集成运算放大电路分析
集成运算放大电路的作用
集成运算放大电路的作用集成运算放大电路是一种广泛应用于各种电子设备中的电路,它的作用是放大输入信号并输出到负载。
本文将详细探讨集成运算放大电路的作用及其在不同领域中的应用。
一、集成运算放大电路的基本原理集成运算放大电路是一种由多个晶体管和电容组成的电路,其基本原理是将输入信号放大并输出到负载。
其中,集成运算放大器的输入端和输出端分别为正极和负极,而其内部的晶体管和电容则起到放大信号的作用。
二、集成运算放大电路的主要作用1. 放大信号集成运算放大电路的主要作用是放大输入信号并输出到负载。
通过将输入信号放大,可以使信号更加清晰、稳定,从而提高系统的工作效率和精度。
2. 滤波在某些应用中,需要对输入信号进行滤波以去除噪音或干扰。
集成运算放大电路可以通过内部的电容和电阻来实现滤波功能,从而提高信号的质量和可靠性。
3. 支持反馈电路集成运算放大电路可以支持反馈电路,通过调整反馈电路的参数,可以实现对输出信号的控制和调节,从而满足不同应用的需求。
4. 实现信号转换在某些应用中,需要将一种类型的信号转换成另一种类型的信号,例如将模拟信号转换为数字信号。
集成运算放大电路可以通过内部的电路实现信号转换,从而满足不同应用的需求。
5. 支持多种应用集成运算放大电路可以应用于多种不同的领域,例如音频放大器、振荡器、滤波器、电源管理等。
其多功能性和灵活性使得它成为广泛应用于各种电子设备中的电路之一。
三、集成运算放大电路的应用1. 音频放大器集成运算放大电路在音频放大器中得到了广泛应用。
通过将输入音频信号放大并输出到扬声器,可以实现音频信号的放大和扩音,从而提高音乐的质量和声音的清晰度。
2. 振荡器集成运算放大电路可以应用于振荡器中,通过控制内部的电容和电阻来实现频率的调节和控制,从而实现不同频率的振荡。
3. 滤波器集成运算放大电路可以应用于滤波器中,通过内部的电容和电阻来实现低通、高通、带通等不同类型的滤波器,从而实现对输入信号的滤波。
第八章:集成运放放大电路
+
+ uo uo1 IR e
-
Rc
+ RL u -o2 T2 Rb E
u ic
uo= 0 (理想化)。
_V
Re
+ ui2 -
EE
共模电压放大倍数
Auc 0
8.2.3 具有恒流源的差分放大电路
根据共模抑制比公式: Re K CMR Rb rbe 加大Re,可以提高共模抑 制比。为此可用恒流源T3来 + 代替Re 。 u
8.2 差分放大电路
差分放大电路(Differential Amplifier) 又称差动放大电路,简称差放,是构成 多级直接耦合放大电路的基本单元电路。 它具有温漂小、便于集成等特点,常用 作集成运算放大器的输入级。
8.2.1 直接耦合放大电路的零点漂移现象 1. 零点漂移现象及其产生的原因 直接耦合放大电路在输入信号为零时, 会出现输出端的直流电位缓慢变化的现 象,称为零点漂移,简称零漂。
uo2 T2 Rb -
Au d
u i1 RL - ( Rc // )
u id
2
Rb rbe
2
+ ui2 -
+
ib
+
ic rbe β ib RL uo1
2
差模输入电阻:
+
Rid 2Rb rbe
输出电阻:
ui1 +
Rb
+
RC
-+
Ro 2Rc
(2)加入共模信号
ui1=ui2 =uic, uid=0。 设ui1 ,ui2 uo1 , uo2 。 因ui1 = ui2, uo1 = uo2
集成运算放大电路
VCCUBE0 R
(1)
当 1 时,T1管的集电极电流
IC1IE1UBE0ReUBE1
(2)
(2)式中 (UBE0 – UBE1) 大概几十毫伏,因此只要 几千欧的 Re 就可以得到几十微安的IC1,所以称 为微电流源。
由式
IC1
Re0 Re1
IRU ReT1lnIICR1
可得
IC1
UT Re
ln
+VCC
IC0=IC1=IC ,IR为基准电流。
T0
C
T1
A点的电流方程I为E2:IC2IBIC2IC
IC0
2IB
IC
A
1
IC
2
IE2
2
IC2
IB2
IE2
1
B
T2
2
