微波辅助提取剖析

合集下载

微波辅助萃取全部全解ppt课件

微波辅助萃取全部全解ppt课件

4.温度差: 是被提取组分扩散与传质的前提,没有浓度差或 浓度差很小,提取过程就不能进行
5.温度: 由于存在微波下的分子运动,因而温度不需要与传 统提取工艺过程中的一样高;也可能导致体系温度过度上 升,为减小温度的影响,可将微波提取过程分次进行 微波萃取在不同温度下的提取效果是不同的,当其他条件 一样时,热态比冷态的提取效果要好
微波辅助萃取 (Microwave Aided Extraction,MAE)
• 微波辅助萃取又称微波萃取(MAE),是微波和传统的溶剂 萃取法相结合后形成的一种新的萃取方法,因其具有快速 、高效、省溶剂、环境友好等优点,微波萃取是在有机分 析中得到了广泛的应用。
微波萃取机理
• 微波萃取技术是将微波技术和萃取技术相结合,利用极性 分子可以迅速吸收微波能量来加热一些具有极性的溶剂, 达到萃取样品中目标化合物、分离杂质的目的。微波加热 不同于一般的常规加热方式,常规加热是由外部热源通过 热辐射由表及里的传导方式加热。微波加热是材料在电磁 场中由介质吸收引起的内部整体加热。微波加热意味着将 微波电磁能转变成热能,其能量是通过空间或介质以电磁 波的形式来传递的,对物质的加热过程与物质内部分子的 极化有着密切的关系。






中 的 应



食品分析
食 旧方法 用 色 素 的 提 取
新方法
天然食用色素制备方法大致可分为溶剂提取法、组织 培养法、粉碎法,压榨法、酶反应法、微生物,发酵 法和人工化学合成天然色素法等。其中最常用的方法 是溶剂提取法即浸取法, 但传统的浸取方法存在着浸 取时间长、劳动强度大、原料预处理能耗大、热敏性 组分易破坏等缺点
1. 微波革取用于天然产物提取的应用前景 2. 进一步缩短样品处理的时间 3. 进一步探讨萃取机理 4. 开发微波萃取新技术和其他技术联用 5. 开发微波萃取在线检测新技术 6. 将微波萃取的实验室研究扩大为工业化研究

微波及超声波辅助萃取技术

微波及超声波辅助萃取技术

明德厚学 求是创新
8
of
11
微波及超声波 辅助萃取技术目录 Di Nhomakorabeaectory
1 2 3 4
微波辅助萃取技术 超声波辅助萃取技术 微波和超声波协同萃取技术 应用简介
明德厚学 求是创新
9
of
11
微波及超声波 辅助萃取技术
应用简介
微波 萃取 1.在天然植物和药物活性成分提取中的应用; 2.微波萃取在环境样品前处理中的应用; 3.在食品分析分析中的应用; 4、农药残留分析方面的应用。
6 of 11
明德厚学 求是创新
微波及超声波 辅助萃取技术
目录 Directory
1 2 3 4
微波辅助萃取技术 超声波辅助萃取技术 微波和超声波协同萃取技术 应用简介
明德厚学 求是创新
7
of
11
微波及超声波 辅助萃取技术
微波超声波协同辅助萃取技术
目前实验室广泛使用的超声波萃取仪是将超声波换能器产生的超声波通过介质 (通常是水)传递并作用于样品,这是一种间接的作用方式,声振强度较低,必须通过 增加超声波发生器功率(≥300W)来提高萃取效率。但较大的超声波功率,又会发出 令人感觉不适的噪音。 现有微波消解或萃取仪器包括高压密闭式和常压开放式两种,虽然各有其优点, 但也存在一些不足。例如,当样品处理在密闭式萃取釜中进行时,高温高压条件对 制作样品罐材料的强度、密封及老化等性能要求很高,亦可能造成样品中某些有机 组分结构的改变或破坏。此外,样品处理量小(约0.5-5g)、处理完毕后的冷却降压时 间较长。相对而言,低温常压下的开放式微波辅助技术对样品罐材的要求不高、样 品处理量也大大增加,但样品的处理时间较长,效率下降。 为克服上述各种单一超声波或微波辅助技术方法之不足,我们尝试将超声波 和微波能有机地结合起来,充分利用超声波振动空化作用以及微波的高能作用,率 先提出了在低温常压条件下进行的微波--超声波协同作用进行样品前处理的新构想, 首先成功研制出CW-2000型微波-超声波协同萃取/反应仪。该仪器将直接固定于超 声波换能器(50W)上的样品容器巧妙地置于功率可调的微波辐射腔内,通过一系列 电子自控技术,实现了直接超声波、开放式微波或二者的协同等三种不同作用方式。

微波辅助提取

微波辅助提取

微波辅助提取-高效液相色谱法测定蔬果中的Vc含量摘要:维生素C是一种水溶性维生素。

在人体中为维持人体健康发挥着重要的作用。

在本实验中,将市场上新鲜猕猴桃榨汁后,用微波辅助提取维生素C。

配制出一系列标准浓度的维生素溶液,在265nm波长的光下用高效气相色谱测量其峰面积,并作出其峰面积-浓度曲线,得到其关系式。

通过测出三组样品的峰面积,代入公式中计算维生素C的含量。

实验测出猕猴桃中维生素C含量为56.95 mg·L-1,RSD为5.3%。

关键词:微波辅助提取液相色谱法维生素C 标准曲线1 引言维生素C是一种水溶性维生素,在所有维生素中,维生素C是最不稳定的,在贮藏、加工和烹调时,极易被氧化和分解。

而维生素C是维持人体健康的最重要的维生素之一,人体不能自身合成,必须以食物形式获取。

研究发现维生素C 的缺乏可导致坏血病和免疫力底下等多种疾病,其在人体中的含量高低常作为某些疾病诊断及营养分析的重要指标。

因此抗坏血酸的定量分析在食品、医药领域相当重要[1]。

目前测定抗坏血酸含量的方法有很多,其中包括碘量法[2]、紫外分光光度法[3]、伏安法[4]、红外光谱法[5]、库伦滴定法[6]和液相色谱法等等。

本实验采取微波辅助提取,快速、简便地萃取中蔬果中的维生素C,并采用高效液相色谱法进行分析,以维生素C标准系列溶液色谱峰面积相对其浓度做校准曲线,根据样品中维生素C的峰面积,由校准曲线计算其浓度。

2 实验部分2.1 试剂乙腈:色谱纯;冰乙酸,维生素C,磷酸二氢钾:分析纯;Vc标准溶液:快速准确称取0.025 g Vc,用1 mol/L乙酸溶液溶解,定量转移至250 mL容量瓶中,用1 mol/L乙酸溶液定容,得到100 mg/L标准溶液备用,现用现配;猕猴桃一个。

2.2 仪器平头进样器;高效液相色谱仪:LC-2010C(岛津香港有限公司);微波萃取仪(上海新仪微波化学科技有限公司);色谱柱:依利特或Phenomenex C18柱 (250 mm×4.6 mm, I.D.5 μm)。

