中考数学PPT专题一
合集下载
华师版数学中考复习专题课件
概率计算
根据不同的事件类型,可以采用 不同的公式或方法来计算概率。
概率的性质
概率具有一些基本性质,如非负 性(P(A) ≥ 0)、规范性(P(必 然事件) = 1)和可加性(对于互 斥事件A和B,P(A∪B) = P(A) +
P(B))。
统计初步知识
统计图表
01
利用各种统计图表,如条形图、折线图、扇形图等,直观展示
解答题的解题技巧
分步解答法
对于一些复杂的问题,可以尝试将问题分解 成若干个小问题,逐步解答。
特殊情况分析法
对于一些抽象或难以直接计算的问题,可以 尝试分析特殊情况来找出答案。
总结法
对于一些涉及多个知识点的问题,可以尝试 将各个知识点综合起来解答。
类比法
对于一些类似的问题,可以尝试通过类比来 找出答案。
题。
填空题的解题技巧
直接填空法
对于一些简单的问题,可以直 接填写答案,无需过多解释。
推理法
对于需要推理的问题,可以逐 步推导答案,确保答案的正确 性。
反证法
对于一些难以直接证明的问题 ,可以尝试反证法来证明答案 的正确性。
数形结合法
对于涉及图形的问题,可以尝 试将问题转化为图形问题,通
过观察图形来找出答案。
数据。
平均数、中位数、众数
02
描述数据集中趋势的统计量。
方差与标准差
03
描述数据离散程度的统计量。
课题学习
实验目的
通过实际操作和观察, 探究抛硬币正面朝上的 概率,加深对概率的理
解。
实验材料
硬币、记录表、笔等。
实验步骤
进行多次抛硬币实验, 记录每次实验的结果, 并计算正面朝上的概率
初三数学中考专题复习 握手问题的探究与应用 课件(共26张PPT)
“握手”问题的探究及应用
【实际问题】
班级迎新晚会上,全班同学两两 握手一次致意,那么他们共握手多少 次?
合作探究:
小组进行握手游戏,合作寻找握手的 内在规律。
请思考:若4位同学两两握手共握手多
少次?5位呢?8位呢?…n位呢?
( 小组展示握手探究过程,小组代表讲解探究过程)
【问题解决】
班级迎新晚会上,n位同学 两两握手一次致意,那么他们共
握手 n(n 1) 次. 2
实 【思考1】 数线段
际
应 小明在纸上画了一条直线,
用
小红又拿起了笔,在小明画的直 线上点了8个点,“你知道现在 这条直线上有多少条线段吗?” 同学们,你能帮小明快速回答这 个问题吗?
【思考1】
小明在纸上画了一条直线,小红又拿起了笔, 在小明画的直线上点了8个点,“你知道现在这条 直线上有多少条线段吗?” 同学们,你能帮小明 快速回答这个问题吗?
2
平面内确定直线条数
不在同一条直线上的3个点,过任意两点 一共可以画 3 条直线; 平面内4个点(任意三点不在同一条直线 上),过任意两点一共可以画 6 条直线; 5个点呢? 在同一平面内有n个点(任意三个点都不 在同一条直线上)过这n个点中的任意两 点画直线,一共能画出 n(n 1) 条直线?
下一张
【思考2】
往返于青岛、北京南的D336动车,中途 经过胶州北、潍坊、昌乐、淄博、济南、德 州东、沧州西、天津南、廊坊站点,(只考 虑站点)那么该列火车需要安排多少种不同 的车票?
【解析】把每个站点看成每位同学,共 11个站点就是11位同学;每2个站点 的火车票种类可以看作2位同学握手, 火车票种类便是平面内,由不在同一条直线上
但有公共端点的n条射线所组成的图形中,
【实际问题】
班级迎新晚会上,全班同学两两 握手一次致意,那么他们共握手多少 次?
合作探究:
小组进行握手游戏,合作寻找握手的 内在规律。
请思考:若4位同学两两握手共握手多
少次?5位呢?8位呢?…n位呢?
( 小组展示握手探究过程,小组代表讲解探究过程)
【问题解决】
班级迎新晚会上,n位同学 两两握手一次致意,那么他们共
握手 n(n 1) 次. 2
实 【思考1】 数线段
际
应 小明在纸上画了一条直线,
用
小红又拿起了笔,在小明画的直 线上点了8个点,“你知道现在 这条直线上有多少条线段吗?” 同学们,你能帮小明快速回答这 个问题吗?
