,碳量子点在催化领域还有一些新的应用和研究进展:1. 电催化剂:近年来,研究人员不断探索碳量子点在氧气电还原反应(ORR)中的应用。

碳基量子点的制备与修饰探讨

碳基量子点的制备与修饰探讨

碳基量子点的制备与修饰探讨碳基量子点是一类新兴的纳米材料,其小尺寸和特殊的光电性质使其在生物医学成像、光电器件等领域具有广泛的应用前景。

目前碳基量子点的制备和修饰仍然存在一些挑战,本文将重点探讨碳基量子点的制备方法以及修饰技术,旨在为碳基量子点的进一步研究和应用提供参考和借鉴。

一、碳基量子点的制备方法碳基量子点的制备方法主要包括化学氧化法、水热法、电化学法等。

化学氧化法是目前应用最为广泛的一种方法,其具体步骤是将碳源(如葡萄糖、柠檬酸等)与氧化剂(如硝酸、过氧化氢等)在一定条件下反应,生成碳基量子点。

这种方法制备的碳基量子点具有粒径均一、光稳定性好等优点,但同时也存在着合成条件苛刻、成本较高等缺点。

近年来,水热法也逐渐受到了研究者的关注。

这种方法利用水热条件下产生的高压和高温,将碳源与氧化剂在反应釜中进行水热合成,制备出具有较高量子产率和较好光学性能的碳基量子点。

相比于化学氧化法,水热法制备的碳基量子点具有制备条件温和、成本低廉等优点,因此备受青睐。

电化学法也是一种常用的碳基量子点制备方法。

该方法利用电化学原理,通过在电极表面施加电压,将碳源氧化为碳基量子点。

电化学法制备的碳基量子点具有制备简单、原料易得等特点,但同时也存在着生产效率低、杂质易受到污染等问题。

不同的制备方法各具优缺点,在具体应用中需要根据实际情况选择合适的方法。

未来的研究方向可以从制备方法的改进、新型碳源的开发等方面着手,提高碳基量子点的制备效率和性能。

二、碳基量子点的修饰技术碳基量子点在实际应用中往往需要具备特定的功能性质,因此通常需要进行表面的修饰。

常见的碳基量子点修饰技术包括功能基团引入、表面包覆、杂原子掺杂等。

功能基团引入是一种常用的碳基量子点修饰方法,通过在合成过程中引入含有特定化学基团的前体物质,将其与碳基量子点表面发生化学反应,从而赋予碳基量子点特定的功能性质。

常用的功能基团包括羧基、氨基、羟基等,它们可以赋予碳基量子点良好的水溶性、生物相容性等特性。

荧光碳量子点

荧光碳量子点

荧光碳量子点
荧光碳量子点,又称碳点,是一种具有荧光特性的纳米材料,其直径一般在1-10纳米之间。

荧光碳量子点具有许多优异的性质,如优异的荧光性能、高度的稳定性、低毒性等,因此在生物医学、能源、环境等领域具有广泛的应用前景。

荧光碳量子点在生物医学领域有重要的应用。

由于其优异的荧光性能和低毒性,荧光碳量子点可用作生物标记物,在细胞成像、分子探测等方面发挥重要作用。

通过与生物分子的结合,可以实现对生物体内分子的高效检测和定位。

此外,荧光碳量子点还可用于药物传递和治疗,通过改变其表面性质,可以实现对药物的封装和释放,从而提高药物的治疗效果。

荧光碳量子点在能源领域也具有广阔的应用前景。

由于其优异的光电性能和光催化性能,荧光碳量子点可用于太阳能电池、光催化剂等能源转换和利用领域。

通过调控其能带结构和表面能级,可以实现对光电转换和光催化反应的调控,从而提高能源转换效率。

荧光碳量子点在环境领域也具有重要的应用。

由于其优异的稳定性和可控性,荧光碳量子点可用于环境监测、污染物检测等方面。

通过改变其表面性质和结构,可以实现对污染物的高效吸附和检测,从而提高环境污染治理的效率。

荧光碳量子点作为一种具有优异性能的纳米材料,在生物医学、能
源、环境等领域具有广泛的应用前景。

通过调控其结构和表面性质,可以实现对其性能的调控和优化,从而提高其在各个领域的应用效果。

随着科学技术的不断发展,相信荧光碳量子点将在更多领域展现其独特的应用价值,为人类社会的发展做出更大的贡献。

碳量子点

碳量子点
Байду номын сангаас
合成方法3
天然气或者蜡烛的燃烧残渣可以用来制备碳 纳米量子点。Mao等人将玻璃片至于燃烧的蜡烛 火焰上方收集蜡烛灰,将蜡烛灰在硝酸中氧化回 流12小时,在通过离心,透析,凝胶电泳等手段 进行分离,可以得到具有不同发光性质的碳纳米 量子点。 Gianneilis等还建立了通过热分解低熔点分 子一步合成表面秀水?的亲水或亲油的碳量子点 的方法。
性质
2
碳量子点具有传统量子点不具有的优点,他既具有纳米粒子的小尺寸特点,又具有量 子点的荧光性质,还有非常好的生物相容性。由于量子点尺寸小, 其载流子的能量呈 量子化,使量子点有优异的光学、电学性能。当碳量子点被一定波长的光激发时,电 子跃迁到高能级上,然后在回到基态发射荧光,这是碳量子点的荧光物质,当有对碳 量子点有反应的物质和量子点集合后,碳量子点的荧光峰的强度会减弱,进而断定溶 液中存在削弱碳量子点荧光的物质,碳量子点也就是通过这种荧光能力可以进行大量 物质的痕量检测。
碳量子点在细胞成像上的应用 Cao等最先报道了碳量 子点在细胞成像方面的应用 ,选择人体乳腺癌细胞作为 载体细胞,用聚N-丙酰基乙 基酰亚胺-乙烯亚胺钝化合成 碳量子点标记人体乳腺癌细 胞。细胞在荧光显微镜下表 现出强的发光性质。
值得变化测定对碳量子点的感应的物质
,且灵敏度高,通过对碳量子点的尺寸 ,表面修饰集团等的变化获得选择性更 好的碳纳米荧光材料。
碳量子点的光学性质优良,稳定性高,荧光量子产率高、荧光寿命长。
合成方法
3
碳量子点由于具有相对较高的量子产率以及更小的尺寸被认为是最有前途的材料。可以通过激光销蚀石墨,羧 化作用的碳纳米管或蜡烛灰烬的羧化作用,和质子束照射纳米金刚石来制备。尽管纳米金刚石具有低的细胞毒性 和不易光褪色的优良性质,但它的粒子太大,直径100纳米,并且成本高昂,这些原因限制了碳纳米金刚石的 使用。具有良好的结构的碳量子点具有非常好的性质,合成碳量子点的方法有如下几种:

碳量子点-半导体复合光催化剂研究进展

碳量子点-半导体复合光催化剂研究进展

碳量子点-半导体复合光催化剂研究进展张国英;魏雪敏;巴依吉丽;王冰玉【摘要】碳量子点(CQDs)作为碳纳米家族的新成员,具有独特的结构和物理化学性质,如较宽的吸光范围、上转换发光行为和良好的电子传输性能等,因而作为半导体光催化剂的复合材料,可用于拓宽半导体的光响应区间,增加光生电子-空穴对的数量,促进光生载流子的分离和转移,并增加对污染物的吸附量.本文综述了近年来CQDs 与各种半导体光催化剂的复合,主要介绍了不同的制备方法及优缺点,尤其使光催化活性得以提高的机理,从各个角度进行了详细分类和深入剖析.【期刊名称】《天津师范大学学报(自然科学版)》【年(卷),期】2019(039)004【总页数】6页(P1-6)【关键词】碳量子点;半导体;复合;光催化;机理【作者】张国英;魏雪敏;巴依吉丽;王冰玉【作者单位】天津师范大学化学学院,天津300387;天津师范大学无机-有机杂化功能材料化学教育部重点实验室,天津300387;天津师范大学天津市功能分子结构与性能重点实验室,天津300387;天津师范大学化学学院,天津300387;天津师范大学无机-有机杂化功能材料化学教育部重点实验室,天津300387;天津师范大学天津市功能分子结构与性能重点实验室,天津300387;天津师范大学化学学院,天津300387;天津师范大学无机-有机杂化功能材料化学教育部重点实验室,天津300387;天津师范大学天津市功能分子结构与性能重点实验室,天津300387;天津师范大学化学学院,天津300387;天津师范大学无机-有机杂化功能材料化学教育部重点实验室,天津300387;天津师范大学天津市功能分子结构与性能重点实验室,天津300387【正文语种】中文【中图分类】O643.36环境污染问题是当今人类亟待解决的重大问题之一.光催化氧化法[1-3]对环境污染的治理具有能耗低、净化条件温和、无二次污染等优势,因而作为一种绿色化学工艺倍受关注.传统的半导体光催化剂如TiO2[4-5]和ZnO[6-7],具有较宽的禁带宽度,只能吸收3%~5%的太阳光能量.Bi 系[8]及Ag 系[9]半导体则分别存在可见光吸收范围窄、光腐蚀性强等问题,而且大多数半导体的光生载流子复合率较高,限制了半导体光催化剂的潜在应用.因此,越来越多的研究致力于拓宽光催化剂的可见光吸收范围并促进载流子的分离效率,以提高其光催化活性和稳定性.碳量子点(Carbon quantum dots,CQDs)[10]是最近发现的一类具有突出荧光性的新型碳纳米材料,由尺寸小于10 nm 的准离散球形碳纳米粒子组成,是一种兼具优异水溶性、高生物相容性和低毒性的环境友好材料.研究表明,由于CQDs 独特的结构和物理化学性质,使得它能与半导体光催化剂复合后大大改善半导体的光催化性能.CQDs 表面的羟基和羧基可以作为反应的成核位点,通过较强的界面键合作用与光催化剂形成复合体系[11],并表现出诸多优势:①CQDs 具有近红外光吸收特性,可拓宽催化剂对太阳光的吸收范围[12];②CQDs 具有上转换光致发光特性[13],可激发半导体形成更多光生电子-空穴对;③CQDs 具有较强的电子传输性能[13],可有效转移和存储催化剂中的光生电子[14],达到改善电荷分离效率的效果,而且光生电子与其表面的吸附O2 结合,可形成超氧自由基(·O2-)[13],实现多位点催化;④π-π 共轭结构有利于有机污染物在光催化剂表面的吸附[12];⑤对Ag 系等不稳定的光催化剂,CQDs 层与其形成核壳结构后,不但可以阻止催化剂溶解,还可有效防止光腐蚀[15].因而将CQDs 与半导体复合,是改善光催化剂性能的重要途径.本文综述了近年来CQDs-半导体复合光催化剂的研究进展,重点介绍该类催化剂的合成方法、在光催化降解中的应用以及光催化性能得以提高的机理.1 CQDs-半导体复合光催化剂的制备CQDs-半导体复合光催化剂的制备方法多样,目前采用较多的是液相法,主要包括浸渍法、超声波法、水热/溶剂热法以及溶液沉淀法等.浸渍法是指分别合成CQDs 和半导体光催化剂,按照一定的负载质量分数或物质的量之比将光催化剂浸入CQDs 的分散液中,通过控制浸渍时间合成不同复合比例的样品.该方法合成步骤较多且繁琐.如Sun 等[16]首先由电化学蚀刻技术和电化学腐蚀法分别合成了CQDs 和TiO2 纳米管,然后在CQDs 溶液中浸渍TiO2 纳米管,成功组装制备了CQDs/TiO2 纳米管复合光催化剂,它具有比纯TiO2 纳米管更高的可见光催化活性.Kaur 等[17]采用共沉淀法和水热法分别合成了ZnS 和CQDs 后,通过浸渍法合成了CQDs/ZnS 光催化剂,在催化剂用量为0.5 g/L、降解液pH 值为4的条件下,该复合光催化剂对茜红素的可见光降解率达到89%,而纯ZnS 的降解率仅为69%.超声波法[18]作为一种外部能量附加法,是指将传统的磁力搅拌替换为超声波处理,使介质混合更加均匀,提高反应速率,刺激新相形成,并抑制产物团聚.如Li 等[19]通过一步超声波法合成了直径为1~3 μm、具有表面突起结构的球形CQDs/Cu2O 复合光催化剂,如图1 所示.性能研究表明,近红外灯辐照250 min 内,CQDs 对亚甲基蓝几乎没有任何降解作用,纯Cu2O 的降解率仅有3%,而CQDs/Cu2O 复合光催化剂的降解率可高达90%.图1 CQDs/Cu2O 复合材料的SEM 图Fig.1 SEM image of CQDs/Cu2Ocomposite水热/溶剂热法因具有反应活性高、可控性好、生长速率快、产物纯度高且晶型好等特点而得到广泛应用.如Di 等[11]利用CQDs 表面的羟基和羧基作为反应的成核位点,水热合成了具有较强界面键合作用的CQDs/Bi2MoO6.Zhang 等[12]和Huang 等[14]同样由水热法制得的CQDs/Fe2O3 和CQDs/ZnFe2O4 纳米粒子均表现出良好的光催化活性.Yu 等[20]利用乙醇溶剂热法合成了粒径20~30 nm的CQDs/ZnO 复合材料.Di 等[21]通过甘露醇溶剂热法将CQDs 组装在BiOCl 超薄纳米片的表面,合成了具有紧密界面的CQDs/BiOCl 复合光催化剂.大多数复合光催化剂中,CQDs 沉积在半导体表面,而Yu 等[22]由乙二醇溶剂热法合成的CQDs/α-Fe2O3,因α-Fe2O3 具有独特的孔道结构,CQDs 则是嵌入到孔道中,如图2 所示.图2 CQDs/α-Fe2O3 复合材料的SEM 图Fig.2 SEM image of CQDs/α-Fe2O3 composite溶液沉淀法是指在CQDs 分散液中,按化学计量比加入合成半导体催化剂的各个组分,经充分反应得到复合体系.该方法操作简便、反应温和,多用于在室温溶液状态下即可合成的各种半导体光催化剂的复合.如在CQDs 分散液中,通过硝酸银和磷酸盐的离子交换反应,可以制得活性明显提高的CQDs/Ag3PO4[15]复合光催化剂.通过溶液沉淀法所合成的CQDs/BiOCl[23]、CQDs/Ag/Ag2O[24]等也均表现出比复合前更优异的光催化活性.2 CQDs-半导体复合光催化剂性能提高的机理2.1 拓宽光吸收范围传统光催化剂TiO2 因仅能吸收太阳光中3%~5%的紫外光,限制了它在工业上的广泛应用.虽然通过对其进行金属、非金属离子掺杂或构筑异质半导体等,性能得到一定改善,但效果仍不太理想.CQDs 则具有近红外光吸收特征,通过将其与半导体光催化剂复合,可有效拓宽半导体对太阳光的吸收范围,提高自然光能利用率.如Sun 等[16]制备的CQDs/TiO2 复合光催化剂,吸收带边发生大幅度红移,如图3(a)所示,对太阳光的利用率显著提高.图3 传统与复合光催化剂的Uv-vis 漫反射光谱图Fig.3 UV-vis diffuse reflectance absorption spectra of traditioional and composite photocatalystsLi 等[19]合成了具有高效近红外活性的CQDs/Cu2O复合体系,相比于Cu2O约650nm 的吸收带边,该复合光催化剂在700~2 500 nm 的整个近红外区域都表现出广泛吸收,如图3(b)所示,在近红外灯辐照下,复合光催化剂的降解率相比于Cu2O 提高了近30 倍.另外,CQDs 对ZnO[20,25]、m-BiVO4[13]、Ag3PO4[15]、Ag2O[24]等半导体的复合均显著拓宽了催化剂对太阳光的吸收范围.2.2 上转换发光作用CQDs 具有独特的上转换光致发光性能,即能够在吸收波长较长的近红外光或可见光后,激发出波长较短的可见光或紫外光,这是一种反斯托克斯位移现象.大多数半导体的光响应范围为紫外光或有限波长的可见光,如ZnO 和Cu2O 的吸收阈值分别为370 nm 和564 nm,并不能充分利用太阳光中的紫外可见光.将半导体光催化剂与CQDs 复合后,利用CQDs 的上转换发光性质所辐射出的较短波长光激发半导体,可产生更多的光生载流子.如Ding 等[26]合成了泡沫状的CQDs/ZnO 复合催化剂,该催化剂在降解罗丹明B(RhB)、甲基橙(MO)和MB 等染料的过程中表现出优异的催化活性.CQDs/ZnO 复合催化剂的光催化原理如图4 所示.图4 CQDs/ZnO 复合材料的光催化原理Fig.4 Schematic diagram of the photocatalytic process of CQDs/ZnO compositeZnO 泡沫状的微纳米分级孔状结构可以实现光的多级反射,从而提高光的吸收率.CQDs 的上转换光致发光特性对于拓宽ZnO/CQDs 的吸光范围,激发产生更多的光生载流子起到了重要作用.图4(b)展示了CQDs 在波长范围为600~850 nm内的上转换发光性能.随着激发波长的降低,发射波长的中心逐渐移向短波长,当激发波长低于650 nm 时,就可以发射出能被ZnO 吸收的紫外光.如图4(c)所示,在初级辐射光源为可见光的条件下,通过CQDs 的这种上转换发光作用,同样可以激发ZnO 紫外吸光特性,使其产生光生电子-空穴对.如Li 等[19]合成的CQDs/Cu2O复合光催化剂中,利用CQDs 优异的上转换发光性能,可将波长大于700 nm 的光转化为波长小于564nm 的光,从而激发Cu2O产生光生电子-空穴对.此外,在CQDs/Fe2O3[12]、CQDs/BiOCl[21]和CQDs/m-BiVO4[15]等复合体系中,也体现CQDs的上转换发光性能均对光催化活性具有增强作用.2.3 促进光生载流子分离和迁移光生电子-空穴对的快速复合是影响光催化活性的重要因素,因而如何提高半导体中光生载流子的分离效率,已经成为改善光催化性能的主要努力目标.CQDs 作为碳材料之一,因其表面共轭大π 键的存在而具有良好的导电能力,它与半导体光催化剂形成良好的界面效应后,可以作为光生电子的有效储存器和传导体,加速电子转移,抑制光生载流子的复合,延长光生载流子寿命,最终提高光量子效率和催化性能.如Zhang 等[12]合成了CQD/Fe2O3 复合光催化剂,在可见光照射24 h 内,它对气相苯和甲醇的降解效率分别为80%和70%.而同等条件下,纯Fe2O3 对两种物质的降解效率较低,分别为37%和50%.Zhang 等[12]认为在降解过程中,CQDs 纳米结构所起到的电子传导作用至关重要.如图5(a)所示,CQDs/Fe2O3 中碳量子点对Fe2O3 纳米片进行了表面修饰,在可见光照下,Fe2O3受激产生光生电子-空穴对,因CQDs 良好的界面附着作用,光生电子快速转移至CQDs 的网状结构中,并在大π键作用下自由传导,被表面的吸附O2 捕获而产生活性物质·O2-,从而有效抑制了它与光生空穴的复合.Huang 等[14]制备了CQDs/ZnFe2O4 纳米粒子,在λ>420 nm 的可见光照射下,对纳克级NOx 的去除率达到38%,明显高于ZnFe2O4(29%)和P25(23%)的去除率,CQDs/ZnFe2O4 中CQDs 的电子转移作用如图5(b)所示.Chen 等[24]合成了CQDs/Ag/Ag2O 三元等离子体光催化剂,相比于Ag2O 和Ag/Ag2O,同等条件下复合光催化剂对MB 的降解效率分别提高了48%和28%,并表现出优异的循环稳定性.这是因为CQDs 和Ag 的电子转移效应在该三元体系中形成了矢量电子转移(Ag2O→CQDs→Ag),从而产生了电子磁场,促进了光生电子-空穴对的有效分离.另外,CQDs/Cu2O[19]、CQDs/m-BiVO4[13]、CQDs/Ag3PO4[15]和CQDs/ZnS[17]等复合体系中,CQDs 作为电子储存器和电子传输体,均能够快速捕获和转移半导体中的光生电子,从而延长载流子寿命并改善光催化活性.图5 CQDs/Fe2O3和CQDs/ZnFe2O4 复合材料的光生载流子分离和转移图Fig.5 Schematic of the separation and transfer of photo-generated charges in CQDs/Fe2O3 and CQDs/ZnFe2O4 composites2.4 CQDs 结构有利于增大吸附作用CQDs 由数层石墨烯片层堆积而成,为粒径小于10 nm 的微小纳米粒子,具有较大的比表面积.同时,待降解有机污染物所含有的芳香环可以作为π 电子受体,而CQDs 上垂直于表面的各原子所形成的π 轨道作为电子供体,有利于二者形成π-π 电子供体-受体作用,如图6 所示.CQDs 的这两个物理结构因素使其与半导体复合后,有利于增大污染物在光催化剂表面的吸附[27].