九年级数学下册 7.6 用锐角三角函数解决问题课件3 (新版)苏科版
苏科版九年级下册数学第7章 阶段核心方法 求锐角三角函数值的七种常用方法
在 Rt△BFC 中,BC=8,CF=10, 由勾股定理得 BF=6. ∴tan∠BCF=BBFC=34. ∴tan∠AFE=tan∠BCF=34.
A.1
B.
3 2
C.
2 2
D.12
5 (1)已知∠A是锐角,求证:sin2A+cos2A=1;
证明:如图,在 Rt△ABC 中,sin A=ac,cos A=bc, 根据勾股定理,得 a2+b2=c2. ∴sin2A+cos2A=ac2+bc2=a2+c2 b2=1.
(2)解已:知如∠图A 是,锐在角Rt,△且ABsCin中A,·cossinAA==12ac,,求co∠s AA=的bc度,数根. 据勾股定理,得 a2+b2=c2. ∵sin A·cos A=12,∴ac·bc=12, ∴c2=2ab,∴a2+b2=2ab,即(a-b)2=0,∴a=b. 在 Rt△ABC 中,tan A=ab=1,∴∠A=45°.
上的点F处,求tan∠AFE的值.
解:根据题图,知有∠AFE+∠EFC+∠BFC=180°, 根据折叠的性质,知∠EFC=∠D=90°, ∴∠AFE+∠BFC=90°. 在Rt△BCF中,∠BCF+∠BFC=90°, ∴∠AFE=∠BCF. 根据矩形ABCD,知CD=AB=10. 根据折叠的性质,知CF=CD=10.
【点拨】
如图,在 Rt△ACB 中,∠C=90°,∠ABC=45°,延长
CB 使 BD=AB,连接 AD,得∠D=22.5°,
设 AC=BC=1,则 AB=BD= 2,
∴tan 22.5°=CADC=1+1
= 2
2-1.
故选 B.
4 若∠A 为锐角,且 sin A= 23,则 cos A=( D )
∴AE=DE=72
苏科版九年级下册数学:7.6 用锐角三角函数解决问题 课件 (共29张PPT)
方法模型
(3)在根据边角关系不可直接进行计算时, 可运用 设未知数列方程 的方法求解,
作业:见《升学考试指导》
从分析问题的数量关系入手,适当设定未知 数,把所研究的数学问题中已知量和未知量之间 的数量关系,转化为方程或方程组的数学模型,
从而使问题得到解决的思维方法—— 方程思想
面积不变性 相似性质 勾股定理 直角三角形中边角关系
1、直角三角形中5个元素的关系
在Rt△ABC中,∠C=90°,则: (1)三边关系:a2+b2=____c2__; (2)两锐角关系:∠A+∠B=___9_0_°_; (3)边与角关系:sinA=___ac ___,sinB=__bc____,
3.(选做题)日照间距系数反映了房屋日照情况,如图①,当前后
房屋都朝向正南时,日照间距系数 L : H H1 ,其中L为楼间水平
距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度. 如图②,山坡EF朝北,EF长为15m,坡度为 i 1: 0.75 ,山坡顶部 平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m. (1)求山坡EF的水平宽度FH; (2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗 台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于 1.25,底部C距F处至少多远?
3、仰角和俯角
o
仰角 俯角
水平线
视线 当从低处观测高处的目标时,视线与水平线 所成的锐角称为仰角.
当从高处观测低处的目标时,视线与水平线 所成的锐角称为俯角.
4、方向角(或方位角)说出B在A的 北偏40°.B西●
●
B
北
●B
4400°°
●
A
65°
东
九下数学课件仰角、俯角和方向角有关的问题(课件)
(参考数据:sin 43°≈0.68,cos 43°≈0.73,tan 43°≈0.93) A.23米 B.24米 C.24.5米 D.25米
题型一 仰角、俯角问题
解:过点E作EF⊥CD于点F,过点E作EM⊥AC于点M,如图. ∵斜坡DE的坡度(或坡比)i=1:2.4,∴设EF=x米,则DF=2.4x米. 在Rt△DEF中,DE=78米,∵EF2+DF2=DE2,∴x2+(2.4x)2=782, 解得x=30(负值舍去),∴EF=30米,DF=72米.∴CF=DF+DC=72+78=150(米). ∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形.∴EM=CF=150米, CM=EF=30米.在Rt△AEM中,∵∠AEM=43°, ∴AM=EM·tan 43°≈150×0.93=139.5(米), ∴AC=AM+CM≈139.5+30=169.5(米). ∴AB=AC-BC≈169.5-144.5=25(米). 故选D.
为50°,则建筑物AB的高度约为( D )
(参考数据:sin 50°≈0.77;cos 50°≈0.64;tan 50°≈1.19) A.69.2米 B.73.1米 C.80.0米 D.85.7米
题型一 仰角、俯角问题
【变式2】如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操
作:
①在点C处放置测角仪,测得旗杆顶部的仰角∠ACE=α; ②量得测角仪的高度CD=a;
题型一 仰角、俯角问题
【变式4】如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的
俯角为60°,已知楼高AB为30米,则荷塘的宽CD为__________米(结果保留根
九下数学课件坡度和坡角有关的问题(课件)
【变式 2】如图,河 坝横断面迎水 坡 AB 的坡比为 1: 2 (坡
比是坡面的铅直高度 BC 与水平宽度 AC 之比),坝高 BC=
.
4m,则坡面 AB 的长度是
_____m
题型一 一个坡度问题
75m
【变式 4】如图,在平地上种植树木时,要求 株距(相邻两棵
树之间的水 平距离)为 10m,若在坡度为 i=1:2.5 的山坡上种
题型三 坡度修改问题
【变式 1】自开展“全民 健身运动”以来,喜欢户外步行健身的人越来越多.为方便群众
步行健身,某地政府决定对一段如图 1 所示的坡路进行改造.如图 2 所示,改造前的斜
坡 AB=200 米,坡度为 1: 3 ;将斜坡 AB 的高度 AE 降低 AC=20 米后,斜坡 AB 改造为
【例 3】为了学生的安全,某校决定将一段如图所示的步梯路段进
行改造.已知四边形 ABCD 为矩形,DE=10 m,其坡度为 i1=1∶ 3,
将步梯 DE 改造为斜坡 AF,其坡度为 i2=1∶4,则斜坡 AF 的长是
20.62mຫໍສະໝຸດ ________.(结果精确到 0.01 m,参考数据: 3≈1.732, 17≈4.123)
计算判断:
3
当 sin α= ,木箱底部顶点 C 与坡面底部点 A 重合时,
5
木箱上部顶点 E 会不会触碰到汽 车货厢顶部?
题型四 坡度安全问题
又∵∠EKF=∠AHB=90°,∴△EFK∽△ABH.
∴
EF EK
1.6 EK
= ,∴ = .
AB AH
1 0.8
解得 EK=1.28.
∴BJ+EK=0.6+1.28=1.88.