【思考1】
小明在纸上画了一条直线,小红又拿起了笔, 在小明画的直线上点了8个点,“你知道现在这条 直线上有多少条线段吗?” 同学们,你能帮小明 快速回答这个问题吗?
2
平面内确定直线条数
不在同一条直线上的3个点,过任意两点 一共可以画 3 条直线; 平面内4个点(任意三点不在同一条直线 上),过任意两点一共可以画 6 条直线; 5个点呢? 在同一平面内有n个点(任意三个点都不 在同一条直线上)过这n个点中的任意两 点画直线,一共能画出 n(n 1) 条直线?
下一张
【思考2】
往返于青岛、北京南的D336动车,中途 经过胶州北、潍坊、昌乐、淄博、济南、德 州东、沧州西、天津南、廊坊站点,(只考 虑站点)那么该列火车需要安排多少种不同 的车票?
【解析】把每个站点看成每位同学,共 11个站点就是11位同学;每2个站点 的火车票种类可以看作2位同学握手, 火车票种类便是平面内,由不在同一条直线上
但有公共端点的n条射线所组成的图形中,
2020届中考数学总复习课件:核心素养专题一 选择填空难题突破 (共41张PPT)
5.在平面直角坐标系中,任意两点 A(x1,y1),B(x2,y2)规定运算:①A⊕B=(x1+x2,
y1+y2);②A⊗B=x1x2+y1y2;③当 x1=x2 且 y1=y2 时,A=B.有下列四个命题:(1)若 A(1,
2),B(2,-1),则 A⊕B=(3,1),A⊗B=0;(2)若 A⊕B=B⊕C,则 A=C;(3)若 A⊗B
11.[2019·咸宁]有一列数,按一定规律排列成 1,-2,4,-8,16,-32,…其中某三 个相邻数的积是 412,则这三个数的和是__-__3__8_4_. 【解析】 ∵一列数为 1,-2,4,-8,16,-32,…∴这列数的第 n 个数可以表示为(- 2)n-1,设这三个相邻的数为(-2)n-1,(-2)n,(-2)n+1,由题意得(-2)n-1·(-2)n·(-2)n+1 =412,即(-2)3n=(22)12=224,∴3n=24,解得 n=8,∴这三个数的和是(-2)7+(-2)8 +(-2)9=(-2)7×(1-2+4)=(-128)×3=-384.
10.[2019·十堰]对于实数 a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+ 2)◎(m-3)=24,则 m=_-___3_或__4_. 【解析】 根据题意得[(m+2)+(m-3)]2-[(m+2)-(m-3)]2=24,(2m-1)2=49,2m -1=±7,解得 m1=-3,m2=4.
3+ 5 >
3-
5,故
x>0,由
x2
=
3+ 5-
3-
5
2
=
3
+
5+3-
5-
2 (3+ 5)(3- 5)=2,解得 x= 2,即 3+ 5- 3- 5= 2.根据以上方法,
2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用
解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.
中考数学大一轮数学复习专题ppt课件:代数应用性问题
1 2 3
7
中考大一轮复习讲义◆ 数学
热点看台 快速提升
典例分析 1 小王上周五在股市以收盘价(收市时的价格)每股 25 元买进某公司股票 1000 股, 在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)
星期
一二
三
四
五
每股涨(元) +2 -0.5 +1.5 -1.8 +0.8
135-25000-125=1740(元),∴小王的本次收益为1740元.
2
3
8
中考大一轮复习讲义◆ 数学
点对点训练 1. 实数 a,b,c 在数轴上表示的点如图所示: 化简:a+|a+b|- c2-|b-c|.
答案:0
2. 比较大小:a2+b2 与 2ab.
答案: ∵a2+b2-2ab=(a-b)2≥0,∴a2+b2≥2ab.
1 列分式方程求解.思路二:先找出题中两个相等关系:第一批衬衫购进的件数
与单价的乘积=8000元,第二批衬衫购进的件数与单价的乘积=17600元,再 列出方程组求解.
