中英文文献翻译-基于注塑模具钢研磨和抛光工序的自动化表面处理
塑料注塑模具中英文对照外文翻译文献
外文翻译及原文(文档含英文原文和中文翻译)【原文一】CONCURRENT DESIGN OF PLASTICS INJECTION MOULDS AbstractThe plastic product manufacturing industry has been growing rapidly in recent years. One of the most popular processes for making plastic parts is injection moulding. The design of injection mould is critically important to product quality and efficient product processing.Mould-making companies, who wish to maintain the competitive edge, desire to shorten both design and manufacturing leading times of the by applying a systematic mould design process. The mould industry is an important support industry during the product development process, serving as an important link between the product designer and manufacturer. Product development has changed from the traditional serial process of design, followed by manufacture, to a more organized concurrent process where design and manufacture are considered at a very early stage of design. The concept of concurrent engineering (CE) is no longer new and yet it is still applicable and relevant in today’s manuf acturing environment. Team working spirit, management involvement, total design process and integration of IT tools are still the essence of CE. The application of The CE process to the design of an injection process involves the simultaneous consideration of plastic part design, mould design and injection moulding machine selection, production scheduling and cost as early as possible in the design stage.This paper presents the basic structure of an injection mould design. The basis of this system arises from an analysis of the injection mould design process for mould design companies. This injection mould design system covers both the mould design process and mould knowledge management. Finally the principle of concurrent engineering process is outlined and then its principle is applied to the design of a plastic injection mould.Keywords :Plastic injection mould design, Concurrent engineering, Computer aided engineering, Moulding conditions, Plastic injection moulding, Flow simulation1.IntroductionInjection moulds are always expensive to make, unfortunately without a mould it can not be possible ho have a moulded product. Every mould maker has his/her own approach to design a mould and there are many different ways of designing and building a mould. Surely one of the most critical parameters to be considered in the design stage of the mould is the number of cavities, methods of injection, types of runners, methods of gating, methods of ejection, capacity and features of the injection moulding machines. Mould cost, mould quality and cost of mould product are inseparableIn today’s completive environment, computer aided mould filling simulation packages can accurately predict the fill patterns of any part. This allows for quick simulations of gate placements and helps finding the optimal location. Engineers can perform moulding trials on the computer before the part design is completed. Process engineers can systematically predict a design and process window, and can obtain information about the cumulative effect of the process variables that influence part performance, cost, and appearance.2.Injection MouldingInjection moulding is one of the most effective ways to bring out the best in plastics. It is universally used to make complex, finished parts, often in a single step, economically, precisely and with little waste. Mass production of plastic parts mostly utilizes moulds. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. Designers face a hugenumber of options when they create injection-moulded components. Concurrent engineering requires an engineer to consider the manufacturing process of the designed product in the development phase. A good design of the product is unable to go to the market if its manufacturing process is impossible or too expensive. Integration of process simulation, rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development.3. Importance of Computer Aided Injection Mould DesignThe injection moulding design task can be highly complex. Computer Aided Engineering (CAE) analysis tools provide enormous advantages of enabling design engineers to consider virtually and part, mould and injection parameters without the real use of any manufacturing and time. The possibility of trying alternative designs or concepts on the computer screen gives the engineers the opportunity to eliminate potential problems before beginning the real production. Moreover, in virtual environment, designers can quickly and easily asses the sensitivity of specific moulding parameters on the quality and manufacturability of the final product. All theseCAE tools enable all these analysis to be completed in a meter of days or even hours, rather than weeks or months needed for the real experimental trial and error cycles. As CAE is used in the early design of part, mould and moulding parameters, the cost savings are substantial not only because of best functioning part and time savings but also the shortens the time needed to launch the product to the market.The need to meet set tolerances of plastic part ties in to all aspects of the moulding process, including part size and shape, resin chemical structure, the fillers used, mould cavity layout, gating, mould cooling and the release mechanisms used. Given this complexity, designers often use computer design tools, such as finite element analysis (FEA) and mould filling analysis (MFA), to reduce development time and cost. FEA determines strain, stress and deflection in a part by dividing the structure into small elements where these parameters can be well defined. MFA evaluates gate position and size to optimize resin flow. It also defines placement of weld lines, areas of excessive stress, and how wall and rib thickness affect flow. Other finite element design tools include mould cooling analysis for temperature distribution, and cycle time and shrinkage analysis for dimensional control and prediction of frozen stress and warpage.The CAE analysis of compression moulded parts is shown in Figure 1. The analysis cycle starts with the creation of a CAD model and a finite element mesh of the mould cavity. After the injection conditions are specified, mould filling, fiber orientation, curing and thermal history, shrinkage and warpage can be simulated. The material properties calculated by the simulation can be used to model the structural behaviour of the part. If required, part design, gate location and processing conditions can be modified in the computer until an acceptable part is obtained. After the analysis is finished an optimized part can be produced with reduced weldline (known also knitline), optimized strength, controlled temperatures and curing, minimized shrinkage and warpage.Machining of the moulds was formerly done manually, with a toolmaker checking each cut. This process became more automated with the growth and widespread use of computer numerically controlled or CNC machining centres. Setup time has also been significantly reduced through the use of special software capable of generating cutter paths directly from a CAD data file. Spindle speeds as high as 100,000 rpm provide further advances in high speed machining. Cutting materials have demonstrated phenomenal performance without the use of any cutting/coolant fluid whatsoever. As a result, the process of machining complex cores and cavities has been accelerated. It is good news that the time it takes to generate a mould is constantly being reduced. The bad news, on the other hand, is that even with all these advances, designing and manufacturing of the mould can still take a long time and can be extremely expensive.Figure 1 CAE analysis of injection moulded partsMany company executives now realize how vital it is to deploy new products to market rapidly. New products are the key to corporate prosperity. They drive corporate revenues, market shares, bottom lines and share prices. A company able to launch good quality products with reasonable prices ahead of their competition not only realizes 100% of the market before rival products arrive but also tends to maintain a dominant position for a few years even after competitive products have finally been announced (Smith, 1991). For most products, these two advantages are dramatic. Rapid product development is now a key aspect of competitive success. Figure 2 shows that only 3–7% of the product mix from the average industrial or electronics company is less than 5 years old. For companies in the top quartile, the number increases to 15–25%. For world-class firms, it is 60–80% (Thompson, 1996). The best companies continuously develop new products. AtHewlett-Packard, over 80% of the profits result from products less than 2 years old! (Neel, 1997)Figure 2. Importance of new product (Jacobs, 2000)With the advances in computer technology and artificial intelligence, efforts have been directed to reduce the cost and lead time in the design and manufacture of an injection mould. Injection mould design has been the main area of interest since it is a complex process involving several sub-designs related to various components of the mould, each requiring expert knowledge and experience. Lee et. al. (1997) proposed a systematic methodology and knowledge base for injection mould design in a concurrent engineering environment.4.Concurrent Engineering in Mould DesignConcurrent Engineering (CE) is a systematic approach to integrated product development process. It represents team values of co-operation, trust and sharing in such a manner that decision making is by consensus, involving all per spectives in parallel, from the very beginning of the productlife-cycle (Evans, 1998). Essentially, CE provides a collaborative, co-operative, collective and simultaneous engineering working environment. A concurrent engineering approach is based on five key elements:1. process2. multidisciplinary team3. integrated design model4. facility5. software infrastructureFigure 3 Methodologies in plastic injection mould design, a) Serial engineering b) Concurrent engineeringIn the plastics and mould industry, CE is very important due to the high cost tooling and long lead times. Typically, CE is utilized by manufacturing prototype tooling early in the design phase to analyze and adjust the design. Production tooling is manufactured as the final step. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. CE requires an engineer to consider the manufacturing process of the designed product in the development phase.A good design of the product is unable to go to the market if its manufacturing process is impossible. Integration of process simulation and rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development.For years, designers have been restricted in what they can produce as they generally have todesign for manufacture (DFM) – that is, adjust their design intent to enable the component (or assembly) to be manufactured using a particular process or processes. In addition, if a mould is used to produce an item, there are therefore automatically inherent restrictions to the design imposed at the very beginning. Taking injection moulding as an example, in order to process a component successfully, at a minimum, the following design elements need to be taken into account:1. . geometry;. draft angles,. Non re-entrants shapes,. near constant wall thickness,. complexity,. split line location, and. surface finish,2. material choice;3. rationalisation of components (reducing assemblies);4. cost.In injection moulding, the manufacture of the mould to produce the injection-moulded components is usually the longest part of the product development process. When utilising rapid modelling, the CAD takes the longer time and therefore becomes the bottleneck.The process design and injection moulding of plastics involves rather complicated and time consuming activities including part design, mould design, injection moulding machine selection, production scheduling, tooling and cost estimation. Traditionally all these activities are done by part designers and mould making personnel in a sequential manner after completing injection moulded plastic part design. Obviously these sequential stages could lead to long product development time. However with the implementation of concurrent engineering process in the all parameters effecting product design, mould design, machine selection, production scheduling,tooling and processing cost are considered as early as possible in the design of the plastic part. When used effectively, CAE methods provide enormous cost and time savings for the part design and manufacturing. These tools allow engineers to virtually test how the part will be processed and how it performs during its normal operating life. The material supplier, designer, moulder and manufacturer should apply these tools concurrently early in the design stage of the plastic parts in order to exploit the cost benefit of CAE. CAE makes it possible to replace traditional, sequential decision-making procedures with a concurrent design process, in which all parties can interact and share information, Figure 3. For plastic injection moulding, CAE and related design data provide an integrated environment that facilitates concurrent engineering for the design and manufacture of the part and mould, as well as material selection and simulation of optimal process control parameters.Qualitative expense comparison associated with the part design changes is shown in Figure 4 , showing the fact that when design changes are done at an early stages on the computer screen, the cost associated with is an order of 10.000 times lower than that if the part is in production. These modifications in plastic parts could arise fr om mould modifications, such as gate location, thickness changes, production delays, quality costs, machine setup times, or design change in plastic parts.Figure 4 Cost of design changes during part product development cycle (Rios et.al, 2001)At the early design stage, part designers and moulders have to finalise part design based on their experiences with similar parts. However as the parts become more complex, it gets rather difficult to predict processing and part performance without the use of CAE tools. Thus for even relatively complex parts, the use of CAE tools to prevent the late and expensive design changesand problems that can arise during and after injection. For the successful implementation of concurrent engineering, there must be buy-in from everyone involved.5.Case StudyFigure 5 shows the initial CAD design of plastics part used for the sprinkler irrigation hydrant leg. One of the essential features of the part is that the part has to remain flat after injection; any warping during the injection causes operating problems.Another important feature the plastic part has to have is a high bending stiffness. A number of feeders