苏科版数学九年级下册7.6《锐角三角函数的简单应用》讲教学设计
苏科版数学九年级下册7.6《锐角三角函数的简单应用》讲教学设计一. 教材分析苏科版数学九年级下册7.6《锐角三角函数的简单应用》这一节主要介绍了锐角三角函数的概念和简单应用。
学生通过学习这一节内容,可以进一步理解锐角三角函数的定义和性质,并能运用到实际问题中。
教材通过例题和练习题的形式,帮助学生掌握锐角三角函数的应用方法。
二. 学情分析学生在学习这一节内容前,已经学习了锐角三角函数的定义和性质,但对函数的应用可能还不够熟悉。
因此,在教学过程中,需要帮助学生理解和掌握锐角三角函数的应用方法,并能够将其运用到实际问题中。
三. 教学目标1.知识与技能:学生能够理解锐角三角函数的概念,掌握其应用方法,并能够解决实际问题。
2.过程与方法:学生通过观察、分析和实践,培养解决问题的能力。
3.情感态度价值观:学生能够积极参与学习,增强对数学的兴趣和信心。
四. 教学重难点1.重点:学生能够理解锐角三角函数的概念,掌握其应用方法。
2.难点:学生能够将锐角三角函数运用到实际问题中,解决问题。
五. 教学方法1.情境教学法:通过设置实际问题情境,激发学生的学习兴趣,引导学生主动参与学习。
2.案例教学法:通过分析例题和练习题,让学生掌握锐角三角函数的应用方法。
3.小组合作学习:通过小组讨论和合作,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教具准备:准备多媒体教学设备,如投影仪和计算机等。
2.教学资源:准备相关的例题和练习题,以及教学PPT。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑工人测量高度等,引入锐角三角函数的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示锐角三角函数的定义和性质,引导学生观察和分析。
3.操练(10分钟)让学生独立完成教材中的例题,教师进行个别指导,帮助学生理解和掌握锐角三角函数的应用方法。
4.巩固(10分钟)学生分组讨论,共同完成教材中的练习题,教师巡回指导,巩固学生对锐角三角函数应用的理解和掌握。
九下7.6锐角三角函数的简单应用(1)
§7.6 锐角三角函数的简单应用(1) (教案)备课时间: 主备人:班级__________ 姓名__________ 学号_________【知识要点】1.能把实际问题抽象为几何问题,借助直角三角形、锐角三角函数把已知量与未知量联系在一起解决实际问题。
2.构造直角三角形是解决这类问题重要辅助线。
【典型例题】1.“五一”节,小明和同学一起到游乐场游玩. 游乐场的大型摩天轮的半径为20m,旋转1周需要12min.小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,经过2min 后,小明离地面的高度是多少?(1).摩天轮启动多长时间后,小明离地面的高度将首次达到10m?(2).小明将有多长时间连续保持在 离地面10m 以上的空中?2.1.单摆的摆长AB 为90cm,当它摆动到AB’的位置时, ∠BAB’=11°,问这时摆球B’ 较最低点B 升高了多少(精确到1cm)?sin110.191︒≈cos110.982︒≈tan110.194︒≈sin110.191︒≈cos110.982︒≈tan110.194︒≈3.已知跷跷板长4m,当跷跷板的一端碰到地面时,另一端离地面1.5m.求此时跷跷板与地面的夹角(精确到0.1°).4.如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?课后练习:【基础演练】1.如图,秋千链子的长度为3m ,当秋千向两边摆动时,两边的摆动角度均为30º。
求它摆动至最高位置与最低位置的高度之差(结果保留根号).2.某商场门前的台阶截面如图所示.已知每级台阶的宽度(如CD)均为30cm ,高度(如BE)均为20cm .为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9°.请计算从斜坡起点A 到台阶前的点B 的水平距离.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)3.某大型超市为方便顾客购物,准备在一至二楼之间安装电梯,如图所示,楼顶与地面平行。
九年级(下)数学教案:锐角三角函数的简单应用(全3课时)
主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。
从图形可以看出ACBCCACB'''',即tanA l>tanA。
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
新授:坡度的概念,坡度与坡角的关系。
如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。
坡面与水平面的夹角叫做坡角。
从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。
和坝底宽AD。
(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。
坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。
第7章-专题16用锐角三角函数解决问题-同步学与练(含解析)-数学苏科版九年级下册
专题16用锐角三角函数解决问题(5个知识点4种题型3个中考考点)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.坡度、坡角问题(重点)知识点2.仰角、俯角问题(重点)知识点3.方向角问题知识点4.解直角三角形的实际应用(重点)知识点5.对实际测量问题的设计(难点)【方法二】实例探索法题型1.利用锐角三角函数解决实际生活中的问题题型2.利用锐角三角函数解航线问题题型3.利用锐角三角函数进行方案设计题型4.利用锐角三角函数解决与圆有关的实际应用问题【方法三】仿真实战法考法1.仰角、俯角问题考法2.方向角问题考法3.坡度问题【方法四】成果评定法【学习目标】1.了解坡角、坡度、仰角、俯角、方向角等概念,并能在具体问题中正确运用.2.会用解直角三角形的有关知识来解决某些简单的实际问题,从而进一步把形和数结合起来.3.能把实际问题转化为数学问题,进一步体会三角函数在解决实际问题过程中的应用,增强应用数学的意识和解决问题的能力.【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.坡度、坡角问题(重点)1.如图,坡面的铅垂高度(A)和水平宽度(B)的比叫做坡面的坡度(或坡比),记作A,即B.坡度通常写成DC的形式,如i=1︰1.5.2.坡面与水平面的夹角叫做坡角,记作B.坡度C与坡角B之间的关系:B.【例1】.(2023秋•盘州市期中)1.某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示.AE为台面,AC垂∠为43︒,坡长AB为2m.为保障安直于地面,AB表示平台前方的斜坡.斜坡的坡角ABC全,又便于装卸货物,决定减小斜坡AB的坡角,AD是改造后的斜坡(D在直线BC上),∠为31︒.求斜坡AD底端D与平台AC的距离CD.(结果精确到0.1m)【参考数坡角ADC据:sin430.68cos430.73ta430.93,,】︒=︒=︒=n,,;sin310.52cos310.86tan310.60︒=︒=︒=知识点2.仰角、俯角问题(重点)1.水平线:水平面上的直线以及和水平面平行的直线.2.铅垂线:垂直于水平面的直线,我们通常称为铅垂线.3.在测量时,如图,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,视线在水平线下方的角叫做俯角.【例2】.(2023秋•成都期中)2.