微波消解和微波辅助萃取技术

微波消解和微波辅助萃取技术

4 5
湿物料Байду номын сангаас
第一节 微波消解和微波辅助萃取的定义 及作用原理
微波最早应用于通讯和军事,是一种 波长为 1mm ~ 1m 的非电离的电磁波 , 被辐 射物质的极性分子在微波电磁场中快速转 向,并定向排列,从而产生撕裂和相互摩擦 而引起发热,同时可保证能量的快速传递 和充分利用。
第一节 微波消解和微波辅助萃取的定义 及作用原理
第一节 微波消解和微波辅助萃取的定义 及作用原理
1 2 3
微波炉的工作原理
1-搅拌器;2-磁控管; 3-反射板;4-腔体; 5-塑料盘
微波炉的心脏是磁控管。这个叫磁控管的电 子管是个微波发生器,它能产生每秒钟振动 频率为24.5亿次的微波。这种肉眼看不见的 微波,能穿透食物达5cm深,并使食物中的 水分子也随之运动,剧烈的运动产生了大量 的热能,于是食物"煮"熟了。这就是微波炉 加热的原理
微波是一种非电离的电磁辐射,被辐 射物质的极性分子在微波电磁场中可快速 转向并定向排列,由此产生的撕裂和相互 摩擦将引起物质发热,即将电能转化为热 能,从而产生强烈的热效应。因此,微波 加热过程实质上是介质分子获得微波能并 转化为热能的过程。
第一节 微波消解和微波辅助萃取的定义 及作用原理
微波消解 在微波能的作用下,破坏样品中 目标组分的初始形态,而使其以无机 离子最高或较高价态的形式萃取出来, 这种技术叫微波消解技术
第一节 微波消解和微波辅助萃取的定义 及作用原理
微波萃取指在目标化合物的提取过程中(或 提取的前处理 ) 加入微波场,利用微波场的特 点来强化有效成分浸出的新型提取技术。利用 吸收微波能力的差异可使基体物质的某些区域 或萃取体系中的某些组分被选择性加热,从而 使被萃取物质从基体或体系中分离出来,进入 到介电常数较小、微波吸收能力相对较差的萃 取剂中。

微波辅助萃取

微波辅助萃取
生热能,其加热迅速、均匀。
2、选择性加热:微波加热具有选择性,可通过选择 适当的溶剂来提高萃取效率,以达最佳萃取效果。
3、体积加热:微波加热是一个内部整体加热过程, 他将热量直接作用于介质分子使整个物料同时被加热 。
4、高效节能:由于微波独特的加热机理,除少量传 输损失外,无其它损耗,故热效率高。
3、微波萃取茶叶有效成分的研究
➢ 综合考虑料液比、时间、次数对各指标的影 响,以及经济效益,最终的优化组合为:料 液 比 1:20,时间 3min,次数 2次。微波萃 取茶叶有效成分具有萃取时间短,溶剂用量 少 ,产品提取率高的优点,为一种值得大力 推广的有效方法。
4、微波萃取土壤中有机氯农药条件优化研究[7]
微波辅助萃取-MAE

一 • 原理简介 二 • 实验基本步骤 三 • 微波辅助萃取应用实例 四 • 结论与展望 五 • 参考文献
一、原理简介
微波:
是指波长在1mm至1m之间 、 频率在300MHz至300000MHz之间 的电磁波, 它介于红外线和无线 电波之间。
一、原理简介
原理:
➢ 根据不同物质吸收微波能力的差异使
➢ 样品前处理步骤: ➢ 土样制备:(干燥) ➢ 微波萃取 :
称取 5 g土样置于微波仪专用的制 样杯内, 根据萃取物情况加入 30 mL的萃取溶剂正 己 烷 :丙酮(1:1)。按微波制样要求 ,把装有样品的 制样杯放到密封罐 中,然后把密封罐放到微波仪 中,设置 5min内萃取温度达到 110℃,萃取时间 10 min,萃取结束 ,把制样罐冷却至室温。 ➢ 净化和浓缩
4.溶剂PH
➢溶液的PH 值也会对微波萃取的效率产生一 定的影响 ,针对不同的萃取样品 ,溶液有 一个最佳的用于萃取的酸碱度。

微波辅助萃取y4

微波辅助萃取y4

微波提取在应用中应注意的几个 问题
① 微波对不同的植物细胞或组织有不同的作用, 对细胞内产物的释放也有一定的选择性。因此 应根据产物的特性及其在细胞内所处的位置的 不同,选择不同的处理方式。 ②微波提取仅适用于对热稳定的产物,如生物 碱、黄酮、苷类等,而对于热敏感的物质如蛋 白质、多肽等,微波加热能导致这些成分的变 性、甚至失活。 .
微波提取在应用中应注意的几 个问题
③ 由微波加热原理可知,微波提取要求被处 理的物料具有良好的吸水性,否则细胞难以吸 收足够的微波能将自身击破,使其内容物难以 释放出来。 ④ 微波提取对有效成分含量提高的报道较多, 但对有效成分的药理作用和药物疗效有无影响, 尚需作进一步研究。 ⑤ 微波萃取技术在中药中的应用,大多在实 验室中进行,工业化生产还不太普及,但微波 萃取技术的工程放大问题已受到重视,这将推 动微波萃取技术在工业化的应用。
MAE的特点及影响因素
5. 高效 与其他萃取方法相比,微波萃取能减少萃 取试剂的消耗,易于后处理。例如微波萃 取用于样品分析时,一般萃取试剂用量约 为30~40ml。微波萃取可以多种样品在相 同条件下同时萃取,目前一次最多可同时 萃取12 个样。
MAE的特点及影响因素
此外 .微波萃取可实行时间、温度、压力控制, 可保证在萃取过程中有机物不发生分解。 微波萃取没有热惯性,易控制,所有参数均可数 据化。 生产线组成简单,节省投资。 品质高,可有效地保护食品、药品以及其他化工 物料中的功能成分; 废物少,符合环境保护要求。 产量大
MAE的萃取机理
微波产生的场加速萃取溶剂界面的扩散速率, 使溶剂和被萃取物质充分的接触 。 极性溶剂能更好的吸收微波,提高溶剂的活性,所 以在微波辅助萃取中一般选用极性溶剂更有利。

