§4离子注入工艺
离子注入工艺
2021/4/14
12
离子注入的杂质分布还与衬底晶向有 关系。如果注入的离子沿规则排列的晶格 方向进入硅中,离子可能要走很长一段路 途才碰到硅原子,因此,进入深度就大, 使杂质分布出现两个峰值,这种现象称为“ 沟道效应”。向<100>, <110>晶向注入 时,往往会发生这种沟道效应,而<111> 再偏离一定角度,情况就好得多。
2021/4/14
10
离子在硅体内的注入深度和分布状态与 射入时所加的电场强度、离子剂量、衬底
晶向等有关。通常,在离子剂量和轰击次 数一致的前提下,注入的深度将随电场的 强度增加而增加。实践表明,用离子注入 方法在硅片内部形成杂质分布与扩散是完 全不同的。扩散法得到的杂质分布近似为 余误差函数和高斯函数分布,而用离子注 入法形成的分布,其浓度最大值不在硅片 表面,而是在深入硅体一定距离。这段距 离大小与注入粒子能量、离子类型等有关 。
第四章 离子注入工艺
离子注入的特点是加工温度低,易 做浅结,大面积注入杂质仍能保证均匀 ,掺杂种类广泛,并且易于自动化。由 于采用了离子注入技术,大大地推动了 半导体器件和集成电路工业的发展,从 而使集成电路的生产进入了大规模及 ULSI时代。
2021/4/14
1
一.离子注入工艺设备结构
离子注入机原理图
2021/4/14
14
§4.1核碰撞和电子碰撞
LSS理论:注入离子在靶内的能量损 失分为两个彼此独立的过程(1)核碰撞, (2)电子碰撞,总能量损失为它们的和。
2021/4/14
15
核碰撞和电子碰撞:
2021/4/14
16
2021/4/14
17
(一)、核阻止本领
04离子注入
27
Se(E)
当核阻止与电子阻止本领 相等时,能量为EC。 当入射离子能量E》EC时 射程R: R≈k1E1/2
Ec
Sn0
当入射离子能量E《EC时,电子阻止可忽略,
射程R: R≈k2E0
28
4.2 注入离子在靶中的分布
注入离子在靶中的分布与注入方向有关。一般注入方向 与靶表面垂直反向的夹角较小。
37
N可以精确控制
1 I dt N A q
A为注入面积,I为硅片背面搜集到的束 流(Farady Cup),t为积分时间,q为 离子所带的电荷。 I=0.01 mA~mA
例如:当A=20×20 cm2,I=0.1 mA时,
N I 1.56 10 9 atoms/cm2s t Aq
术制造半导体器件;1955年 英国W.D.Cussins应用硼 离子轰击锗晶片,在n型衬底上形成p型层。 在此之后,离子注入技术开始广泛应用。
离子注入特点
各种杂质浓度分布与注入浓度可通过精确控制掺杂剂 量(1011-1018 cm-2)和能量(1-400 keV)来达到;
平面上杂质掺杂分布非常均匀( 1% variation across an 8’’ wafer); 注入的深度随能量的增大而增大,表面浓度不受固溶 度限制,可做到浅结低浓度 或深结高浓度; 注入元素通过质量分析去选出,纯度非常高,杂质单 一性,将污染水平降低到最低水平; 衬底温度保持在室温或低于400C,可用多种材料作 掩膜,如金属、光刻胶、介质;可防止玷污,自由度 大,。
电子组织本领Se(E)与注入离子的速度成正比,即与能量的 平方根成正比。
21
把固体中的电子看成自由电子气,电子的 阻止就类似于粘滞气体的阻力(一阶近似)。 电子阻止本领和注入离子的能量的平方根成正 比。
第四章离子注入
加速管
工艺腔 扫描盘
工艺控制参数
❖ 杂质离子种类:P+,As+,B+,BF2+,P++,B++,… ❖ 注入能量(单位:Kev)——决定杂质分布深度和形状,
10~200Kev ❖ 注入剂量(单位:原子数/cm2)——决定杂质浓度 ❖ 束流(单位:mA或uA)——决定扫描时间 ❖ 注入扫描时间(单位:秒)——决定注入机产能
Figure 17.15
中性束造成的注入不均匀性
带正电的离子束从质量分析器出来到硅片表面的过程中,
要经过加速、聚焦等很长距离,这些带电粒子将同真空系统中
的残余气体分子发生碰撞,其中部分带电离子会同电子结合,
成为中性的粒子。
对于出现在扫描 系统以前的中性粒子
没有偏转的中性束粒子继续向前
,扫描电场对它已不
200 kev 注入离子在 靶中的高斯分布图
硼原子在不同入射能量 对深度及浓度分布图
高斯分布只在峰值附近 与实际分布符合较好
根据离子注入条件计算杂质浓度的分布
❖ 已知杂质种类(P,B,As),离子注入能量(Kev),靶材 (衬底Si,SiO2,Si3N4等)
求解step1:查LSS表可得到Rp和ΔRp
和电子阻止(Se(E) )所损失的能量,总能量 损失为两者的和。
ddE xSnESeE
-dE/dx:能量损失梯度
E:注入离子在其运动路程上任一点x处的能量
Sn(E):核阻止本领
能量E的函数
Se(E):电子阻止本领
C: 靶原子密度 ~51022 cm-3 for Si
能量为E的 入射粒子在 密度为C的 靶内走过x 距离后损失 的能量
第04章 离子注入
dE Sn ( E ) Se ( E )
低能区:以核阻止为主(注入分布的尾端), 电子碰撞可忽略。
中能区:二者同等重要,必须同时考虑。 高能区:以电子阻止为主,核阻止可忽略。
13
§4.1 核碰撞和电子碰撞
14
§4.1 核碰撞和电子碰撞
4.