如图,一座古塔座落在小山上(塔顶记作点A,其正下方水平面上的点记作点B),小李站在附近的水平地面上,他想知道自己到古塔的水平距离,便利用无人机进行测量,但由于某些原因,无人机无法直接飞到塔顶进行测量,因此他先控制无人机从脚底(记为点C)出发向右上方(与地面成45°,点A,B,C,O在同一平面)的方向匀速飞行4秒到达空中O点处,再调整飞行方向,继续匀速飞行8秒到达塔顶,已知无人机的速度为5米/秒,∠= ,求小李到古塔的水平距离即BC的长. (结果精确到1m,参考数据:75AOC≈≈)1.73知识点3.方向角问题1.方向角:以观测者的位置为中心,将正北或正南方向作为起始方向,旋转到目标的方向线所成的小于90°的角,通常表达成北(南)偏东(西)* 度.若正好为45°,则表示为西(东)南(北)方向.2.方位角:从标准方向的北端起,顺时针方向到直线的水平角称为该直线的方位角.方位 .角A的取值范围为0360θ≤<【例3】.(2023秋•九龙坡区校级月考)3.如图,海岸边上有三个观测站,,A B C ,观测站B 在观测站A 的东北方向,观测站C 在观测站B 的正东方向,观测站,B C 之间的距离为30海里.某天,观测站,,A B C 同时收到一艘轮船在D 处发出的求救信号,经分析,D 在观测站C 的南偏东15︒方向,在观测站B 的东南方向,在观测站A 的正东方向.(1)求CD 的长度.(结果精确到个位)(2)目前只有观测站A 与B 配备了搜救艇,搜救艇航速为30海里/时.收到求救信号后,因观测站B 的搜救艇在检修,接到任务后不能马上出发,需30分钟后才能出发,而且必须先去C 处,才能再去D 处(在C 处停留时间可忽略不计);而观测站A 的搜救艇接到任务后可马上出发,并直接到达D 处.请问哪一个观测站的搜救艇可以更快到达D 处?(参考数据:1.732≈≈)知识点4.解直角三角形的实际应用(重点)【例4】.(2023•秦都区校级模拟)4.菏泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB 的长为8米,更换后的电梯坡面为AD ,点B 延伸至点D ,求BD的长.(结果精确到0.1米.参考数据:sin 370.60,cos370.80,tan 37 1.73≈≈≈≈︒︒︒)知识点5.对实际测量问题的设计(难点)【例5】.(2023秋•大东区期末)5.如图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m =AB ,0.6m BC =,123ABC ∠=︒,该车的高度 1.7m AO =.如图2,打开后备箱,车后盖ABC 落在AB C ''处,AB '与水平面的夹角27B AD '∠=︒.(1)求打开后备箱后,车后盖最高点B '到地面l 的距离;(2)若小明爸爸的身高为1.83m ,他从打开的车后盖C 处经过,有没有碰头的危险请说明理由.(结果精确到0.01m ,参考数据:sin 270.454︒≈,cos 270.891︒≈,tan 270.510︒≈,1.732)≈【方法二】实例探索法题型1.利用锐角三角函数解决实际生活中的问题(2023秋•长春期末)6.在综合与实践活动中,要利用测角仪测量塔的高度.如图,塔AB 前有一座高为3m 的观景台DE ,已知30DCE ∠=︒,点E C A 、、在同一条水平直线上.某学习小组在观景台C 处测得塔顶部B 的仰角为45︒,在观景台D 处测得塔顶部B 的仰角为27︒.求塔AB 的高度.【参考数据:tan 27 1.7︒==】.(2023秋•闵行区月考)7.小明想利用建筑CD 玻璃幕墙的反射作用来测建筑AB 的高度.如图所示,他先在建筑AB 的底部A 处用测角仪测得其顶部B 在建筑CD 玻璃幕墙上的反射点E 的仰角为α,然后他沿AC 前进了10米到达点F 处,再用测角仪测得建筑AB 的顶部B 在建筑CD 玻璃幕墙上的反射点G 的仰角为β.已知1tan 3α=,sin 13β=,测角仪置于水平高度1.5米的M 、N 处.求建筑AB 的高度.题型2.利用锐角三角函数解航线问题(2023上·山东东营·九年级统考期中)8.如图,灯塔A 周围12海里内有暗礁.一渔船由东向西航行至B 处,测得灯塔A 在北偏西58°方向上,继续航行8海里后到达C 处,测得灯塔A 在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin 320.530︒≈,cos320.848︒≈,tan 320.625︒≈,sin 580.848︒≈,cos580.530︒≈,tan 58 1.6︒≈)(2023上·河北保定·九年级校考阶段练习)9.嘉淇看到这样一道题目:如图,某巡逻船在A 处测得一艘敌舰在北偏东31︒的B 处,卫星测得AB 相距6海里,巡逻船静止不动,6分钟后测得该敌舰在巡逻船的北偏东57.6︒的C 处,此时卫星信号突然中断,已知该敌舰的航速为30海里/小时.(结果保留整数,参考数据:tan310.6︒≈,tan 57.6 1.6︒≈,tan 26.60.5≈° 2.236≈)嘉淇过点C 作CD AB ⊥于D ,设CD x =海里,请你帮她接着解决以下问题:(1)BD =______里(用含用x 的代数式表示);(2)求敌舰在C 处时与巡逻船的距离.题型3.利用锐角三角函数进行方案设计(2023•东台市一模)10.图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关;图2是其俯视图简化示意图,已知轨道120AB cm = ,两扇活页门的宽60OC OB cm == ,点B 固定,当点C 在AB 上左右运动时,OC 与OB 的长度不变(所有结果保留小数点后一位).(1)若50OBC ∠=︒,求AC 的长;(2)当点C 从点A 向右运动60cm 时,求点O 在此过程中运动的路径长.(参考数据:sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π取3.14)图1 图2(2023•洪泽区二模)11.某班学生到工厂参加劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10cm AB =,5cm =BC .求零件的截面面积.(参考数据:sin 530.80︒≈,cos530.60︒≈)(2023•滨湖区一模)12.如图,某工程队从A 处沿正北方向铺设了184米轨道到达B 处.某同学在博物馆C 测得A 处在博物馆C 的南偏东27︒方向,B 处在博物馆C 的东南方向.(参考数据:sin 270.45︒≈︒,cos270.90︒≈︒,tan 270.50︒= 2.45=.)(1)请计算博物馆C 到B 处的距离;(结果保留根号)(2)博物馆C 周围若干米内因有绿地不能铺设轨道.某同学通过计算后发现,轨道线路铺设到B 处时,只需沿北偏东15︒的BE 方向继续铺设,就能使轨道线路恰好避开绿地.请计算博物馆C 周围至少多少米内不能铺设轨道.(结果精确到个位)(2023•苏州)13.四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,,,BE CD GF 为长度固定的支架,支架在,,A D G 处与立柱AH 连接(AH 垂直于MN ,垂足为H ),在,B C 处与篮板连接(BC 所在直线垂直于MN ),EF 是可以调节长度的伸缩臂(旋转点F 处的螺栓改变EF 的长度,使得支架BE 绕点A 旋转,从而改变四边形ABCD 的形状,以此调节篮板的高度).已知,208cm AD BC DH ==,测得60GAE ∠=︒时,点C 离地面的高度为288cm .调节伸缩臂EF ,将GAE ∠由60︒调节为54︒,判断点C 离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8,cos540.6︒≈︒≈)题型4.利用锐角三角函数解决与圆有关的实际应用问题(2023•建湖县三模)14.水乡建湖小桥多.桥的结构多为弧形的桥拱,弧形桥拱和平静的水面构成了一个美丽的弓形(图①).我校数学兴趣小组同学研究如何测量圆弧形拱桥中桥拱圆弧所在圆的半径问题,将桥拱记为弧AB ,弦AB 为水平面,设弧AB 所在圆的半径为r ,建立了数学模型,得到了多个方案.(1)如图②,从点A 处测得桥拱上点C 处的仰角为30︒,BC a =,则r = .(用含a 的代数式表示)(2)如图③,在实地勘测某座拱桥后,同学们记录了下列数据:50B ∠=︒,8.8AC =米,求半径r (结果精确到0.1).