in different orientation were added to the part as shown in Figure 5b. These feeders should be designed in a way that it has to contribute the weight of the part as minimum aspossible.Before the design of the mould, the flow analysis of the plastic part was carried out with Moldflow software to enable the selection of the best gate location Figure 6a. The figure indicates that the best point for the gate location is the middle feeder at the centre of the part. As the distortion and warpage of the part after injection was vital from the functionality point of view and it has to be kept at a minimum level, the same software was also utilised to yiled the warpage analysis. Figure 5 b shows the results implying the fact that the warpage well after injection remains within the predefined dimensional tolerances.6. ConclusionsIn the plastic injection moulding, the CAD model of the plastic part obtained from commercial 3D programs could be used for the part performance and injection process analyses. With the aid ofCEA technology and the use of concurrent engineering methodology, not only the injection mould can be designed and manufactured in a very short of period of time with a minimised cost but also all potential problems which may arise from part design, mould design and processing parameters could be eliminated at the very beginning of the mould design. These two tools help part designers and mould makers to develop a good product with a better delivery and faster tooling with less time and money.References1. Smith P, Reinertsen D, The time-to-market race, In: Developing Products in Half the Time. New York, Van Nostrand Reinhold, pp. 3–13, 19912.Thompson J, The total product development organization. Proceedings of the SecondAsia–Pacific Rapid Product Development Conference, Brisbane, 19963.Neel R, Don’t stop after the prototype, Seventh International Conference on Rapid Prototyping, San Francisco, 19974.Jacobs PF, “Chapter 3: Rapid Product Development” in Rapid Tooling: Technologies and Industrial Applications , Ed. Peter D. Hilton; Paul F. Jacobs, Marcel Decker, 20005.Lee R-S, Chen, Y-M, and Lee, C-Z, “Development of a concurrent mould design system: a knowledge based approach”, Computer Integrated Manufacturing Systems, 10(4), 287-307, 19976.Evans B., “Simultaneous Engineering”, Mechanical Engi neering , V ol.110, No.2, pp.38-39, 19987.Rios A, Gramann, PJ and Davis B, “Computer Aided Engineering in Compression Molding”, Composites Fabricators Association Annual Conference , Tampa Bay, 2001【译文一】塑料注塑模具并行设计塑料制品制造业近年迅速成长。
注塑模具工艺立体光照成型毕业论文中英文对照资料外文翻译文献
注塑模具工艺中英文对照资料外文翻译文献附录2Integrated simulation of the injection molding process withstereolithography moldsAbstract Functional parts are needed for design verification testing, field trials, customer evaluation, and production planning. By eliminating multiple steps, the creation of the injection mold directly by a rapid prototyping (RP) process holds the best promise of reducing the time and cost needed to mold low-volume quantities of parts. The potential of this integration of injection molding with RP has been demonstrated many times. What is missing is the fundamental understanding of how the modifications to the mold material and RP manufacturing process impact both the mold design and the injection molding process. In addition, numerical simulation techniques have now become helpful tools of mold designers and process engineers for traditional injection molding. But all current simulation packages for conventional injection molding are no longer applicable to this new type of injection molds, mainly because the property of the mold material changes greatly. In this paper, an integrated approach to accomplish a numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. Comparisons with experimental results are employed for verification, which show that the present scheme is well suited to handle RP fabricated stereolithography (SL) molds.Keywords Injection molding Numerical simulation Rapid prototyping1 IntroductionIn injection molding, the polymer melt at high temperature is injected into the mold under high pressure [1]. Thus, the mold material needs to have thermal and mechanical properties capable of withstanding the temperatures and pressures of the molding cycle. The focus of many studies has been to create theinjection mold directly by a rapid prototyping (RP) process. By eliminating multiple steps, this method of tooling holds the best promise of reducing the time and cost needed to createlow-volume quantities of parts in a production material. The potential of integrating injection molding with RP technologies has been demonstrated many times. The properties of RP molds are very different from those of traditional metal molds. The key differences are the properties of thermal conductivity and elastic modulus (rigidity). For example, the polymers used in RP-fabricated stereolithography (SL) molds have a thermal conductivity that is less than one thousandth that of an aluminum tool. In using RP technologies to create molds, the entire mold design and injection-molding process parameters need to be modified and optimized from traditional methodologies due to the completely different tool material. However, there is still not a fundamental understanding of h ow the modifications to the mold tooling method and material impact both the mold design and the injection molding process parameters. One cannot obtain reasonable results by simply changing a few material properties in current models. Also, using traditional approaches when making actual parts may be generating sub-optimal results. So there is a dire need to study the interaction between the rapid tooling (RT) process and material and injection molding, so as to establish the mold design criteria and techniques for an RT-oriented injection molding process.In addition, computer simulation is an effective approach for predicting the quality of molded parts. Commercially available simulation packages of the traditional injection molding process have now become routine tools of the mold designer and process engineer [2]. Unfortunately, current simulation programs for conventional injection molding are no longer applicable to RP molds, because of the dramatically dissimilar tool material. For instance, in using the existing simulation software with aluminum and SL molds and comparing with experimental results, though the simulation values of part distortion are reasonable for the aluminum mold, results are unacceptable, with the error exceeding 50%. The distortion during injection molding is due to shrinkage and warpage of the plastic part, as well as the mold. For ordinarily molds, the main factor is the shrinkage and warpage of the plastic part, which is modeled accurately in current simulations. But for RP molds, the distortion of the mold has potentially more influence, which have been neglected in current models. For instance, [3] used a simple three-step simulation process to consider the mold distortion, which had too much deviation.In this paper, based on the above analysis, a new simulation system for RP molds is developed. The proposed system focuses on predicting part distortion, which is dominating defect in RP-molded parts. The developed simulation can be applied as an evaluation tool for RP mold design and process opti mization. Our simulation system is verified by an experimental example.Although many materials are available for use in RP technologies, we concentrate on usingstereolithography (SL), the original RP technology, to create polymer molds. The SL process uses photopolymer and laser energy to build a part layer by layer. Using SL takes advantage of both the commercial dominance of SL in the RP industry and the subsequent expertise base that has been developed for creating accurate, high-quality parts. Until recently, SL was primarily used to create physical models for visual inspection and form-fit studies with very limited func-tional applications. However, the newer generation stereolithographic photopolymers have improved dimensional, mechanical and thermal properties making it possible to use them for actual functional molds.2 Integrated simulation of the molding process2.1 MethodologyIn order to simulate the use of an SL mold in the injection molding process, an iterative method is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:1T he part geometry is modeled as a solid model, which is translated to a file readable by the flow analysis package.2Simulate the mold-filling process of the melt into a pho topolymer mold, which will output the resulting temperature and pressure profiles.3Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.4If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.5The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distor tions of the molded part.In above simulation flow, there are three basic simulation mod ules.2. 2 Filling simulation of the melt2.2.1 Mathematical modelingIn order to simulate the use of an SL mold in the injection molding process, an iterativemethod is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:1. The part geometry is modeled as a solid model, which is translated to a file readable by the flow analysis package.2. Simulate the mold-filling process of the melt into a photopolymer mold, which will output the resulting temperature and pressure profiles.3. Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.4. If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.5. The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distortions of the molded part.In above simulation flow, there are three basic simulation modules.2.2 Filling simulation of the melt2.2.1 Mathematical modelingComputer simulation techniques have had success in predicting filling behavior in extremely complicated geometries. However, most of the current numerical implementation is based on a hybrid finite-element/finite-difference solution with the middleplane model. The application process of simulation packages based on this model is illustrated in Fig. 2-1. However, unlike the surface/solid model in mold-design CAD systems, the so-called middle-plane (as shown in Fig. 2-1b) is an imaginary arbitrary planar geometry at the middle of the cavity in the gap-wise direction, which should bring about great inconvenience in applications. For example, surface models are commonly used in current RP systems (generally STL file format), so secondary modeling is unavoidable when using simulation packages because the models in the RP and simulation systems are different. Considering these defects, the surface model of the cavity is introduced as datum planes in the simulation, instead of the middle-plane.According to the previous investigations [4–6], fillinggoverning equations for the flow and temperature field can be written as:where x, y are the planar coordinates in the middle-plane, and z is the gap-wise coordinate; u, v,w are the velocity components in the x, y, z directions; u, v are the average whole-gap thicknesses; and η, ρ,CP (T), K(T) represent viscosity, density, specific heat and thermal conductivity of polymer melt, respectively.Fig.2-1 a–d. Schematic procedure of the simulation with middle-plane model. a The 3-D surface model b The middle-plane model c The meshed middle-plane model d The display of the simulation result In addition, boundary conditions in the gap-wise direction can be defined as:where TW is the constant wall temperature (shown in Fig. 2a).Combining Eqs. 1–4 with Eqs. 5–6, it follows that the distributions of the u, v, T, P at z coordinates should be symmetrical, with the mirror axis being z = 0, and consequently the u, v averaged in half-gap thickness is equal to that averaged in wholegap thickness. Based on this characteristic, we can divide the whole cavity into two equal parts in the gap-wise direction, as described by Part I and Part II in Fig. 2b. At the same time, triangular finite elements are generated in the surface(s) of the cavity (at z = 0 in Fig. 2b), instead of the middle-plane (at z = 0 in Fig. 2a). Accordingly, finite-difference increments in the gapwise direction are employed only in the inside of the surface(s) (wall to middle/center-line), which, in Fig. 2b, means from z = 0 to z = b. This is single-sided instead of two-sided with respect to the middle-plane (i.e. from the middle-line to two walls). In addition, the coordinate system is changed from Fig. 2a to Fig. 2b to alter the finite-element/finite-difference scheme, as shown in Fig. 2b. With the above adjustment, governing equations are still Eqs. 1–4. However, the original boundary conditions inthe gapwise direction are rewritten as:Meanwhile, additional boundary conditions must be employed at z = b in order to keep the flows at the juncture of the two parts at the same section coordinate [7]:where subscripts I, II represent the parameters of Part I and Part II, respectively, and Cm-I and Cm-II indicate the moving free melt-fronts of the surfaces of the divided two parts in the filling stage.It should be noted that, unlike conditions Eqs. 7 and 8, ensuring conditions Eqs. 9 and 10 are upheld in numerical implementations becomes more difficult due to the following reasons:1. The surfaces at the same section have been meshed respectively, which leads to a distinctive pattern of finite elements at the same section. Thus, an interpolation operation should be employed for u, v, T, P during the comparison between the two parts at the juncture.2. Because the two parts have respective flow fields with respect to the nodes at point A and point C (as shown in Fig. 2b) at the same section, it is possible to have either both filled or one filled (and one empty). These two cases should be handled separately, averaging the operation for the former, whereas assigning operation for the latter.3. It follows that a small difference between the melt-fronts is permissible. That allowance can be implemented by time allowance control or preferable location allowance control of the melt-front nodes.4. The boundaries of the flow field expand by each melt-front advancement, so it is necessary to check the condition Eq. 10 after each change in the melt-front.5. In view of above-mentioned analysis, the physical parameters at the nodes of the same section should be compared and adjusted, so the information describing finite elements of the same section should be prepared before simulation, that is, the matching operation among the elements should be preformed.Fig. 2a,b. Illustrative of boundary conditions in the gap-wise direction a of the middle-plane model b of thesurface model2.2.2 Numerical implementationPressure field. In modeling viscosity η, which is a function of shear rate, temperature and pressure of melt, the shear-thinning behavior can be well represented by a cross-type model such as:where n corresponds to the power-law index, and τ∗ characterizes the shear stress level of the