如Yu 等[20]合成的CQDs/ZnO 光催化剂,在24 h内可见光降解有毒气体苯和甲醇的效率均超过80%,明显高于纯的ZnO 纳米颗粒和N-TiO2.CQDs/ZnO 性能的大幅度提高,除了归因于CQDs 的上转换光致发光及优异的电子传导特性外,也因为在光催化降解苯的过程中,CQDs 与苯之间所形成的π-π 共轭作用提高了苯在CQDs/ZnO 表面的吸附量.由于光催化反应发生在催化剂表面,因而较强的表面吸附和π-π 作用必将有助于产生更多的催化位点,从而提高光催化活性.Zhang 等[12]对CQDs/Fe2O3 体系的研究也从π-π 共轭结构的角度解释了光催化活性提高的原因.CQDs/ZnFe2O4 纳米粒子[14]对气体NOx 表现出良好的光催化去除率,也部分源于CQDs 良好的吸附性增加了对NO和NO2 的吸附量,使它们更容易被氧化为无毒的NO3-离子.图6 π-π 电子供体-受体作用机理Fig.6 Schematic illustration of π-π electron donor-acceptor3 总结及展望CQDs 作为一种特殊的碳材料,因其结构及物理化学性质的一系列特点,在与半导体光催化剂复合后提高了光催化降解有机污染物的能力,使其在该领域表现出良好的应用潜力.CQDs 的优点包括:①尺寸小于10 nm,因此容易与其他半导体光催化剂形成紧密连接的界面;②宽阔的吸光范围可有效拓宽半导体的光响应区间,从而更加有效地利用太阳能;③独特的上转换光致发光特性可将低能量长波光转换为高能量短波光,从而激发半导体产生更多的光生电子-空穴对;④具有优异的电子储存与传输特点,可作为电子转移中心快速转移光生电子,从而改善界面电荷转移,延长光生载流子的寿命,抑制载流子复合;⑤与有机污染物分子的共轭大π键效应可增加吸附,从而增多光催化反应中心的数量.正是由于CQDs 具有这些特殊的物理化学性质,使得众多CQDs/半导体复合光催化剂表现出优异的活性.相信未来将有更多CQDs/半导体复合光催化剂得到设计研发,以推动当前环境污染治理和能源开发等相关领域的发展.【相关文献】[1]CHEN X B,SHEN S H,GUO L J,et al.Semiconductor-based photocatalytic hydrogen generation[J].Chemical Reviews,2010,110(11):6503-6570.[2]CHEN H H,NANAYAKKARA C E,GRASSIAN V H.Titanium dioxide photocatalysisinatmosphericchemistry[J].Chemical Reviews,2012,112(11):5919-5948.[3]ZHANG H J,CHEN G H,BAHNEMANN D W.Photoelectrocatalytic materials for environmental applications[J].Journal of Materials Chemistry,2009,19(29):5089-5121.[4]YANG H G,SUN C H,QIAO S Z,et al.Anatase TiO2 single crystals with a large percentage of reactive facets[J].Nature,2008,453(7195):638-641.[5]LIU G,YANG H G,WANG X W,et al.Visible light responsive nitrogen doped anatase TiO2 sheets with dominant{001}facets derived from TiN[J].Journal of the American Chemical Society,2009,131(36):12868-12869.[6]MOHAGHEGH N,TASVIRI M,RAHIMI E,et al.Nano sized ZnO composites:Preparation,characterization and application as photocatalysts for degradation of AB92 azo dye[J].Materials Science in Semiconductor,2014,21(1):167-179.[7]YU J G,YU X X.Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J].Environmental Science & Technology,2008,42(13):4902-4907.[8]JIANG J,ZHAO K,XIAO X Y,et al.Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J].Journal of the American Chemical Society,2012,134(10):4473-4476.[9]MARTIN D J,LIU G G,MONIZ S J A,et al.Efficient visible driven photocatalyst,silver phosphate: Performance,understanding and perspective[J].Chemical Society Reviews,2015,44(21):7808-7828.[10]WANG Y F,HU A G.Carbon quantum dots:Synthesis,properties andapplications[J].J Mater Chem C,2014,2(34):6921-6939.[11]DI J,XIA J X,JI M X,et al.The synergistic role of carbon quantum dots for the improved photocatalytic performances of Bi2MoO6[J].Nanoscale,2015,7(26):11433-11443.[12]ZHANG H C,MING H,LIAN S Y.Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light[J].Dalton Transactions,2011,40(41):10822-10825.[13]TANG D,ZHANG H C,HUANG H,et al.Carbon quantum dots enhance the photocatalytic performance of BiVO4 with different exposed facets[J].Dalton Transactions,2013,42(18):6285-6289.[14]HUANG Y,LIANG Y L,RAO Y F,et al.Environment-friendly carbonquantumdots/ZnFe2O4 photocatalysts: Characterization,biocompatibility,and mechanisms for NO removal[J].Environmental Science and Technology,2017,51(5):2924-2933. [15]ZHANG H C,HUANG H,MING H,et al.Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visiblelight[J].Journal of Materials Chemistry,2012,22(21):10501-10506.[16]SUN M X,MA X Q,CHEN X,et al.A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: Enhancing photoelectrochemical and photocatalyticproperties[J].RSC Adv,2014,4(3):1120-1127.[17]KAUR S,SHARMA S,KANSAL S K.Synthesis of ZnS/CQDs nanocomposite and its application as a photocatalyst for the degradation of an anionic dye[J].Superlattices and Microstructures,2016,98:86-95.[18]程新峰,付云芝,张小娇.超声法制备纳米材料的研究进展[J].无机盐工业,2010,42(11):1-3.CHENG X F,FU Y Z,ZHANG X J.Research progress in preparation of nano-materials by ultrasonic methods[J].Inorganic Chemicals Industry,2010,42(11):1-3(in Chinese).[19]LI H T,LIU R H,LIU Y,et al.Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient(near)infrared photocatalyticbehavior[J].Journal of Materials Chemistry,2012,22(34):17470-17475.[20]YU H,ZHANG H C,HUANG H,et al.ZnO/carbon quantum dots nanocomposites:One-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature[J].New Journal of Chemistry,2012,36(4):1031-1035.[21]DI J,XIA J X,JI M X,et al.Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight[J].ACS Applied Materials&Interfaces,2015,7(36):20111-20123.[22]YU B Y,KWAK S.Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts[J].Jounal of Materials Chemistry,2012,22(17):8345-8353.[23]DENG F,LU X Y,ZHONG F,et al.Fabrication of 2D sheet-like BiOCl/carbon quantum dot hybrids via a template-free coprecipitation method and their tunable visible-light photocatalytic activities derived from different size distributions of carbon quantumdots[J].Nanotechnology,2016,27(6):5701-5712.[24]CHEN J B,CHE H N,HUANG K,et al.Fabrication of a ternary plasmonic photocatalyst CQDs/Ag/Ag2O to harness charge flow for photocatalytic elimination of pollutants[J].Applied Catalysis B:Environmental Catal B,2016,192:134-144.[25]LI T,FANG F,JIA H M,et al.Synthesis and structural properties of ZnO nanowires modified by carbon quantum dots[C]//2015 International Conference on Optoelectronics and Microelectronics(ICOM).New York,USA:IEEE,2015.[26]DING D L,LAN W,YANG Z W,et al.A simple method for preparing ZnOfoam/carbon quantum dots nanocomposite and their photocatalyticapplications[J].Materials Science in Semiconductor Processing,2016,47(1):25-31. [27]刘桂芳,闫红梅,高远,等.碳材料吸附水中PPCPs 的研究进展[J].工业水处理,2015,35(10):6-11.LIU G F,YAN H M,GAO Y,et al.Research progress in the PPCPs sremoval from water by carbon material adsorption[J].Industrial Water Treatment,2015,35(10):6-11(in Chinese).。