IC2
(1)
IR R
IC2 B点的电流方程为:
IR IB 2 IC IC 2 1 2 IC 22 2 2 2 2 IC 2
பைடு நூலகம்
UBE
UT
ln
IE IS
(2)
B
IC0
T0
A T1
IB0
IB1
Re0 IE0
IE1 Re1
因 将T(30)与式T代1 特入性 (1)完式全得U相:B同E0,U 故B:E1UTlnIIE E10 IE1Re1IE0Re0UTlnIIE E1 0
(3) (4)
当 2时,IC0IE0IR,IC1 IE1,所以
IC2(122 22)IRIR
(2)
2.4 多路电流源电路
基于比例电流源的多路电流源:
+VCC
IR R
C B
IC0
集成运算放大电路
iL
uI R1
(2) 悬浮负载电压—电流变换器 悬浮负载电压—电流变换器电路如图27所示。
(a)反相电压—电流变换器
(b)同相电压—电流变换器
图27 悬浮负载的电压—电流变换器
图27(a)是一个反相电压—电流变换器,它是一个电流并联负反馈电 路,它的组成与反相放大器很相似,所不同的是现在的反馈元件(负载) 可能是一个继电器线圈或内阻为RL的电流计。流过悬浮负载的电流为
(a)基本电路
图28 电流—电压变换器
(b)典型电路
图28(a)是一个基本的电流—电压变换器,根据集成运放的“虚断”和 “虚地”概念,有 和 ,故
u 0
,从而有
i 0
i F 是一个经常用在光电转换电路中的典型电路。图中 iI 图28(b) V是光电二 极管,工作于反向偏置状态。
O F F I F 根据集成运放的“虚断”和“虚地”概念可得
u u 0 i i 0 iI iF
uO uI R1 RF RF uO uI R1
2. 同相比例运算电路 同相比例运算电路如图21所示。
图21同相运算电路 由虚短、虚断可得:
u u uI i i 0 i1 i F
RF u O (1 )u I R1
RF RX
4. 测量放大器 测量放大器电路如图33所示
图33 测量放大电路
由图33可知: (1) 热敏电阻 和R组成测量电桥。当电桥平衡时 信号,故输出 ,相当于共模
Rt ,若测量桥臂感受温度变化后,产生与 相应的微小
u S1 u S,这相当于差模信号,能进行有效地放大。 信号变化 uO 0 2
③ 不接基准电压,即 称为过零比较器。
电子线路学习方法(十八)第十讲集成运算放大器电路分析方法
图1
1
+O UM
.
, ,
出端的信号 电压减小 ; 反相输入端 的信号 放带有深度 的负反馈 。( ) 性运用时集 2线 电压减小 , 输出端 的信号 电压增大。 成运放工作在 线性状 态下 , 即输 出量与输 集成运放的输 出 入量 之间呈线性状 态 , 但是整 个系统 电路 电压 由下列决定 : O=AO( i —U2)式 的输 出量 与输入量 之间可以是非线性 的。 U Ul i ,
端之间信 号 电压相位关 系 , 同相输入端 与 的输 出信号 电压值就在这一 区域 内变化。 :
●
-
■ ● - - - _ - ● _ - 。 - -
() c
- _ 。 - - ● ● 。 _ ■ - ● 。 。 -
输出端的信号相位相 同 , 负相输 入端与 ( 反 3)从 曲线 中可 以看 出,对于输 入信 号
输 出端信号相位相反 。( ) 反相 输入端 Ul U2而言 , 2在 i— i 线性区域是很小 的。( 线 4)
信号 电压不变时 , 同相输入端 的输 入信 号 性区之外 的是集成运放 的非线性区 , 当集 电 压 增 大 , 出端 的 信 号 也 在 增 大 ; 相 成运放工作在 非线 性区时 , 输 同 它的输 出信 号 输入端的输入信号 电压减 小 , 出端 的信 电压 要 么 是 + OM 值 , 要 么 是 一 输 U UOM 号也在减小。 ( 在 同相输入 端信号 电压 值 。 3) 不变时 ,反相输入端 的信 号 电压增大 , 输 2线性运 用 ( ) . 1 线性运用时 , 集成 运
“
一
、