transition region between the Newtonian and power-law asymptotic limits. In terms of an Arrhenius-type temperature sensitivity and exponential pressure dependence, η0(T, P) can be represented with reasonable accuracy as follows:Equations 11 and 12 constitute a five-constant (n, τ∗, B, Tb, β) representation for viscosity. The shear rate for viscosity calculation is obtained by:Based on the above, we can infer the following filling pressure equation from the governing Eqs. 1–4:where S is calculated by S = b0/(b−z)2η d z. Applying the Galerkin method, the pressure finite-element equation is deduced as:where l_ traverses all elements, including node N, and where I and j represent the local node number in element l_ corresponding to the node number N and N_ in the whole, respectively. The D(l_) ij is calculated as follows:where A(l_) represents triangular finite elements, and L(l_) i is the pressure trial function in finite elements.Temperature field. To determine the temperature profile across the gap, each triangular finite element at the surface is further divided into NZ layers for the finite-difference grid.The left item of the energy equation (Eq. 4) can be expressed as:where TN, j,t represents the temperature of the j layer of node N at time t.The heat conduction item is calculated by:where l traverses all elements, including node N, and i and j represent the local node number in element l corresponding to the node number N and N_ in the whole, respectively.The heat convection item is calculated by:For viscous heat, it follows that:Substituting Eqs. 17–20 into the energy equation (Eq. 4), the temperature equation becomes:2.3 Structural analysis of the moldThe purpose of structural analysis is to predict the deformation occurring in the photopolymer mold due to the thermal and mechanical loads of the filling process. This model is based on a three-dimensional thermoelastic boundary element method (BEM). The BEM is ideally suited for this application because only the deformation of the mold surfaces is of interest. Moreover, the BEM has an advantage over other techniques in that computing effort is not wasted on calculating deformation within the mold.The stresses resulting from the process loads are well within the elastic range of the mold material. Therefore, the mold deformation model is based on a thermoelastic formulation. The thermal and mechanical properties of the mold are assumed to be isotropic and temperature independent.Although the process is cyclic, time-averaged values of temperature and heat flux are used for calculating the mold deformation. Typically, transient temperature variations within a mold have been restricted to regions local to the cavity surface and the nozzle tip [8]. The transients decay sharply with distance from the cavity surface and generally little variation is observed beyond distances as small as 2.5 mm. This suggests that the contribution from the transients to the deformation at the mold block interface is small, and therefore it is reasonable to neglect the transient effects. The steady state temperature field satisfies Laplace’s equation 2T = 0 and the time-averaged boundary conditions. The boundary conditions on the mold surfaces are described in detail by Tang et al. [9]. As for the mechanical boundary conditions, the cavity surface is subjected to the melt pressure, the surfaces of the mold connected to the worktable are fixed in space, and other external surfaces are assumed to be stress free.The derivation of the thermoelastic boundary integral formulation is well known [10]. It is given by:where uk, pk and T are the displacement, traction and temperature,α, ν represent the thermal expansion coefficient and Poisson’s ratio of the material, and r = |y−x|. clk(x) is the surfacecoefficient which depends on the local geometry at x, the orientation of the coordinate frame and Poisson’s ratio for the domain [11]. The fundamental displacement ˜ulk at a point y in the xk direction, in a three-dimensional infinite isotropic elastic domain, results from a unit load concentrated at a point x acting in the xl direction and is of the form:where δlk is the Kronecker delta function and μ is the shear modulus of the mold material.The fundamental traction ˜plk , measured at the point y on a surface with unit normal n, is:Discretizing the surface of the mold into a total of N elements transforms Eq. 22 to:where Γn refers to the n th surface element on the domain.Substituting the appropriate linear shape functions into Eq. 25, the linear boundary element formulation for the mold deformation model is obtained. The equation is applied at each node on the discretized mold surface, thus giving a system of 3N linear equations, where N is the total number of nodes. Each node has eight associated quantities: three components of displacement, three components of traction, a temperature and a heat flux. The steady state thermal model supplies temperature and flux values as known quantities for each node, and of the remaining six quantities, three must be specified. Moreover, the displacement values specified at a certain number of nodes must eliminate the possibility of a rigid-body motion or rigid-body rotation to ensure a non-singular system of equations. The resulting system of equations is assembled into a integrated matrix, which is solved with an iterative solver.2.4 Shrinkage and warpage simulation of the molded partInternal stresses in injection-molded components are the principal cause of shrinkage and warpage. These residual stresses are mainly frozen-in thermal stresses due to inhomogeneous cooling, when surface layers stiffen sooner than the core region, as in free quenching. Based onthe assumption of the linear thermo-elastic and linear thermo-viscoelastic compressible behavior of the polymeric materials, shrinkage and warpage are obtained implicitly using displacement formulations, and the governing equations can be solved numerically using a finite element method.With the basic assumptions of injection molding [12], the components of stress and strain are given by:The deviatoric components of stress and strain, respectively, are given byUsing a similar approach developed by Lee and Rogers [13] for predicting the residual stresses in the tempering of glass, an integral form of the viscoelastic constitutive relationships is used, and the in-plane stresses can be related to the strains by the following equation:Where G1 is the relaxation shear modulus of the material. The dilatational stresses can be related to the strain as follows:Where K is the relaxation bulk modulus of the material, and the definition of α and Θ is:If α(t) = α0, applying Eq. 27 to Eq. 29 results in:Similarly, applying Eq. 31 to Eq. 28 and eliminating strain εxx(z, t) results in:Employing a Laplace transform to Eq. 32, the auxiliary modulus R(ξ) is given by:Using the above constitutive equation (Eq. 33) and simplified forms of the stresses and strains in the mold, the formulation of the residual stress of the injection molded part during the cooling stage is obtain by:Equation 34 can be solved through the application of trapezoidal quadrature. Due to the rapid initial change in the material time, a quasi-numerical procedure is employed for evaluating the integral item. The auxiliary modulus is evaluated numerically by the trapezoidal rule.For warpage analysis, nodal displacements and curvatures for shell elements are expressed as:where [k] is the element stiffness matrix, [Be] is the derivative operator matrix, {d} is the displacements, and {re} is the element load vector which can be evaluated by:The use of a full three-dimensional FEM analysis can achieve accurate warpage results, however, it is cumbersome when the shape of the part is very complicated. In this paper, a twodimensional FEM method, based on shell theory, was used because most injection-molded parts have a sheet-like geometry in which the thickness is much smaller than the other dimensions of the part. Therefore, the part can be regarded as an assembly of flat elements to predict warpage. Each three-node shell element is a combination of a constant strain triangular element (CST) and a discrete Kirchhoff triangular element (DKT), as shown in Fig. 3. Thus, the warpage can be separated into plane-stretching deformation of the CST and plate-bending deformation of the DKT, and correspondingly, the element stiffness matrix to describe warpage can also be divided into the stretching-stiffness matrix and bending-stiffness matrix.Fig. 3a–c. Deformation decomposition of shell element in the local coordinate system. a In-plane stretchingelement b Plate-bending element c Shell element3 Experimental validationTo assess the usefulness of the proposed model and developed program, verification is important. The distortions obtained from the simulation model are compared to the ones from SL injection molding experiments whose data is presented in the literature [8]. A common injection molded part with the dimensions of 36×36×6 mm is considered in the experiment, as shown in Fig. 4. The thickness dimensions of the thin walls and rib are both 1.5 mm; and polypropylene was used as the injection material. The injection machine was a production level ARGURY Hydronica 320-210-750 with the following process parameters: a melt temperature of 250 ◦C; an ambient temperature of 30 ◦C; an injection pressure of 13.79 MPa; an injection time of 3 s; and a cooling time of 48 s. The SL material used, Dupont SOMOSTM 6110 resin, has the ability to resist temperatures of up to 300 ◦C temperatures. As mentioned above, thermal conductivity of the mold is a major factor that differentiates between an SL and a traditional mold. Poor heat transfer in the mold would produce a non-uniform temperature distribution, thus causing warpage that distorts the completed parts. For an SL mold, a longer cycle time would be expected. The method of using a thin shell SL mold backed with a higher thermal conductivity metal (aluminum) was selected to increase thermal conductivity of the SL mold.Fig. 4. Experimental cavity modelFig. 5. A comparison of the distortion variation in the X direction for different thermal conductivity; where “Experimental”, “present”, “three-step”, and “conventional” mean the results of the experimental, the presented simulation, the three-step simulation process and the conventional injection molding simulation, respectively.Fig. 6. Comparison of the distortion variation in the Y direction for different thermal conductivitiesFig. 7. Comparison of the distortion variation in the Z direction for different thermal conductivitiesFig. 8. Comparison of the twist variation for different thermal conductivities For this part, distortion includes the displacements in three directions and the twist (the difference in angle between two initially parallel edges). The validation results are shown in Fig.5 to Fig. 8. These figures also include the distortion values predicted by conventional injection molding simulation and the three-step model reported in [3].4 ConclusionsIn this paper, an integrated model to accomplish the numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. For verification, an experiment is also carried out with an RPfabricated SL mold.It is seen that a conventional simulation using current injection molding software breaks down for a photopolymer mold. It is assumed that this is due to the distortion in the mold caused by the temperature and load conditions of injection. The three-step approach also has much deviation. The developed model gives results closer to experimental.Improvement in thermal conductivity of the photopolymer significantly increases part quality. Since the effect of temperature seems to be more dominant than that of pressure (load), an improvement in the thermal conductivity of the photopolymer can improve the part quality significantly.Rapid Prototyping (RP) is a technology makes it possible to manufacture prototypes quickly and inexpensively, regardless of their comp lexity. Rapid Tooling (RT) is the next step in RP’s steady progress and much work is being done to obtain more accurate tools to define the parameters of the process. Existing simulation tools can not provide the researcher with a useful means of studying relative changes. An integrated model, such as the one presented in this paper, is necessary to obtain accurate predictions of the actual quality of final parts. In the future, we expect to see this work expanded to develop simulations program for injection into RP molds manufactured by other RT processes.References1. Wang KK (1980) System approach to injection molding process. Polym-Plast Technol Eng 14(1):75–93.2. Shelesh-Nezhad K, Siores E (1997) Intelligent system for plastic injection molding process design. J Mater Process Technol 63(1–3):458–462.3. Aluru R, Keefe M, Advani S (2001) Simulation of injection molding into rapid-prototyped molds. Rapid Prototyping J 7(1):42–51.4. Shen SF (1984) Simulation of polymeric flows in the injection molding process. Int J Numer Methods Fluids 4(2):171–184.5. Agassant JF, Alles H, Philipon S, Vincent M (1988) Experimental and theoretical study of the injection molding of thermoplastic materials. Polym Eng Sci 28(7):460–468.6. Chiang HH, Hieber CA, Wang KK (1991) A unified simulation of the filling and post-filling stages in injection molding. Part I: formulation. Polym Eng Sci 31(2):116–124.7. Zhou H, Li D (2001) A numerical simulation of the filling stage in injection molding based on a surface model. Adv Polym Technol 20(2):125–131.8. Himasekhar K, Lottey J, Wang KK (1992) CAE of mold cooling in injection molding using a three-dimensional numerical simulation. J EngInd Trans ASME 114(2):213–221.9. Tang LQ, Pochiraju K, Chassapis C, Manoochehri S (1998) Computeraided optimization approach for the design of injection mold cooling systems. J Mech Des, Trans ASME 120(2):165–174.10. Rizzo FJ, Shippy DJ (1977) An advanced boundary integral equation method for three-dimensional thermoelasticity. Int J Numer Methods Eng 11:1753–1768.11. Hartmann F (1980) Computing the C-matrix in non-smooth boundary points. In: New developments in boundary element methods, CML Publications, Southampton, pp 367–379.12. Chen X, Lama YC, Li DQ (2000) Analysis of thermal residual stress in plastic injection molding. J Mater Process Technol 101(1):275–280.13. Lee EH, Rogers TG (1960) Solution of viscoelastic stress analysis problems using measured creep or relaxation function. J Appl Mech 30(1):127–134.14. Li Y (1997) Studies in direct tooling using stereolithography. Dissertation, University of Delaware, Newark, DE..。
注塑成型过程外文文献翻译、中英文翻译
附录 1:外文翻译介绍如今塑料在日常生活中占据着极其重要的地位。
如果我们说,没有哪个领域的塑料没有不经过制造中直接到宇宙飞船的生产中,这一点也不夸张。
在19 世纪中叶,塑料开始在材料和生活中起主导作用。
耐腐蚀性是塑料甚至成为金属和提高制造生产率方面受到了很高的关注。
从塑料的紧缺,因此在塑料产品设计等各个方面发生巨大的变革,在制造加工领域还在测试阶段,现在,由于很多人最后通过体力劳动取得了卓越的成效,另外人工智能的帮助下,开发出了CAD / CAM 软件。
由于高强度的重量比,提高了化学稳定性和耐温性,具有耐热和耐腐蚀的特性,光泽性使其成为材料更好的选择。