(参考数据:sin 200.34cos 200.94tan 200.36sin 500.77,cos500.64tan 50 1.19︒≈︒≈︒≈︒≈︒≈︒≈,,,,)(3)如图④,在弧AB 上任取一点C (不与A B 、重合),作CD AB ⊥于点D ,若2CD =,3BD =,8AD =,求r 的值.【方法三】 仿真实战法考法1.仰角、俯角问题(2023•南通)15.如图,从航拍无人机A 看一栋楼顶部B 的仰角α为30︒,看这栋楼底部C 的俯角β为60︒,无人机与楼的水平距离为120m ,则这栋楼的高度为( )A.B.C.D.(2023•淮安)16.根据以下材料,完成项目任务,项目测量古塔的高度及古塔底面圆的半径测量工具测角仪、皮尺等测量 说明:点Q 为古塔底面圆圆心,测角仪高度15m AB CD ==.,在B D 、处分别测得古塔顶端的仰角为3245,9m BD ︒︒=、,测角仪CD 所在位置与古塔底部边缘距离12.9m DG =.点B D G Q 、、、在同一条直线上.参考数据sin320.530,cos320.848,tan320.625︒≈︒≈︒≈项目任务(1)求出古塔的高度.(2)求出古塔底面圆的半径.(2023•泰州)17.如图,堤坝AB 长为10m ,坡度i 为1:0.75,底端A 在地面上,堤坝与对面的山之间有一深沟,山顶D 处立有高20m 的铁塔CD .小明欲测量山高DE ,他在A 处看到铁塔顶端C 刚好在视线AB 上,又在坝顶B 处测得塔底D 的仰角α为2635︒'.求堤坝高及山高DE .(sin 26350.45'︒≈,cos 26350.89'︒≈,tan 26350.50'︒≈,小明身高忽略不计,结果精确到1m )考法2.方向角问题(2022•南京)18.如图,灯塔B 位于港口A 的北偏东58︒方向,且A ,B 之间的距离为30km ,灯塔C 位于灯塔B 的正东方向,且B ,C 之间的距离为10km .一艘轮船从港口A 出发,沿正南方向航行到达D 处,测得灯塔C 在北偏东37︒方向上,这时,D 处距离港口A 有多远(结果取整数)?(参考数据:sin 580.85︒≈,cos580.53︒≈,tan 58 1.60︒≈,sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)考法3.坡度问题(2023•淄博)19.如图,与斜坡CE 垂直的太阳光线照射立柱AB (与水平地面BF 垂直)形成的影子,一部分落在地面上,另一部分落在斜坡上.若2BC =米,8.48CD =米,斜坡的坡角32ECF ∠=︒,则立柱AB 的高为 米(结果精确到0.1米).科学计算器按键顺序计算结果(已取近似值)0.5300.8480.625(2023•深圳)20.爬坡时坡角与水平面夹角为α,则每爬1m 耗能()1.025cos J α-,若某人爬了1000m ,该坡角为30° 1.732≈ 1.414≈)( )A .58JB .159JC .1025JD .1732J(2023•辽宁)21.暑假期间,小明与小亮相约到某旅游风景区登山,需要登顶600m 高的山峰,由山底A 处先步行300m 到达B 处,再由B 处乘坐登山缆车到达山顶D 处.已知点A ,B .D ,E ,F 在同一平面内,山坡AB 的坡角为30︒,缆车行驶路线BD 与水平面的夹角为53︒(换乘登山缆车的时间忽略不计)(1)求登山缆车上升的高度DE ;(2)若步行速度为30m/min ,登山缆车的速度为60m/min ,求从山底A 处到达山顶D 处大约需要多少分钟(结果精确到0.1min )(参考数据:sin 530.80cos530.60tan 53 1.33︒≈︒≈︒≈,,)(2023•大庆)22.某风景区观景缆车路线如图所示,缆车从点A 出发,途经点B 后到达山顶P ,其中400AB =米,200BP =米,且AB 段的运行路线与水平方向的夹角为15︒,BP 段的运行路线与水平方向的夹角为30︒,求垂直高度PC .(结果精确到1米,参考数据:sin150.259︒≈,cos150.966︒≈,tan150.268︒≈)【方法四】 成果评定法一、选择题(共5小题)(2023•苏州一模)23.如图,为测楼房BC 的高,在距离楼房30米的A 处测得楼顶的仰角为α,则楼高BC 为( )A .30tan α米B .30tan α米C .30sin α米D .30sin α米(2023秋•沛县校级月考)24.如图,滑雪场有一坡角20︒的滑雪道,滑雪道AC 长为200米,则滑雪道的坡顶到坡底的竖直高度AB 的长为( )米.A .200cos 20︒B .200sin 20︒C .200cos 20︒D .200sin 20︒(2023秋•淮阴区期中)25.如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC a =米,35PCA ∠=︒,则小河宽PA 等于( )A .sin 35a ⋅︒米B .sin 55a ⋅︒米C .tan 35a ⋅︒米D .tan 55a ⋅︒米(2023•梁溪区校级二模)26.小明家的花洒的实景图及其侧面示意图分别如图1、图2所示,花洒安装在离地面高度160厘米的A 处,花洒AD 的长度为20厘米.已知花洒与墙面所成的角120BAD ∠=︒,当花洒喷射出的水流CD 与花洒AD 成90︒的角时,水流喷射到地面的位置点C 与墙面的距离为( )A B .200厘米C D .170厘米(2023秋•江阴市月考)27.如图是某区域的平面示意图,码头A 在观测站B 的正东方向,码头A 的北偏西60°方向上有一小岛C ,小岛C 在观测站B 的北偏西15°方向上,码头A 到小岛C 的距离AC 为)1海里.观测站B 到AC 的距离BP 是( )AB .1C .2D 二、填空题(共5小题)(2023秋•通州区校级月考)28.如图,矩形ABCD 是供一辆机动车停放的车位示意图,已知2m BC =, 5.8m CD =,30DCF ∠=o ,则车位所占的宽度EF 为 米. 1.7≈,结果精确到1m)(2023秋•靖江市期中)29.如图是某书店扶梯的示意图,扶梯AB的坡度i=王老师乘扶梯从扶梯底端A以0.5米/秒的速度用时40秒到达扶梯顶端B,则王老师上升的铅直高度BC为米.(2023•靖江市模拟)30.如图,斜面AC的坡度(CD与AD的比)为1:2,BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为.(2023秋•无锡月考)31.“十一”假期,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为15m,旋转1周需要24min(匀速).小明乘坐最底部(离地面约1m)的车厢按逆时针方向旋转开始1周的观光,启动10min时,小明离地面的高度是m.(2023秋•海门市校级月考)32.已知B港口位于A观测点北偏东45︒方向,且其到A观测点正北风向的距离BM的长为,一艘货轮从B港口沿如图所示的BC方向航行到达C处,测得C处位于A观测点北偏东75︒方向,则此时货轮与A 观测点之间的距离AC 的长为 km .三、解答题(共7小题)(2023秋•通州区校级月考)33.2022年举世瞩目的北京冬奥会的成功举办掀起了全民冰雪运动的热潮.图1、图2分别是一名滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿ED 与斜坡AB 垂直,大腿EF 与斜坡AB 平行,G 为头部,假设G ,E ,D 三点共线且头部到斜坡的距离GD 为1.05m ,上身与大腿夹角53GFE ∠=︒,膝盖与滑雪板后端的距离EM 长为0.9m ,30EMD ∠=︒(1)求此滑雪运动员的小腿ED 的长度;(2)求此运动员的身高.(运动员身高由GF EF DE 、、三条线段构成;参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)(2023•灌云县校级模拟)34.如图,建筑物BC 的顶部有一个广告牌AB ,从距离建筑物15米的D 处测得广告牌的顶部A 的仰角为39︒,测得广告牌的底部B 的仰角为30︒,求广告牌AB 的高度(结果保留一位小数).参考数据:sin 390.63︒≈,cos390.78︒≈,tan 390.81︒≈ 1.73≈.(2022秋•高邮市期末)35.