微波辅助提取技术的研究及应用

微波辅助提取技术的研究及应用

微波辅助提取技术的研究及应用一、绪论微波辅助提取技术是指利用微波辐射对样品中的有机分子进行加热和激发,使其溶剂中的溶解度和析出度增大,以便进行有效的分离和提取。

该技术具有提高提取效率、缩短提取时间、节省溶剂、减少样品损失等优点,因此在众多领域应用广泛,得到了广泛的研究和开发。

二、微波辅助提取技术的原理与优点1. 原理微波辅助提取的原理是通过微波辐射使样品产生热效应,使样品温度升高,从而加速成分的挥发、萃取和分离。

同时微波辐射还可用于加速液体的挥发和溶解,因此可以在较短时间内完成萃取、分离和纯化的过程。

2. 优点微波辅助提取技术相比传统的提取技术有以下优点:(1)提高提取效率:微波辐射可以使样品热效应加快,溶解和析出效率提高,因此提取效率提高。

(2)缩短提取时间:由于微波辐射的速度快,提取时间可以缩短几十倍,节省了大量时间。

(3)节省溶剂:微波辐射可以让样品中的有机成分更快地溶解或析出,因此可以节省溶剂的用量。

(4)减少样品损失:短暂的微波辐射可以减少样品中的部分挥发成分损失,保证了提取过程中的准确性。

(5)提高样品纯度:微波辐射可以使样品溶液中的杂质分解和析出,从而提高了样品的纯度。

三、微波辅助提取技术在不同领域中的应用1. 食品分析检测微波辅助提取技术在食品中的应用非常广泛,可以用于多种食品成分的提取和分析。

食品成分主要包括油脂、蛋白质、多糖、色素、香料、维生素等。

微波辅助提取技术可以通过对不同成分进行选择性提取和分离,从而达到快速、准确和可重复的分析结果,比传统的提取技术更为高效。

2. 中药研究及制造中药是中国传统医学的重要组成部分,而中药的提取和制造是中药研究中的重要环节。

微波辅助提取技术可以促进中药中有效成分的溶解和析出,从而提高中药的提取效率和质量,进一步推动中药现代化的进程。

3. 环境污染物检测环境中存在着各种有害污染物,如重金属、有机物、农药等。

微波辅助提取技术可以快速、高效地提取和分离这些污染物,从而检测它们的浓度和含量,确保环境的健康和安全。

微波辅助萃取

微波辅助萃取

微波辅佑襄助萃取微波特点MAE特点MAE是指利用微波能强化溶剂萃取效率,即利用微波加热来加速溶剂对固体样品中目标萃取物(重要是有机化合物)的萃取过程。

微波具有波动性、高频特性以及热特性或非热特性(生物效应)等特点。

快速高效样品及溶剂中的偶极分子在高频微波能的作用下,高速速度变换其正、负极,产生偶极涡流、离子传导和高频率摩擦,从而在短时间内产生大量的热量。

偶极分子旋转导致的弱氢键分裂、离子迁移等加速了溶剂分子对样品基体的渗透,待分析成分很快溶剂化,使微波萃取时间显著缩短。

加热均匀微波加热是透入物料内部的能量被物料汲取转换成热能对物料加热,形成的物料受热方式,整个物料被加热,无温度梯度,即微波加热具有均匀性的优点。

微波加热具有选择性微波对介电性质不同的物料呈现出选择性的加热特点,介电常数及介质损耗小的物料,对微波的入射可以说是"透亮"的。

溶质和溶剂的极性越大,对微波能的汲取越大,升温越快,促进了萃取速度。

而对于不汲取微波的非极性溶剂,微波几乎不起加热作用。

所以,在选择萃取剂时肯定要考虑到溶剂的极性,以达到最佳效果。

生物效应(非热效应)由于大多数生物体内含有极性水分子,在微波场的作用下引起猛烈的极性震荡,从而导致细胞分子间氢键松弛,细胞膜结构电击穿分裂,加速了溶剂分子对基体的渗透和待提取成分的溶剂化。

因此,利用MAE从生物基体萃取待分析的成分时,能提高萃取效率。

MAE技术与其它技术的比较任何一种萃取技术都是为了从基体中快速、高效地分别出待分析成分,但是由于基体的多而杂性及萃取技术的不同特点,常常在选取萃取方法的时候必需考虑到分析的目的和分析方法的费用、操作的繁简、时间的多寡等因素。

与传统的萃取技术相比,MAE技术突出的优点在于溶剂用量少,快速,可同时测定多个样品;有利于萃取热不稳定的物质,萃取效率高,设备简单,操作简单。

机理特点微波萃取的机理微波是指波长在1mm至1m之间、频率在300MHz至30000MHz之间的电磁波,它介于红外线和无线电波之间。

微波辅助浸出法

微波辅助浸出法

微波辅助浸出法微波辅助浸出法(Microwave-Assisted Extraction,MAE)是一种利用微波辐射加热材料并运用溶剂进行浸出的提取方法。

相比传统浸出法,微波辅助浸出法具有提取效率高、时间短、节能环保等优势,已广泛应用于食品、药物、农产品等领域。

一、介绍微波辅助浸出法微波辅助浸出法是一种利用微波能量加热样品来实现物质迁移的方法。

微波辐射能使溶剂分子振动增加,从而加速溶剂与样品中目标成分的相互作用,有效推动溶剂渗透进入样品内部,从而加快物质的提取速度。

微波辅助浸出法具有以下特点:1. 高效快速:微波辐射能够迅速传递热能给样品,提高提取效率和速度。

2. 节能环保:相比传统浸出方法,微波辅助浸出法能够显著减少所需的溶剂用量,节约能源,降低对环境的影响。

3. 不易破坏成分:微波辅助浸出法温度均匀分布,短时间内完成提取,不易对目标成分产生破坏。

4. 多样性:微波辅助浸出法适用于各种有机物、无机物的提取,并且可根据不同物质的特性进行调控和优化。

二、微波辅助浸出法的工作原理微波辅助浸出法基于微波辐射的特性,利用微波能量使溶剂分子振动加剧,提高它们与样品中目标成分的相互作用力,促使溶剂渗透进入样品,从而实现物质的提取。

其工作原理主要包括以下几个方面:1. 微波辐射:微波辐射是指波长介于1mm至1m之间的电磁波。

微波能量的热效应使样品中的溶剂分子振动加剧,引起分子间的摩擦与碰撞,加速温度的提高。

2. 介电加热:微波能量主要通过介电加热的方式作用于物质。

介电加热是指当物质处于变化的电场中时,分子会产生极化、摩擦和运动,从而产生热量。

3. 溶剂作用:微波辅助浸出法中使用的溶剂对目标成分的溶解度要高,并能够与目标成分之间具有一定的相容性,从而实现迁移和浸出。

4. 压力影响:在微波辅助浸出过程中,加压可以促进溶剂与样品之间的相互作用,加快溶剂的渗透和目标成分的提取速度。

三、微波辅助浸出法的应用微波辅助浸出法已广泛应用于食品、药物、农产品等领域的有效成分提取。

微波辅助提取技术及其在中药提取中的应用

微波辅助提取技术及其在中药提取中的应用

微波辅助提取技术及其在中药提取中的应用随着科技的不断进步,新型的中药提取方法逐渐的出现,并得到广泛的使用。

在这些新型的药物提取方法中微波辅助提取技术使用的范围较广,通过这种技术的使用可以更加简洁、方便的对中药中的物质进行提取,提升提取质量和效率,可以取得较好的成果。

但是微波辅助提取技术在使用中需要关注较多的方面,因此需要对该项技术进行更加细致的研究,使得微博辅助技术取得更好的效果。

本文主要针对微博辅助提取技术以及在中腰提取中的应用进行分析。

标签:微博辅助提取技术;中药提取;应用微波辅助提取技术作为一项新型的技术,在进行重要物质提取的过程中可以利用自身的特点完成工作,不需要通过化学反映提取物质中的成分,是一种使用便捷的方式,使用在重要提取中可以更加便捷高效的将中药中的物质提取出来,并且在提取过程中更加的便捷高效,为物质的提取提供更加便捷高效的基础。