脚( 电源引脚和接地 引脚 除外 )其 中两根 端信号 电压 U , 02之差 ; Y轴是集成运放 的 为输入引脚 , 另一根是输出引脚。( 在 两 输 出信号 电压 , 3) 即输出端 的信号 电压。( ) 2 个输入 引脚 中有极性之分 : 一个是 同相输 图中 实线所示是 理想 集成运 放的特 性 曲 入 端 , “ 号 表 示 : 一个 是反 相 输入 线 ,虚线 所示是 实际 集成运 放的特 性 曲 用 +” 另
集成运算放大器比较器电路分析
集成运算放大器比较器电路分析1.LM358比较器通过图3.13测试,可以看到当输入电压u i小于1V时,输出电压uo 约为5V左右;当输入电压在1-3V时,输出电压uo约为-5V。
即当U i<U R时,u o输出高电平;当u i>U r时,u o输出低电平。
将u i和U R互相调换位置,重复上述过程,记录输出电压u o,可观察到结果刚好相反。
在实验中为何会出向上述现象?分析一下其中的原因。
在图3.13(a)电路中,同相输入端接基准电位(或称参考电位)U R。
被比较信号由反相输入端输入。
集成运放LM358处于开环状态。
当u i>U R时,由于LM358 的电压放大倍数足够大,所以,输入端只要有微小的电压差,电压即饱和输出,在第一种情况下,输出电压为负饱和值为-U om;同理当u i<U R时,输出电压为正饱和值为+Uom。
其传输特性如图6.8 所示。
可见,只要输入电压在基准电压U R处稍有正负变化,输出电压u o就在负最大值到正最大值处变化。
通过上述分析可知,图3.13所示电路的功能是将一个输入电压与另一个输入电压或基准电压进行比较,判断它们之间的相对大小,比较结果由输出状态反映出来,该电路称为单限电压比较器,其特性如图3.14所示。
图3.14 单限电压比较器传输特性2.电压比较器LM393/LM339LM393是低功耗低失调电压两比较器,LM339是低功耗低失调电压四比较器。
两种比较器,原理图一样,功能参数一样。
(1) LM393/LM339工作原理LM339集成块采用C-14型封装,图3.15为外型及管脚排列图。
图3.15 比较器LM339LM339类似于增益不可调的运算放大器。
每个比较器有两个输入端和一个输出端。
两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。
用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。
集成运算放大器电路分析及应用(完整电子教案)
集成运算放大器电路分析及应用(完整电子教案)3.1 集成运算放大器认识与基本应用在太阳能充放电保护电路中要利用集成运算放大器LM317 实现电路电压检测,并通过三极管开关电路实现电路的控制。
首先来看下集成运算放大器的工作原理。
【项目任务】测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。
信息单】集成运放的实物如图3.2 所示。
图3.2 集成运算放大1. 集成运放的组成及其符号各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3 所示。
输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。
图3.3 集成运算放大电路的结构组成集成运放的图形和文字符号如图3.4 所示。
图3.4 集成运放的图形和文字符号其中“ -”称为反相输入端,即当信号在该端进入时,输出相位与输入相位相反;而“+”称为同相输入端,输出相位与输入信号相位相同。
2. 集成运放的基本技术指标集成运放的基本技术指标如下。
⑴输入失调电压U OS实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。
规定在室温(25℃ )及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS,U OS 越小越好,一般约为0.5~5mV 。