如图1是一辆汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,当旋转角为n ︒时,箱盖DCE 落在DC E ''的位置(如图2),100cm DC =,20cm CE =,40cm EB =.(1)若72n =,求点C 、C '两点之间的距离;(参考数据:sin360.59︒≈,cos360.81︒≈)(2)若60n =,求E 、E '两点之间的距离.(2023•阜宁县二模)36.一架无人机沿水平方向飞行进行测绘工作,在点P 处测得正前方水平地面上某建筑物AB 的顶端A 的俯角为24︒.无人机保持飞行方向不变,继续飞行48米到达点Q 处,此时测得该建筑物底端B 的俯角为66︒.已知建筑物AB 的高度为36米,求无人机飞行时距离地面的高度.(参考数据:2sin 245≈ ,9cos 2410︒≈,9tan 2420︒≈,9sin 6610︒≈,2cos 665︒≈,9tan 664︒≈)(2023秋•泰兴市期中)37.随着互联网的发展,网上购物几乎成为了人们日常生活中不可或缺的一部分,这也使得快递行业市场规模呈现出爆发式的增长.为了方便居民领取快递,小明的爸爸计划在一条笔直的公路l 旁设一个菜鸟驿站点P ,使驿站到公路同侧的A 、B 两个小区的距离相等.(1)如图 1,当A 小区到公路l 的距离300m AC =, B 小区到公路l 的距离400m BD =,且700m CD =时,求驿站点P 到A 小区的距离;(2)如图2,若A 、B 两个小区到公路l 的距离均为a ,CD 的长度为2a ,求APB ∠的度数;(3)爱动脑的小明通过推理发现:当A 小区到公路l 的距离a 与B 小区到公路l 的距离b 之和等于CD 的长度时,APB ∠始终是直角. 请利用图3加以说明.(2023秋•启东市期中)38.如图,上午8时,一条船从A 处测得灯塔C 在北偏西30°,以15海里/时的速度向正北航行,10时到达B 处,测得灯塔C 在北偏西60°,若船继续向正北方向航行,求轮船何时到达灯塔C 的正东方向D 处?(2023•栖霞区校级三模)39.某校“综合与实践”活动小组的同学要测量两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在两楼之间上方的点O 处,点O 距地面AC 的高度为60m ,此时观测到楼AB 底部点A 处的俯角为70︒,楼CD 上点E 处的俯角为30︒,沿水平方向由点O 飞行24m 到达点F ,测得点E 处俯角为60︒,其中点A ,B ,C ,D ,E ,F ,O 均在同一竖直平面内.请根据以上数据求楼AB 与CD 之间的距离AC 的长.(结果精确到1m ,参考数据:sin 700.94︒≈,cos 700.34︒≈,tan 70 2.75︒≈ 1.73)≈参考答案:1.2.3m【分析】本题考查了解直角三角形的应用,首先在Rt ABC △中,求出AC 的长,再在Rt ADC ,由tan AC ADC CD ∠=,即可求出CD 的长,解答本题的关键是利用三角函数知识解直角三角形.【详解】解:在Rt ABC △中,sin AC ABC AB∠=,()sin4320.68 1.36m AC AB ∴=⋅︒=⨯=,在Rt ADC 中,tan AC ADC CD ∠=, ∴()1.36 2.3m tan 310.60AC CD ==≈︒,∴斜坡AD 底端D 与平台AC 的距离CD 约为2.3m .2.21【分析】过点O 作OD BC ⊥,交BC 的延长线于点D ,过点O 作OE AB ⊥,垂足为E ,根据题意可得:40AO =米,20OC =米,OE BD =,OE BD ∥,从而可得45EOC OCD ∠=∠=︒,进而可得30AOE ∠=︒,然后在Rt OCD △中,利用锐角三角函数的定义求出CD 的长,再在Rt AOE 中,利用锐角三角函数的定义求出OE 的长,从而求出BD 的长,最后利用线段的和差关系进行计算,即可解答.本题考查了解直角三角形的应用−仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【详解】解:过点O 作OD BC ⊥,交BC 的延长线于点D ,过点O 作OE AB ⊥,垂足为E ,由题意得:8540AO =⨯=(米),4520OC =⨯=(米),OE BD =,OE BD∥∴45EOC OCD ∠=∠=︒,∵75AOC ∠=︒,∴30AOE AOC EOC ∠=∠-∠=︒,在Rt OCD △中, cos 4520CD OC =⋅︒==(米),在Rt AOE 中,cos3040OE AO =⋅︒==,∴OE BD ==,∴21BC BD CD =-=-≈(米),∴小李到古塔的水平距离即BC 的长约为21米.3.(1)42(海里);(2)A 观测站搜救艇可以更快到达D 处.【分析】(1)本题主要考查锐角三角函数的实际应用,解答本题的关键在于找到相应边与角的对应关系,会正确处理15︒是解答本题的重点也是难点,再用已知条件结合勾股定理去求解即可.(2)本题考查运用锐角三角函数解决问题的实际应用,解答本题的关键在于运用小问(1)的信息和结论,求出两观测站的搜救艇所经过的路程,及所用时间即可解答本题.【详解】(1)解:预备知识:如图1,在以90B Ð=°,15C ∠=︒,1AB =的Rt ABC △中,作AD BC =.∵15C DAC ∠=∠=︒∴30ADB C DAC ∠=∠+∠=︒∴在Rt △ABD 中,1AB =,∴由锐角三角函数可得BD =2AD CD ==,∴2BC =+,在Rt ABC △中,tan tan152AB C BC ∠=︒===.如图,过点D 作ED BC ⊥于点E ,由题意可得,45A HBD BDH ∠=∠=∠=︒,15FCD DC ∠=∠E =︒30BC HF ==.设CE x =,则30BE BH ED x ===+,∴在Rt EDC 中,tan tan152CE CDE ED∠=︒==∴(2CE ED =⋅∴(30)(2x x =+1)x =-,∴1)CE =,301)1)ED =+=.由勾股定理得,222CE ED CD +=∴42CD ==≈(海里).(2)由(1)知,1)BH ED ==,∴从A 观测站行驶距离:21)AD BH ==(海里)时间:11) 2.732t ==≈(小时);从B 观测站行驶距离1)BC CD +=(海里)时间:20.5 1.5 2.914t ==≈(小时)∵12t t <,∴A 观测站的搜救艇可以更快到达D 处.4.约为1.9米【分析】根据正弦的定义求出AC ,根据余弦的定义求出BC ,根据正切的定义求出CD ,结合图形计算,得到答案.【详解】解:在Rt △ABC 中,AB =8米,∠ABC =37°,则AC =AB •sin ∠ABC ≈8×0.60=4.8(米),BC =AB •cos ∠ABC ≈8×0.80=6.40(米),在Rt △ADC 中,∠ADC =30°,则CD= 4.8tan tan 30AC ADC ==∠︒(米),∴BD =CD -BC =8.30-6.40≈1.9(米),答:BD 的长约为1.9米.【点睛】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.5.(1)车后盖最高点B '到地面l 的距离约为2.15m(2)没有碰头的危险.理由见解析【分析】本题考查的是解直角三角形的应用,正确作出辅助线、熟记锐角三角函数的定义是解题的关键.(1)过点B E AD '⊥于E ,根据正弦的定义求出B E ',进而求出车后盖最高点B '到地面l 的距离;(2)过点C '作C F B E ''⊥于点F ,根据题意求出60C B F ''∠=︒,根据余弦的定义求出B F ',再求出点C '到地面l 的距离,比较大小证明结论.【详解】(1)解:如图2,过点B E AD '⊥于E ,在Rt AB E '△中,1m AB AB '==,27B AD '∠=︒,sin B E B AE AB ''∠=',()sin 1sin 270.454m B E AB B AE '''∴=⋅∠=⨯︒≈,∴点B '到地面l 的距离为:()0.454 1.7 2.154 2.15m +=≈,答:车后盖最高点B '到地面l 的距离约为2.15m ;(2)没有碰头的危险,理由如下:如图2,过点C '作C F B E ''⊥于点F ,在Rt AB E '△中,27B AD '∠=︒,则902763AB E '∠=︒-︒=︒,123AB C ABC '∠=∠=︒ ,60C B F ''∴∠=︒,0.6m B C BC ''== ,()1cos 0.60.3m 2B F BC C B F ∴=⋅∠⨯''=''=',∴点C '到地面l 的距离为:()2.150.3 1.85m -=,1.85 1.83> ,∴没有碰头的危险.6.