塑料在形成过程中消耗的能量更少,并且可以被循环利用。
今天,塑料正在取代黄铜、铜、铸铁、钢铁等金属。
塑料可以根据制造方法分类,在加热时软化,在冷却时凝固。
这些被称为“热塑性塑料”,以及那些由于化学变化而变硬的物质。
这些被称为热固性或混合型塑料材料成为产品选择特殊材料是另一个重要因素。
这对于产品的确定是非常必要的。
它也应该能够承受压力。
每种材料都有自己的属性。
一些材料在高环境和耐磨性方面比较好。
困难的是找到一种合适材料,它将完全满足整个要求。
所以材料应该是通用的,它适合我们产品的所有考虑条件和要求。
在考虑了所有这些点的材料之后,必须选择合适的材料来满足所有这些条件。
注塑成型过程它是一种通过将熔融状态的物质注入模具来生产零件的生产工艺。
注射成型被用在很多领域进行生产,包括金属、眼镜、弹性体、糖果以及最常见的热塑性塑料和热固性塑料。
将材料的一部分送入一个加热的桶,混合,并用高压压入一个模腔,它是可以冷却和硬化地方。
在产品设计后,通常由工业设计师或工程师设计模具,模具由模具制造商(或工具制造商)制造,通常由金属或铝制成,并经过精密加工以形成所需的特性。
注塑成型广泛应用于制造各种零件,从最小的零件到汽车的整个车身。
零件的形状和特点、模具的所需材料,以及造型机的性能都必须考虑在内。
模具制造科学外文文献翻译、模具类中英文翻译、外文翻译
英文翻译The Science of Die MakingThe traditional method of making large automotive sheet metal dies by model building and tracing has been replaced by CAD/CAM terminals that convert mathematical descriptions of body panel shapes into cutter paths.Teledyne Specialty Equipment’s Efficient Die and Mold facility is one of the companies on the leading edge of this transformation.by Associate EditorOnly a few years ago,the huge steel dies requited for stamping sheet metal auto body panels were built by starting with a detailed blueprint and an accurate full-scale master model of the part. The model was the source from which the tooling was designed and produced.The dies,machined from castings,were prepared from patterns made by the die manutacturers or somethimes supplied bythe car maker.Secondary scale models called”tracing aids”were made from the master model for use on duplicating machines with tracers.These machines traced the contour of the scale model with a stylus,and the information derived guided a milling cutter that carved away unwanted metal to duplicate the shape of the model in the steel casting.All that is changing.Now,companies such as Teledyne Specialty Equipment’s Effi cient Die and Mold operation in Independence,OH,work from CAD data supplied by customers to generate cutter paths for milling machines,which then automatically cut the sheetmetal dies and SMC compression molds.Although the process is uesd to make both surfaces of the tool, the draw die still requires a tryout and “benching” process.Also, the CAD data typically encompasses just the orimary surface of the tool,and some machined surfaces, such as the hosts and wear pads, are typically part of the math surface.William Nordby,vice president and business manager of dies and molds at Teledyne,says that “although no one has taken CAD/CAM to the point of building the entire tool,it will eventually go in that direction because the “big thrdd”want to compress cycle times and are trying to cut the amount of time that it takes to build the tooling.Tryout, because of the lack of development on the design end,is still a very time-consuming art,and vety much a trial-and-error process.”No More Models and Tracing AidsThe results to this new technology are impressive. For example, tolerances are tighter and hand finishing of the primary die surface with grinders has all but been eliminated. The big difference, says Gary Kral, Teledyne’s director of engineering, is that the dimensional control has radically improved. Conventional methods of making plaster molds just couldn’t hold tolerances because of day-to-day temperature and humidity variations.”For SMC molds the process is so accurate , and because there is no spring back like there is when stamping sheet metal, tryouts are not always required.SMC molds are approved by customers on a regulate basis without ever running a part .Such approvals are possible because of Teledyne’s ability to check the toolsurface based on mathematical analysis and guarantee that it is made exactly to the original design data.Because manual trials and processes have been eliminated, Teledyne has been able to consider foreign markets.” The ability to get a tool approved based on the mathe gives us the opportunity to compete in places we wouldn’t have otherwise,” says Nordby.According to Jim Church, systems manager at Teledyne, the company used to have lots of pattern makers ,and still has one model maker.” But 99.9 percent of the company’s work now is from CAD data. Instead of model makers, engineers work in front of computer monitors.”He says that improvenents in tool quality and reduction in manufacturing time are significant. Capabilities of the process were demonstrated by producing two identical tools. One was cut using conventional patterns and tracing mills, and the other tool was machined using computer generated cutting paths. Although machining time was 14 percent greater with the CAM-generated path, polishing hours were cut by 33 percent. In all ,manufacturing time decreased 16.5 percent and tool quality increased 12 percent.Teledyne’s CAD/CAM system uses state-of-the-art software that allows engineers to design dies and molds, develop CNC milling cutter paths and incorporate design changes easily. The system supports full-color, shaded three-dimensional modeling on its monitors to enhance its design and analysis capabilities. The CAD/CAM system also provides finite element analysis that can be used to improve the quality of castings , and to analyze the thermal properties of molds. Inputs virtually from any customer database can be used either directly or through translation.CMM Is CriticalTeledyne’s coordinate measuring machine(CMM),says’ Church,”is what has made a difference in terms of being able to move from the traditional manual processes of mold and die making to the automated system that Teledyne uses today.”The CMM precisely locates any point in a volume of space measuring 128 in, by 80 in, by 54 in, to an accuracy of 0.0007 in. It can measure parts, dies and molds weighing up to 40 tons. For maximum accuracy,the machine is housed in an environmentally isolated room where temperature is maintained within 2 deg.F of optimum. To isolate the CMM from vibration, it is mounted on a 100-ton concrete block supported on art cushions.According to Nordby, the CMM is used not only as a quality tool, but also as a process checking tool. “ As a tool goes through the shop, it is checked several times to validate the previous operation that was performed.” For example, after the initial surface of a mold is machined and before any finish work is done, it is run through the CMM for a complete data check to determine how close the surface is to the required geometry.The mold is checked with a very dense pattern based on flow lines of the part. Each mold is checked twice, once before benching and again after benching. Measurements taken from both halves of the mold are used to calculate theoretical stock thickness at full closure of the mold to verify its accuracy with the CAD design data.Sheet Metal Dies Are Different“Sheet metal is a different ballgame,” says Nordby, “because you have the issue of material springback and the way the metal forms in the die. What happens in the sheet metal is that you do the same kinds of things for the male punch as you would with SMC molds and you ensure that it is 100 percent to math data. But due to machined surface tolerance variations, the female half becomes the working side of the tool. And there is still a lot of development required after the tool goes into the press. The math generated surfaces apply primarily to the part surface of the tool.”EMS Tracks the Manufacturing ProcessTeledyne’s business operations also are computerized and carried over a network consisting of a V AX server and PC terminals. IMS (Effective Management Systems) software tracks orders, jobs in progress, location of arts, purchasing, receiving, and is now being upgraded to include accounting functions.Overall capabilities of the EMS system include bill-of-material planning and control, inventory management, standard costing, material history, master production scheduling, material requirements planning, customer order processing, booking and sales history, accounts receivable, labor history, shop floor control, scheduling, estimating, standard routings, capacity requirements planning, job costing, purchasing and receiving, requisitions, purchasing and receiving, requisitions, purchasing history and accounts payable.According to Frank Zugaro, Teledyne’s scheduling manager, the EMS software was chosen because of its capabilities in scheduling time and resources in a job shop environment. All information about a job is entered into inventory management to generate a structured bill of material. Then routes are attached to it and work orders are generated.The system provides daily updates of data by operator hour as well as a material log by shop order and word order. Since the database is interactive, tracking of materials received and their flow through the build procedure can be documented and cost data sent to accounting and purchasing.Gary Kral, Teledyne’s director of engineering, says that EMS is really a tracking device, and one of the systems greatest benefits is that it provides a documented record of everything involving a job and eliminates problems that could arise from verbal instructions and promises. Kral says that as the system is used more, they are finding that it pays to document more things to make it part of the permanent record. It helps keep them focused.模具制造科学传统的通过制造模具加工大型板材的方法已经被可以把实体的形状信息转换为切削路径的CAD/CAM所取代了。
塑料模具毕业设计中英文对照资料外文翻译文献
中英文对照资料外文翻译文献一个描述电铸镍壳在注塑模具的应用的技术研究摘要:在过去几年中快速成型技术及快速模具已被广泛开发利用. 在本文中,使用电芯作为核心程序对塑料注射模具分析. 通过差分系统快速成型制造外壳模型. 主要目的是分析电铸镍壳力学特征、研究相关金相组织,硬度,内部压力等不同方面,由这些特征参数以生产电铸设备的外壳. 最后一个核心是检验注塑模具.关键词:电镀;电铸;微观结构;镍1. 引言现代工业遇到很大的挑战,其中最重要的是怎么样提供更好的产品给消费者,更多种类和更新换代问题. 因此,现代工业必定产生更多的竞争性. 毫无疑问,结合时间变量和质量变量并不容易,因为他们经常彼此互为条件; 先进的生产系统将允许该组合以更加有效可行的方式进行,例如,如果是观测注塑系统的转变、我们得出的结论是,事实上一个新产品在市场上具有较好的质量它需要越来越少的时间快速模具制造技术是在这一领域, 中可以改善设计和制造注入部分的技术进步. 快速模具制造技术基本上是一个中小型系列的收集程序,在很短的时间内在可接受的精度水平基础上让我们获得模具的塑料部件。
其应用不仅在更加广阔而且生产也不断增多。
本文包括了很广泛的研究路线,在这些研究路线中我们可以尝试去学习,定义,分析,测试,提出在工业水平方面的可行性,从核心的注塑模具制造获取电铸镍壳,同时作为一个初始模型的原型在一个FDM设备上的快速成型。
不得不说的是,先进的电铸技术应用在无数的行业,但这一研究工作调查到什么程度,并根据这些参数,使用这种技术生产快速模具在技术上是可行的. 都产生一个准确的,系统化使用的方法以及建议的工作方法.2 制造过程的注塑模具薄镍外壳的核心是电铸,获得一个充满epoxic金属树脂的一体化的核心板块模具(图1)允许直接制造注射型多用标本,因为它们确定了新英格兰大学英文国际表卓华组织3167标准。
这样做的目的是确定力学性能的材料收集代表行业。
该阶段取得的核心[4],根据这一方法研究了这项工作,有如下:a,用CAD系统设计的理想对象b模型制造的快速成型设备(频分多路系统). 所用材料将是一个ABS塑料c一个制造的电铸镍壳,已事先涂有导电涂料(必须有导电).d无外壳模型e核心的生产是背面外壳环氧树脂的抗高温与具有制冷的铜管管道.有两个腔的注塑模具、其中一个是电核心和其他直接加工的移动版. 因此,在同一工艺条件下,同时注入两个标准技术制造,获得相同的工作。
注塑模具外文翻译1(英文部分,可在我的文库中找到)
我自己的东西为什么不给我上传Windows自带的三维塑料注射模具设计系统L. Kong, J.Y.H. Fuh∗, K.S. Lee, X.L. Liu, L.S. Ling, Y.F. Zhang, A.Y.C. Nee 新加坡国立大学机械工程系,10,新加坡119260,新加坡肯特岗新月摘要三维实体建模变革已经成为设计的主流。
虽然高端三维实体建模系统工程师的工作站多年来一直在大型航空航天,消费产品,汽车公司。
然而,现在许多规模较小的公司一直在研发工作站到PC机的转换器。
转移的原因之一是windows 的进步和自身的灵活,NT开发人员已经研发出能够承担上述责任并且易于使用的软件。
高端用户们发现,中档的实体建模工具,如SolidWorks中,已经能满足他们的需要。
SolidWorks中被选为该平台由于Windows自身的设计环境、强大的组装能力、易于使用,快速模仿曲线,以及实惠的价格。
一个windows自身的3 d塑料注塑模具设计系统,通过Visual c++代码的商业软件接口,与SolidWorks 99和API的连接,已经实现了在一个NT上实现了。
该系统为设计师提供了在同一个交互式计算机辅助设计环境下,既可以加快模具设计过程中,又能促进标准化。
©2003 Elsevier科学BV保留所有权利。
关键词:注塑模具;Windows;CAD;分块说明随着塑料部件在消费品、机械、汽车和飞机的广泛应用,射成型工艺已被公认为一种重要的生产过程。
通常,模具设计过程的关键路径是新产品开发。
一般来说,模具设计一直是一个非常“神秘”的艺术,在一个工程人员可以相对精通它之前,需要多年的经验。
由于学习这门艺术初始困难,越来越少人能从这方面专家的经验和知识中受益。
改变这种现状的一种方法是计算机辅助设计(CAD)系统。
CAD作为“日常术语”,已经发展到具有广泛功能,应用领域从学校教学到三维设计的软件。
目前,大多数CAD系统提供只有方便模具设计绘图操作几何建模功能,,不提供模具设计师必要的知识来设计模具。
注塑模具之模具设计与制造外文文献翻译、中英文翻译
外文翻译:Injection moulding for Mold Design and ManufactureThe mold is the manufacturing industry important craft foundation, in our country, the mold manufacture belongs to the special purpose equipment manufacturing industry. China although very already starts to make the mold and the use mold, but long-term has not formed the industry. Straight stabs 0 centuries 80's later periods, the Chinese mold industry only then drives into the development speedway. Recent years, not only the state-owned mold enterprise had the very big development, the three investments enterprise, the villages and towns (individual) the mold enterprise's development also quite rapidly.Although the Chinese mold industrial development rapid, but compares with the demand, obviously falls short of demand, its main gap concentrates precisely to, large-scale, is complex, the long life mold domain. As a result of in aspect and so on mold precision, life, manufacture cycle and productivity, China and the international average horizontal and the developed country still had a bigger disparity, therefore, needed massively to import the mold every year .The Chinese mold industry except must continue to sharpen the productivity; from now on will have emphatically to the profession internal structure adjustment and the state-of-art enhancement. The structure adjustment aspect, mainly is the enterprise structure to the specialized adjustment, the product structure to center the upscale mold development, to the import and export structure improvement, center the upscale automobile cover mold forming analysis and the structure improvement, the multi-purpose compound mold and the compound processing and the laser technology in the mold design manufacture application, the high-speed cutting, the super finishing and polished the technology, the information direction develops .The recent years, the mold profession structure adjustment and the organizational reform step enlarges, mainly displayed in, large-scale, precise, was complex, the long life, center the upscale mold and the mold standard letter development speed is higher than the common mold product; The plastic mold and the compression casting moldproportion increases; Specialized mold factory quantity and its productivity increase; "The three investments" and the private enterprise develops rapidly; The joint stock system transformation step speeds up and so on. Distributes from the area looked, take Zhujiang Delta and Yangtze River delta as central southeast coastal area development quickly to mid-west area, south development quickly to north. At present develops quickest, the mold produces the most centralized province is Guangdong and Zhejiang, places such as Jiangsu, Shanghai, Anhui and Shandong also has a bigger development in recent years.Although our country mold total quantity had at present achieved the suitable scale, the mold level also has the very big enhancement, after but design manufacture horizontal overall rise and fall industry developed country and so on Yu De, America, date, France, Italy many. The current existence question and the disparity mainly display in following several aspects:(1) The total quantity falls short of demandDomestic mold assembling one rate only, about 70%. Low-grade mold, center upscale mold assembling oneself rate only has 50% about.