2
3
10
中考大一轮复习讲义◆ 数学
热点看台 快速提升
解 方法一:设第一批进货的单价为 x 元,则第二批进货的单价为(x+8)元, 由题意得,2×80x00=1x7+6080, 解得:x=80, 经检验 x=80 是原分式方程的解,且符合题意, 则第一次进货808000=100(件),
根据上表回答问题:
(1)星期二收盘时,该股票每股为多少元?
(2)这周内该股票收盘时的最高价、最低价分别是多少?
(3)已知在本周五以收盘
价将全部股票卖出,他的收益情况如何?
解析 对于比较生疏的题型尤其要仔细审题,在充分理解题意后,再从不同
专题 一次函数-2023年中考数学第一轮总复习课件(全国通用)
一次函数
知识梳理
强化 训练
当堂训练
一次函数的图象与性质
查漏补缺
1.直线y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( C )
A.第四象限 B.第三象限 C.第一象限 D.第二象限
2.一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐
标可以为( C ) A.(-5,3)
①k1x+b1=0 ②k2x+b2=1 ③k1x+b1=k2x+b2
x=2 x=3 x=3
y D(0,4) y1=k1x+b1
A(3,1)
④k1x+b1≤-2 ⑤k2x+b2<4 ⑥k1x+b1>k2x+b2
x≤0 x>0 x>3
E(4,0)
O B(2,0)
x
C(0,-2) y2=k2x+b2
典例精讲 一次函数与方程(不等式) 知识点三
【例3】(1)如图,一次函数y=ax+b的图象与x轴交于点(2,0),与y轴相交于
点(0,4),结合图象可知,关于x的方程ax+b=0的解是_x_=_2__.
y
解:∵一次函数y=ax+b的图象与x轴相交于点(2,0), ∴关于x的方程ax+b=0的解是x=2.
4 y=ax+b
O2 x
01 一次函数的图象及性质
把两组对应值(自变量与函数的对应值)代入解析式,得到关 于系数k,b的二元一次方程组;
步骤 解 解二元一次方程组,求出系数k,b的值;
还原 将求得的待定系数的值代入y=kx+b.
已知两点坐标确定函数解析式 常见 已知两组函数对应值确定函数解析式 类型 经过直线与平移规律确定函数解析式.
《中考数学专题讲座》课件
PART 02
代数部分
代数基础知识梳理
代数基础知识
包括代数式、方程、不等 式、函数等基本概念和性 质。
代数式化简
掌握代数式的化简方法, 如合并同类项、提取公因 式等。
方程与不等式解法
理解方程与不等式的解法 ,包括一元一次方程、一 元二次方程、分式方程、 一元一次不等式等。
代数解题方法与技巧
代数恒等变换
中考数学复习计划与时间安排
制定复习计划
根据中考数学的考试大纲和考试时间,制定详细的复习计划,合理 分配时间,把握重点和难点。
注重基础知识
在复习过程中,要注重基础知识的学习和掌握,不要忽视课本上的 例题和练习题,因为这些是最基本的题目,能够帮你理解概念和方 法。
练习历年真题
多做中考数学真题,熟悉考试形式和题型,有助于提高应试能力和自 信心。
考试内容
包括数与式、方程与不等 式、函数、几何、概率与 统计等部分。
考试形式
闭卷、笔试,时间为120 分钟。
中考数学考试形式与试卷结构
试卷结构
满分120分,包括选择题、填空题 和解答题三种题型。
分值分布
选择题40分,填空题30分,解答 题50分。
考试时间分配
选择题每题2分,共20题,用时30 分钟;填空题每题3分,共10题, 用时15分钟;解答题每题8分,共5 题,用时65分钟。
中考数学答题技巧与注意事项
仔细审题
在答题前,要认真审题,理解题意, 避免因误解题目而失分。
表达清晰
在答题时,要思路清晰,表达准确, 注意解题步骤和细节。
检查答案
在答完题后,要仔细检查答案,确保 没有遗漏或错误。
注意时间分配
在考试过程中,要合理分配时间,不 要在某一道题目上花费太多时间而影 响其他题目的完成。
数学中考一轮复习专题01实数课件
知识点梳理
3.运算顺序:
知识点3 :实数的运算
先算乘方,再算乘除,最后算加减;同级运算,从左到右进行;如有括号,先进 行 括号内的 运算,一般按小括号、中括号、大括号依次进行 .