金属_非金属掺杂碳量子点的制备及其应用

金属_非金属掺杂碳量子点的制备及其应用

摘要碳量子点(CQDs)作为一种新型的纳米碳材料,具有优异的光致发光性、良好的水溶性、生物低毒性以及光诱导电荷转移等性质,在光电催化、生物传感、重金属离子检测、锂离子电池等领域引起广泛关注。

本研究基于低共熔溶剂(DESs)采用水热法和燃烧法,制备了金属掺杂CQDs(M@CQDs)和非金属掺杂CQDs,并考察了Cu@CQDs的光催化特性。

研究内容如下:1)分别采用水热法和燃烧法,以十二烷基二甲基甜菜碱和D-果糖合成的DES 作为碳源,硅酸四乙酯作为硅源,制备Si@CQDs。

当DES物质的量配比为1:1,水热温度为200℃,反应时间为12h时,制备出的Si@CQDs分散性好,粒径均一,尺寸约为5nm,表面含有C-N键和C=O键。

以燃烧法合成的Si@CQDs发生簇集现象,粒径均在2.5nm左右。

2)以丙三醇、氯化胆碱、二水合氯化铜(六水合氯化钴、氯化锌)作为原料合成的金属配体DESs作为前驱物,采用水热法和燃烧法制备三种M@CQDs,分别为Cu@CQDs、Co@CQDs、Zn@CQDs。