1 微波辅助提取技术概述(1)微波辅助提取技术含义。

微波是一种波长在1-0.01m、频率在300MHz 至300GHz的电磁波,主要是利用微波思维热特性,通过介电损耗的方式,使得分子得到高速的旋转,促进温度的升高,然后通过离子传导,将离子化的物质进行超高速的运动,通过摩擦形成热效应。

同时,微波辐射可以导致细胞内的水等极性物质吸收微波使得细胞温度迅速的出现上升,液态水汽化产生的压力使得细胞膜和细胞壁冲破原本的束缚,形成一些微小的孔洞,这些孔洞在细胞内积累可以使得细胞内的一些物质成分有效的流出,进入到提取溶剂中,方便进一步的分离。

(2)微波辅助提取技术特点。

微波辅助提取技术在使用过程中具有较好的特点,主要表现在以下几个方面:良好的穿透能力和选择性:微波对金属不能全面的穿透,但是对于一些塑料物质可以进行穿透,因此可以将其使用在制作物料的容器、谐振腔内的运转机件中,也可以对极性分子进行选择性的加热,通过分子极性的选择,提升选择的质量;似光性:这是对金属进行反射的作用,可以使用到一些金属作谐振腔中,为了防止微波出现泄漏的情况,可以使用金属做屏蔽装置;较强的内热效应和极高的频率:通过溶剂与溶质分子同时通过无热阻、无热惯性进行加热,可以将温度提升到原本的10-100倍,更好的实现物质加热的需要。

微波辅助萃取

微波辅助萃取

08化本班第二组成员
• 覃杰 黄继靖 罗婧 申文英 李婉舒
3.微波辅助萃取实际应用举例
A 在天然食用色素提取上的应用
B
在茶叶加工领域的应用 在
C
在天然产物提取方面的应用
D
在中药有效成分提取方面的应用
A.在天然食用色素提取上的应用
①在萃取柚皮色素时,利用微波浸取可以使 固—液浸取过程得到明显强化,浸取效率要比传 统方法高得多。采用微波强化浸取柚皮—水体系 时,仅需4min便可以使整个浸取过程达到平衡; 而传统方法则需要120min左右才能达到浸取柚皮 素的最大量,几乎为微波浸取时间的倍,并且利 用微波柚皮中的天然色素比传统热浸取法所消耗 的能量要少得多,这在能源日益紧张的今天是非 常具有实际意义的。(文献4)
B.在茶叶加工领域的应用
• 用微波萃取法对茶多酚、咖啡碱气和 茶多糖的复合提取进行研究。最佳浸取条 件为:提取时间3min,料液比为1:20,再 用50℃水浴浸取10min。茶多酚浸出率高 达90.73%,高于乙醇水溶液浸提。(文献6)
C.在天然产物提取方面的应用

对微波辅助提取西番莲籽,与传统的 索氏提取法相比,具有提取时间短、溶剂 用量少、溶剂回收率高、产品提取率高、 所得产品色泽清亮、气味清新等优点。将 传统提取工艺与微波结合,可以降低生产 成本、提高生产率,具有广泛的应用价值。 (文献7)
萃取步骤之溶剂的选择
• 对于其它的固体或半固体试样,一般选 用极性溶剂。 这主要是因为极性溶剂能更
好的吸收微波能,从而提高溶剂的活性, 有利于使固体或半固体试样中的某些有 机物成分或有机污染物与基体物质有效 地分离。
微波萃取与传统热萃取萃取步骤的区别
• 传统热萃取是以热传导、热辐射等方式由 外向里进行, 而微波萃取是通过偶极子旋转和离 子传导两种方式里外同时加热, 极性分子接受微 波辐射的能量后, 通过分子偶极的每秒数十亿次 的高速旋转产生热效应, 这种加热方式称为内加 热(相对地, 把普通热传导和热对流的加热过程称 为外加热)。与外加热方式相比, 内加热具有加热 速度快、受热体系温度均匀等特点。通过比较 发现在索氏萃取、超声萃取、超临界萃取(SFE) 和微波帮助萃取法(MAE)中以MAE回收率及效 率均较高。(文献3,4)

真空微波辅助提取.

真空微波辅助提取.

0.05
10
67.1
72.0
82.2
3 20 ~ 40 65 10
0.06
20
69.9
74.8
78.9
4 20 ~ 40 75 15
0.07
30
61.6
83.4
95.6
5 40 ~ 60 45 5
0.06
30
74.9
78.9
69.3
6 40 ~ 60 55 3
0.07
20
80.4
80.3
69.7
7 40 ~ 60 65 15
0
3
提取时 5 间(min)10
15
石蒜碱 力可拉敏 加兰他敏
图10 提取时间对提取率的影响
初始真空度的影响
提取率(mg/g)
1.2
1
0.8
0.6
0.4
0.2
0
0.04
0.05
0.06
初始真空度(Mpa)
0.07
石蒜碱 力可拉敏 加兰他敏
图11 提取初始真空度对提取率的影响
加水量的影响
提取率(mg/g)
2 真空微波提取装置
图1 改装的MARSX型微波炉萃取内罐 图2 MARS-X型微波炉示意图
3 VMAE提取石蒜中生物碱
3.1 石 蒜
石蒜属于单子叶植物石蒜科,主要含生 物碱、蜕皮甾酮、脂肪酸、淀粉等。
生物碱部分主要包括石蒜碱、高石蒜碱、 加兰他敏、伪石蒜碱、石蒜伦碱、多花 石蒜碱、力克拉敏、石蒜西定、石蒜西 定醇、小星蒜碱。
颗粒度的影响
提取率(mg/g)
1.2 1
0.8 0.6 0.4 0.2
0 40
60