【注意】在进行负整数指数幂的运算时,防止出现以下错误:
(1)3-2= 1 9
(2)2a-2=
1 2a
2
知识点3 :实数的运算
①掌握实数的加、减、乘、
除、乘方及简单的混合运算( 运算法则、运算顺序的理解、运用
实数的混合 以三步为主);②理解实数的 和计算的准确性、迅速性.
5
运算
运算律,能运用运算律简化 以选择题、填空题为主,有时也以
运算,并能运用实数的运算 简单解答题的情势命题.
解决简单的问题.
思维导图
知识点1 :实数的有关概念
0的相反数是0.知识点1 来自实数的有关概念典型例题
【例4】(4分)(202X•安徽1/23)﹣9的绝对值是( )
A.9
B.﹣9
C. 1 9
D. 1 9
【考点】绝对值.
【分析】根据绝对值的代数意义即可求解.
【解答】解:﹣9的绝对值是9, 故选:A. 【点评】本题考查了绝对值的代数意义,负数的绝对值等于它的相反数,这是解
④与π有关的数:如 ,π-1等.
3
判断一个数是不是无理数,不要只看情势,要看化简结果是不是无限不循环小数.
知识点梳理
知识点1 :实数的有关概念
2.数轴:
规定了原点、正方向和 单位长度 的直线叫做数轴. 数轴上的点与实数一一对应.
3.相反数:
a的相反数是-a,0的相反数为0;
a、b互为相反数⇔a+b=0.
知识点1 :实数的有关概念
2015年辽宁省地区中考数学总复习专题课件 专题一 规律探索型问题(共19张PPT)
1.(2014· 兰州)为了求 1+2+22+23+„+2100 的值,可令 S=1+2+ 22+23+„+2100,则 2S=2+22+23+24+„+2101,因此 2S-S=2101-1, 所以 S=2101-1,即 1+2+22+23+„+2100=2101-1,仿照以上推理计算 1+3++3 +„+3
【点评】本题考查图形的应用与作图,是规律探究题,难度中等, 注意观察图形及表格,总结规律.
2.(2014· 丹东)如图,在平面直角坐标系中,A,B 两点分别在 x 轴和 y 轴 上,OA=1,OB= 3,连接 AB,过 AB 中点 C1 分别作 x 轴和 y 轴的垂线, 垂足分别是点 A1, B1, 连接 A1B1, 再过 A1B1 中点 C2 作 x 轴和 y 轴的垂线, „„ 1 3 照此规律依次作下去,则点 Cn 的坐标为__(2n, 2n )__.
专题一 规律探索型问题
规律探索型问题也是归纳猜想型问题,其特点是:给出一组具有某
种特定关系的数、式、图形,或是给出与图形有关的操作变化过程,或 某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,
进而归纳或猜想出一般性的结论.类型有“数列规律”“计算规律”“
图形规律”与“动态规律”等题型. 1.数字猜想型:数字规律问题主要是在分析比较的基础上发现题目 中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.
5.(2014· 铁岭)将(n+1)个边长为 1 的正方形按如图所示的方式排列,点 A, A1,A2,A3,„,An+1 和点 M,M1,M2,„,Mn 是正方形的顶点,连接 AM1, AM2,AM3,„,AMn,分别交正方形的边 A1M,A2M1,A3M2,„,AnMn-1 于点 N1,N2,N3,„,Nn,四边形 M1N1A1A2 的面积是 S1,四边形 M2N2A2A3 的面积是 2n+1 S2,„„四边形 MnNnAnAn+1 的面积是 Sn,则 Sn=__ __. 2n+2
中考数学专题复习一分类讨论思想PPT课件
过点A作AD⊥BC,垂足为D, ∵∠ACB=75°-∠B=45°, sinACD AD,
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由
专题一 实数(助考课件)——2023届中考数学一轮复习学考全掌握
2.( a )2 a(a 0)
3.
a2
a
a(a a(a
0) 0)
5. a a (a 0,b 0) bb
知识梳理
三、二次根式的运算法则
类别
法则
乘法
a b ab(a 0,b 0)
除法 加减法
a a (a 0,b 0) bb
①化简成最简二次根式 ②合并同类二次根式举例3 Nhomakorabea5 15
24 2 2 3
( C)
A. x 1
B. x 1
C. x 1且 x 0
D. x 1且x 0
【解析】 x 1 0, x 0,x 1且 x 0,故选 C.