在一级近似中,核阻止本领和 入射离子能量E无关;电子阻止 本领和速度成正比。
子在电磁场作用下,获得足够的能量后撞击源分子或原
子,使它们电离成离子,再经吸极吸出,由初聚焦系统 聚成离子束,射向磁分析器。
离子源:As,Ga,Ge,Sb,P,...
5
绪论
离子注入过程是一个非平衡过程, 高能离子进入靶后不断与原子核 及其核外电子碰撞,逐步损失能 量,最后停下来。
离子进入的深度,称为射程—— 与离子动能以及半导体的结构特 性有关。
电荷/动量交换导致入射离子9 运动方向的改变(核间作用)
§4.1 核碰撞和电子碰撞
2.
核阻止本领
定义:能量为E的一个注入离子,在单位密度靶内 运动单位长度时,损失给靶原子核的能量。 一个注入离子在其运动路程上任一点x处的能量为E,
dE Sn E dx n
31
§4.2 注入离子在无定形靶中的分布
四. 1.
浅结的形成 目的:为了抑制MOSFET的穿通电 流和减小器件的短沟道效应,要求 减小CMOS的源/漏结的结深。
②
降低注入离子的能量——使用 较多
第四章 离子注入
绪论 核碰撞和电子碰撞 注入离子在无定形靶中的分布 注入损伤
热退火
1
绪论
离子注入发展于20世纪60年代,是一种代替高温扩散向半 导体中引进掺杂剂的方法。
集成电路工艺第四章:离子注入
其中N为入射离子总数, 为第i 其中N为入射离子总数,RPi为第i个离子的投影射 程
离子投影射程的平均标准偏差△ 离子投影射程的平均标准偏差△RP为
其中N 其中N为入射离子总数 Rp 为平均投影射程 Rpi为第 Rpi为第i个离子的投影射程 为第i
离子注入浓度分布
LSS理论描述了注入离子在无定形靶中的浓度分布 LSS理论描述了注入离子在无定形靶中的浓度分布 为高斯分布其方程为
其中φ为注入剂量 其中 为注入剂量 χ为离样品表面的深度 为离样品表面的深度 Rp为平均投影射程 为平均投影射程 △Rp为投影射程的平均标准偏差 为投影射程的平均标准偏差
离子注入的浓度分布曲线
离子注入浓度分布的最大浓度Nmax 离子注入浓度分布的最大浓度Nmax
从上式可知,注入离子的剂量φ越大, 从上式可知,注入离子的剂量φ越大,浓度峰值越高 从浓度分布图看出, 从浓度分布图看出,最大浓度位置在样品内的平均投 影射程处
4.2 离子注入工艺原理
离子注入参数
注入剂量φ 注入剂量 注入剂量φ是样品表面单位面积注入的离子总数 是样品表面单位面积注入的离子总数。 注入剂量 是样品表面单位面积注入的离子总数。单 位:离子每平方厘米
其中I为束流,单位是库仑每秒( 其中 为束流,单位是库仑每秒(安 培) t为注入时间,单位是秒 为注入时间, 为注入时间 q为电子电荷,等于 ×10-19库仑 为电子电荷, 为电子电荷 等于1.6× n为每个离子的电荷数 为每个离子的电荷数 A为注入面积,单位为 2 —束斑 为注入面积, 为注入面积 单位为cm
2267 475 866 198 673 126
4587 763 1654 353 1129 207
6736 955 2474 499 1553 286
第四章离子注入介绍
离子束从<111>轴偏斜7°入射
入射离子进入沟道并不意味着一定发生沟 道效应, 只有当入射离子的入射角小于某 一角度时才会发生, 这个角称为临界角
沟道效应与离子注入方向的关系
沟道效应与单晶靶取向的关系
硅的<110 >方向沟道开口约
1.8 Å, <100 >方向沟道开口
约11.22 Å, <111>方向沟道开口介
3. 射程估算
a. 离子注入能量可分为三个区域:
低能区— 核阻滞能力占主导地位,电子阻滞可被忽略;
中能区— 在这个比较宽的区域,核阻滞和电子阻滞能力同等重要, 必须同时考虑; 主导地位, 核阻滞可被忽略。 超出高实能际区应—用电范子围阻;滞能力占
b.Sn(E) 和 Se(E) 的能量变 化曲线都有最大值。分别在低 能区和高能区;