微波辅助提取附子多糖及其结构研究

微波辅助提取附子多糖及其结构研究

微波辅助提取附子多糖及其结构研究摘要:采用微波辅助提取附子多糖,分别考察了微波功率,提取时间,料液比,浸提温度对提取附子多糖效果的影响.并通过正交实验的设计的方法得到了微波提取附子多糖的最佳工艺参数为:微波功率500w,提取时间:2min,料液比:1g:40ml,浸提温度:70℃,多糖含量(以吸光度表示)可达0.469.该技术与传统提取法相比较,提取效率高,节省时间,明显提高了提取效率.关键词:附子多糖微波辅助提取正交实验引言:附子为毛茛科植物乌头的子根,是一种常用的中药材,具有回阳救逆,温补肾阳,去寒止痛之功能.近年来研究表明,附子主要组分为脂溶性生物碱,水溶性生物碱,附子多糖等.附子多糖成分具有降低胰岛素作用,并且我们的饿药理实验研究表明附子多糖对脂溶性生物碱有明显的拮抗作用.因此对水溶性附子多糖的研究与利用具有重要的医学价值.附子多糖的有效分离和稳定可控对于附子的全面研究,以及附子多糖的有效应用具有重要的意义.由于微波加热热效率特别高,还具有穿透力强和选择性高的特点.因而近年来已被广泛用于生物,环境,土壤,金属和食品等样品的分析前处理,有机催化合成反应等领域.微波是一种频率在300MHz到300GHz之间的电磁波,在处于交变磁场的物料中,处于杂乱状态的极性分子会随外电场的方向做定向排列,产生高速摆振,结果造成分子间的碰撞与摩擦,从而产生热能使物料内部温度上升,扩散系数增大.微波的这种热效应使微波在穿透到介质内部的同时,将微波能量转化成热能对介质加热,形成独特的介质加热方式---介质整体被加热,即所谓的无温度剃度加热.同时碰撞与摩擦还会促使物料中细胞的破碎,使萃取物渗出并溶解在溶剂中.因而微波具有选择性的作用,加热速度快,控制方便,受热体系温度均匀,节约能量等优点.本实验运用微波辅助水提醇沉法制得附子多糖,采用硫酸-苯酚比色对多糖的含量进行测定1材料与方法1.1材料试剂仪器1.1.1实验材料附子(购于忻州五台山大药店)1.1.2主要试剂苯酚分析纯西安化学试剂厂浓硫酸分析纯太原化肥厂化学试剂厂 d-无水葡萄糖分析纯北京化工厂无水乙醇分析纯北京市北辰方正试剂厂乙醇分析纯北京市北辰方正试剂厂丙酮分析纯北京市北辰方正试剂厂乙醚分析纯北京市北辰方正试剂厂三氯甲烷分析纯北京市北辰方正试剂厂正丁醇分析纯北京市北辰方正试剂厂1.1.3主要仪器与设备XH-100A型祥鹄电脑微波催化合成/萃取仪北京祥鹄科技发展有限公司AL104电子天平梅特勒-托利多仪器(上海)有限公司电热恒温水浴锅上海跃进医疗器械厂722型分光光度计上海精密科学仪器有限公司JJ-2型组织捣碎机江苏省金坛市荣华仪器制造有限公司800低速离心机常州国华电器有限公司SHZ-D(Ⅲ)循环水式真空泵巩义市英峪予华仪器厂KQ-B型玻璃仪器烘干器河南省巩义市英峪予华仪器厂UV-2550紫外分光光度计日本岛津仪器厂1.2实验方法1.2.1附子多糖提取工艺流程附子→烘干→粉碎→烘干(60℃)→加入一定量蒸馏水微波提取→水浴浸提(30min) 过滤→滤液→浓缩→sevag法除蛋白→分离液中无水乙醇(终体积分数为80﹪)醇沉→静置过夜→离心留沉淀→洗涤(除去脂类,色素)→离心→附子多糖↑无水乙醇乙醚丙酮1.2.2多糖含量测定采用硫酸-苯酚法,测定附子多糖含量。

本章介绍微波辅助溶剂的提取方法

本章介绍微波辅助溶剂的提取方法

本章介绍微波辅助溶剂的提取方法,综述了传统的提取方法和先进的液-固分离。

讨论加热的微波理论和溶剂的相容性,重点讨论微波提取技术的特性以及与Soxhlet,超声处理,回流和振荡提取方法的差异。

先进的微波提取方法对安全性问题给予特别的关注。

讨论了微波辅助提取在天然物,塑料和多聚物,以及土壤和沉积物的环境污染中的应用。

本章还对这一技术未来的发展方向作了展望。

古时候,化学家就致力于将一种物质从另一种物质中提取出来。

将珍稀金属从岩石中提炼出来,或从天然物如树皮中抽取没药或乳香,而古代的文明技术对实现这些提取还缺少办法。

即使在今天,混合物中的组分分离依然是一件费力费时的工作。

分离科学研究溶液和均相液体中的各种物质,它们因大小,电荷,相似性和相异性等物理性质分配在其他物质中。

我们可以任意的从分离科学中借用词汇和操作概念,不过这里仅讨论固-液分离,并且重点在于通过将物质或一组相似的物质,溶质溶解到亲和溶剂中从而将其从固态物质或基质中分离出来的方法。

从固体中提取液体的传统方法传统的固-液分离方法具有可比较的共同特征。

本节简要描述对这一技术比较重要的化学、物理反应,重点讨论各种方法的有关参数,使其优化以提高提取效率。

传统的溶剂提取可看作溶质从一个相到另一个相的相转移,如液-液提取中从水相进入有机相,或者是从固体到液体溶液的相转移。

脱吸是一种物质从固相转移到溶液中。

又如,分析物如多环芳香烃(PAHs)从稀释的水溶液中吸收到土壤颗粒上,吸收取决于它们在固液相之间的分配(1):Kd = Cs/Cw (1)这里,Kd是分配系数,Cs是样品如PAH在固相中的浓度,Cw是样品在液体中的浓度,并假设吸附等温线是线形的。