⑵开环差模电压放大倍数A od集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od。
它是决定运放运算精度的重要因素,常用分贝(dB) 表示,目前最高值可达140dB(即开环电压放大倍数达107)。
⑶共模抑制比K CMRRK CMRR 是差模电压放大倍数与共模电压放大倍数之比,即K CMRR = A A od,其含义与差动放大器中所定义的K CMRR 相同,高质量的运放K CMRR 可达160dB 。
集成运算放大电路
功耗
描述放大电路在工作过程 中消耗的能量,包括静态
电流、动态功耗等。
参数与性能指标的测试方法
01
02
03
输入阻抗测试
通过测量输入电压和电流 的比值来计算输入阻抗。
输出阻抗测试
通过测量输出电压和电流 的比值来计算输出阻抗。
开环增益测试
通过测量放大电路在不同 频率下的电压增益来计算 开环增益。
参数与性能指标的测试方法
描述放大电路对电源的需求和 功耗特性,包括电源电压、静 态电流等。
主要性能指标
线性度
描述放大电路输出信号与输 入信号之间的线性关系,包 括失真度、线性范围等。
精度
描述放大电路输出信号的 精度和稳定性,包括失调
电压、失调电流等。
带宽
描述放大电路在不同频率下 的响应速度和带宽范围,包 括通频带、增益带宽积等。
集成运算放大电路
目录
• 集成运算放大电路概述 • 集成运算放大电路的应用 • 集成运算放大电路的参数与性能指标 • 集成运算放大电路的设计与实现 • 集成运算放大电路的发展趋势与展望
集成运算放大电路概
01
述
定义与特点
定义
集成运算放大电路是一种将差分 输入的电压信号转换成单端输出 的电压信号,并实现电压放大的 集成电路。
特点
具有高放大倍数、高输入电阻、 低输出电阻、低失真度、低噪声 等优点,广泛应用于信号放大、 运算、滤波等领域。
工作原理
差分输入
集成运算放大器采用差分输入方式, 将两个输入端之间的电压差作为输入 信号。
放大与输出
反馈机制
集成运算放大器采用负反馈机制,通 过反馈网络将输出信号的一部分反馈 到输入端,以改善电路的性能。
集成运算放大电路全篇
Y0 Y1 Y2 Y3 B
注:式中Aod为差模开环放大倍数。
二、 集成运放中的电流源电 路
4.2.1 基本电流源电路
一、镜像电流源
+VCC
IR
B IC0
T0
R 2IB
A
IB0
IB1
IC1 T1
UBE0= UBE1, β0=β1=β, IC0=IC1=IC= βIB , IC1为输出电流, IR为基准电流。
基准电流表达式:
IR
用
uP
集成运放组成方框图:
输入级
uN
中间级
输出级 uO
偏置电路
1) 输入级 又称前置级,常为双输入高性能差分放大电路(高Ri 、大Ad、 大KCMR、静态电流小)。输入级的好坏直接影响着集成运放的大多数性能 参数。
2) 中间级 主放大器,使集成运放具有较强的放大能力,多采用共射 (或共源)放大电路。放大管经常采用复合管,以恒流源做集电极负载。
R`3
C`1 R`3
2.1k
2.1k
R`5 240k
C`1
R`4 25k
R`5 240k
- +
R7 100k
-∞ A3
(以下电路同上,仅C1、C2 值不同,电路从略)
图5.6 十五段优质均衡器
(2) 当R4的滑动触头移到最左边时,其电路如图8.7(a)所示。
C1
R3
R3
C2 R5
R4 R5
-∞
R6
B点的电流方程为:
IR
IB2
IC
IC2
1 2
IC2
2
2
2 2
2
I
C
2
IC2
(1
集成运算放大器(压控电流源)运用电路及详细解析
微分器的电路结构与积分器类似,包括集成运算放大器、 电容和反馈电阻。
微分器在信号处理、控制系统和电子测量等领域有广泛 的应用。
06 结论与展望
结论总结
01
集成运算放大器(压控电流源)在电路中具有重要作用,能够实现信号的放大、运 算和处理等功能。
02
通过对不同类型集成运算放大器(压控电流源)的特性、应用和电路设计进行比较 ,可以更好地选择适合特定需求的集成运算放大器(压控电流源)。
差分输入电路
总结词
差分输入电路是一种较为特殊的集成运算放大器应用电路,其输出电压与两个输 入电压的差值呈线性关系。