(2) The enterprise organizational structure, the product structure, the technical structure and the import and export structure does not gatherIn our country mold production factory to be most is from the labor mold workshop which produces assembles oneself (branch factory), from produces assembles oneself the proportion to reach as high as about 60%, but the overseas mold ultra 70% is the commodity mold. The specialized mold factory mostly is "large and complete", "small and entire" organization form, but overseas mostly is "small but", "is specially small and fine". Domestic large-scale, precise, complex, the long life mold accounts for the total quantity proportion to be insufficient 30%, but overseas in 50% above 2004 years, ratio of the mold import and export is 3.7:1, the import and export balances the after net import volume to amount to 1.32 billion US dollars, is world mold net import quantity biggest country .(3) The mold product level greatly is lower than the international standardThe production cycle actually is higher than the international water broadproduct level low mainly to display in the mold precision, cavity aspect and so on surface roughness, life and structure.(4) Develops the ability badly, economic efficiency unsatisfactory our country mold enterprise technical personnel proportion lowThe level is lower, also does not take the product development, and frequently is in the passive position in the market. Our country each mold staff average year creation output value approximately, ten thousand US dollars, overseas mold industry developed country mostly 15 to10, 000 US dollars, some reach as high as 25 to10, 000 US dollars, relative is our country quite part of molds enterprises also continues to use the workshop type management with it, truly realizes the enterprise which the modernized enterprise manages fewTo create the above disparity the reason to be very many, the mold long-term has not obtained the value besides the history in as the product which should have, as well as the most state-owned enterprises mechanism cannot adapt the market economy, but also has the following several reasons: .The mold material performance, the quality and the variety question often can affect the mold quality, the life and the cost, the domestically produced molding tool steel and overseas imports the steel products to compare has a bigger disparity. Plastic,plate, equipment energy balance, also direct influence mold level enhancement.RSP ToolingRapid Solidification Process (RSP) Tooling, is a spray forming technology tailored for producing molds and dies [2-4]. The approach combines rapid solidification processing and netshape materials processing in a single step. The general concept involves converting a mold design described by a CAD file to a tooling master using a suitable rapid prototyping (RP) technology such as stereolithography. A pattern transfer is made to a castable ceramic, typically alumina or fused silica. This is followed by spray forming a thick deposit of tool steel (or other alloy) on the pattern to capture the desired shape, surface texture and detail. The resultant metal block is cooled to room temperature and separated from the pattern. Typically, the deposit’s exterior walls are machined square, allowing it to be used as an insert in a holding block such as a MUD frame [5]. The overall turnaround time for tooling is about three days, stating with a master. Molds and dies produced in this way have been used for prototype and production runs in plastic injection molding and die casting.An important benefit of RSP Tooling is that it allows molds and dies to be made early in the design cycle for a component. True prototype parts can be manufactured to assess form, fit, and function using the same process planned for production. If the part is qualified, the tooling can be run in production as conventional tooling would. Use of a digital database and RP technology allows design modifications to be easily made.Experimental ProcedureAn alumina-base ceramic (Cotronics 780 [6]) was slurry cast using a silicone rubber master die, or freeze cast using a stereolithography master. After setting up, ceramic patterns were demolded, fired in a kiln, and cooled to room temperature. H13 tool steel was induction melted under a nitrogen atmosphere, superheated about100︒C, and pressure-fed into a bench-scale converging/diverging spray nozzle, designed and constructed in-house. An inert gas atmosphere within the spray apparatus minimized in-flight oxidation of the atomized droplets as they deposited onto the tool pattern at a rate of about 200 kg/h. Gas-to-metal mass flow ratio was approximately 0.5.For tensile property and hardness evaluation, the spray-formed material was sectioned using a wire EDM and surface ground to remove a 0.05 mm thickheat-affected zone. Samples were heat treated in a furnace that was purged with nitrogen. Each sample was coated with BN and placed in a sealed metal foil packet as a precautionary measure to prevent decarburization.Artificially aged samples were soaked for 1 hour at temperatures ranging from 400 to 700︒C, and air cooled. Conventionally heat treated H13 was austenitized at 1010︒C for 30 min., air quenched, and double tempered (2 hr plus 2 hr) at 538︒C.Microhardness was measured at room temperature using a Shimadzu Type M Vickers Hardness Tester by averaging ten microindentation readings. Microstructure of the etched (3% nital) tool steel was evaluated optically using an Olympus Model PME-3 metallograph and an Amray Model 1830 scanning electron microscope. Phase composition was analyzed via energy-dispersive spectroscopy (EDS). The size distribution of overspray powder was analyzed using a Microtrac Full Range Particle Analyzer after powder samples were sieved at 200 μm to remove coarse flakes. Sample density was evaluated by water displacement using Archimedes’ principle and a Mettler balance (Model AE100).A quasi 1-D computer code developed at INEEL was used to evaluate multiphase flow behavior inside the nozzle and free jet regions. The code's basic numerical technique solves the steadystate gas flow field through an adaptive grid, conservative variables approach and treats the droplet phase in a Lagrangian manner with full aerodynamic and energetic coupling between the droplets and transport gas. The liquid metal injection system is coupled to the throat gas dynamics, and effects of heat transfer and wall friction are included. The code also includes a nonequilibriumsolidification model that permits droplet undercooling and recalescence. The code was used to map out the temperature and velocity profile of the gas and atomized droplets within the nozzle and free jet regions.Results and DiscussionSpray forming is a robust rapid tooling technology that allows tool steel molds and dies to be produced in a straightforward manner. Each was spray formed using a ceramic pattern generated from a RP master.Particle and Gas BehaviorParticle mass frequency and cumulative mass distribution plots for H13 tool steel sprays are given in Figure 1. The mass median diameter was determined to be 56 μm by interpolation of size corresponding to 50% cumulative mass. The area mean diameter and volume mean diameter were calculated to be 53 μm and 139 μm, respectively. Geometric standard deviation, d=(d84/d16)½ , is 1.8, where d84 and d16 are particle diameters corresponding to 84% and 16% cumulative mass in Figure 1.Figure1. Cumulative mass and mass frequency plots of particles in H13 tool stepsprays.Figure2 gives computational results for the multiphase velocity flow field (Figure 2a), and H13 tool steel solid fraction (Figure2b), inside the nozzle and free jetregions. Gas velocity increases until reaching the location of the shock front, at which point it precipitously decreases, eventually decaying exponentially outside the nozzle. Small droplets are easily perturbed by the velocity field, accelerating inside the nozzle and decelerating outside. After reaching their terminal velocity, larger droplets (〜150 μm) are less perturbed by the flow field due to their greater momentum.It is well known that high particle cooling rates in the spray jet (103-106 K/s) and bulk deposit (1-100 K/min) are present during spray forming [7]. Most of the particles in the spray have undergone recalescence, resulting in a solid fraction of about 0.75. Calculated solid fraction profiles of small (〜30 μm) and large (〜150 μm) droplets with distance from the nozzle inlet, are shown in Figure 2b.Spray-Formed DepositsThis high heat extraction rate reduces erosion effects at the surface of the tool pattern. This allows relatively soft, castable ceramic pattern materials to be used that would not be satisfactory candidates for conventional metal casting processes. With suitable processing conditions, fine surface detail can be successfully transferred from the pattern to spray-formed mold. Surface roughness at the molding surface is pattern dependent. Slurry-cast commercial ceramics yield a surface roughness of about 1 μm Ra, suitable for many molding applications. Deposition of tool steel onto glass plates has yielded a specular surface finish of about 0.076 μm Ra. At the current state of development, dimensional repeatability of spray-formed molds, starting with a common master, is about ±0.2%.Figure 2. Calculated particle and gas behavior in nozzle and free jet regions.(a) Velocity profile.(b) Solid fraction.ChemistryThe chemistry of H13 tool steel is designed to allow the material to withstand the temperature, pressure, abrasion, and thermal cycling associated with demanding applications such as die casting. It is the most popular die casting alloy worldwide and second most popular tool steel for plastic injection molding. The steel has low carbon content (0.4 wt.%) to promote toughness, medium chromium content (5 wt.%) to provide good resistance to high temperature softening, 1 wt% Si to improve high temperature oxidation resistance, and small molybdenum and vanadium additions (about 1%) that form stable carbides to increase resistance to erosive wear[8]. Composition analysis was performed on H13 tool steel before and after spray forming.Results, summarized in Table 1, indicate no significant variation in alloy additions.MicrostructureThe size, shape, type, and distribution of carbides found in H13 tool steel is dictated by the processing method and heat treatment. Normally the commercial steel is machined in the mill annealed condition and heat treated(austenitized/quenched/tempered) prior to use. It is typically austenitized at about 1010︒C, quenched in air or oil, and carefully tempered two or three times at 540 to 650︒C to obtain the required combination of hardness, thermal fatigue resistance, and toughness.Commercial, forged, ferritic tool steels cannot be precipitation hardened becauseafter electroslag remelting at the steel mill, ingots are cast that cool slowly and formcoarse carbides. In contrast, rapid solidification of H13 tool steel causes alloying additions to remain largely in solution and to be more uniformly distributed in the matrix [9-11]. Properties can be tailored by artificial aging or conventional heat treatment.A benefit of artificial aging is that it bypasses the specific volume changes that occur during conventional heat treatment that can lead to tool distortion. These specific volume changes occur as the matrix phase transforms from ferrite to austenite to tempered martensite and must be accounted for in the original mold design. However, they cannot always be reliably predicted. Thin sections in the insert, which may be desirable from a design and production standpoint, are oftentimes not included as the material has a tendency to slump during austenitization or distort during quenching. Tool distortion is not observed during artificial aging ofspray-formed tool steels because there is no phase transformation.注塑模具之模具设计与制造模具是制造业的重要工艺基础,在我国,模具制造属于专用设备制造业。
模具 塑料注射成型 外文翻译 外文文献 英文文献
模具塑料注射成型外文翻译外文文献英文文献XXXThere are many different processing methods used to convert plastic pellets。
powders。
and liquids into final products。
Plastic materials XXX。
thermoplastic materials XXX。
XXX require other methods。
It is XXX.XXX。
It is also the oldest method。
Suddenly。
XXX account for 30% of all XXX suitable for mass n。
when raw materials XXX in a single step of n。
In most cases。
n machiningis not required for such products。
The us products produced include toys。
automotive parts。
household items。
and electronic consumer goods.Because plastic n molds have many variable nships。
it is a complex and us processing process。
The success of XXX appropriate steps。
but on the XXX。
which leads to the n of XXX。
barrel temperature changes。
XXX ns can help ce tolerances。
ce defect rates。
and increase product quality.XXX operator is to produce products that e first-rate products in the shortest time。
表面处理、模具等常用机械英语对照
表面处理、热处理关连用语英汉对照age hardening 时效硬化 ageing 老化处理air hardening 气体硬化 air patenting 空气韧化annealing 退火 anode effect 阳极效应anodizing 阳极氧化处理 atomloy treatment 阿托木洛伊表面austempering 奥氏体等温淬火 austenite 奥斯田体/奥氏体bainite 贝氏体 banded structure 条纹状组织barrel plating 滚镀 barrel tumbling 滚筒打光blackening 染黑法 blue shortness 青熟脆性bonderizing 磷酸盐皮膜处理 box annealing 箱型退火box carburizing 封箱渗碳 bright electroplating 辉面电镀bright heat treatment 光辉热处理 bypass heat treatment 旁路热处理carbide 炭化物 carburized case depth 浸碳硬化深层carburizing 渗碳 cementite 炭化铁chemical plating 化学电镀 chemical vapor deposition 化学蒸镀coarsening 结晶粒粗大化 coating 涂布被覆cold shortness 低温脆性 comemtite 渗碳体controlled atmosphere 大气热处理 corner effect 锐角效应creeping discharge 蠕缓放电 decarburization 脱碳处理decarburizing 脱碳退火 depth of hardening 硬化深层diffusion 扩散 diffusion annealing 扩散退火electrolytic hardening 电解淬火 embossing 压花etching 表面蚀刻 ferrite 肥粒铁first stage annealing 第一段退火 flame hardening 火焰硬化flame treatment 火焰处理 full annealing 完全退火gaseous cyaniding 气体氧化法 globular cementite 球状炭化铁grain size 结晶粒度 granolite treatment 磷酸溶液热处理graphitizing 石墨退火 hardenability 硬化性hardenability curve 硬化性曲线 hardening 硬化heat treatment 热处理 hot bath quenching 热浴淬火hot dipping 热浸镀 induction hardening 高周波硬化ion carbonitriding 离子渗碳氮化 ion carburizing 离子渗碳处理ion plating 离子电镀 isothermal annealing 等温退火liquid honing 液体喷砂法 low temperature annealing 低温退火malleablizing 可锻化退火 martempering 麻回火处理martensite 马氏体/硬化铁炭 metallikon 金属喷镀法metallizing 真空涂膜 nitriding 氮化处理nitrocarburizing 软氮化 normalizing 正常化oil quenching 油淬化 overageing 过老化overheating 过热 pearlite 针尖组织phosphating 磷酸盐皮膜处理 physical vapor deposition 物理蒸镀plasma nitriding 离子氮化 pre-annealing 预备退火precipitation 析出 precipitation hardening 析出硬化press quenching 加压硬化 process annealing 制程退火quench ageing 淬火老化 quench hardening 淬火quenching crack 淬火裂痕 quenching distortion 淬火变形quenching stress 淬火应力 reconditioning 再调质recrystallization 再结晶 red shortness 红热脆性residual stress 残留应力 retained austenite 残留奥rust prevention 防蚀 salt bath quenching 盐浴淬火sand blast 喷砂处理 seasoning 时效处理second stage annealing 第二段退火 secular distortion 经年变形segregation 偏析 selective hardening 部分淬火shot blast 喷丸处理 shot peening 珠击法single stage nitriding 等温渗氮 sintering 烧结处理soaking 均热处理 softening 软化退火solution treatment 固溶化热处理 spheroidizing 球状化退火stabilizing treatment 安定化处理 straightening annealing 矫直退火strain ageing 应变老化 stress relieving annealing 应力消除退火subzero treatment 生冷处理 supercooling 过冷surface hardening 表面硬化处理 temper brittleness 回火脆性temper colour 回火颜色 tempering 