改变液相浓度Cw,需要新的Kd值以用于目标分析。

基于液体溶液中辛醇和水的亲和性的分配系数Kp或Kd可用来表示分析物在溶剂中的溶和能力。

也就是说,Kp越大,溶剂越能积累目标分析物。

Soxhlet提取Soxhlet提取一般用于固-液比为1:10-1:50的范围.这样的溶剂比能使溶解度很小的分析物溶解.此法的问题是,即使在最适的溶解条件下,溶剂与溶质匹配很好时,目标分析物也可能不会脱吸.压缩,铣刨等物理问题,颗粒体积变化以及最佳溶剂也无法与紧密结合溶质(2)竞争限制了溶剂提取的效率.良好的Soxhlet溶剂应为低沸点液体,在分析物回收时易于蒸发.由于Soxhlet系统处于大气压下,因此提取溶液的热能常低于溶剂沸点.在这一水平下,缺少因温度得到的重要的速率优势.所以,这种开口气压提取需要16-20小时才能合符要求的溶质回收水平.蒸馏时浸沥基质的纯溶剂由于被冷却水冷凝器冷却,其温度稍低于沸点,这也是不足之处.当然无论如何,溶质或目标分析物总是暴露在纯净的溶剂中.虽然长时间的提取需要经常除掉溶剂,但自动化操作仍然使Soxhlet提取更有用.自动化快速Soxhlet设备(3)使提取时间减少到1-2小时.Soxtec设备带一个套管,提取的一半时间里,样品浸入沸腾的溶剂里,剩余的30-60分钟内,提取方法与传统的Soxhlet技术类似.提取时间减少近90%.基质-溶剂比与普通Soxhlet比相似,但样品大小和溶剂量要低些. 滚动与振荡结合混合,振荡和滚动,可使提取方法简便,有效,但费时并且不够精确.样品-溶剂比与So xhlet比类似,提取通常需过夜并且常在室温下进行.有时,振荡可在加热平台上进行.因为没有压力积累,所以温度很少高于室温.虽然样品处理减少,但本方法所需时间与Soxhlet方法大致相等.超声处理超声处理是一种利用超声波将目的分析物从基质中分离出来的提取方法.喇叭形声波探针于脉冲功率为400-600W时在样品溶剂容器中操作.为便于声波的传递,同一溶剂容器可置于温水浴中,不过这些提取的效率要低些.超声处理在某些情况下快速,高效,因为气蚀可提高颗粒表面温度,即使整体加热很小时,也能形成局部高温(4).温度的影响以及振动力和扭矩力使得提取时间从几分钟到数小时.由于一次只能处理一个样品,因此即使提取的速度很快,样品的输出量也很低;同时纯度也较低.样品量通常为30g,溶剂总体积为150-300mL.土壤样品量取决于污染程度,可少至2g,溶剂10-30mL(5),尤其在筛选的情况下.回流提取回流提取广泛用于聚合物中,与微波技术相同,需将样品浸入热溶剂中.回流条件下,溶剂达到其沸点,通常低于100度.这些大气压和温度的方法费时,劳动强度大.对于所有的传统提取方法,溶剂的选择性一般都比较低,也就是说,高效能的溶剂选择性低.先进的仪器方法超临界流体提取超临界流体用作植物物质,环境样品,聚合物和食品提取的溶剂(6-8).大多数超临界提取(SFE)采用超临界二氧化碳,添加或不添加有机溶剂修饰剂.SFE具有分析选择性,提取功率可通过调节超临界流体密度和温度及压力进行微调.超临界流体的溶和功率可通过添加极性溶剂如丙酮或氯化亚甲烷来调节.本技术对基质和分析物的依赖性很强,必须针对每一种物质和分析物进行优化.本技术相对较快,提取时间少于1小时.许多SFE生产厂家提供了各种自动和手动的提取仪器.样品装入高温高压管中,超临界流体穿过样品,并在含分析物的溶剂中减压或聚集在吸收区以便于回收.加速溶剂提取(ASE)加速溶剂提取是在较高温度(一般为50-200度)和压力1500-2000psi下进行液-固提取的方法(9).任何溶剂或溶剂混合物均可使用,少于15mL体积的溶剂需要10g样品.样品装入管中,高温加压液体穿过样品,然后冷却,收集.目前,只有一种加速溶剂提取系统达到工业生产规模,这是一种自动设备.相关技术应用于聚合物,动植物组织,食品和环境样品.美国环境保护协会(EPA)固态废弃物办公室已批准采用本技术提取部分挥发有机化合物,作为SW-846的第三代技术(10).微波辅助提取微波辅助(MAE)提取是利用微波能加热与固态样品接触的溶剂,使所需要的化合物从样品中分配到溶剂里的提取过程.提取在密闭或敞开的微波-透明容器中进行,提取溶剂和样品混合在里面,可同样接受到微波能.溶液中的微波(电介质)加热有以下3种机理:·具有高电介质损耗系数的单一溶剂或混合溶剂·具有高的或低的电介质损耗的混合溶剂·低电介质损耗溶剂中的高电介质损耗敏感样品分配基于任何一种机理或2种或3种机理共同作用.电介质加热高损耗系数的溶剂和混合溶剂在均匀极性溶剂中,电介质加热通过偶极旋转(11)实现分配,温度相对较低,如50度或接近200度,取决于溶剂对微波能的敏感度.提取中化合物的分配(溶解到溶剂中)不止一个步骤:从基质-溶剂界面脱吸,分析物扩散到溶剂中(2).微波相容溶剂或试剂如异丙醇通常与电磁场(EM)共同作用,根据电介质释放机理把热传递到溶剂中.高极性微波敏感溶剂通过高电介质损耗切向和损耗系数鉴别.这一性质使得总体温度的升高与微波加热相关联.在MAE中,有的基质如土壤,动植物材料和许多矿物质通常并不吸收微波能.高温提取需在密闭的容器中完成,结果导致容器中的压力近200psi(-14bar).温度和压力都会影响提取速率,出于安全考虑,对提取溶剂的温度进行监测是很重要.应将温度测量与微波源的反馈控制结合起来实现这一监测.MAE操作的溶剂体积一般少于50mL,提取时间低于30分钟.大量的模拟操作也经常进行.本技术适用于大多数的样品,一些厂家的产品可在实验室的微波系统中完成.采用能量透明溶剂的微波加热采用能量透明溶剂进行微波提取可作为微波辅助过程(MAP)的范例.在此过程依据的分配机理中,样品(一种生物材料)在低电介质,弱加热溶剂存在的情况下是良好的电介质.比较传统的微波辅助(溶剂)提取,干燥的基质通常不会吸收微波能,上面的情况便很容易理解.MAP 中固有的水分是非常重要的组分,因为水分可以超加热最终使细胞膜破裂并将细胞物质挤压到周围不能吸收的冷却溶剂中然后溶解.此过程的水分含量为40-90%(12).另一个例子是首例微波提取实验,将极性和非极性溶剂用微波能反复照射30s以提取植物物质(13,14).非微波吸收溶剂---己烷用来提取生物物质,作物食品和制备食品(13).在这一早期工作中,作者没有特别说明水含量,通过机理阐述,假定其超出MAP的范围.在描述这一过程的专利(12)中,微波加热应用于含固有水分的相类似的生物和植物材料.说明的范围虽然是40-90%,但水含量仅为20%的物质在此过程也能处理(15).在非微波吸收溶剂如己烷,苯或异辛烷中,这些物质还不能确定.微波加热后,微敏感或不敏感溶剂作为从基质中提取出来的物质的溶解介质.总的来说,对此现象的假设是,由于水是良好的微波能的吸收体,所以导致局部水的过热.提取常少于2分钟.当达到或超过水的沸点时,过热水就会使细胞膜破裂,水蒸气从固体的空隙穿过,从而影响目标分析物的传送.将水加入干燥的样品中便会产生MAP影响(12,13,15).此过程一个基本特点是,与传统的溶剂容量加热相比,微波提取物质的温度要低些.由于温度不高,同时分析物又进入周围较冷的溶剂中使热散发,所以分析几乎未被分解(12,13,16).微波能量调节的气相提取另一种MAP微波提取在苯从水溶液提取到气相中见到,能量有选择性的用在样品基质而非溶剂环境中,该过程在具有一定顶部空间的密闭容器中进行(16,17).在这一系统中,水吸收的能量转化成热传递给苯,由于气压和蒸发热以及热容量小于水,苯挥发后进入顶部空间.气体吸收微波能的程度远小于液体;因此,液相加热容易观察到并且不影响气相.通过气相色谱(GC)对顶部空间取样可确定化合物的存在.含混合污染物如PAHs和苯酚的土壤经微波辐照,极性较强的分析物有选择的吸收能量并先从基质中挥发出来.因此,用微波辐照的潮湿的半固体能充分受热并使蒸汽压最高的污染物最先挥发。