能量为E的注入离子在单位密度靶内运动单位长度时,损失
给靶原子核的能量S n。E
dE dx
n
能量为E的一个注入离子与靶原子核碰撞,离子能量转移到 原子核上,结果将使离子改变运动方向,而靶原子核可 能离开原位,成为间隙原子核,或只是能量增加。
❖低能量时核阻止本领随能量的增加呈线性增加, 而在某个中等能量达到最大值, 在高 能量时, 因快速运动的离子没有足够的时间与靶原子进行有效的能量交换, 所以核阻止 变小。
❖ 5、离子注入是非平衡过程,因此产生的载流子 浓度不是受热力学限制,而是受掺杂剂在基质晶 格中的活化能力的限制。故加入半导体中的杂质 浓度可以不受固溶度的限制。
❖ 6.离子注入时衬底温度较低,避免高温扩散所引 起的热缺陷。
❖ 7、由于注入是直进性,注入杂质是按照掩模的 图形垂直入射,横向效应比热扩散小,有利于器 件特征尺寸缩小。
第四章 离子注入作业
第四章离子注入作业1、离子注入定义:离化后的原子在强电场的加速作用下,注射进入靶材料的表层,以改变这种材料表层的物理或化学性质。
2、离子注入工艺相比扩散工艺具有以下优点:(1)、可以在较低的温度下,将各种杂质掺入不同的半导体中。
(2)、能精确地控制掺入硅片内部杂质的浓度分布和注入深度。
(3)、可以实现大面积的均匀掺杂,而且重复性好。
(4)、掺入杂质纯度高。
(5)、由于注入杂质的直射性,杂质的横向扩散小。
(6)、可以得到理想的杂质分布。
(7)、工艺条件容易控制。
(8)、没有固溶度极限。
注入杂质含量不受硅片固溶度限制。
4、一般横向扩散结深=(0.75~0.85)×Xj(Xj为纵向结深)7、阻止机制:材料对入射离子的阻止能量的大小用阻止机制来衡量。
阻止机制表示离子在靶内受到阻止的概率。
1963年,Lindhard, Scharff and Schiott首先确立了注入离子在靶内分布理论,简称LSS理论。
LSS理论认为,注入离子在靶内的能量损失分为两个彼此独立的过程电子阻止机制:来自原子之间的电子阻止,属于非弹性碰撞。
核阻止机制:来自原子核之间的碰撞,属于原子核之间的弹性碰撞。
总能量损失为两者的和9、核碰撞特点:入射离子与晶格原子的原子核发生碰撞,散射显著、引起晶格结构的损坏。
电子碰撞特点:入射电子与晶格原子的电子发生碰撞,入射离子的路径几乎不变、能量传输小、晶格结构的损坏可以忽略不计。
11、非局部电子阻止不改变入射离子要点方向;局部电子阻止电荷/动量交换导致入射离子运动方向的改变( 核间作用)。
电子阻止本领和入射离子的能量的平方根成正比。
核阻止机制在低能量下起主要作用;电子阻止机制在高能量下起主要作用。
12、入射离子的浓度分布理论计算表明,在忽略横向离散效应和一级近似下,注入离子在靶内的纵向浓度分布可取高斯函数形式。
13、什么是横向效应?横向效应指的是注入离子在垂直于入射方向平面内的分布情况。
半导体制造工艺之离子注入原理
半导体制造工艺之离子注入原理引言离子注入是半导体制造工艺中的一种重要方法,广泛应用于半导体器件的加工和制造过程中。
离子注入工艺通过将高能离子注入到半导体晶体中,改变材料的物理和化学性质,实现半导体器件的特定功能和性能。
本文将详细介绍离子注入的原理以及其在半导体制造中的应用。
离子注入原理离子注入是利用离子束对半导体材料进行信息改变的过程,其原理基于以下几个关键步骤:1.离子源生成:离子注入过程首先需要一个稳定的离子源。
常见的离子源包括离子源装置和离子源材料。
离子源装置通过电离气体产生离子束,而离子源材料通常是一种固体材料,通过加热或溶解的方式释放离子。
2.离子加速:生成的离子束经过电场加速,增加其能量和速度。
加速电场的大小决定了离子注入的能量和深度。
3.汇聚和对准:离子束通过极板或磁场对准系统,确保离子束准确地注入到半导体材料的目标区域。