回火tempering crack 回火裂痕 texture 咬花thermal refining 调质处理 thermoechanical treatment 加工热处理time quenching 时间淬火 transformation 变态tufftride process 软氮化处理 under annealing 不完全退火vacuum carbonitriding 真空渗碳氮化 vacuum carburizing 真空渗碳处理vacuum hardening 真空淬火 vacuum heat treatment 真空热处理vacuum nitriding 真空氮化 water quenching 水淬火wetout 浸润处理模具厂常用之标准零配件英汉对照air vent vale 通气阀 anchor pin 锚梢angular pin 角梢 baffle 调节阻板angular pin 倾斜梢 baffle plate 折流档板ball button 球塞套 ball plunger 定位球塞ball slider 球塞滑块 binder plate 压板blank holder 防皱压板 blanking die 落料冲头bolster 上下模板 bottom board 浇注底板bolster 垫板 bottom plate 下固定板bracket 托架 bumper block 缓冲块buster 堵口 casting ladle 浇注包casting lug 铸耳 cavity 模穴(模仁)cavity retainer plate 模穴托板 center pin 中心梢clamping block 锁定块 coil spring 螺旋弹簧cold punched nut 冷冲螺母 cooling spiral 螺旋冷却栓core 心型 core pin 心型梢cotter 开口梢 cross 十字接头cushion pin 缓冲梢 diaphragm gate 盘形浇口die approach 模头料道 die bed 型底die block 块形模体 die body 铸模座die bush 合模衬套 die button 冲模母模die clamper 夹模器 die fastener 模具固定用零件die holder 母模固定板 die lip 模唇die plate 冲模板 die set 冲压模座direct gate 直接浇口 dog chuck 爪牙夹头dowel 定位梢 dowel hole 导套孔dowel pin 合模梢 dozzle 辅助浇口dowel pin 定位梢 draft 拔模锥度draw bead 张力调整杆 drive bearing 传动轴承ejection pad 顶出衬垫 ejector 脱模器ejector guide pin 顶出导梢 ejector leader busher 顶出导梢衬套ejector pad 顶出垫 ejector pin 顶出梢ejector plate 顶出板 ejector rod 顶出杆ejector sleeve 顶出衬套 ejector valve 顶出阀机械类常用英语:生产类PCS Pieces 个(根,块等) PRS Pairs 双(对等)CTN Carton 卡通箱 PAL Pallet/skid 栈板PO Purchasing Order 采购订单 MO Manufacture Order 生产单D/C Date Code 生产日期码 ID/C Identification Code (供应商)识别码SWR Special Work Request 特殊工作需求L/N Lot Number 批号 P/N Part Number 料号机械专业英语词汇(很全)金属切削 metal cutting 机床 machine tool金属工艺学 technology of metals 刀具 cutter摩擦 friction 联结 link传动 drive/transmission 轴 shaft弹性 elasticity 频率特性 frequency characteristic误差 error 响应 response定位 allocation 机床夹具 jig动力学 dynamic 运动学 kinematic静力学 static 分析力学 analyse mechanics拉伸 pulling 压缩 hitting剪切 shear 扭转 twist弯曲应力 bending stress 强度 intensity三相交流电 three-phase AC 磁路 magnetic circles变压器 transformer 异步电动机 asynchronous motor几何形状 geometrical 精度 precision正弦形的 sinusoid 交流电路 AC circuit机械加工余量 machining allowance 变形力 deforming force变形 deformation 应力 stress硬度 rigidity 热处理 heat treatment退火 anneal 正火 normalizing脱碳 decarburization 渗碳 carburization电路 circuit 半导体元件 semiconductor element反馈 feedback 发生器 generator直流电源 DC electrical source 门电路 gate circuit逻辑代数 logic algebra 外圆磨削 external grinding内圆磨削 internal grinding 平面磨削 plane grinding变速箱 gearbox 离合器 clutch绞孔 fraising 绞刀 reamer螺纹加工 thread processing 螺钉 screw铣削 mill 铣刀 milling cutter功率 power 工件 workpiece齿轮加工 gear mechining 齿轮 gear主运动 main movement 主运动方向 direction of main movement 进给方向 direction of feed 进给运动 feed movement合成进给运动 resultant movement of feed合成切削运动 resultant movement of cutting合成切削运动方向 direction of resultant movement of cutting切削深度 cutting depth 前刀面 rake face刀尖 nose of tool 前角 rake angle后角 clearance angle 龙门刨削 planing主轴 spindle 主轴箱 headstock卡盘 chuck 加工中心 machining center车刀 lathe tool 车床 lathe钻削镗削 bore 车削 turning磨床 grinder 基准 benchmark钳工 locksmith 锻 forge压模 stamping 焊 weld拉床 broaching machine 拉孔 broaching装配 assembling 铸造 found流体动力学 fluid dynamics 流体力学 fluid mechanics加工 machining 液压 hydraulic pressure切线 tangent 机电一体化 mechanotronics mechanical-electrical integration 气压 air pressure pneumatic pressure 稳定性 stability介质 medium 液压驱动泵 fluid clutch液压泵 hydraulic pump 阀门 valve失效 invalidation 强度 intensity载荷 load 应力 stress安全系数 safty factor 可靠性 reliability螺纹 thread 螺旋 helix键 spline 销 pin滚动轴承 rolling bearing 滑动轴承 sliding bearing弹簧 spring 制动器 arrester brake十字结联轴节 crosshead 联轴器 coupling链 chain 皮带 strap精加工 finish machining 粗加工 rough machining变速箱体 gearbox casing 腐蚀 rust氧化 oxidation 磨损 wear耐用度 durability 随机信号 random signal离散信号 discrete signal 超声传感器 ultrasonic sensor集成电路 integrate circuit 挡板 orifice plate残余应力 residual stress 套筒 sleeve扭力 torsion 冷加工 cold machining电动机 electromotor 汽缸 cylinder过盈配合 interference fit 热加工 hotwork摄像头 CCD camera 倒角 rounding chamfer优化设计 optimal design 工业造型设计 industrial moulding design 有限元 finite element 滚齿 hobbing插齿 gear shaping 伺服电机 actuating motor铣床 milling machine 钻床 drill machine镗床 boring machine 步进电机 stepper motor丝杠 screw rod 导轨 lead rail组件 subassembly 可编程序逻辑控制器 Programmable Logic Controller PLC 电火花加工 electric spark machining电火花线切割加工 electrical discharge wire - cutting相图 phase diagram 热处理 heat treatment固态相变 solid state phase changes 有色金属 nonferrous metal陶瓷 ceramics 合成纤维 synthetic fibre电化学腐蚀 electrochemical corrosion 车架 automotive chassis悬架 suspension 转向器 redirector变速器 speed changer 板料冲压 sheet metal parts孔加工 spot facing machining 车间 workshop工程技术人员 engineer 气动夹紧 pneuma lock数学模型 mathematical model 画法几何 descriptive geometry机械制图 Mechanical drawing 投影 projection视图 view 剖视图 profile chart标准件 standard component 零件图 part drawing装配图 assembly drawing 尺寸标注 size marking技术要求 technical requirements 刚度 rigidity内力 internal force 位移 displacement截面 section 疲劳极限 fatigue limit断裂 fracture 塑性变形 plastic distortion脆性材料 brittleness material 刚度准则 rigidity criterion垫圈 washer 垫片 spacer直齿圆柱齿轮 straight toothed spur gear 斜齿圆柱齿轮 helical-spur gear 直齿锥齿轮 straight bevel gear 运动简图 kinematic sketch齿轮齿条 pinion and rack 蜗杆蜗轮 worm and worm gear虚约束 passive constraint 曲柄 crank摇杆 racker 凸轮 cams共轭曲线 conjugate curve 范成法 generation method定义域 definitional domain 值域 range导数\\微分 differential coefficient 求导 derivation定积分 definite integral 不定积分 indefinite integral曲率 curvature 偏微分 partial differential毛坯 rough 游标卡尺 slide caliper千分尺 micrometer calipers 攻丝 tap二阶行列式 second order determinant 逆矩阵 inverse matrix线性方程组 linear equations 概率 probability随机变量 random variable 排列组合 permutation and combination 气体状态方程 equation of state of gas 动能 kinetic energy势能 potential energy 机械能守恒 conservation of mechanical energy 动量 momentum 桁架 truss轴线 axes 余子式 cofactor逻辑电路 logic circuit 触发器 flip-flop脉冲波形 pulse shape 数模 digital analogy液压传动机构 fluid drive mechanism 机械零件 mechanical parts淬火冷却 quench 淬火 hardening回火 tempering 调质 hardening and tempering磨粒 abrasive grain 结合剂 bonding agent砂轮 grinding wheel机械类常用英语:常用加工机械3D coordinate measurement 三次元量床 boring machine 搪孔机cnc milling machine CNC铣床 contouring machine 轮廓锯床copy grinding machine 仿形磨床 copy lathe 仿形车床copy milling machine 仿形铣床 copy shaping machine 仿形刨床cylindrical grinding machine 外圆磨床 die spotting machine 合模机drilling machine 钻孔机 engraving machine 雕刻机engraving E.D.M. 雕模放置加工机 form grinding machine 成形磨床graphite machine 石墨加工机 horizontal boring machine 卧式搪孔机horizontal machine center 卧式加工制造中心internal cylindrical machine 内圆磨床jig boring machine 冶具搪孔机 jig grinding machine 冶具磨床lap machine 研磨机 machine center 加工制造中心multi model miller 靠磨铣床 NC drilling machine NC钻床NC grinding machine NC磨床 NC lathe NC车床NC programming system NC程式制作系统 planer 龙门刨床profile grinding machine 投影磨床 projection grinder 投影磨床radial drilling machine 旋臂钻床 shaper 牛头刨床surface grinder 平面磨床 try machine 试模机turret lathe 转塔车床 universal tool grinding machine 万能工具磨床vertical machine center 立式加工制造中心 wire E.D.M. 线割放电加工机机械类常用英语:钢材类alloy tool steel 合金工具钢 aluminium alloy 铝合金钢bearing alloy 轴承合金 blister steel 浸碳钢bonderized steel sheet 邦德防蚀钢板 carbon tool steel 碳素工具钢clad sheet 被覆板 clod work die steel 冷锻模用钢emery 金钢砂 ferrostatic pressure 钢铁水静压力forging die steel 锻造模用钢 galvanized steel sheet 镀锌铁板hard alloy steel 超硬合金钢 high speed tool steel 高速度工具钢hot work die steel 热锻模用钢 low alloy tool steel 特殊工具钢low manganese casting steel 低锰铸钢 marging steel 马式体高强度热处理钢martrix alloy 马特里斯合金 meehanite cast iron 米汉纳铸钢meehanite metal 米汉纳铁 merchant iron 市售钢材molybdenum high speed steel 钼系高速钢 molybdenum steel 钼钢nickel chromium steel 镍铬钢 prehardened steel 顶硬钢silicon steel sheet 矽钢板 stainless steel 不锈钢tin plated steel sheet 镀锡铁板 ough pitch copper 韧铜troostite 吐粒散铁 tungsten steel 钨钢vinyl tapped steel sheet 塑胶覆面钢板外贸常用机械英语大全Assembly line 组装线 Layout 布置图Conveyer 流水线物料板 Rivet table 拉钉机Rivet gun 拉钉枪 Screw driver 起子Pneumatic screw driver 气动起子 worktable 工作桌OOBA 开箱检查 fit together 组装在一起fasten 锁紧(螺丝) fixture 夹具(治具)pallet 栈板 barcode 条码barcode scanner 条码扫描器 fuse together 熔合fuse machine热熔机 repair修理operator作业员 QC品管supervisor 课长 ME 制造工程师MT 制造生技 cosmetic inspect 外观检查inner parts inspect 内部检查 thumb screw 大头螺丝lbs. inch 镑、英寸 EMI gasket 导电条front plate 前板 rear plate 后板chassis 基座 bezel panel 面板power button 电源按键 reset button 重置键Hi-pot test of SPS 高源高压测试 Voltage switch of SPS 电源电压接拉键sheet metal parts 冲件 plastic parts 塑胶件SOP 制造作业程序 material check list 物料检查表work cell 工作间 trolley 台车carton 纸箱 sub-line 支线left fork 叉车 personnel resource department 人力资源部production department生产部门 planning department企划部QC Section品管科 stamping factory冲压厂painting factory烤漆厂 molding factory成型厂common equipment常用设备 uncoiler and straightener整平机punching machine 冲床 robot机械手hydraulic machine油压机 lathe车床planer |plein|刨床 miller铣床grinder磨床 linear cutting线切割electrical sparkle电火花 welder电焊机staker=reviting machine铆合机 position职务president董事长 general manager总经理special assistant manager特助 factory director厂长department director部长 deputy manager | =vice manager副理section supervisor课长 deputy section supervisor =vice section superisor副课长group leader/supervisor组长 line supervisor线长assistant manager助理 to move, to carry, to handle搬运be put in storage入库 pack packing包装to apply oil擦油 to file burr 锉毛刺final inspection终检 to connect material接料to reverse material 翻料 wet station沾湿台Tiana天那水 cleaning cloth抹布to load material上料 to unload material卸料to return material/stock to退料 scraped报废scrape ..v.刮;削 deficient purchase来料不良manufacture procedure制程 deficient manufacturing procedure制程不良oxidation氧化 scratch刮伤dents压痕 defective upsiding down抽芽不良defective to staking铆合不良 embedded lump镶块feeding is not in place送料不到位 stamping-missing漏冲production capacity生产力 education and training教育与训练proposal improvement提案改善 spare parts=buffer备件forklift叉车 trailer=long vehicle拖板车compound die合模 die locker锁模器pressure plate=plate pinch压板 bolt螺栓administration/general affairs dept总务部 automatic screwdriver电动启子thickness gauge厚薄规 gauge(or jig)治具power wire电源线 buzzle蜂鸣器defective product label不良标签 identifying sheet list标示单location地点 present members出席人员subject主题 conclusion结论decision items决议事项 responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheet PCE组装厂生产排配表model机锺 work order工令revision版次 remark备注production control confirmation生产确认 checked by初审approved by核准 department部门stock age analysis sheet 库存货龄分析表 on-hand inventory现有库存available material良品可使用 obsolete material良品已呆滞to be inspected or reworked 待验或重工 total合计cause description原因说明 part number/ P/N 料号type形态 item/group/class类别quality品质 prepared by制表notes说明year-end physical inventory difference analysis sheet 年终盘点差异分析表physical inventory盘点数量 physical count quantity帐面数量difference quantity差异量 cause analysis原因分析raw materials原料 materials物料finished product成品 semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品 warehouse/hub仓库on way location在途仓 oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板 tox machine自铆机wire EDM线割 EDM放电机coil stock卷料 sheet stock片料tolerance工差 score=groove压线cam block滑块 pilot导正筒trim剪外边 pierce剪内边drag form压锻差 pocket for the punch head挂钩槽slug hole废料孔 feature die公母模expansion dwg展开图 radius半径shim(wedge)楔子 torch-flame cut火焰切割set screw止付螺丝 form block折刀stop pin定位销 round pierce punch=die button圆冲子shape punch=die insert异形子 stock locater block定位块under cut=scrap chopper清角 active plate活动板baffle plate挡块 cover plate盖板male die公模 female die母模groove punch压线冲子 air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板 bushing block衬套insert 入块 club car高尔夫球车capability能力 parameter参数factor系数 phosphate皮膜化成viscosity涂料粘度 alkalidipping脱脂main manifold主集流脉 bezel斜视规blanking穿落模 dejecting顶固模demagnetization去磁;消磁 high-speed transmission高速传递heat dissipation热传 rack上料degrease脱脂 rinse水洗alkaline etch龄咬 desmut剥黑膜D.I. rinse纯水次 Chromate铬酸处理Anodize阳性处理 seal封孔revision版次 part number/P/N料号barcode条码 flow chart流程表单assembly组装 stamping冲压molding成型 spare parts=buffer备品coordinate座标 dismantle the die折模auxiliary fuction辅助功能 poly-line多义线heater band 加热片 thermocouple热电偶sand blasting喷沙 grit 砂砾derusting machine除锈机 degate打浇口dryer烘干机 induction感应induction light感应光 response=reaction=interaction感应ram连杆 edge finder巡边器concave凸 convex凹short射料不足 nick缺口speck瑕疵 shine亮班splay 银纹 gas mark焦痕delamination起鳞 cold slug冷块blush 导色 gouge沟槽;凿槽satin texture段面咬花 witness line证示线patent专利 grit沙砾granule=peuet=grain细粒 grit maker抽粒机cushion缓冲 magnalium镁铝合金magnesium镁金 metal plate钣金blinster气泡 fillet镶;嵌边through-hole form通孔形式 voller pin formality滚针形式cam driver铡楔 shank摸柄crank shaft曲柄轴 augular offset角度偏差velocity速度 production tempo生产进度现状torque扭矩 spline=the multiple keys花键quenching淬火 tempering回火annealing退火 carbonization碳化tungsten high speed steel钨高速的 moly high speed steel钼高速的organic solvent有机溶剂 bracket小磁导liaison联络单 volatile挥发性resistance电阻 ion离子titrator滴定仪 beacon警示灯coolant冷却液 crusher破碎机机械工具英语spanner 扳子 (美作:wrench) double-ended spanner 双头扳子adjustable spanner, monkey wrench 活扳子,活络扳手box spanner 管钳子 (美作:socket wrench) calipers 卡规pincers, tongs 夹钳 shears 剪子hacksaw 钢锯 wire cutters 剪线钳multipurpose pliers, universal pliers 万能手钳 adjustable pliers 可调手钳punch 冲子 chuck 卡盘scraper 三角刮刀 reamer 扩孔钻calliper gauge 孔径规 rivet 铆钉nut 螺母 locknut 自锁螺母,防松螺母bolt 螺栓 pin, peg, dowel 销钉staple U形钉 oil can 油壶jack 工作服 grease gun 注油枪抛光 polishing 衬套 bushing半机械化 semi-mechanization; semi-mechanized半自动滚刀磨床 semi-automatic hob grinder半自动化 semi-automation; semi-automatic备件 spare parts 边刨床 side planer变速箱 transmission gear 柄轴 arbor部件 units; assembly parts 插床 slotting machine拆卸 to disassemble 超高速内圆磨床 ultra-high-speed internal grinder。
模具外文翻译外文文献英文文献注塑模