典型例题 12.(2022.山东济宁)已知a 2 5 ,b 2 5 ,求代数式a2b ab2的值.
【解析】
a2b ab2 ab(a b)
A. 4 9 2 3
B. 4 9 2 3
C. 94 32
典型例题 D. 49 0.7
【解析】
4 9 13; 49 22 32 23;
94 92 2 92; 4.9 49 7 10 . 10 10
典型例题
11.(2022.黑龙江绥化)若式子 x 1 x2在实数范围内有意义,则 x 的取值范围是
A.103.57 103.6(精确到个位)
B.2.708 2.71(精确到十分位)
C.0.054 0.1(精确到 0.1)
D.0.0136 0.013(精确到 0.001)
【解析】
A.103.57 104;B.2.708 2.7;D.0.0136 0.014,只有选项 C 正确.故选 C.
b
知识梳理
三、实数的乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂a a a an
人教版初中数学中考复习专题复习 数与式(37张PPT)
知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.
【人教版】中考数学六大专题冲刺复习优质PPT课件
满分解答
变式训练
1.(2015•珠海)如图-3,在平面直角坐标系中, 矩形OABC的顶点A,C分别在x轴、y轴上,函数 y=k/x的图象过点P(4,3)和矩形的顶点B(m,n )(0<m<4). (1)求k的值; (2)连接PA,PB,若△ABP的面积为6,求直线BP 的表达式.
2.(2015•佛山)若正比例函数y=k 1x的图象与 反比例函数y=k2/x的图象有一个交点的坐标是(2,4). (1)求这两个函数的表达式; (2)求这两个函数图象的另一个交点的坐标.
试题分析
本题以一次函数与反比例函数的图象交点问题为背景, 考查学生利用轴对称求最短路线问题,具体分析如下: (1)根据点A的坐标以及AB=3BD先求出点D的坐标,再代 入反比例函数表达式即可求出k的值; (2)点C是直线与反比例函数图象的交点,由直线与反 比例函数的表达式联立方程组即可求出点C的坐标; (3)作点D关于y轴的对称点E,连接CE交y轴于点M,则 d=MC+MD最小.得到E(-1,1),求得直线CE的表达式为 y=(2√3-3)x+2√3-2,其与y轴的交点即为所求.
真题回顾
例 (2015•广东)如图-1,反比例函数y=k/x( k≠0,x>0)的图象与直线y=3x相交于点C,过直 线上点A(1,3)作AB⊥x轴于点B,交反比例函数 的图象于点D,且AB=3BD. (1)求k的值; (2)求点C的坐标; (3)在y轴上确定一点M,使点 M到C,D两点的距离之和d=MC+MD, 求点M的坐标.
解题策略:应用函数思想解题,确立变量之间的 函数表达式是关键步骤,主要分为下面四种情况 : (1)根据题意建立变量之间的函数表达式,把问 题转化为相应的函数问题; (2)用待定系数法求函数表达式; (3)利用两个三角形相似解决最值问题; (4)动点与图形面积的关系,动点与线段之和最 短问题的关系.
中考数学复习专题知识讲座PPT省名师优质课赛课获奖课件市赛课一等奖课件
二、解题策略与解法精讲
• 选择题解题旳基本原则是:充分利用选择题旳特点,小题 小做,小题巧做,切忌小题大做.
• 解选择题旳基本思想是既要看到各类常规题旳解题思想, 但更应看到选择题旳特殊性,数学选择题旳四个选择支中 有且仅有一种是正确旳,又不要求写出解题过程. 因而, 在解答时应该突出一种“选”字,尽量降低书写解题过程, 要充分利用题干和选择支两方面提供旳信息,根据题目旳 详细特点,灵活、巧妙、迅速地选择解法,以便迅速智取, 这是解选择题旳基本策略. 详细求解时,一是从题干出发 考虑,探求成果;二是题干和选择支联合考虑或从选择支 出发探求是否满足题干条件. 实际上,后者在解答选择题 时更常用、更有效.
• 例3 下列四个点中,在反百分比函数y=− 旳图象上旳是( )
• A.(3,-2) B.(3,2) C.(2,3) D.(-2,-3)
• 思绪分析:根据反百分比函数中k=xy旳特点进行解答即可.