在Cu@CQDs的制备过程中,当原料物质的量配比为5:1:1,水热温度为220℃,时间24h时,制备的Cu@CQDs荧光性能较好,在356nm紫外照射下发蓝绿色光,且具有反-斯托克斯效应。

采用燃烧法制备的Cu@CQDs,当制备温度为300℃,时间3h时,铜掺杂率较高,粒径在2~5nm之间,具有良好的电子运输能力。

3)以燃烧法制备的Cu@CQDs作为光催化剂。

Cu@CQDs表面富含亲水性官能团和纳米氧化亚铜,赋予其优良的光催化性能。

对于原料物质的量配比为2~4:1:1制备的Cu@CQDsⅡ~Ⅳ,在可见光照射下降解罗丹明-B(RhB)水溶液,研究其光催化特性。

结果表明Cu@CQDs表现出优异的光催化性能,对于RhB降解率达到95%。

关键词低共熔溶剂;水热法;燃烧法;掺杂性碳量子点;光催化;罗丹明-BIAbstractAs a new type of nano carbon material, carbon quantum dots (CQDs) show excellent photoluminescence, good water solubility, low biological toxicity, and photoinduced charge transfer. These properties have attracted extensive attention in the fields of photocatalysis, biosensor, heavy metal ion detection, and lithium ion battery. Based on deep eutectic solvents (DESs), two sorts of metal/non-metal doped CQDs were prepared by using hydrothermal method and combustion method. The photocatalytic performance ********************************************************:1)The silicon doped carbon quantum dots (Si@CQDs) were compound by hydrothermal method and combustion method respectively. The DES was used as carbon source which was synthesized by lauryl betaine and D-fructose. And tetraethyl silicate was used as silicon source. The preparation effect of Si@CQDs was better with the molar ratio of 1:1. The corresponding hydrothermal temperature and time were 200℃ and 12h. It was found that the as-prepared Si@CQDs showed uniform size and good dispersion with average particle size of 5nm. The surface of Si@CQDs contained C-N and C=O functional groups. Then the Si@CQDs was synthesized by the combustion method. The average particle size of as-prepared Si@CQDs was 2.5nm, which aggregated nanoclusters in aqueous solution.2)Three kinds of metal doped carbon quantum dots (M-CQDs) were prepared by hydrothermal method and combustion method. They were Cu@CQDs, Co@CQDs, and Zn@CQDs, respectively. To prepare Cu@CQDs, the metal ligand DES was synthesized by glycerol, choline chloride and copper dichloride as precursors. The molar ratio of raw materials was 5:1:1. When the hydrothermal temperature and time were set as 220℃ and 24h, the Cu@CQDs exhibited better fluorescence performance, anti-Stokes effect, and emit blue-green photoluminescence under UV excitation. The Cu@CQDs prepared by the combustion method possessed higher copper doping rate when the preparation temperature and time were 300°C and 3h, respectively. The range of particle size distribution was from2 to 5nm with good electron transport function.3)The as-prepared Cu@CQDs by combustion method were used as photocatalysis. The surface of Cu@CQDs contained hydrophilic functional groups and nano-copper compounds, which showed excellent photocatalytic properties. Rhodamine-B (RhB) aqueous solution was irradiated under visible light, and photocatalytic performance ofIIICu@CQDsⅡ~Ⅳwas studied. The results revealed that Cu@CQDs performed excellent photocatalytic performance with the RhB degradation rate of 95%.Key words Deep eutectic solvents;Hydrothermal method;Combustion method;Doped carbon quantum dots;Photocatalysis;Rhodamine BIV目录摘要 (I)Abstract ............................................................................................... I II 第1章绪论. (1)1.1 引言 (1)1.2 碳纳米材料 (1)1.2.1 碳纳米材料概要 (1)1.2.2 碳纳米材料表征手段 (1)1.3 碳量子点简介 (2)1.3.1 碳量子点概要 (2)1.3.2 碳量子点性质 (2)1.3.3 碳量子点的制备方法 (3)1.4 碳量子点的应用 (3)1.5 掺杂性碳量子点的合成及应用 (4)1.6 研究内容 (5)第2章硅掺杂碳量子点的研究 (7)2.1 实验材料与方法 (7)2.1.1 试剂与仪器 (7)2.1.2 低共熔溶剂的合成 (8)2.1.3 硅掺杂碳量子点的制备 (8)2.1.4 表征方法 (9)2.2 实验结果与讨论 (10)2.2.1 低共熔溶剂的性能表征 (10)2.2.2 水热法制备硅掺杂碳量子点 (14)2.2.3 燃烧法制备硅掺杂碳量子点 (19)2.3 本章小结 (19)第3章金属掺杂碳量子点的研究 (21)3.1 实验材料与方法 (21)3.1.1 试剂与仪器 (21)3.1.2 金属配体低共熔溶剂的合成 (22)3.1.3 水热法制备金属掺杂碳量子点 (22)3.1.4 燃烧法制备金属掺杂碳量子点 (22)V3.2 实验结果与讨论 (23)3.2.1 金属配体低共熔溶剂性能表征 (23)3.2.2 金属掺杂碳量子点的结构表征 (25)3.2.3 铜掺杂碳量子点的光学性能表征 (27)3.2.4 制备方法对比 (32)3.3 本章小结 (32)第4章铜掺杂碳量子点的光催化性能研究 (33)4.1 实验材料与方法 (33)4.1.1 试剂与仪器 (33)4.1.2 吸附性能实验 (34)4.1.3 光催化实验 (34)4.2 实验结果与讨论 (34)4.2.1 铜掺杂碳量子点的吸附性能研究 (34)4.2.2 铜掺杂碳量子点的光催化性能研究 (36)4.3 本章小结 (41)结论 (43)参考文献 (45)攻读硕士学位期间所发表的论文和专利 (51)致谢 (53)VI第1章绪论1.1引言随着工业迅速发展以及生活物质水平的提高,环境问题已逐渐成为人们关注的焦点。