模具外文翻译外文文献英文文献注塑模The Injection Molding1、The injection moldingInjection molding is principally used for the production of the thermoplastic parts,although some progress has been made in developing a method for injection molding some thermosetting materials.The problem of injection a method plastic into a mold cavity from a reservoir of melted material has been extremely difficult to solve for thermosetting plastic which cure and harden under such conditions within a few minutes.The principle of injection molding is quite similar to that of die-casting.The process consists of feeding a plastic compound in powered or granular form from a hopper through metering and melting stages and then injecting it into a mold.After a brief cooling period,the mold is opened and the solidified part ejected.Injection-molding machine operation.The advantage of injection molding are:(ⅰ)a high molding speed adapter for mass production is possible;(ⅱ)there is a wide choice of thermoplastic materials providing a variety of useful properties;(ⅲ)it is possible to mold threads,undercuts,side holes,and large thin section.2、The injection-molding machineSeveral methods are used to force or inject the melted plastic into the mold.The most commonly used system in the larger machines is the in-line reciprocating screw,as shown in Figure 2-1.The screw acts as a combination injection and plasticizing unit.As the plastic is fed to the rotating screw,it passes through three zones as shown:feed,compression,and metering.After the feed zone,the screw-flight depth is gradually reduced,force theplastic to compress.The work is converted to heat by conduction from the barrel surface.As the chamber in front of the screw becomes filled,it forces the screw back,tripping a limit switch that activates a hydraulic cylinder that forces the screw forward and injects the fluid plastic into the closed mold.An antiflowback valve presents plastic under pressure from escaping back into the screw flight.The clamping force that a machine is capable of exerting is part of the size designation and is measured in tons.A rule-of-thumb can be used to determine the tonnage required for a particular job.It is based on two tons of clamp force per square inch of projected area.If the flow pattern is difficult and the parts are thin,this may have to go to three or four tons.Many reciprocating-screw machines are capable of handing thermosetting plastic materials.Previously these materials were handled by compression or transfer molding.Thermosetting materials cure or polymerize in the mold and are ejected hot in the range of 375°C~410°C.T hermosetting parts must be allowed to cool in the mold in order or remove them without distortion. Thus thermosetting cycles can be faster.Of course the mold must be heated rather than chilled,as with thermoplastics.3、Basic Underfeed MouldA simple mould of this type is shown in Figure3-1,and the description of the design and the opening sequence follows.The mould consists of three basic parts,namely:the moving half,the floating cavity plate and the feed plate respectively.The moving half consists of The moving mould plate assembly,support block,backing plate,ejector assembly and the pin ejection system.Thus the moving half in this design is identical with the moving half of basic moulds.The floating cavity plate,which may be of the integer or insert-bolster design,is located on substantial guide pillars(not shown)fitted in the feed plate.These guide pillars must be of sufficient length to support the floating cavity plate over its full movement and still project to perform the function of alignment between the cavity and core when the mould is being closed.Guide bushes are fitted into the moving mould plate and the floating cavity plate respectively.The maximum movement of the floating cavity plate is controlled by stop or similar device.The moving mould plate is suitably bored to provide a clearance for the stop bolt assembly.The stop bolts must be long enough to provide sufficient space between the feed plate and the floating cavity plate for easy removal of the feed system.The minimum space provide for should be 65mm just sufficient for an operator to remove the feed system by hand if necessary.The desire operating sequence is for the first daylight to occur between the floating cavity plate.This ensures the sprue is pulled from the sprue bush immediately the mouldis opened.T o achieve this sequence,springs may be incorporated between the feed plate and the floating cavity plate.The springs should be strong enough to give an initial impetus to the floating cavity plate to ensure it moves away with the moving half.It is normal practice to mount the springs on the guide pillars(Figure3-2)and accommodate them in suitable pocket in the cavity plate.The major part of the feed system(runner and sprue)is accommodated in the feed plate to facilitate automatic operation,the runner should be of a trapezoidal form so that once it is pulled from the feed plate is can easily beextracted.Note that if a round runner is used,half the runner is formed in the floating cavity plate,where it would remain,and be prevented from falling or being wiped clear when the mould is opened.Now that we have considered the mould assembly in the some detail,we look at the cycle of operation for this type of mould.The impressions are filled via the feed system(Figure3-1(a))and after a suitable dwell period,the machine platens commence to open.A force is immediately exerted by the compression springs,which cause the floating cavity plate to move away with the moving half as previously discussed.The sprue is pulled from the sprue bush by the sprue puller.After the floating cavity plate has moved a predetermined distance,it is arrested by the stop bolts.The moving half continues to move back and the moldings,having shrunk on to the cores,are withdrawn from the cavities.The pin gate breaks at its junction with the runner(Figure3-1(b)).The sprue puller,being attached to the moving half,is pulled through the floating cavity plate and thereby release the feed system which is then free to fall between the floating cavity plate and the feed plate.The moving half continues to move back until the ejector system is operated and the moldings are ejected (Figure3-1(c)).When the mould is closed,the respective plates are returned to their molding position and the cycle is repeated.4、Feed SystemIt is necessary to provide a flow-way in the injection mould to connect the nozzle(of the injection machine)to each impression.This flow-way is termed the feed system.Normally thefeed system comprises a sprue,runner and gate.These terms applyequally to the flow-way itself,and to the molded material which is remove from the flow-way itself in the process of extracted the molding.A typical feed system for a four-impression,two plate-type mould is shown in Figure4-1.It is seen that the material passes through the sprue,main runner,branch runner and gate before entering the impression.As the temperature of molten plastic is lowered which going through the sprue and runner,the viscosity will rise;however,the viscosity is lowered by shear heat generated when going through the gate to fill the cavity.It is desirable to keep the distance that the material has to travel down to a minimum to reduce pressure and heat losses.It is for this reason that careful consideration must be given to the impression layout gate’s design.4.1.SprueA sprue is a channel through which to transfer molten plastic injected from the nozzle of the injector into the mold.It is a part of sprue bush,which is a separate part from the mold.4.2.RunnerA runner is a channel that guides molten plastic into the cavity of a mold.4.3.GateA gate is an entrance through which molten plastic enters the cavity.The gate has the following function:restricts the flow and the direction of molten plastic;simplifies cutting of a runner and moldings to simplify finishing of parts;quickly cools and solidifies to avoid backflow after molten plastic has filled up in the cavity.4.4.Cold slug wellThe purpose of the cold slug well,shown opposite the sprue,is theoretically to receive the material that has chilled at the front of nozzle during the cooling and ejection phase.Perhaps of greater importance is the fact that it provides position means whereby the sprue bush for ejection purposes.The sprue,the runner and the gate will be discarded after a part is complete.However,the runner and the gate are important items that affect the quality or the cost of parts.5、EjectionA molding is formed in mould by injecting a plastic melt,under pressure,into animpression via a feed system.It must therefore be removed manually.Furthermore,all thermoplastic materials contract as they solidify,which means that the molding will shrink on to the core which forms it.This shrinkage makes the molding difficult to remove. Facilities are provided on the injection machine for automatic actuation of an ejector system,and this is situated behind the moving platen.Because of this,the mould’s ejector system will be most effectively operated if placed in the moving half of the mould,i.e. the half attached to the moving platen.We have stated previously that we need to eject the molding from the core and it therefore follows that the core,too,will most satisfactorily be located in the moving half.The ejector system in a mould will be discussed under three headings,namely:(ⅰ)the ejector grid;(ⅱ)the ejector plate assembly; and(ⅲ)the method of ejection.5.1、Ejector gridThe ejector grid(Figure5-1)is that part of the mould which supports the mould plate and provides a space into which theejector plate assembly can be fitted and operated.The grid normally consists of a back plate on to which is mounted a number of conveniently shaped “support blocks”.The ejector plate assembly is that part of the mould to which the ejector element is attached.The assembly is contained in a pocket,formed by the ejector grid,directly behind the mould plate.The assembly(Figure5-2)consists of an ejector plate,a retaining plate and an ejector rod.One end of this latter member is threaded and it is screwed into the ejector plate.In this particular design the ejector rod function not only as an actuating member but also as a method of guiding the assembly.Note that the parallel portion of the ejector rod passes through an ejector rod bush fitted in the back plate of the mould.5.2、Ejection techniquesWhen a molding cools,it contracts by an amount depending on the material being processed.For a molding which has no internal form,for example,a solid rectangular block,the molding will shrink away from the cavity walls,thereby permitting a simple ejection technique to be adopted.However,when the molding has internal form,the molding,as it cools,will shrink onto the core and some positive type of ejection is necessary.The designer has several ejection techniques from which to choose,but in general,the choice will be restricted depending upon the shape of the molding.The basic ejection techniques are as follows:(ⅰ)pin ejection(ⅱ)sleeve ejection(ⅲ)stripper plate ejection and(Ⅳ)air ejection.Figure 2-1aFigure 2-1bFigure 3-1Figure 3-2Figure 4-1aFigure 4-1bFigure 5-1Figure 5-2注塑模1、注塑模尽管成型某些热固性材料的方法取得了一定的进步,但注塑模主要(还是)用来生产热塑性塑件。
注射注塑模具外文翻译外文文献翻译、中英文翻译、外文翻译
外文资料翻译系部:专业:姓名:学号:外文出处:dvanced English literacy course(用外文写)附件:指导老师评语签名:年月日第一篇译文(中文)2.3注射模2.3.1注射模塑注塑主要用于热塑性制件的生产,它也是最古老的塑料成型方式之一。
目前,注塑占所有塑料树脂消费的30%。
典型的注塑产品主要有杯子器具、容器、机架、工具手柄、旋钮(球形捏手)、电器和通讯部件(如电话接收器),玩具和铅管制造装置。
聚合物熔体因其较高的分子质量而具有很高的粘性;它们不能像金属一样在重力流的作用下直接被倒入模具中,而是需要在高压的作用下强行注入模具中。
因此当一个金属铸件的机械性能主要由模壁热传递的速率决定,这决定了最终铸件的晶粒度和纤维取向,也决定了注塑时熔体注入时的高压产生强大的剪切力是物料中分子取向的主要决定力量。
由此所知,成品的机械性能主要受注射条件和在模具中的冷却条件影响。
注塑已经被应用于热塑性塑料和热固性塑料、泡沫部分,而且也已经被改良用于生产反应注塑过程,在此过程中,一个热固树脂系统的两个组成部分在模具中同时被注射填充,然后迅速聚合。
然而大多数注塑被用热塑性塑料上,接下来的讨论就集中在这样的模具上。
典型的注塑周期或流程包括五个阶段(见图2-1):(1)注射或模具填充;(2)填充或压紧;(3)定型;(4)冷却;(5)零件顶出。
图2-1 注塑流程塑料芯块(或粉末)被装入进料斗,穿过一条在注射料筒中通过旋转螺杆的作用下塑料芯块(或粉末)被向前推进的通道。
螺杆的旋转迫使这些芯块在高压下对抗使它们受热融化的料筒加热壁。
加热温度在265至500华氏度之间。
随着压力增强,旋转螺杆被推向后压直到积累了足够的塑料能够发射。
注射活塞迫使熔融塑料从料筒,通过喷嘴、浇口和流道系统,最后进入模具型腔。
在注塑过程中,模具型腔被完全充满。
当塑料接触冰冷的模具表面,便迅速固化形成表层。
由于型芯还处于熔融状态,塑料流经型芯来完成模具的填充。
详细解析加工工艺材料 及 中英文对照
铸件及产品表面处理工艺:压铸件:Die castingsZinc Die castings电铸件:Electrical castings不锈钢铸件:stainless steel castings铸件表面处理Surface finish for the castings:做黑:blacking镀锌:Zinc plating镀铬:chrome plating镀镍:nickel plating磨砂面处理:grit satin finishSatin finish titanium抛光处理:tumble bright手工拉丝(圆形拉丝,放射线拉丝, 对角线拉丝):brushed metal surface/drawbench(circular metal brushed texture, radius metal brushed texture, diagonal metal brushed texture)Cell phone with brushed metal surface哑光面处理:hand dull polished finish镜面抛光处理:mirror polished finish金属孔:metallic holes氧化铬钝化处理:passivation treatment电抛光处理:electrolytic polished喷砂处理(玻璃砂,钢玉沙,石英砂):sandblasting(glass bead blasting, corundum-sand blasting, quartz-sand blasting)Satin finished surfaceTPU或橡胶凹刻:TPU,rubber text intaglioCell phone TPU text intaglioCD纹样:CD patternCell phone navigation key used CD pattern镀枪色:gun color platinggun color plated真空镀:PVD vacuum plating(PVD: Physical vapor deposition)PVDtechnics UVcoating+PVD technics紫外固化(增加表面耐磨层及使用寿命):UV curingUV coating字符镭雕:Laser carving textSilicone rubber keypad numbers by laser carving technics 字符丝印:Silk-screen printingPhone text silkscreen printed一般电镀:electroplating effectsElectroplated mobile手机壳使用材料:ABS+PC(塑料)Zinc Alloy(锌合金),Aluminum Alloy(铝合金)ABS+PC Zinc AlloyAlumium Alloy按键材料: Keypad made of PC plasticPC plastic镜片屏幕材料:Lens, screen made of PMMA(亚克力),PVC plasticPMMA material Clear PVC FilmUSB软胶塞材料:USB stopper made of Rubber, TPUTPO material cover电镀可用在ABS和金属材料,真空镀可用在PMMA和任何材料上,真空镀价格相对便宜:Electroplating can be done by ABS and metal materials, PVD vaccum plating can be donw on any other materila such as PMMA亚克力,PVD plating cheaper不导电真空镀处理:Non conductive PVD vacuum platingNon conductive PVD plated注塑材料:injection molding plastic喷漆处理:paint sprayingPaint-spraying+UV coating模具蚀纹(手机壳花纹工艺):in-mould metal etching techniqueComputer cover etching不锈钢拉丝电镀处理:stainless steel brushed surface by chrome plating阳极氧化处理:anodic oxidation treatmentAluminum Anoidc oxidation treatment on surface表面电镀:surface electroplating电泳处理:Electrophoresis不导电真空溅镀工艺(和电镀效果一样都是在塑料表面镀金属色,但是有镜面效果非常亮):Non conductive vacuum metallization technics(It is similar to electroplating effects, but colors can be mirror finish)PVD vacuum metallization不锈钢表面进行处理(表面本色白化处理,表面镜石光亮处,表面着色处理,光亮处理方法,喷砂处理法,机械抛光,化学抛光,电化学抛光):Stainless steel surface treatment(color bleachingtreatment, mirror finish treatment, sand blasting, mechanical polishing finish, chemical polishing finish, electrochemical polishing finish).Chemical polished喇叭网,布织网:Speaker mesh,netting双色注塑:two-color injection molding technics底面镀膜:underside coating with thin film钢板花纹镭雕:Steel sheet with laser engraving treatmentLaser Engraving texture部分纹理突起:Texture bump不锈钢冲压:Precision stainless steel stamping part.彩镀:color plating电池盖常用材料:battery cap made of aluminum alloy, ABS+PCAlumium Alloy cap表面腐蚀纹:Electrochemisty corrosion pattern finishLighter metal corrosion texture表面氧化处理:Surface oxidation treatment沙面处理:satin finish亮面处理:glossy finishHigh glossy finish car body with black paint spray+UV coating哑光面处理:matte finish批花纹处理:radiation pattern功能键镀膜效果:function keys made of transparent PC with coating effect手机壳体分件:上壳:Front Housing壳上装饰件:cap decorative pieces中壳:middle cover后壳:Rear Housing按键:keypad天线:Antenna电池盖:battery cover侧按键:side function key导航键:navigation key功能键:function key喇叭孔:Mic振动器:Vibrater测试端口:Test port and 嗡鸣器:Buzzer常用材料及应用ABS:汽车(仪表板,工具舱门,车轮盖,反光镜,冰箱,大强度工具如头发烘干机,搅拌器,食品加工机,割草机,电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车,喷气式雪橇车。
OA自动化-外文翻译——基于注塑模具钢研磨和抛光工序的自动化表面处理 精品
图1 球面研磨过程示意图,已经进行了一些研究,确定了球面抛光工艺的最优参数 比如,人们发现, 用碳化钨球滚压的方法可以使工件表面的塑性变形减少而改善表面粗糙度、表面硬度、抗疲劳强度。
抛光的工艺的过程是由加工中心和车床共同对表面粗糙度有重大影响的抛光工艺主要参数,主要是球或滚子材料,图2 球面抛光过程示意图步距研磨高度球磨研磨进给速度工作台进给研磨球工作台研磨深度研磨表面模柄弹簧工具可调支撑紧固螺钉磨球组件自动研磨磨球图4 球面研磨工具及其调整装置加工中心数控机床电脑图6完成了L18型矩阵实验后,表2 (PDS5试样光滑表层的粗糙度)总结了光滑表面的粗糙度RA值,计算了每一个L18型矩阵实验的信噪比(S/N),从而用于方程(1)。
通过表提供的各个数值,可以得到四种不同程度因素的平均信噪比(S/N),在图7中已用图表显示。
表2 PDS5试样光滑表层的粗糙度实验信噪比控制因素内部表面Ra=2.15μm抛光表面Ra=0.07μm光滑表面Ra=0.45μmautomated surface finishing processes was introduced in. A finishing process mode of spherical grinding tools for automated surface finishing systems was developedFig.4. Schematic illustration of the spherical grinding tool and its adjustment deviceFig.6. Experimental set-up to determine the optimal spherical grinding parametersTable 2 summarizes the measured ground surface roughness alue R a and the calculated S/N ratio of each L18 orthogonal array sing Eq. 1, after having executed the 18 matrix experiments. The average S/N ratio for each level of the four actors。
基于注塑模具钢研磨和抛光工序的自动化表面处理
~
_ . l l
~ ’
1 ~
器
:~。 一 — : 。’ — .