• 解:A、∵3×(-2)=-6,∴此点在反百分比函数旳图象上,故本选项正确; B、∵3×2=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; C、∵2×3=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; D、∵(-2)×(-3)=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错 误. 故选A.
• 思绪分析:反百分比函数旳图象是中心对称图形, • 则与经过原点旳直线旳两个交点一定有关原点对称. • 解:因为直线y=mx过原点,双曲线 旳两个分支有关原点对称,
所以其交点坐标有关原点对称,一种交点坐标为(3,4),另一种交 点旳坐标为(-3,-4). 故选:C. • 点评:此题考察了函数交点旳对称性,经过数形结合和中心对称旳定 义很轻易处理.
• 一. 一次函数、反百分比函数和二次函数图象旳分析问题
中考数学总复习 专题一 数形结合思想课件
的第23题则体现了几何问题解决的过程中数形结合的重要
性,2017年的第21题则体现了统计中数形结合的重要性等, 它是数学中非常重要的数学方法之一,应该(yīnggāi)予以重视.
第三页,共十六页。
数与形是数学教学研究对象的两个侧面,把数量关系
和空间形式结合起来去分析问题、解决问题,就是数形结 合思想.数、式能反映图形的准确性,图形能增强数、式 的直观性,“数形结合”可以调动和促进学生形象思维和
抽象思维的协调(xiétiáo)发展,沟通数学知识之间的联系,从复杂
的数量关系中凸显最本质的特征.常见的情形:利用数
第四页,共十六页。
轴、函数的图象和性质、几何模型、方程与不等式以及数 式特征可以将代数(dàishù)问题转化为几何问题;利用代数(dàishù)计算、 几何图形特征可以将几何问题转化为代数问题;利用三角 知识解决几何问题;利用统计图表让统计数据更形象更直 观等.
No 值范围是全体实数,x与y的几组对应值列表如下:。的一部分,请画出该函数图象的另一。(3)观察函数图象,写出两条函数的。(4)①3 3 ②2
③-1<a<0。A
Image
12/9/2021
第十六页,共十六页。
第十二页,共十六页。
【归纳总结(zǒngjié) 此类题目需充分发挥图形的作用,从图中读出已知条件,借助图形解决问题是关键.
第十三页,共十六页。
1.(2017·威海)如图,正方形ABCD的边长为5,点A的坐标(zuòbiāo) 为(-4,0),点B在y轴上,若反比例函数y= (k≠0k )的图 象过点C,则该反比例函数的表达式为( ) A x
内容 总结 (nèiróng)
专题一 数形结合思想。体现了函数问题解决的过程中数形结合的重要性,2017年。的第23题则体现了几何问题解决的过程中数形结合的重 要。的直观性,“数形结合”可以调动和促进学生形象思维和。的数量关系中凸显最本质的特征(tèzhēng).常见的情形:利用数。(1)自变量x的取
性,2017年的第21题则体现了统计中数形结合的重要性等, 它是数学中非常重要的数学方法之一,应该(yīnggāi)予以重视.
第三页,共十六页。
数与形是数学教学研究对象的两个侧面,把数量关系
和空间形式结合起来去分析问题、解决问题,就是数形结 合思想.数、式能反映图形的准确性,图形能增强数、式 的直观性,“数形结合”可以调动和促进学生形象思维和
抽象思维的协调(xiétiáo)发展,沟通数学知识之间的联系,从复杂
的数量关系中凸显最本质的特征.常见的情形:利用数
第四页,共十六页。
轴、函数的图象和性质、几何模型、方程与不等式以及数 式特征可以将代数(dàishù)问题转化为几何问题;利用代数(dàishù)计算、 几何图形特征可以将几何问题转化为代数问题;利用三角 知识解决几何问题;利用统计图表让统计数据更形象更直 观等.
No 值范围是全体实数,x与y的几组对应值列表如下:。的一部分,请画出该函数图象的另一。(3)观察函数图象,写出两条函数的。(4)①3 3 ②2
③-1<a<0。A
Image
12/9/2021
第十六页,共十六页。
第十二页,共十六页。
【归纳总结(zǒngjié) 此类题目需充分发挥图形的作用,从图中读出已知条件,借助图形解决问题是关键.