碳量子点修饰Co_(2)SnO_(4)光催化剂的制备与光催化产氢性能

碳量子点修饰Co_(2)SnO_(4)光催化剂的制备与光催化产氢性能

碳量子点修饰Co_(2)SnO_(4)光催化剂的制备与光催化产氢
性能
张静;袁书芳;谷红新;袁晓;张旭红
【期刊名称】《河北师范大学学报:自然科学版》
【年(卷),期】2022(46)3
【摘要】通过简单的水热法制备了CQDs/Co_(2)SnO_(4)复合光催化剂,探究了其光催化产氢性能研究表明,在模拟太阳光照射下,质量分数为2%的
CQDs/Co_(2)SnO_(4)产氢速率达到475.53μmol/(g·h),是纯相Co_(2)SnO_(4)的4.74倍,是质量分数为1%Pt/Co_(2)SnO_(4)的4.15倍.此复合光催化剂光催化活性的提高主要归因于CQDs是良好的电子接受体,能有效提高光生电子和空穴对的分离效率.
【总页数】7页(P270-276)
【作者】张静;袁书芳;谷红新;袁晓;张旭红
【作者单位】河北师范大学化学与材料科学学院
【正文语种】中文
【中图分类】O643.36
【相关文献】
1.超薄碳层包覆SiC新型光催化剂的制备表征及其产氢性能
2.化学镀法制备CoP 量子点修饰g-C3N4用于光催化产氢
3.碳量子点/g-C3N4复合光催化剂的制备及光催化降解四环素性能
4.氮掺杂碳点/富氮类石墨型氮化碳复合光催化剂的制备及
产氢性能研究5.非贵金属助剂Ni2P修饰类石墨碳氮化物光催化剂增强可见光光催化产氢性能
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Enhanced Photocatalytic Activity of the Carbon Quantum Dot-Modified BiOI MicrosphereYuan Chen 1,2,Qiuju Lu 1,Xuelian Yan 1,2,Qionghua Mo 1,3,Yun Chen 1,Bitao Liu 1*,Liumei Teng 1,Wei Xiao 1,Liangsheng Ge 1and Qinyi Wang 4BackgroundThe exploration and construction of new photocatalysts with high catalytic efficiency in sunlight is a core issue in photocatalysis all the time and is also significant in solv-ing current environment and energy problems [1–3].Recently,bismuth oxyhalides (BiOX,X =Cl,Br,and I)as a novel ternary oxide semiconductor have drawn much attention because of their potential application in photo-catalysis.Among them,BiOI is photochemically stable and has the smallest band gap (about 1.7–1.9eV),which can be activated by visible light irradiation [4–6].How-ever,the narrow band gap could also lead to a quick re-combination of the photogenerated electron –hole pairs.Hence,inhibiting the recombination of the photogener-ated electron –hole pairs was the key point to enhance the photocatalytic property.Carbon quantum dot (CQD),as a novel issue of re-cently found nanocarbons,exhibits excellent photophysi-cal properties.Especially,the strong size and excitation wavelength-dependent photoluminescence (PL)behav-iors would enhance the photocatalytic properties of theCQD-based composites [7,8].Previous studies have shown that the electron-accepting and transport properties of car-bon nanomaterials provide a convenient way to separate photogenerated electrons;thus,enhanced photocatalytic performance can be achieved through the construction of semiconductor/carbon composites [9,10].Notably,the design of complex photocatalysts (TiO 2/CQDs,Ag 3PO 4/CQDs,Bi 2MoO 6/CQDs)to utilize more sun-light has been reported [11–13].Considering such re-markable properties of CQDs and the limitations of the BiOI photocatalytic system,the combination of CQDs and BiOI may be regarded as an ideal strategy to con-struct highly efficient complex photocatalytic systems.In this work,we prepared a CQD/BiOI nanocomposite photocatalyst via a facile hydrothermal process.The re-sults indicated that the CQDs were successfully com-bined with the BiOI microsphere and the introduction of CQDs could efficiently increase the concentration and the migration ratio of the photogenerated carrier,which was the key for the increased photocatalytic property.MethodsReagentsAll chemicals used in this study were of analytical grade (ChengDu Kelong Chemical Co.)and were used without*Correspondence:liubitao007@ 1Research Institute for New Materials Technology,Chongqing University of Arts and Sciences,Yongchuan,Chongqing 402160,ChinaFull list of author information is available at the end of the article©2016Chen et al.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0International License (/licenses/by/4.0/),which permits unrestricted use,distribution,andreproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.Chen et al.Nanoscale Research Letters (2016) 11:60 DOI 10.1186/s11671-016-1262-7further purification.Citric acid(C6H8O7·H2O,99.5%), ethylenediamine(C2H8N2,99%),Bi(NO3)3·5H2O(99%), KI(99%),ethylene glycol(C2H6O2,99.5%),ethanol (C2H6O,99.7%),and distilled water were used in all experiments.Synthesis of CQD-Modified BiOICQD powder was synthesized according to the literature followed by freeze drying[14].BiOI microspheres were synthesized by a facile solvothermal method.Typically, 0.4g KI and1.16g Bi(NO3)3·5H2O were dissolved in 40mL of ethylene glycol.Then,a certain content of CQD powder was added into the solution.Subsequently, the mixture was transferred to a50-mL Teflon-lined stainless steel autoclave and the reaction was kept at 160°C for12h.Finally,the resulting precipitate was col-lected,washed thoroughly with deionized water and ethanol,and dried at60°C in vacuum.Pure BiOI and CQD-modified BiOI samples with different mass ratios (0.5,1,1.5,and2wt.%)were synthesized using a similar route by tuning the content of CQDs.InstrumentsThe X-ray diffraction(XRD)patterns of the samples were recorded on a Danton TD-3500X-ray diffractometer using Cu Kαradiation(λ=1.54Å).The field-emission scanning electron microscopy(FE-SEM)measurements were carried out with a field-emission scanning electron microscope(Hitachi,SU-8020).Transmission electron microscopy(TEM)micrographs were taken with a JEOL-JEM-2010(JEOL,Japan)operated at200kV. Fourier transform infrared(FT-IR)spectra(KBr pellets) were recorded on Nicolet model Nexus470FT-IR equip-ment.X-ray photoelectron spectroscopy(XPS)analysis was performed on an ESCA Lab MKII X-ray photoelec-tron spectrometer using the Mg Kαradiation.UV-vis ab-sorption spectra of the samples were obtained on a UV-vis spectrophotometer(Hitachi,U-3900),and BaSO4powder was used as the substrate.The PL spectra were measured using a customized single-photon counting system (Beijing Zolix),A He-Ga laser(λ=325nm)was used as the excitation source.The photoelectric performance was measured using an electrochemical system(CHI-660B, China).BiOI and CQD/BiOI electrodes served as the working electrode;the counter and the reference elec-trodes were a platinum wire and a saturated Ag/AgCl electrode,respectively.A solution of0.1M NaSO4 was used as an electrolyte solution for the measure-ment,and a150-W Xe arc lamp was utilized as the light source for the photoelectrochemical(PEC)meas-urement.The photoresponse of the photocatalysts in the presence and absence of visible light was mea-sured at0.0V.Electrochemical impedance spectra (EIS)were recorded in the open circuit potential mode,and the frequency was ranged from100kHz to0.01Hz.Trapping ExperimentPotassium iodide(KI),tertbutyl alcohol(TBA),and po-tassium dichromate(K2Cr2O7)were used to trap hole,·OH,and photogenerated electrons,respectively.Photo-catalyst(0.1g)with different trapping agents was added into MO(100mL,50mg/L)aqueous solution.The scav-engers used in this research are tertbutyl alcohol(TBA, 1%)for·OH,potassium dichromate(K2Cr2O7,1%)for e−,and potassium iodide(KI,1%)for h+,respectively. Photocatalytic Activity MeasurementThe photocatalytic activities of the as-prepared samples were evaluated by the degradation of methyl orange(MO) under visible light irradiation at ambient temperature using a150-W Xe lamp with a420-nm cutoff filter as the light source.In each experiment,100mg of photocatalyst was dispersed in an MO(100mL,50mg L−1)aqueous so-lution.Prior to irradiation,the solution was continuously stirred in the dark for1h to ensure the establishment of adsorption–desorption equilibrium between the photo-catalysts and the degrading pollutants.During the pho-toreactions,the MO solutions with photocatalysts were continuously stirred with magnetometric stirrer,and a 3-mL sample solution was taken out at every10-min interval during the experiment,followed by centrifuga-tion and