图2自动 化表 面 处理 的球 磨 研 磨 工 具
这 里 ,从 每个 L 8 l型正交实验 得到的信 噪比 ( / 数 据 ,经 计 S N) 算后 ,运用 差异分 析技 术( 变异) 和歼 比检验来 测定 每一个 主要 的 因 素。优化 小而好 类型的工程问题更是尽量使 最大而定。各级 T 1 选择 的最 大化将对 最终 的 因素有重大影 响 ,最优 条件 可视研磨 球而待
8 - 南缸 叶技 2 1年第. 0o 4 期
技 术 创 新
基 于 注 塑 模 具 钢 研磨 和 抛光 工序 的 自动化 表面 处 理
童 琳 编 译
( 四川 省 内 江 市 特 种 设 备 监 督 检 验 所 ) 摘 要 本文的主要 目的是研 究注塑模 具钢 自 动研磨 与球 面抛光加工工序的 可能性 。而完成这种注塑模 具钢P S 的塑性 曲面的加 D5 工是在数控加工 中心 实现的。 目前 ,此项研 究已经 完成 了磨 削刀架的设计与 制造。其 中,最佳表 面研 磨参数是 在钢铁 P S 的加 工中 D5 心测 定的。对于P S 注塑模具钢 的最佳球 面研 磨参数而言 ,其是 以下因素的一 系列的组合 :研磨材料 的磨料 为粉红氧化铝 .进给量 D5 50 0 毫米/ 分钟 ,磨 削深度 2微 米 , 削转速为 1 0 I M。如果 用优化 的参数进 行表 面研 磨 ,表 面粗糙度Ra 0 磨 8 0 0  ̄ . 值可 由大约 1 0 . 微米改善 6 至0 5 . 微米 。 而用球抛光 工艺和参数优化抛光 ,则可 以进一步改善表面粗糙 度Ra 3 值从0 4 微米至0 6 米左右。在模具 内部 曲面的测 .3 3 .微 O 试部分 中。用最佳参数的表面研磨、抛 光,曲面表 面粗糙度就可以提 高约2 5 . 微米到0 7 米。 1 .微 0
注射成型外文文献翻译、塑料模具类外文翻译、中英文翻译
2.3注射成型2.31注射成型注塑主要用于生产热塑性塑料零件,也是最原始的方法之一。
目前注塑占所有塑料树脂消费量的30%。
典型的注塑成型产品“塑料杯、容器、外壳、工具手柄、旋钮、电气和通信组件(如电话接收器)、玩具、和水暖配件。
聚合物熔体由于其分子量具有很高的粘度;它们不能像金属液在重力的条件下倒进模,必须在高压力下注入模具。
因此,金属铸造的力学性能是由模具壁传热的速度决定,同时也决定了在最终铸件的晶粒尺寸和晶粒取向, 高压注射成型过程中熔体的注射剪切力产生的主要原因是材料最后的分子取向。
力学性能影响成品都是因为在模具里的注塑条件很冷却条件。
注塑已应用于热塑性塑料和热固性材料,发泡部分,也已被修改过用于展现注射成型(RIM)反应过程,其中有两个部分组成,一种是热固性树脂体系,另一种是聚合物快速注射模具。
然而大多数注射成型是热塑性塑料,后面的讨论集中于这样的模型。
一个典型的注塑周期或序列由五个阶段组成(见图2 - 1):注射或模具填充;(2) 包装或压缩;(3) 保持;(4) 冷却;(5)部分排除物图2 - 1注射成型过程塑料颗粒(或粉末)被装入进料斗并通过注塑缸上的开口在那里它们被旋转螺杆结转。
螺杆的旋转使颗粒处于高压下加上受热缸壁使它们融化。
加热温度范围从265到500°F。
随着压力的增大,旋转螺丝被迫向后,直到积累了足够的塑料可以进行注射。
注射活塞(或螺钉)迫使熔融塑料从料桶通过喷嘴、浇口和流道系统,最后进入模腔。
在注射过程中,熔融塑料充满模具型腔。
当塑料接触冷模具表面,它迅速凝固(冻结)产生皮肤层。
由于核心仍在熔融状态,塑料流经核心来完成填充。
一般的,该空腔被注入期间填充到95%?98%。
然后成型工艺转向了填充的阶段。
型腔填充后,熔融塑料开始冷却。
由于冷却塑料会收缩产生缺陷,如缩孔、气泡,而且空间存在不稳定性。
所以被迫实行空穴用来补偿收缩、添加塑料。
一旦模腔被填充,压力应用熔体防止腔内熔融塑料会流进浇口。
模具 塑料注射成型 外文翻译 外文文献 英文文献
模具塑料注射成型外文翻译外文文献英文文献塑料注射成型许多不同的加工过程习惯于把塑料颗粒、粉末和液体转化成最终产品。
塑料材料用模具成型,并且适合用多种方式成型。
在大多数情况下,热塑性材料可以用许多方法成型,但热固性塑料需要用其他方法成型。
对于热塑性材料有这种事实的认识,它常常被加热成为另一种柔软状态,然后在冷却以前成型。
对于热固性塑料,换句话说,在它加工以前还没有形成聚合物,在化学反应加工过程中发生变化,如通过加热、催化剂或压力处理。
记住这个概念在学习塑料加工过程和聚合物的形成是很重要的。
塑料注射成型越来越广泛地运用于热塑性材料的成型工艺。
它也是最古老的一种方式。
突然间,塑料注射成型材料占所有成型材料消费的30%。
塑料注射成型适合于大批量生产,当原材料被成单一的步骤转换成为塑料物品和单步自动化的复杂几何形状制品。
在大多数情况下,对于这样的制品,精加工是不需要的。
所生产的各种各样的产品包括:玩具、汽车配件、家用物品和电子消费物品。
因为塑料注射模具有很多易变的相互影响,那是一种复杂的虚慎重考虑的加工过程。
塑料注射模具设备的成功是不依赖于机器变化到恰当的步骤,只有淘汰了需要注射变化的机器,才会导致适应液压变化、料筒温度变化和材料黏度变化的机器的产生。
增加机器重复注射的能力的变化可以帮助减少公差,降低次品等级和增加产品质量。
对于任何模具注射设备的操作人员目的是制造产品,成为特等品、用最短的时间、用重复精度和全自动化生产作为周期。
模塑人员在生产过程中总是想尽办法降低或消除不合格产品。
对于塑料注射模具有高要求的光学制品,或者有高附加值的制品如:家用电器制品,它的利润大大降低。
一种塑料注射模具的生产周期或顺序由五个阶段组成:注射或填充模具补料或压缩保压冷却局部注射塑料颗粒被投入料斗并且打开塑料注射料筒,在那里颗粒被旋转螺杆带动进入料筒。
螺杆的旋转强迫塑料颗粒在高压下挤压料筒筒壁导致它变成熔体。
随着压力的增加,旋转螺杆被迫后退直到有足够的塑料被注射成为储料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
英文原文Automated surface finishing of plastic injection mold steel with spherical grindingand ball burnishing processesAbstractThis study investigates the possibilities of automated spherical grinding and ball burnishing surface finishing processes in a freeform surface plastic injection mold steel PDS5 on a CNC machining center. The design and manufacture of a grinding tool holder has been accomplished in this study. The optimal surface grinding parameters were determined using Taguchi’s orthogonal array method for plastic injection molding steel PDS5 on a machining center. The optimal surface grinding parameters for the plastic injection mold steel PDS5 were the combination of an abrasive material of PA Al2O3, a grinding speed of 18 000 rpm, a grinding de pth of 20 μm, and a feed of 50 mm/min. The surface roughness Ra of the specimen can be improved from about 1.60 μm to 0.35 μm by using the optimal parameters for surface grinding. Surface roughness Ra can be further improved from about 0.343 μm to 0.06 μm by using the ball burnishing process with the optimal burnishing parameters. Applying the optimal surface grinding and burnishing parameters sequentially to a fine-milled freeform surface mold insert, the surface roughness Ra of freeform surface region on the tested part can be improved from about 2.15 μm to 0.07 μm.Keywords Automated surface finishing · Ball burnishing process · Grinding process · Surface roughness · Taguchi’s method1 IntroductionPlastics are important engineering materials due to their specific characteristics, such as corrosion resistance, resistance to chemicals, low density, and ease of manufacture, and have increasingly replaced metallic components in industrial applications. Injection molding is one of the important forming processes for plastic products. The surface finish quality of the plastic injection mold is an essential requirement due to its direct effects on the appearance of the plastic product. Finishing processes such as grinding, polishing and lapping are commonly used to improve the surface finish.The mounted grinding tools (wheels) have been widely used in conventional mold and die finishing industries. The geometric model of mounted grinding tools for automated surfacefinishing processes was introduced in. A finishing process mode of spherical grinding tools for automated surface finishing systems was developed in. Grinding speed, depth of cut, feed rate, and wheel properties such as abrasive material and abrasive grain size, are the dominant parameters for the spherical grinding process, as shown in Fig. 1. The optimal spherical grinding parameters for the injection mold steel have not yet been investigated based in the literature.Fig.1. Schematic diagram of the spherical grinding process In recent years, some research has been carried out in determining the optimal parameters of the ball burnishing process (Fig. 2). For instance, it has been found that plastic deformation on the workpiece surface can be reduced by using a tungsten carbide ball or a roller, thus improving the surface roughness, surface hardness, and fatigue resistance. The burnishing process is accomplished by machining centers and lathes. The main burnishing parameters having significant effects on the surface roughness are ball or roller material, burnishing force, feed rate, burnishing speed, lubrication, and number of burnishing passes, among others. The optimal surface burnishing parameters for the plastic injection mold steel PDS5 were a combination of grease lubricant, the tungsten carbide ball, a burnishing speed of 200 mm/min, a burnishing force of 300 N, and a feed of 40 μm. The depth of penetration of the burnished surface using the optimal ballburnishing parameters was about 2.5 microns. The improvement of the surface roughness through burnishing process generally ranged between 40% and 90%.Fig. 2. Schematic diagram of the ball-burnishing process The aim of this study was to develop spherical grinding and ball burnishing surface finish processes of a freeform surface plastic injection mold on a machining center. The flowchart of automated surface finish using spherical grinding and ball burnishing processes is shown in Fig. 3. We began by designing and manufacturing the spherical grinding tool and its alignment device for use on a machining center. The optimal surface spherical grinding parameters were determined by utilizing a Taguchi’s orthogonal array method. Four factors and three corresponding levels were then chosen for the Taguchi’s L18 matrix experiment. The optimal mounted spheri cal grinding parameters for surface grinding were then applied to the surface finish of a freeform surface carrier. To improve the surface roughness, the ground surface was further burnished, using the optimal ball burnishing parameters.Fig. 3. Flow chart of automated surface finish using spherical grinding and ballburnishing processes2 Design of the spherical grinding tool and its alignment deviceTo carry out the possible spherical grinding process of a freeform surface, the center of the ball grinder should coincide with the z-axis of the machining center. The mounted spherical grinding tool and its adjustment device was designed, as shown in Fig. 4. The electric grinder was mounted in a tool holder with two adjustable pivot screws. The center of the grinder ball was well aligned with the help of the conic groove of the alignment components. Having aligned the grinder ball, two adjustable pivot screws were tightened; after which, the alignment components could be removed. The deviation between the center coordinates of the ball grinder and that of the shank was about 5 μm, which was measured by a CNC coordinate measuring machine. The forceinduced by the vibration of the machine bed is absorbed by a helical spring. The manufactured spherical grinding tool and ball-burnishing tool were mounted, as shown in Fig. 5. The spindle was locked for both the spherical grinding process and the ball burnishing process by a spindle-locking mechanism.Fig.4. Schematic illustration of the spherical grinding tool and its adjustment deviceFig.5. (a) Photo of the spherical grinding tool (b) Photo of the ball burnishing tool3 Planning of the matrix experiment3.1 Configuration of Taguchi’s orthogonal arrayThe effects of several parameters can be determined efficiently by conducting matrix experiments using Taguchi’s orthogonal array. To match the aforementioned spherical grinding parameters, the abrasive material of the grinder ball (with the diameter of 10 mm), the feed rate, the depth of grinding, and the revolution of the electric grinder were selected as the four experimental factors (parameters) and designated as factor A to D (see Table 1) in this research. Three levels (settings) for each factor were configured to cover the range of interest, and were identified by the digits 1, 2, and 3. Three types of abrasive materials, namely silicon carbide (SiC), white aluminum oxide (Al2O3, WA), and pink aluminum oxide (Al2O3, PA), were selected and studied. Three numerical values of each factor were determined based on the pre-study results. The L18 orthogonal array was selected to conduct the matrix experiment for four 3-level factors of the spherical grinding process.Table1. The experimental factors and their levels3.2 Definition of the data analysisEngineering design problems can be divided into smaller-the better types, nominal-the-best types, larger-the-better types, signed-target types, among others [8]. The signal-to-noise (S/N) ratio is used as the objective function for optimizing a product or process design. The surface roughness value of the ground surface via an adequate combination of grinding parameters should be smaller than that of the original surface. Consequently, the spherical grinding process is an example of a smaller-the-better type problem. The S/N ratio, η, is defined by the followingequation:η =−10 log10(mean square quality characteristic)=−10 log10⎥⎦⎤⎢⎣⎡∑=n i i y n 121where:yi : observations of the quality characteristic under different noise conditions n : number of experimentAfter the S/N ratio from the experimental data of each L18 orthogonal array is calculated, the main effect of each factor was determined by using an analysis of variance (ANOVA) technique and an F-ratio test. The optimization strategy of the smaller-the better problem is to maximize η, as defined by Eq. 1. Levels that maximize η will be selected for the factors that have a significant effect on η. The optimal conditions for spherical grinding can then be determined.4 Experimental work and resultsThe material used in this study was PDS5 tool steel (equivalent to AISI P20), which is commonly used for the molds of large plastic injection products in the field of automobile components and domestic appliances. The hardness of this material is about HRC33 (HS46). One specific advantage of this material is that after machining, the mold can be directly used for further finishing processes without heat treatment due to its special pre-treatment. The specimens were designed and manufactured so that they could be mounted on a dynamometer to measure the reaction force. The PDS5 specimen was roughly machined and then mounted on the dynamometer to carry out the fine milling on a three-axis machining center made by Yang-Iron Company (type MV-3A), equipped with a FUNUC Company NC-controller (type 0M). The pre-machined surface roughness was measured, using Hommelwerke T4000 equipment, to be about 1.6 μm. Figure 6 shows the experimental set-up of the spherical grinding process. A MP10 touch-trigger probe made by the Renishaw Company was also integrated with the machining center tool magazine to measure and determine the coordinated origin of the specimen to be ground. The NC codes needed for the ball-burnishing path were generated by PowerMILL CAM software. These codes can be transmitted to the CNC controller of the machining center via RS232 serial interface.Fig.6. Experimental set-up to determine the optimal spherical grinding parameters Table 2 summarizes the measured ground surface roughness alue R a and the calculated S/N ratio of each L18 orthogonal array sing Eq. 1, after having executed the 18 matrix experiments.The average S/N ratio for each level of the four actors is shown graphically in Fig. 7.Fig.7. Plots of control factor effectsThe goal in the spherical grinding process is to minimize the surface roughness value of the ground specimen by determining the optimal level of each factor. Since −log is a monotone decreasing function, we should maximize the S/N ratio. Consequently, we can determine the optimal level for each factor as being the level that has the highest value of η. Therefore, based on the matrix experiment, the optimal abrasive material was pink aluminum oxide; the optimal feed was 50 mm/min; the optimal depth of grinding was 20 μm; and the optimal revolution was 18 000 rpm, as shown in Table 3.The optimal parameters for surface spherical grinding obtained from the Taguchi’s matrix experiments were applied to the surface finish of the freeform surface mold insert to evaluate the surface roughness improvement. A perfume bottle was selected as the tested carrier. The CNCmachining of the mold insert for the tested object was simulated with Power MILL CAM software. After fine milling, the mold insert was further ground with the optimal spherical grinding parameters obtained from the Taguchi’s matrix experiment. Shortly afterwards, the ground surface was burnished with the optimal ball burnishing parameters to further improve the surface roughness of the tested object (see Fig. 8). The surface roughness of the mold insert was measured with Hommelwerke T4000 equipment. The average surface roughness value R a on a fine-milled surface of the mold insert was 2.15 μm on average; that on the ground surface was 0.45 μm on average; and that on burnished surface was 0.07 μm on average. The surface roughness improvement of the tested object on ground surface was about (2.15−0.45)/2.15 = 79.1%, and that on the burnished surface was about (2.15−0.07)/2.15 = 96.7%.Fig.8. Fine-milled, ground and burnished mold insert of a perfume bottle5 ConclusionIn this work, the optimal parameters of automated spherical grinding and ball-burnishing surface finishing processes in a freeform surface plastic injection mold were developed successfully on a machining center. The mounted spherical grinding tool (and its alignment components) was designed and manufactured. The optimal spherical grinding parameters for surface grinding were determined by conducting a Taguchi L18 matrix experiments. The optimal spherical grinding parameters for the plastic injection mold steel PDS5 were the combination of the abrasive material of pink aluminum oxide (Al2O3, PA), a feed of 50 mm/min, a depth of grinding 20 μm, and a revolution of 18 000 rpm. The surface roug hness R a of the specimen can beimproved from about 1.6 μm to 0.35 μm by using the optimal spherical grinding conditions for surface grinding. By applying the optimal surface grinding and burnishing parameters to the surface finish of the freeform surface mold insert, the surface roughness improvements were measured to be ground surface was about 79.1% in terms of ground surfaces, and about 96.7% in terms of burnished surfaces.中文译文基于注塑模具钢研磨和抛光工序的自动化表面处理摘要这篇文章研究了注塑模具钢自动研磨与球面抛光加工工序的可能性,它可以在数控加工中心完成注塑模具钢PDS5的塑性曲面。