详细描述
差分输入电路的输出电压与两个输入电压的差值呈线性关系,适用于信号比较、 差分信号放大等应用。这种电路具有高输入阻抗和低输出阻抗的特点,能够有效 地减小外界干扰对信号的影响。
03 压控电流源的应用电路
详细描述
反相输入电路的输出电压与输入电压呈反相关系,即当输入 电压增加时,输出电压减小,反之亦然。这种电路具有高输 入阻抗和低输出阻抗的特点,适用于信号放大、减法运算等 应用。
同相输入电路
总结词
同相输入电路是一种较为简单的集成运算放大器应用电路,其输出电压与输入 电压呈同相关系。
详细描述
同相输入电路的输出电压与输入电压保持一致,适用于信号跟随、缓冲等应用。 这种电路具有低输入阻抗和低输出阻抗的特点,能够提高信号的驱动能力。
积分器可以将输入的电压信号 转换成电流信号,再通过负载 电阻转换成电压信号,实现信 号的积分运算。
案例三:微分器的应用
微分器是集成运算放大器的另一种应用可以将输入的电压信号转换成电流信号,再通过 负载电阻转换成电压信号,实现信号的微分运算。
运算集成放大电路实验报告
运算集成放大电路实验报告运算集成放大电路实验报告引言:运算集成放大电路(Operational Amplifier, 简称Op-Amp)是一种广泛应用于电子电路中的集成电路元件。
它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、比较、积分等电路中。
本实验旨在通过搭建运算放大器电路,验证其基本特性,并探究其在不同应用中的工作原理和性能。
实验一:运算放大器的基本特性验证1. 实验目的本实验旨在验证运算放大器的基本特性,包括增益、输入阻抗和输出阻抗。
2. 实验步骤(1)搭建一个基本的运算放大器电路,包括一个运算放大器芯片、两个电阻和一个电源。
(2)通过输入一个信号,观察输出信号的变化,并记录输入输出电压。
(3)更改输入信号的幅度和频率,观察输出信号的变化。
3. 实验结果与分析在实验中,我们发现输出信号与输入信号之间存在一个固定的放大倍数,即运算放大器的增益。
通过调节输入信号的幅度,我们可以观察到输出信号的变化,并根据实际测量结果计算出增益值。
此外,我们还发现运算放大器具有很高的输入阻抗和低的输出阻抗,使其能够有效地接收和驱动外部电路。
实验二:运算放大器的应用1. 实验目的本实验旨在通过实际应用电路,进一步探究运算放大器的工作原理和性能。
2. 实验步骤(1)搭建一个非反相放大电路,观察输入输出信号之间的关系。
(2)搭建一个反相放大电路,观察输入输出信号之间的关系。
(3)搭建一个积分电路,观察输入方波信号在电容上的积分效果。
3. 实验结果与分析在实验中,我们观察到非反相放大电路能够将输入信号放大,并保持与输入信号相同的相位。
而反相放大电路则将输入信号进行反相放大,输出信号与输入信号之间存在180度的相位差。
积分电路则将输入方波信号在电容上进行积分,输出信号为三角波信号。
结论:通过本次实验,我们验证了运算放大器的基本特性,并进一步了解了其在不同应用电路中的工作原理和性能。
运算放大器作为一种重要的电子元件,广泛应用于各种电子电路中,为信号处理提供了便利和灵活性。
集成运放电路的组成和各部分电路的功能特点
集成运放电路的组成和各部分电路的功能特点
集成运算放大电路是一种直接耦合的多级放大电路。
它的放大倍数非常高、输入电阻也高,输出电阻低,应用非常广泛。
它的内部电路比较复杂,但一般由四部分组成:偏置电路、输入级电路、输出级电路和中间级电路。
各部分电路特点为:
1).输入级:
一般由差放电路组成,它的特点是:输入电阻高,放大共模信号,抑制差模信号。
2).输出级:
一般由互补对称电路组成,它的特点是输出电阻小,输出功率大,带负载能力强。
3).中间级:
一般由共射放大电路组成,它的特点是电压放大倍数高。
4).偏置电路:
一般由恒流源电路组成,它的特点是能提供稳定的静态电流,动态电阻很高,还可作为放大电路的有源负载。
集成运算放大电路有两个输入端、一个输出端,电路符号为:
名词解释:
一:直接耦合方式
直接耦合:将前一级的输出端直接连接到后一级的输入端。
直接耦合方式的缺点:采用直接耦合方式使各级之间的直流通路相连,因而静态工作点相互影响。
有零点漂移现象。
直接耦合方式的优点:具有良好的低频特性,可以放大变化缓慢的信号;由于电路中没有大容量电容,易于将全部电路集成在一片硅片上,构成集成电路。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
集成运算放大电路分析
集成运算放大电路分析首先,集成运算放大电路是由集成电路技术制作的一类电路,主要由运算放大器、反馈电阻网络和输入输出电阻组成。
运算放大器是一种电压增益很大、输入阻抗很高的电子器件,它的输入端可以接入其他电路或传感器,输出端可以连接到显示器、控制装置等。
集成运算放大电路的基本原理是使用运算放大器提供的高增益和多种反馈方式来实现各种信号处理和增强功能。
通过调整反馈电阻网络可以实现放大、滤波、积分、微分等各种功能。
具体来说,集成运算放大电路将输入信号经过运算放大器放大后反馈给输入端,形成一个闭环系统,使得输出信号与输入信号之间的差别达到最小,从而实现精确的信号处理。
集成运算放大电路的特点有以下几点。
首先,它的增益很高,通常可以达到几千倍甚至几百万倍,具有极高的信号放大能力。
其次,它的输入阻抗很高,达到百万级别,可以使输入信号的影响最小化,减小对被测电路的影响。
另外,它的输出阻抗很低,可以提供较大的输出电流,方便连接到其他电路。
集成运算放大电路在实际应用中有广泛的用途。
首先,它可以用于放大微弱信号,如传感器输出信号、生物电信号等,从而提高信号的可靠性和可测性。
其次,它可以用于实现滤波功能,通过调整反馈电阻网络可以滤除不需要的频率成分,提取出需要的信号成分。
此外,它还可以用于实现比较器功能,将输入信号与参考电压进行比较,输出高、低电平来判断输入信号的大小。
最后,它还可以用于实现运算功能,如加法、减法、乘法和除法等。
总之,集成运算放大电路是一种非常重要的电路,具有高增益、高输入阻抗和低输出阻抗的特点,可以用于放大信号、滤波信号、比较信号和进行各种运算。
它在各种电子设备中发挥着重要的作用,如信号处理、控制系统、仪器仪表等。
随着科技的进步和集成电路技术的发展,集成运算放大电路将继续发展壮大,并在更多的领域得到应用。
集成运放的电路分析
六、电路性能指标测试
运算放大器静态调试完成后就可对各功能电路的性能指标进行测试。 1. 方程组电路测试。 在vi1和vi2端分别加直流信号,vi1 = -0.2V, vi2 = -0.4V,分别测出vy、vx的值。 2. 信号转换电路测试。 连接vi1和vi2信号转换电路后,令vi1=1.5V, 测出信号转换电路的输出,计算其增益。 3. 信号转换电路与方程组电路测试。 将信号转换电路的输出作为方程组电路vi2的输入,令vi1=1.5SinωtV (f=1kHz),用示波 器测量vy、vx的波形。计算与给定指标 -vy = vx = 10SinωtV(f=1KHz)的误差。 4. 精密全波整流电路测试。 将精密全波整流电路的输入分别和方程组电路输出vy、vx相接,用示波器测量整流输 出的波形。计算与给定指标vom=10V的误差。用示波器X-Y方式,测量精密全波整流电路的 电压传输特性。
法运算电路的设计可以用图 3.1 所示的一个集成运放来实 vi2
A
vo
现。由图可得
R2
R3
图 3.1 基本差动放大器
vo
=
⎜⎛1 + ⎝
RF R1
⎟⎞ ⎠
R3 R3 + R2
vi2
−
RF R1
vi1
(3-4)
当R2=R1,R3=RF时,则
vo
=
RF R1
(vi2
− vi1 )
也可用图 3.2 所示的两个集成运放来实现。
(3 -11)
图 3.7 分别是单电源运放构成交流反相和同相放大器的偏置方式。图中C1、C2、C3为 交流耦合隔直电容,其大小可根据交流放大器的下限频率fL来确定,一般取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。