filtration to remove the photocatalysts.The concentrations of MO were determined by monitoring the change of optical density at465nm,with a Varian UV-vis spectrophotometer(Cary-50,Varian Co.). Results and DiscussionThe morphology of the as-prepared CQD/BiOI compos-ites was shown in Fig.1a,b.As seen,the sample was composed of uniform layered structure nanoplates and presented microsphere morphology.The diameter was about1to2μm and the thickness of the nanoplates was less than50nm.The SEM images of the other series samples were also given in Additional file1:Figure S1, and it can be seen that the adding of CQDs would not change the original morphologies of BiOI.The nitrogen adsorption–desorption isotherms and the corresponding pore size distributions of the as-obtained samples were shown in Fig.1c.According to the result,the calculated specific surface area was42m2/g.Obviously,this large specific surface area could have a positive effect on photocatalytic property[15,16].The XRD patterns of the series of CQD/BiOI compos-ites were shown in Fig.1d.It can be clearly seen that these photocatalysts were crystallized in a single phase.All the samples can be indexed to the tetragonal structure BiOI (JCPDS10-0445).However,for the CQD-modified BiOIsamples,no characteristic peak of CQDs(about26°) can be found,which should be attributed to the low CQD content in the samples.Actually,if the content was lower than5%,which was hardly characterized by XRD,similar work was also demonstrated in the previous report[12,17].For a further investigation,the TEM and HRTEM were shown in Fig.2a, b.Obviously,the nanoplates and microsphere morphology can be found in Fig.2a, which was in agreement with the SEM result before. The high-resolution image was shown in Fig.2b. Clearly,many uniformed particles were distributed on the surface of the BiOI;and in the corresponding HRTEM image,it can be seen that these particles have distinct lattice spacing.An atomic spacing (0.332nm)could be distinguished,which could be ascribed to the(002)lattice fringes of CQD.The TEM and HRTEM results were directly indicated that the CQDs were successfully modified on the BiOI microsphere.FT-IR spectra were also carried out to further characterization of CQD/BiOI(Fig.2c).The absorption band at1624cm−1should assign to the stretching modes of BiOI[12].The absorption band was located at 1384cm−1which should be attributed to the stretching modes of NO3−groups and C=C[18],and the band at 1046and880cm−1was associated with the skeletal vi-bration of sp2and sp3C–H and C–OH[12].Obviously, due to the existence of CQDs,the bond was largely enhanced,which further demonstrated the existence of CQDs in these composites.XPS spectrum was also used to study the surface properties of the CQD-modified BiOI sample as shown in Fig.2d.It can be seen that C peaks were at 284.7,286,and288.3eV,which could be assigned to the C–C bond with the sp2orbital,C–O–C bond, and C=O bond,respectively[19].As for the O1s (Additional file1:Figure S2a shown),two peaks lo-cated at530.8and531.4eV also should be ascribed to the C–O–C and C=O bond in CQDs,respectively. The Bi4f and I3d also were shown in Additional file1: Figure S2b,c,both of which were consistent with the re-ported[18,20].Before the photodegradation process,the adsorption–desorption property was tested during60min and the result was given in Additional file1:Figure S3.It can be seen that all the samples shown excellent adsorption ability,which should be attributed to the huge specific surface areas of BiOI.This adsorption ability was en-hanced with the CQD content increased,which should ascribe to the surface electron accumulated in CQDs [21].The photocatalytic activities were evaluated as shown in Fig.3a.Clearly,all the CQD-modified BiOI samples exhibited higher photocatalytic activity than pure BiOI,and the photocatalytic efficiency was 1.5wt.%>2wt.%>1wt.%>0.5wt.%>pure BiOI.For the1.5wt.%sample,it can degrade98%of MO in 50min while there is only40%of the pure BiOIimages(a,b)and nitrogen adsorption–desorption isotherms.Insert:the corresponding pore size distributions XRD patterns of the series of CQD/BiOI composites(d)images of CQD/BiOI1.5wt.%sample(a,b).FT-IR spectra of pure BiOI and CQD/BiOI1.5wt.%samples(c).thewt.%samples(d)Photocatalytic degradation of MO in the presence of pure BiOI and CQDs/BiOI materials under visible light(λ>420) reflectance spectroscopy of the pure BiOI and the series of CQD/BiOI samples(b).Transient photocurrent electrochemical impedance spectroscopy(EIS)Nyquist plot(d)of the series samplessample.The CQDs would act as an electron-accepting and transport center,which would result in a lower re-combination rate of photoinduced electron–hole pairs. The light absorption and the charge transportation and separation were the key properties of the high per-formance of CQD/BiOI photocatalyst.UV-vis spectros-copy has been proved for understanding the electronic structure of semiconductors.As can be seen in Fig.3b, the pure BiOI sample could absorb the wavelength less than750nm which indicate a strong light absorption and the result was in accordance with the previous report[4,5].Meanwhile,for the CQD-modified samples, the absorption intensity increased with the CQD content increase.The increased light absorption may generate more electron–hole pairs during the photocatalytic process.As well known,the charge separation is the most com-plex and key factor essentially determining the efficiency of photocatalysis[22].For a deep investigation,the PEC system was accompanied to investigate the photophysi-cal behaviors of photogenerated electron–hole pairs as shown in Fig.3c.It was found that the photocurrent re-sponse of all CQD/BiOI samples were higher than the pure BiOI sample,especially.As shown,the CQD/BiOI 1.5wt.%sample was nearly seven times higher than the pure BiOI.The result suggested a more efficient separ-ation and longer lifetimes of photoexcited electron–hole pairs.The EIS result(shown in Fig.3d)reflected that the impedance arc radius of CQD/BiOI was smaller than the pure BiOI under visible light,indicating an enhanced separation efficiency of the photoexcited charge carriers in CQD/BiOI.In this regard,the transient photocurrent response and EIS results revealed an analogous trend with respect to the photocatalytic activity of the sam-ples.Furthermore,the PL result also indicated that the CQD-modified BiOI could effectively decrease the recombination of the photoinduced electrons and holes (as seen in Additional file1:Figure S4).To determine the involvement of active radical species during photocatalysis,we performed a trapping experi-ment(Fig.4a)for the detection of the hydroxyl radical (·OH),hole(h+),and electron(e−)in the photocatalytic process,taking the CQD/BiOI1.5wt.%sample as an example.The degradation behavior of MO is decreased upon the addition of TBA,K2Cr2O7,and KI,respectively, validating that·OH radicals,photoexcited electrons, and h+are the main active species for MO removal. Based on the above results,the reaction mechanism diagram of CQD/BiOI photocatalysts was proposed as shown in Fig.4b.The band gap of BiOI was about 1.8eV,which can be easily excited by visible light. However,the E CB and E VB of BiOI were0.6and 2.4eV,respectively.Hence,·OH could not be pro-duced via an e−→·O2−→H2O2→·OH route.For thePhotocatalytic activity comparison of the CQD/BiOI1.5wt.%sample in different photocatalysis systems under visible light the separation and transfer of photogenerated charges in the CQD/BiOI combined with the possible reaction procedure(b).Stability tests of CQD/BiOI1.5wt.