第十三页,共十六页。
1.(2017·威海)如图,正方形ABCD的边长为5,点A的坐标(zuòbiāo) 为(-4,0),点B在y轴上,若反比例函数y= (k≠0k )的图 象过点C,则该反比例函数的表达式为( ) A x
内容 总结 (nèiróng)
专题一 数形结合思想。体现了函数问题解决的过程中数形结合的重要性,2017年。的第23题则体现了几何问题解决的过程中数形结合的重 要。的直观性,“数形结合”可以调动和促进学生形象思维和。的数量关系中凸显最本质的特征(tèzhēng).常见的情形:利用数。(1)自变量x的取
中考数学专题《一次函数》复习课件(共20张PPT)
2D
S△COD=
1 2
OC
OD
C
x
O1
122 2 23 3
考点二:确定一次函数解析式及其相关问题
例2:已知:一次函数图象经过A(1,5), B(-2,-4)两点, 图象与x轴交于点C,与 y轴交于点D.
(5)若直线l:y= x-4与此一次函数图象相交 于点P,试求点P的坐标
【解析】:(5)由题意可得:
例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为常数:
(2)当m为何值时,y随x的增大而减小?
【解析】:
∵y随x的增大而减小
2
∴3m-2<0
∴m<
本题考查一次函数的性质,即:在y3=kx+b(k≠0)中,
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小;
考点一:一次函数定义、图象、性质的相关知识
例1:已知直线解析式为y=(3m-2)x+(1-2m) , 其中m为常数:
(3)当m为何值时,图象经过第二、三、四象 限?
【解析】:∵图象经过第二、、四象限∴ 3m 2 0 1 2m 0
∴ 1m 2
2
3
本题考查一次函数的图象及其性质
例题分析
考点一:一次函数定义、图象、性质的相关知识 例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为
④直线AB上有一点C,
y
且点C的横坐标为1, 求点C的坐标及S△BOC的面积
B
C
解:在y=-2x+4中,
当x=1时,y=2
∴C:(1,2)
S△BOC= 1 OB×|1|=2
2
德州市中考数学一轮复习课件专题一:探索规律问题
y=
与x轴交于点B1,以OB1为边长作等边三角形
A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为
边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线
l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2 017
的横坐标是 .
【分析】 利用直线的解析式及等边三角形的性质计算出A1,
类型三 点的坐标规律 这类问题要求探索图形在运动过程中的规律,通常以平
面直角坐标系为载体探索点的坐标的变化规律.解答时,应 先写出前几次的变化过程,并将相邻两次的变化过程进行比 对,明确哪些地方发生了变化,哪些地方没有发生变化,逐 步发现规律,从而使问题得以解决.
例3 (2017·东营)如图,在平面直角坐标系中,直线l:
一系列的图形),探求图形的变化规律,以图形为载体考查 图形所蕴含的数量关系.解决此类问题:先观察图案的变 化趋势是增加还是减少,然后从第一个图形进行分析,运 用从特殊到一般的探索方式,分析归纳找出增加或减少的 变化规律,并用含有字母的代数式进行表示,最后用代入 法求出特殊情况下的数值.
例2 (2016·重庆)下列图形都是由同样大小的小圆圈按一
类型一 数式规律 这类问题通常是先给出一组数或式子,通过观察、归
纳这组数或式子的共性规律,写出一个一般性的结论.解 决这类题目的关键是找出题目中的规律,即不变的和变化 的,变化部分与序号的关系.
例1 (2016·绥化)古希腊数学家把数1,3,6,10,15,21, …叫做三角数,它有一定的规律性.若把第一个三角数记为 a1,第二个三角数记为a2,…,第n个三角数记为an,计算a1 +a2,a2+a3,a3+a4,…,由此推算a399+a400= .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一┃ 热点探究
2x+5≤3(x+2),① 解: 3x-1<5.②
由①得,x≥-1,由②得,x<2. ∴不等式组的解集为-1≤x<2. 解集在数轴上表示为:
特别提示: 异分母分式的加减法要先通分, 除法要转化为乘法, 再进行化简.
a-1 a(a+2) 1 解:原式=1- a · =- . (a+1)(a-1) a+1
专题一┃ 热点探究
例4
[2012· 成都]
b a 化简:1-a+b÷ 2 2. a -b
特别提示:本题中的 1 可以看成分母为 1 的“分式”,运算 时要注意运算顺序,先算括号里面的.