塔AB 的高度约为11.1m【分析】本题考查解直角三角形的应用−仰角俯角,根据题意可得:DE EC ⊥,然后在Rt DEC △中,利用含30度角的直角三角形的性质得CE ==,过点D 作DF AB ⊥,垂足为F ,设m AB h =,根据题意得:()m,3m DF EA h DE FA ====则()3m BF h =-,然后在Rt BDF △中,利用锐角三角函数的定义求出BF 的长,从而列出关于h 的方程,进行计算即可解答,熟练掌握直角三角形中的边角关系是解题的关键.【详解】由题意得:DE EC ⊥,在Rt DEC △中,90,30DEC DCE ∠=︒∠=︒,3m DE =,CE ∴==BA EA ⊥ ,在Rt ABC △中,m,45AB h BCA =∠=︒,m tan45AB AC h ∴=︒=()mAE EC AC h ∴=+=+过点D 作DF AB ⊥,垂足为F ,由题意得:()m,3m DF EA h DE FA ==+==,m AB h = ,()3m BF AB AF h ∴=-=-,在Rt BDF △中,27BDF ∠=︒,()tan270.5m BF DF h ∴=⋅︒=()30.5h h ∴-=,解得:611.1h ==11.1m AB ∴=∴塔AB 的高度约为11.1m .7.31.5+【分析】延长BE BG ,分别交MN 的延长线于M N '',,MM '于CD 相交于H ,设m NH x =,则()()()10m,210m,220m MH x N M x MM x '=+=+'=+,然后在Rt MM B ' 和Rt MN B ' 中解直角三角形可得()1·tan 2103BM MM x α==+'、·tan BM MN β'=,由sin 13β=可得tan β=)210BM x =+,据此列方程解得35x =,最后代入即可解答.正确的作出辅助线、灵活应用解直角三角形解实际问题是解题的关键.【详解】解:如图:延长BE BG .分别交MN 的延长线于M N '',,MM '于CD 相交于H ,设m NH x =,则()()()10m,210m,220m MH x N M x MM x '=+=+'=+,在Rt MM B ' 中,()1·tan 2103BM MM x α==+';在Rt MN B ' 中,·tan BM MN β'=,∵sin 13β=,∴cos β=,∴tan β=∴)210BM x =+,∴())12202103x x +=+,解得:35x =,∴()()123520 1.531.5m 3AB ⎡⎤=⨯++=⎣⎦.答:建筑AB 的高度为()31.5m .8.渔船没有触礁的危险.【分析】本题考查解直角三角形的应用—方向角问题.过点A 作AD BC ⊥,分别解Rt ADC 和Rt ADB ,求出AD 的长,即可得出结论.【详解】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,8BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴8BD x =+,在Rt ADB 中,tan 0.6258AD x ABD BD x ∠==≈+,∴13x ≈,∴13AD ≈,∵1312>,∴渔船没有触礁的危险.9.(1)()62x -;(2)敌舰在C 【分析】(1)在Rt ADC 中运用1tan 2CD CAD AD ∠==,可求出2AD x =,再根据线段的和差即可求解; (2)运用勾股定理求出3CD =或95,再根据勾股定理求出AC 的长即可求解;本题考查了解直角三角形的应用一方向角问题,解题的关键是根据题目中所给方向角构造直角三角形,然后利用三角函数的知识求解.【详解】(1)解:根据题意得, 57.63126.6CAB ∠=︒-︒=︒,630360BC =⨯=(海里), 在Rt ADC 中,CD x =海里,∴1tan 2CD CAD AD ∠==,∴2AD x =,∴()62BD AB AD x =-=-海里,故答案为:()62x -;(2)解:∵CD AB ⊥,∴90ADC BDC ∠=∠=︒,∴222BD CD BC +=,即()222623x x -+=,解得13x =,295x =,∵CD BC <,∴13x =不合,舍去,∴95x =,又222AD CD AC +=,即()2222x x AC +=,∴AC =(负值舍去),∴AC =海里) ,答:敌舰在C 10.(1)43.2cm. (2)62.8cm.【详解】【分析】(1)如图,作OH ⊥AB 于H ,在Rt △OBH 中, 由cos ∠OBC=BH OB,求得BH 的长,再根据AC=AB -2BH 即可求得AC 的长;(2)由题意可知△OBC 是等边三角形,由此即可求出弧OC 的长,即点O 在此过程中运动的路径长.【详解】(1)如图,作OH ⊥AB 于H ,∵OC=OB=60,∴CH=BH ,在Rt △OBH 中,∵ cos ∠OBC=BH OB,∴BH= OB·cos50°≈60×0.64=38.4,∴AC=AB -2BH≈120-2×38.4=43.2,∴AC 的长约为43.2cm ;(2)∵AC=60,∴BC=60 ,∵OC=OB=60,∴OC=OB=BC=60 ,∴△OBC 是等边三角形,∴ OC 的长=6060180π⨯=20 3.14⨯ =62.8,∴点O 在此过程中运动的路径长约为62.8cm.【点睛】本题考查了解直角三角形的应用,等腰三角形的性质、等边三角形的判定与性质、弧长公式等,结合题意正确画出图形是解题的关键.11.截面的面积为250cm .【分析】本题主要考查解直角三角形的应用.由矩形的性质解直角三角形求得AE ,BE 的长,再解直角三角形求解BF ,FC 的长,进而可求解四边形EFDA ,ABE ,BCF △的面积,根据截面的面积ABE BCF EFDA S S S =-- 四边形计算可求解.【详解】解: 四边形AEFD 为矩形,53BAD ∠=︒,∴AD EF ∥,90E F ∠=∠=︒,53BAD EBA ∴∠=∠=︒,在Rt ABE △中,90E ∠=︒,10cm AB =,53EBA ∠=︒,sin 0.80AE EBA AB∴∠=≈,cos 0.60BE EBA AB ∠=≈,8AE ∴=,6BE =,90ABC ∠=︒ ,9037FBC EBA ∴∠=︒-∠=︒,9053BCF FBC ∴∠=︒-∠=︒,在Rt BCF 中,90F ∠=︒,6BC cm =,sin 0.80BF BCF BC ∴∠=≈,cos 0.60FC BCF BC∠=≈,4BF ∴=,3=FC ,6410EF ∴=+=,()281080cm EFDA S AE EF ∴=⋅=⨯=四边形,()2118624cm 22ABE S AE BE =⋅=⨯⨯= ,()211436cm 22BCF S BF CF =⋅=⨯⨯= ,∴截面的面积()28024650cm ABE BCF EFDA S S S =--=--= 四边形.答:截面的面积为250cm .12.(1)博物馆C 到B 处的距离约为(2)博物馆C 周围至少225米内不能铺设轨道【分析】本题考查了解直角三角形的应用-方向角问题,熟练掌握锐角三角函数定义,添加适当的辅助线是解题的关键.(1)过点C 作CG AB ⊥于点G ,证明BCG 是等腰直角三角形,得到CG BG =,设CG BG x ==,则BC =,再由锐角三角函数定义得2AG x =,再由2184x x =+,问题可解;(2)过点C 作CH BE ⊥于点H ,根据题意得60CBE CBG DBE ∠=∠+∠=︒,利用锐角三角函数的定义求出CH 的长即可.【详解】(1)解:如图1,过点C 作CG AB ⊥于点G ,在Rt BCG 中,45CBG ∠=︒,。
苏科版数学九年级下7.2锐角三角函数—正弦、余弦课件(共16张PPT)
在△ABC中, ∠C=90°.