%sample(c)and the XRD pattern of the sample before and afterVB holes in BiOI,it can oxidize OH −or H 2O into ·OH due to their high potential energy;thus,it can be concluded that ·OH should be generated only via an h +→OH −/H 2O →·OH route [18].Furthermore,the photogenerated electrons would transfer to the CQDs due to their excellent electronic conductivity,which resulted in effective separation process for the photogenerated electron –hole pairs.The transferred electrons will accumulate on the CQDs and then in-hibit the recombination of the electron –hole pairs.Obviously,the enhanced photocatalytic activity can be achieved,and the CQDs would play a crucial role in this process.The photochemical and structural stability of a catalyst is important for practical applications.The stability of CQD/BiOI was tested by carrying out the photocatalytic reaction for multiple runs.The results were presented in Fig.4c.The photocatalytic activity during the sixth runs can be observed.This result demonstrated that the CQD/BiOI composites have a stable photochem-ical property.Moreover,the almost unchanged XRD spectra of CQD/BiOI before and after the stability test (Fig.4d)further indicated the phase stability of the CQD-modified BiOI photocatalysts.ConclusionsIn conclusion,CQD-modified BiOI photocatalysts were synthesized using a facile hydrothermal treatment process.After being modified by CQDs,the photocatalytic activ-ities of degradation of MO under visible light irradiation were increased greatly.The significant improvement in photocatalytic performance was attributed to the crucial role of CQDs in the samples.The CQD modification has several advantages,including enhanced light harvesting,improvement of interfacial charge transfer,and suppres-sion of charge recombination.This work provides useful information on the design and fabrication of other CQD-modified semiconductor materials.Additional FileCompeting InterestsThe authors declare that they have no competing interests.Authors ’ContributionsYC designed the experiment and wrote the paper.QL,YC,and XYcompleted the synthesis of the samples.MQ and LT carried out the series characterization of the nanocomposites.BL and WX did the analysis of the data.GL and WQ gave some revision for the grammar of the manuscript.All authors read and approved the final manuscript.AcknowledgementsThis work was supported financially by the National Natural ScienceFoundation of China (21401015),the Basic and Frontier Research Program ofChongqing Municipality (cstc2014jcyjA50012and cstc2013jcyjA20023),Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1401111and KJ1501104),Yongchuan NaturalScience Foundation (Ycstc2014nc3001and Ycstc2014nc4001),Local Colleges and Universities National College Students Innovation and Entrepreneurship Training Program (201410642001),and Foundation of Chongqing University of Arts and Sciences (Y2014CJ27and R2013CJ05).Author details 1Research Institute for New Materials Technology,Chongqing University of Arts and Sciences,Yongchuan,Chongqing 402160,China.2School of Materials Science and Engineering,Chongqing University of Technology,Banan,Chongqing 400054,China.3Faculty of Materials and Energy,Southwest University,Beibei,Chongqing 400715,China.4Department of Chemical Engineering,University of Missouri,Columbia,MO 65211-2200,USA.Received:29October 2015Accepted:14January2016References1.Fujishima A,Honda K (1972)Electrochemical photolysis of water at asemiconductor electrode.Nature 238:37–382.Wen Y,Liu BT,Zeng W,Wang YH (2013)Plasmonic photocatalysisproperties of Au nanoparticles precipitated anatase/rutile mixed TiO 2nanotubes.Nanoscale 5:9739–97463.Liu BT,Tian LL,Wang YH (2013)One-pot solvothermal synthesis of ZnSe ·xN 2H 4/GS and ZnSe/N-GS and enhanced visible-light photocatalysis.ACS Appl Mater Interfaces 5:8414–84224.Di J,Xia JX,Ge YP,Li HP,Ji HY,Xu H,Zhang Q,Li HM,Li MN (2015)Novelvisible-light-driven CQDs/Bi 2WO 6hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight.Applied Catalysis B:Environmental 168-169:51–615.Han JL,Zhu GQ,Hojamberdiev M,Peng JH,Zhang X,Liu Y,Ge B,Liu P(2015)Rapid adsorption and photocatalytic activity for Rhodamine B and Cr(VI)by ultrathin BiOI nanosheets with highly exposed {001}facets.New J Chem 39:1874–18826.Ou MY,Dong F,Zhang W,Wu ZB (2014)Efficient visible light photocatalyticoxidation of NO in air with band-gap tailored (BiO)2CO 3–BiOI solid solutions.Chem Eng J 255:650–6587.Li XY,Wang HQ,Shimizu Y,Pyatenko A,Kawaguchi K,Koshizaki N (2011)Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents.Chem Commun 47:932–9348.Li H,He X,Liu Y,Huang H,Lian S,Lee ST,Kang Z (2011)One-step ultrasonicsynthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties.Carbon 49:605–6099.Zhang YH,Tang ZR,Fu X,Xu YJ (2011)Engineering the unique 2D mat ofgraphene to achieve graphene-TiO 2nanocomposite for photocatalytic selective transformation:what advantage does graphene have over its forebear carbon nanotube?ACS Nano 5:7426–743510.Zhang LM,Diao SO,Nie YF,Yan K,Liu N,B.Dai Y,Xie Q,Reina A,Kong J,Liu ZF (2011)Photocatalytic patterning and modification of grapheme.J Am Chem Soc 133:2706–271311.Yu HJ,Zhao YF,Zhou C,Shang L,Peng Y,Cao YH,Wu LZ,Tung CH,ZhangTR (2014)Carbon quantum dots/TiO 2composites for efficient photocatalytic hydrogen evolution.J Mater Chem A 2:3344–335112.Zhang HC,Huang H,Ming H,Li HT,Zhang LL,Liu Y,Kang ZH (2012)Carbonquantum dots/Ag 3PO 4complex photocatalysts with enhancedphotocatalytic activity and stability under visible light.J Mater Chem 22:10501–1050613.Di J,Xia JX,Ji MX,Li HP,Xu H,Li HM,Chen R (2015)The synergistic role ofcarbon quantum dots for the improved photocatalytic performance of Bi 2MoO 6.Nanoscale 7:11433–1144314.Zhu SJ,Meng QN,Wang L,Zhang JH,Song YB,Jin H,Zhang K,Sun HC,Wang HY,Yang B (2013)Highly photoluminescent carbon dots for multicolor patterning,sensors,and bioimaging.Angew Chem Int Ed 125:4045–404915.Liu BT,Peng LL (2013)Facile formation of mixed phase porous TiO 2nanotubes and enhanced visible-light photocatalytic activity.Journal of Alloys and Compounds 571:145–15216.Chen Y,Liu BT,Chen JF,Tian LL,Huang L,Tu M,Tan S(2015)Structuredesign and photocatalytic properties of one-dimensional SnO2-TiO2composites.Nanoscale Research Letters10:20017.Tang D,Zhang HC,Huang H,Liu RH,Han YZ,Liu Y,Tong CY,Kang ZH(2013)Carbon quantum dots enhance the photocatalytic performance of BiVO4with different exposed facets.Dalton Trans42:6285–628918.Dong GH,Ho WK,Zhang LZ(2015)Photocatalytic NO removal on BiOIsurface:the change from nonselective oxidation to selective oxidation.Applied Catalysis B:Environmental168:490–49619.Yu Y,Kwak SY(2012)Carbon quantum dots embedded with mesoporoushematite microsphere as efficient visible light-active photocatalysts.J Mater Chem22:834520.Gurunathan K(2004)Photocatalytic hydrogen production using transitionmetal ions-dopedγ-Bi2O3semiconductor particles.Int J Hydrogen Energy 29:933–94021.Liu JC,Bai HW,Wang YJ,Liu ZY,Zhang XW,Sun DD(2010)Self-assemblingTiO2nanorods on large graphene oxide sheets at a two–phase interfaceand their Anti-recombination in photocatalytic applications.Adv FunctMater20:4175–418122.Di J,Xia JX,Ji MX,Wang B,Yin S,Zhang Q,Chen ZG,Li HM(2015)Carbon quantum dots modified BiOCl ultrathin nanosheets withenhanced molecular oxygen activation ability for broad spectrumphotocatalytic properties and mechanism insight.ACS Appl MaterInterfaces7:20111–20123。

相关文档
最新文档