特别提示: a 的值根据乘方和特殊角的三角函数值进行化 把 简,然后代入.
专题一┃ 热点探究
2(a-1)+(a+2) a+1 解:原式= × a (a+1)(a-1) a+1 3a 3 = × a = . (a+1)(a-1) a-1 当 a=(-1)2012+tan60°=1+ 3时, 3 3 原式= = = 3. 1+ 3-1 3
专题一┃ 热点探究
例8
4(x-y-1)=3(1-y)-2, 解方程组:x y 2+3=2.
特别提示: 首先对原方程组化简, 然后运用加减消元法求解.
解:原方程组可化为:
4x-y=5,①, 3x+2y=12,②
①×2+②得:11x=22,∴x=2. 把 x=2 代入①得 y=3 .
专题一┃ 热点探究
例 6
x2-4x+4 4 [2012· 河南] 先化简 2 ÷x-x,然后从- 5 x -2x
<x< 5的范围内选取一个合适的整数作为 x 的值代入求值.
特别提示:分式的分母任何情况下都不能等于 0,所以代入 的数值不能使分母为零.
(x-2)2 x 1 解:原式= × = . x(x-2) (x+2)(x-2) x+2 ∵- 5<x< 5,且 x 为整数,∴若使分式有意义,x 只能取 1 -1 和 1.当 x=1 时,原式= .当 x=-1 时,原式=1. 3
x=2, ∴方程组的解为 y=3.
专题一┃ 热点探究
►
类型之五
解不等式(组)
2x+5≤3(x+2), 解不等式组: 并把 3x-1<5,
例 9 [2012· 山西]
它的解集表示在数轴上.
特别提示:在表示解集时,“≥”“≤”要用实心圆点表 示;“<”“>”要用空心圆圈表示.
专题一┃ 热点探究 ► 类型之四
例7Leabharlann 解方程(组)x 8 解方程: -1= 2 . x-2 x -4
特别提示:把分式方程转化为整式方程求解.解分式方程一 定要验根.
x 8 解:原方程化为 -1= . x-2 (x+2)(x-2) 方程两边同时乘(x+2)(x-2),得 x(x+2)-(x+2)(x-2)=8. 化简,得 2x+4=8.解得 x=2. 检验:x=2 时,(x+2)(x-2)=0,所以 x=2 不是原分式方程 的解,原分式方程无解.
a+b-b (a+b)(a-b) 解:原式= · a a+b (a+b)(a-b) a = · =a-b. a a+b
专题一┃ 热点探究
►
类型之三
代数式的化简求值
2 a+2 a + 先化简, 再求代数式 ÷ a+1 a2-1 a+1
例5
[2012· 菏泽]
的值,其中 a=(-1)2012+tan60°.
专题一┃运算与求解专题
专题一┃ 考点分析
考点分析
本专题是初中数学最基本的知识点凝聚, 是基本运算能力 的具体展现.河北中考主要通过选择、填空和 19 题来考查, 累计分值 8 到 10 分.题目特点:虽属低中档题目,但有一些 学生丢分. 特别提醒: 无论是数的运算还是式的运算都必须格 外注意符号,特别是负号,如去括号时,括号前面是“-”号, 把括号去掉, 括号里各项的符号都要改变为相反的符号. 总之, 计算无捷径,认真细心是关键.
专题一┃ 热点探究
热点探究
► 类型之一 实数的运算
0
例 1 计算:|-4|-( 2-3)
1 1 +6×3-2+(-1)2012.
特别提示:注意零指数幂、偶次幂、负整数指数幂的运算.
解:|-4|-( 2-3)
0
1 1 +6×3-2+(-1)2012
=4-1+(2-3)+1=3.
专题一┃ 热点探究
例2
[2012· 北京]
1-1 计算:2 -2cos30°+
0 27+2-π .
特别提示:特殊角的三角函数值一定要记准确.
3 解:原式=2-2× +3 3+1=3+2 3. 2
专题一┃ 热点探究 ► 类型之二 分式的化简计算
例3
a-1 a2-1 [2012· 泰州] 化简:1- ÷ 2 . a a +2a