A C
我们把锐角A的对边a与斜边c的比叫做 ∠A的正弦,记作sinA. 我们把锐角A的邻边b与斜边c的比叫做 ∠A的余弦,记作cosA.
∠A的对边 a sinA = = 斜边 c
∠A的邻边 b cosA = = 斜边 c
整合提升
1.如图,Rt△ABC中,∠ACB=90°,CD⊥AB 于D若AC= 5 BC=2 , 求∠A的三角函数值和sin∠ACD的值.
AD 4 tan B . BD 3
个性展示
3. 在Rt△ABC中,∠B=900,AC=200,sinA=0.6.求: △ABC 的周长和面积
5 4 .在△ABC中,∠C=90°,sinA= 13 ,△ABC的周长
为60,求△ABC的面积。
课堂小结
锐角A的正弦、余弦和正切都是∠A的三角函数
例1.根据图中数据,分别求出∠A, ∠B 的正弦,余弦.
A
C
3
C
3
4 ①
B
A
4 ②
B
已知:如图, ∠ACB=90°,CD⊥AB,垂足为D
(1)sinA ( AC ) BC (
( AB
A
)
)
C D B
CD (2)sinB ( )
(3)cosACD
(4)tanA CD (
CD (
( AC
)
, cosBCD
) , tanB (
( BC
)
)
A计算器 ,求值(精确到0.01):
α sinα 10º 20º 30º 40º 50º 60º 70º 80º
0.17 0.34 0.5 0.87 0.64 0.77 0.77 0.64 0.87 0.5 0.94 0.34 0.98 0.17
初中数学九年级下册苏科版7.6用锐角三角函数解决问题说课稿
(二)媒体资源
为了辅助教学,我将使用多媒体课件、实物模型和数学软件等技术工具。多媒体课件能够生动地展示锐角三角函数的图像和性质,帮助学生直观地理解知识点。实物模型和数学软件则可以让学生亲身体验和操作,增强他们的动手能力和解决问题的能力。
3.动手实践:让学生利用实物模型或数学软件进行操作和实践,亲身体验锐角三角函数的应用过程。这样的实践活动能够增强学生的动手能力和解决问题的能力。
(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,并提供有效的反馈和建议。首先,我会让学生回顾所学知识,总结锐角三角函数的概念和性质。然后,我会鼓励学生分享自己的学习心得和体会,让其他同学和学习成果。最后,我会对学生的表现进行点评,给予肯定和鼓励,并提出改进的建议和指导。
(二)新知讲授
在新知讲授阶段,我会逐步呈现锐角三角函数的知识点,引导学生深入理解。首先,我会回顾一下锐角三角函数的定义和性质,为学生提供一个知识框架。然后,我会通过多媒体课件展示锐角三角函数的图像,让学生直观地理解函数的变化规律。接下来,我会通过案例分析法,引导学生分析和解决实际问题,让学生将理论知识运用到实际情境中。在这个过程中,我会鼓励学生积极参与,提出问题和解决问题,从而加深对锐角三角函数的理解。
五、板书设计与教学反思
(一)板书设计
我的板书设计将注重布局的合理性、内容的精炼性和风格的简洁性。板书将包括本节课的主要知识点,如锐角三角函数的定义、图像和性质,以及解决实际问题的方法。布局上,我会将板书分为几个部分,每个部分都有明确的标题和内容,以便学生能够清晰地理解和把握知识结构。板书在教学过程中的作用是提供一个视觉辅助工具,帮助学生梳理和巩固知识点。为了确保板书清晰、简洁且有助于学生把握知识结构,我会尽量使用简洁的文字和图示,并注意字体的清晰度和大小。
九年数学下册第7章锐角函数71正切712锐角三角函数的计算习题课件新版苏科版
(2) 锐角的正切函数值随角度的增大而__增__大____.
9 【2021·南京】如图,为了测量河对岸两点A,B之间的 距离,在河岸这边取点C,D.测得CD=80 m, ∠ACD=90°,∠BCD=45°,∠ADC=19°17′, ∠BDC=56°19′.设A、B、C、D在同一平面内,求A、 B两点之间的距离.(参考数据:,tan 56°19′≈1.50.)
∵∠ACD=90°,BE⊥CD 于 E,AF⊥BE, ∴四边形 ACEF 是矩形. ∴AF=CE≈48 m,EF=AC≈28 m, ∴BF=BE-EF≈20 m, 在 Rt△ ABF 中, AB= AF2+BF2= 482+202=52(m). 答:A、B 两点之间的距离是 52 m.
解:过B作BE⊥CD于E,过A作AF⊥BE于 F,如图. ∵∠BCD=45°, ∴△BCE是等腰直角三角形. 设CE=x,则BE=x, ∵CD=80 m, ∴DE=(80-x)m.
在 Rt△ BDE 中,∠BDC=56°19′, ∴tan 56°19′=DBEE,即80x-x≈1.5, 解得 x≈48(m). ∴BE=CE≈48 m. 在 Rt△ ACD 中,∠ADC=19°17′,CD=80 m, ∴tan 19°17′=CADC,即A8C0 ≈0.35,解得 AC≈28 m,
6 用计算器比较tan 25°,tan 27°,tan 26°的大小关 系是( A ) A.tan 25°<tan 26°<tan 27° B.tan 25°<tan 27°<tan 26° C.tan 27°<tan 25°<tan 26° D.tan 26°<tan 25°<tan 27°
7 用计算器求 tan 10°,tan 20°,tan 30°,tan 40°,tan 50°,
苏科版九年级下册数学:7.5-解直角三角形(共22张PPT)
锐角A的正弦、余弦、正切统称∠A的锐角三角函数.
特殊角的三角函数值
30° 45° 60°
sinA
1
_2__
2
_2__
3 2
cosA
3 2 2
_2__
1 2
tanA
3
_3 __
1
__3 _
知识回顾
1.在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C
巩固提高 直击中考
3.(呼和浩特) 如图,一艘海轮位于灯塔 P 的北偏东 65° 方向,距离灯塔 80 海里的 A 处,它沿正南方向航行一段时 间后,到达位于灯塔 P 的南偏东 45°方向上的 B 处,这时, 海轮所在的 B 处距离灯塔 P 有多远?(结果用非特殊角的三 角函数及根式表示即可)
巩固提高 直击中考
解:过点 P 作 PD⊥AB 于点 D, 由题意知∠DPB=∠B=45°.
在 Rt△PBD 中,sin45°=PPDB, ∴PB= 2PD. ∵点 A 在点 P 的北偏东 65°方向上, ∴∠APD=25°. 在 Rt△PAD 中,
cos25°=PD,
D
PA
∴PD=PA·cos25°=80cos25°, ∴PB=80 2cos25°海里.
tanA=ab;
1
(4)面积关系:S△ABC=__2_a_b____.
知识回顾
4.(2017•浙江)计算sin²30°+cos²45°+sin60°·tan45°
例题探究
1.如图,是一水库大坝横断面的一部分,坝高 h=6 m, 迎水斜坡 AB=10 m,斜坡的坡角为α,则 tanα的值
苏科版九年级下册锐角三角函数课件
α
sin α
cos α
tan α
30°
45°
60°
60°
1
2
1
30°
45°
1
知识梳理
2.特殊角的三角函数
(2)在△ABC中,∠A、∠B都是锐角,已知sinA=
∠C=
3
1
,cosB= ,则
2
2
圆中的锐角三角函数
例5. 如图,AD是⊙O的直径,BD、BC都是弦,且BD=BC,经过点B作
⊙O的切线交AD的延长线于点E.
(1) 求证:∠EBD=∠CAB;
连接OB.∵ BE是⊙O的切线,∴ OB⊥BE.
∴ ∠OBD+∠EBD=90°.