超声微波辅助提取法

超声微波辅助提取法

超声微波辅助提取法【2021年知识热议之热点科技】超声微波辅助提取法引言:在当今快速发展的科技时代,人们对提取方法的研究与创新变得日益重要。

超声微波辅助提取法作为一种新兴的提取技术,因其快速、高效、环保等特点在众多领域引起了广泛关注。

本文将从多个角度全面解读超声微波辅助提取法,并分享我对于这一新兴科技的认识和见解。

一、超声微波辅助提取法是什么?超声微波辅助提取法是利用超声波和微波的物理效应,通过加热和振动等作用,将目标物质从固体、液体或气体基质中有效地提取出来的一种技术。

超声波的频率通常为20 kHz至100 MHz,微波的频率通常为300 MHz至300 GHz。

通过超声波的振动和微波的加热,提取物质的速度、效率和质量得到了极大的提升。

二、超声微波辅助提取法的应用领域1. 医药领域:超声微波辅助提取法在药物提取、中药制备和药物质量控制等方面具有广泛应用。

在中药制备中,超声波能够破碎草药细胞壁,增加提取效果;而微波则能够快速提取活性成分,节省时间和能源。

2. 食品领域:超声微波辅助提取法在食品加工中也发挥着重要的作用。

在提取植物油中,超声波和微波共同作用可以加速溶剂渗透、破碎油脂细胞,并提高提取率。

超声波还能够改善食品的质感和口感。

3. 环境领域:超声微波辅助提取法在环境监测和水质净化等方面具有独特优势。

通过超声波和微波的联合作用,能够有效提取出环境中的有机物和重金属等污染物质,并减少对环境的污染。

三、超声微波辅助提取法的优势和挑战1. 优势:(1)高效快速:超声微波辅助提取法能够在短时间内完成提取过程,提高工作效率。

(2)节约能源:相较于传统提取方法,超声微波辅助提取法能够减少能源的消耗,对环境友好。

(3)提取效果好:超声波和微波的联合作用能够破坏细胞壁、加快物质的溶解和扩散,提取效果更好。

2. 挑战:(1)设备成本高:超声微波辅助提取法需要专门的设备,成本相对较高,同时操作复杂。

(2)工艺优化难度大:针对不同的提取物质和提取条件,需要进行一系列的工艺优化研究,难度较大。

第四章微波协助提取技术

第四章微波协助提取技术


体萃取
24-48h 30- 4-20min 30- 15min
60mห้องสมุดไป่ตู้n
60min
温压强度





预分离
不过滤
过滤和溶 洗脱/不
剂蒸发
过滤
不过滤
不过滤
溶剂用量





费用





工作强度





污染程度





MAE的萃取机理
微波产生的场加速萃取溶剂界面的扩散速率,使溶剂和被萃 取物质充分的接触 。
1、传统热萃取热传导公式: 多
热源→器皿→样品,因而能量传递效率受到 了制约。微波加热则是能量直接作用于被加 热物质,其模式为:热源→样品→器皿。空 气及容器对微波基本上不吸收和反射,从根 本上保证了能量的快速传导和充分利用。
消除了热梯度,从而使提取质量大大提高, 有效地药物功能成分。
2、由于微波可以穿透式加热,提取的时间 大大节省。根据大量的现场数据统计,常规 的多功能萃取罐8小时完成的工作,用同样 大小的微波动态提取设备只需几十分钟便可 完成。
3)热特性(加热方式由里向外无温度梯度,加热均 匀,热转换效率高)
4)非热特性(生物效应) 微生物体内的水分在微波交变电磁场的作用下
引起强烈的极性振荡,导致电容性细胞膜结构破裂、 或者分子间氢键松弛等,使得组成生物体的最基本 单元——细胞的生存环境遭到严重破坏,以致细胞 死亡。(改变了医药食品等领域传统的高温消毒、 灭菌方式,实现了低温灭菌)。
其它物质微波提取

微波辅助萃取实验报告(3篇)

微波辅助萃取实验报告(3篇)

第1篇一、实验目的1. 了解微波辅助萃取(MAE)的基本原理和方法。

2. 掌握微波辅助萃取在植物有效成分提取中的应用。

3. 通过实验验证微波辅助萃取与传统萃取方法的效率差异。

二、实验原理微波辅助萃取是一种利用微波能加热来提高萃取效率的技术。

与传统萃取方法相比,微波辅助萃取具有加热速度快、萃取效率高、溶剂用量少、操作简便等优点。

微波能通过电磁场作用于样品,使样品中的极性分子产生振动和旋转,从而产生热量,使样品内部温度迅速升高,加速了有效成分的提取。

三、实验材料与仪器材料:- 植物样品(如:茶叶、人参等)- 溶剂(如:甲醇、乙醇等)- 微波反应器- 分析天平- 精密移液器- 水浴锅仪器:- 高效液相色谱仪- 紫外可见分光光度计- 真空干燥箱四、实验步骤1. 样品制备:将植物样品研磨成粉末,过筛,备用。

2. 溶剂选择:根据样品的性质选择合适的溶剂。

3. 微波辅助萃取:将样品与溶剂放入微波反应器中,设定微波功率和时间,进行微波辅助萃取。

4. 萃取液处理:将萃取液进行过滤、浓缩、定容等操作。

5. 样品分析:利用高效液相色谱仪或紫外可见分光光度计对提取的有效成分进行定量分析。

6. 结果比较:将微波辅助萃取与传统萃取方法的结果进行比较。

五、实验结果与分析1. 微波辅助萃取结果:通过高效液相色谱仪或紫外可见分光光度计检测,微波辅助萃取提取的有效成分含量较高,且提取时间较短。

2. 传统萃取结果:与微波辅助萃取相比,传统萃取提取的有效成分含量较低,且提取时间较长。

3. 结果分析:微波辅助萃取具有加热速度快、萃取效率高、溶剂用量少、操作简便等优点,是一种高效、环保的萃取方法。

六、实验结论1. 微波辅助萃取是一种高效、环保的萃取方法,具有加热速度快、萃取效率高、溶剂用量少、操作简便等优点。

2. 微波辅助萃取在植物有效成分提取中具有广泛的应用前景。

七、实验讨论1. 微波辅助萃取的加热速度与传统萃取方法相比有显著差异,这可能是因为微波能直接作用于样品,使样品内部温度迅速升高。

响应面法优化微波辅助提取扁杏仁油工艺及成分分析

响应面法优化微波辅助提取扁杏仁油工艺及成分分析

响应面法优化微波辅助提取扁杏仁油工艺及成分分析贾晓艳;张清安;张霞;张志琪【摘要】The microwave assisted extraction process of almond oil from sweet almond was studied. The optimum extraction parameters were obtained with response surface methodology (RSM). Furthermore, the oil composition was analyzed with GC -MS and HPLC -MS. Results:The optimum extraction parameters are microwave power 661 W;extraction time 10 min, and solvent/sample ratio 20: 1. Under these conditions, the extraction yield of almond oil is 55.31%. The main components of the oil are unsaturated fatty acids such as oleic and linoleic acids, and the total content of unsaturated fatty acids accounts for 94.53% of fatty acid content. Besides,it contains a small quantity of tocopherol and polymeric anthocyanin.%研究以正己烷为溶剂微波辅助提取扁杏仁油的工艺.采用响应表面优化法(RSM)对扁杏仁油的提取工艺进行了优化,得到的最佳提取工艺参数是:微波功率661 W,提取时间10 min,料液比1:20.在此条件下,杏仁油的一次提取率达55.31%.利用GC-MS和HPLC-MS对扁杏仁油进行分析,结果表明扁杏仁油的主要成分为油酸、亚油酸等不饱和脂肪酸,总不饱和脂肪酸占脂肪酸总量的94.53%;还有少量的维生素E和原花青素聚合物.【期刊名称】《中国粮油学报》【年(卷),期】2011(026)003【总页数】4页(P60-63)【关键词】扁杏仁油;微波辅助提取;响应表面法(RSM);化学成分分析【作者】贾晓艳;张清安;张霞;张志琪【作者单位】陕西师范大学化学与材料科学学院,西安,710062;陕西师范大学化学与材料科学学院,西安,710062;陕西师范大学化学与材料科学学院,西安,710062;宁夏医科大学药学院,银川,750004;陕西师范大学化学与材料科学学院,西安,710062【正文语种】中文【中图分类】S789杏仁为蔷薇科落叶乔木植物杏(Prunus armeniaca)的种仁,是很好的药食兼用植物蛋白源。