∵ AD是⊙O的直径,∴ ∠ABD=90°.
∴ ∠ABO+∠OBD=90°.
求BC与AB的长.
特殊角,构造直角三角形
C
解:过点C作CD⊥AB于点D.
∵ ∠A=30°,AC= 6,
3
= ,
2
cos A=cos 30°=
∴
3 2
AD= .
2
1
2
45°= =1,∴
B
A
6
2
6
BD= .
2
D
∵ sin A=sin 30°= = ,∴ CD= .
∵ tan B=tan
求BC与AB的长.
找特殊角,构造直角三角形
(完整word版)苏科版九年级数学下册第七章《锐角三角函数》教学案
课题7.1正切(1) 自主空间学习目标知识与技能:1.理解正切的概念, 能通过画图求出一个角的正切的近似值。
能运用正切解决与直角三角形有关的简单问题。
过程与方法:1.经历探索表示物体倾斜程度, 形成正切的概念的过程, 练就创造性解决问题的能力。
1.经历探索表示物体倾斜程度,形成正切的概念的过程,练就创造性解决问题的能力。
学习重点理解并掌握正切的含义, 会在直角三角形中求出某个锐角的正切值。
学习难点计算一个锐角的正切值的方法。
教学流程预习导航观察回答: 如图某体育馆, 为了方便不同需求的观众设计了多种形式的台阶。
下列图中的两个台阶哪个更陡?你是怎么判断的?图(1)图(2)[点拨]可将这两个台阶抽象地看成两个三角形答: 图的台阶更陡, 理由合作探究一、新知探究:1.思考与探索一:除了用台阶的倾斜角度大小外, 还可以如何描述台阶的倾斜程度呢?可通过测量BC与AC的长度,再算出它们的比, 来说明台阶的倾斜程度。
(思考: BC与AC长度的比与台阶的倾斜程度有何关系?)答: _________________. 讨论: 你还可以用其它什么方法?能说出你的理由吗?答: ________________________. 2.思考与探索二:(1)如图, 一般地, 如果锐角A的大小已确定,我们可以作出无数个相似的RtAB1C1, RtAB2C2, RtAB3C3……, 那么有: Rt△AB1C1∽_____∽____……根据相似三角形的性质,得: =_________=_________=……(2)由上可知:如果直角三角形的一个锐角的大小已确定, 那么这个锐角的对边与这个角的邻边的比值也_________。
3.正切的定义如图, 在Rt △ABC 中, ∠C =90°, a 、b 分别是∠A 的对边和邻边。
我们将∠A 的对边a 与邻边b 的比叫做∠A_______, 记作______。
即: tanA =________=__________(你能写出∠B 的正切表达式吗? )试试看.4.思考: 当锐角α越来越大时, α的正切值有什么变化? 二. 例题分析:例1:⑴某楼梯的踏板宽为30cm, 一个台阶的高度为15cm, 求 楼梯倾斜角的正切值。
九年级数学下册第一章直角三角形的边角关系3三角函数的有关计算 教学课件
3 三角函数的有关计算
第2课时
1.经历用计算器由三角函数值求相应锐角的过程,进 一步体会三角函数的意义. 2.能够利用计算器进行有关三角函数值的计算. 3.能够运用计算器辅助解决含三角函数值计算的实际 问题.
如图,为了方便行人推车过某天桥,市政府在10m高的天 桥两端修建了40m长的斜道.这条斜道的倾斜角是多少?
【例题】
例1.如图,工件上有一V形槽,测得它的上口宽20 mm,深 19.2mm.求V形角(∠ACB)的大小(结果精确到1° ).
【解析】Q tan ACD AD 10 CD 19.2
0.520 8,
∴∠ACD≈27.5° .
∴∠ACB=2∠ACD≈2×27.5° =55°.
∴V形角约为55°.
∠A= 30
sin A 3 2
∠A=
60
sin A
2 2
∠A= 45
cos A 1 2
∠A= 60 cos A 2
2
∠A=
45 cos A
3 2
∠A= 30
tan A 3 3
∠A= 30 tan A
3
∠A= 60 tan A 1
∠A= 45
角分别为α和β,已知 h=2 ,α=45°,CD=10, tan 1 . 2
(1)求路基底部AB的宽. (2)修筑这样的路基1 000米,需要多少土石方?
【解析】(1)作 CF AB 于点F,DE AB 于点E,则
DE CF 2,
D
在Rt△ADE中,∵ 45,AE DE 2.
AE
怎样用科学计算器求三角函数值呢?
用科学计算器求三角函数值,要用到三个键:
例 键如 顺,序求如s下in表16所°示,c:oss4i2n°,tcaons85°ta和n sin72°38′25″的按
2020苏科版九年级数学下册电子课本课件【全册】
第5章 二次函数2020来自科版九年级数学下册电子课 本课件【全册】
5.2 二次函数的图象和性质
2020苏科版九年级数学下册电子课 本课件【全册】
5.3 用待定系数法确定二次函数 的表达式
2020苏科版九年级数学下册电子课 本课件【全册】
2020苏科版九年级数学下册电子 课本课件【全册】目录
0002页 0046页 0061页 0063页 0133页 0148页 0211页 0251页 0281页 0345页 0385页 0445页 0489页
第5章 二次函数 5.3 用待定系数法确定二次函数的表达式 第6章 图形的相似 6.2 黄金分割 6.4 探索三角形相似的条件 6.6 图形的位似 第7章 锐角函数 7.2 正弦、余弦 7.4 由三角函数值求锐角 7.6 用锐角三角函数解决问题 8.1 中学生的视力情况调查 8.3 统计分析帮你做预测 8.5 概率帮你做估计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GD H AK E
C
若把此堤坝加
高0.5米,需:
如图是沿水库拦河坝的背水坡,将坡顶 加宽2米,坡度由原来的1:2改为1:2.5,已 知坝高6米,坝长50米. 求(1)加宽部分横断面AFEB的面积;
(2)完成这一工程需要多少土方?
FA D
E
B
C
练习2
如图,斜坡AC的坡度(坡比)为1: 3
AC=10米.坡顶有一旗杆BC,旗杆顶端B点
与A点有一条彩带AB相连,AB=14米.
试求旗杆BC的高度.
B
C
D
A
B. 80 m sin 20
D .80cos20m
2、如图是一个拦水大坝的横断面图,AD∥BC, 斜坡AB=10m,大坝高为8m, (1)则斜坡AB的坡度
iAB ____.
(2)如果坡度 iAB 1: 3,则坡角B____.
(3)如果坡度 iAB1:2,AB8m,则大坝高度为___.
A BE
D C
例1:
.如图,水坝的横截面是梯形ABCD,迎水坡BC
的坡角 为30°,背水坡AD的坡度 i
坝顶宽DC=2.5米,坝高4.5米.
为1:
3
,
求:(1)背水坡AD的坡角 ;
(2)坝底宽AB的长(精确到0.1米).
D
C
AE
F
B
思考:在上题中,为了提高堤坝的 防洪能力,市 防汛指挥部决定加固堤坝,要求坝顶CD加宽0.5 米,背水坡AD的坡度改为1:1.4,已知堤坝的总长 度为5㎞,求完成该项工程所需的土方(精确到 0.1米3)
7.6锐角三角函数的简单应用(1)
如图,AB是一斜坡,
B
我们把斜坡与水平面的 夹角称为坡角 .
A
C
斜坡的垂直高度BC与斜坡 的水平距离AC的比称为坡度 i .
i tan BC
AC
1、小明沿着坡角为20°的斜坡向上前进80m, 则他上升的高度是( ).
A. 80 m cos 20
C .80sin20m