无名字微波辅助提取

无名字微波辅助提取

微波辅助提取-高效液相色谱法测定蔬果中Vc含量摘要本实验先采用微波辅助萃取法快速萃取柠檬中的Vc,以1mol/L乙酸为萃取剂,再采用高效液相色谱进行定性定量分析,以3%的乙腈-0.05mol/L KH2PO4水溶液作为流动相。

通过对比停留时间进行定性分析,通过计算峰面积以及制作校准曲线进行定量分析。

校准曲线在Vc浓度在5-100mg/L范围内与色谱峰面积呈良好的线性关系,相关系数为0.9991。

结果测得柠檬中Vc的含量为42.52mg/100g。

本实验方法具有用样少、分析快、操作简单、准确度高等特点。

关键词微波提取高效液相色谱维生素C柠檬1引言维生素C(Vitamin C, Vc)又叫抗坏血酸,是一种水溶性维生素。

Vc在体内参与多种反应,如氧化还原过程,在生物氧化和还原作用以及细胞呼吸中起重要作用。

人体内缺乏Vc时容易导致坏血病。

同时,由于Vc是一种水溶性的强有力抗氧化剂并参与胶原蛋白的合成,它同时还具有防癌、预防动脉硬化、治疗贫血、抗氧化和提高人体免疫力等功效。

Vc在蔬果中普遍存在,尤其是柑桔类水果中含量较高。

樱桃、番石榴、辣椒、猕猴桃等水果中Vc含量在50-300 mg/100 g。

微波辅助提取利用与极性物质的热效应及非热效应来提高提取效率,且以水或醇为溶剂,对环境无污染。

[1]测定 Vc常用的方法有靛酚滴定法,分光光度法及高效液相色谱法等。

靛酚滴定法测定的是还原型抗坏血酸,反应终点为粉红色,但如果果蔬的汁液为红色则会产生干扰,滴定终点不易判断。

[2]而分光光度法操作费时[3],高效液相色谱法是目前发展较快的一种检测方法,其具有高效、快速、稳定、可靠等特点。

微波辅助萃取具有快速高效、操作简便、节省溶剂等优点,在天然产物、环境、食品等领域中得到广泛应用。

本实验采用微波辅助萃取法快速萃取蔬果中的Vc,采用高效液相色谱进行分析,以Vc标准系列溶液的色谱峰面积对其浓度做校准曲线,根据样品中Vc的峰面积,由校准曲线计算其浓度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波辅助萃取装置
有机溶媒的挥发, 降低损耗;实 现防爆;可常压或加压操作。 5.提高效率,降低成本。物料经微波 提取器的时间仅10~30秒/次,批时间 缩短20~50Min,极大提高了系统处理 能力,降低运行成本。 6.易于扩展。并列管式结构;系统可 模块式扩展。 7.便于清洁 。
微波辅助萃取法
连续微波萃取器
应用于工业生产: 1.处理量大。适合工业生产。 2.能耗及物耗降低。缩短了浸出时 间,提高劳动率;使用组合能源, 经济电耗;减少了提取液总量,缩 小了后续设备的规模,能耗及设备 投资。 3.节省空间及占地。设备紧凑,能 在有限的厂房内为其他设备提供额 外空间。 4.密闭操作。管道式密闭操作,对 人员和环境都很安全。同时也减少
研究所研制的 WK2000 微波快速反应系统和
MK Ⅲ型光纤自动控压微波制样系统属于该
类产品的仿制国产产品。
微波辅助萃取装置
2. 高压法 高压法是使用密闭萃取罐的微波萃取法,
其优点是萃取时间短,试剂消耗少,这种方
法是目前报道最多的两类 : 一类是微波 萃取罐;另一类为连续微波萃取器。两者的主要区 别是:一个是分批处理物料,类似于多功能提取罐; 另一个是以连续方式工作的萃取设备,具体参数一 般由生产厂家根据使用厂家要求设定。使用的微 波频率一般为2450MHz或915MHz。
微波辅助提取
药学院 2015级中药专硕 01中药资源 杨雪
微波辅助提取
• 目录:
• 1.微波萃取方法 • 2.微波辅助萃取装置 • 3.今后研究方向
一、微波萃取方法
目前报道的微波萃取方法一般 有三种:常压法、高压法、连续流 动法。而微波加热体系有密闭式和 敞开式两类。
二、微波辅助萃取装置
1.常压法 常压法一般是指在敞开容器中进行微波萃 取的一种方法,其设备主要有二种。 第一种是直接使用普通家用微波炉或用微
波炉改装成的微波萃取设备,通过调节脉冲
间断时间的长短来调节微波输出能量,目前
国内外大部分的研究都采用这种设备。
实验室用微波炉改装
在常压下提取,只能实 现温度控制。不足之处, 一次处理的样品不能太多。
中小型开罐式微波提取器

优点:
模仿微波炉结构,加热腔 内配一塑料容器。 将物料和溶媒混合后,边 搅拌边用微波处理。
3. 连续流动法
连续流动法是指萃取溶剂连续流动 而样品随之流动或固定不动的一种微 波萃取体系。目前国内外有关连续流 动法的报道很少,国外学者这方面的 研究较多。
今后的主要研究方向
今后的主要研究方向
今后的主要研究方向
• 三、开发微波萃取新技术或其他技术联用
有文献报道用微波萃取代替固液萃取中的溶剂洗脱的研究, 提出固相萃取—微波萃取联用技术。该研究有助于综合利用 各种技术的优点,提高处理效果,扩大样品适用范围。
固相萃取—微波萃取联用技术
用微波萃取代替固液萃 取中的溶剂洗脱。
其他技术联用
缺点:
不能保证所有物料经受同 等微波照射。 针对有机溶剂,防爆问题 凸显。 只用于小试不能用于工业 化生产。
美国CEM公司产品
微波辅助萃取装置
第二种是美国CEM公司和意大利的 Milestone公司生产的适用于溶解、萃取和有 机合成的密闭式微波萃取设备。国内中科院 深圳南方大恒公司和上海新科微波技术应用
相关文档
最新文档