4.离子注入:离子束与半导体材料进行相互作用,离子穿过材料表面,在材料内部形成注入层。
离子注入的能量和剂量可以控制和调节,影响着半导体的特性和性能。
5.后续处理:注入完成后,需要进行一系列的后续处理步骤,如退火、清洗等,以恢复和优化器件的电学性能。
离子注入的应用离子注入在半导体制造中有着广泛的应用,主要体现在以下几个方面:1.掺杂:离子注入可在半导体材料中引入杂质原子,从而改变材料的电学性质。
通过控制离子注入的能量和剂量,可以实现器件中的PN结、N型、P型等区域。
2.改变表面特性:离子注入还可用于改变半导体材料表面的化学和物理特性。
例如,在CMOS制造中,通过离子注入改变材料表面的电导率,形成NMOS、PMOS等区域。
3.改善电子迁移率:离子注入还可用于改善半导体器件中电子的迁移率,提高器件的性能。
通过注入低能量离子,形成浅表层,可以减少晶格缺陷,提高电子的迁移率。
4.修复损伤:半导体材料在制造过程中往往会受到损伤,如晶格位错、空位等。
离子注入可用于修复这些损伤,提高材料的完整性和性能。
第4章IC工艺之离子注入ppt课件
Beam scan
Mask xj
Mask
Silicon substrate
a) Low dopant concentration (n–, p–) and shallow junction (xj)
Mask xj
Mask
Silicon substrate
b) High dopant concentration (n+, p+) and deep junction (xj)
Scanning disk with wafers
Suppressor aperture
Faraday cup
Ion beam
Current integrator
Scanning direction
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
( dE dx
) nuel
( dE dx
) e
R p ( E )
E 0
dE ( dE tot
)
E 0
dE S (E
)
dx
E
dE
0 Sn(E) Se(E)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
– 4.3. 注入离子的激活与辐照损伤的消除
P.103~112 1)注入离子未处于替位位置 2)晶格原子被撞离格点
ET(M 4M i iM M tt) E0f()Ea
Ea为原子的位移阈能 大剂量——非晶化 临界剂量(P。111) 与什么因素有关? 如何则量?
半导体制造技术--离子注入工艺
半导体制造技术–离子注入工艺1. 简介离子注入是一种常用的半导体制造技术,它通过将高能离子注入到半导体材料中,改变材料的物理和电学特性。
离子注入工艺在集成电路制造、光电技术和材料研究等领域具有重要应用。
2. 工艺过程离子注入工艺通常包括以下几个步骤:2.1 基片准备首先,需要对半导体基片进行准备。
这包括将基片清洗干净,并去除表面的杂质和氧化层。
基片的表面质量对离子注入的效果有很大影响,因此基片准备是非常关键的一步。
2.2 掩膜制备接下来,需要对基片进行掩膜制备。
掩膜是一层覆盖在基片表面的保护层,用于选择性地控制离子注入的位置和深度。
常用的掩膜材料包括光刻胶、金属掩膜和二氧化硅等。
掩膜的制备需要结合光刻技术和蚀刻工艺。
2.3 离子注入离子注入是离子注入工艺的核心步骤。
在离子注入过程中,会使用离子加速器将高能离子注入到基片中。
离子加速器通过电场加速离子,并通过磁场进行离子束的聚焦。
离子注入的能量和剂量可以通过调整加速电压和注入时间等参数来控制。
2.4 后处理注入完成后,需要进行后处理步骤。
后处理通常包括退火、清洗和测量等。
退火可以恢复晶格的完整性和排除晶格缺陷,以提高器件的性能和可靠性。
清洗过程用于去除残留的掩膜和杂质。
测量步骤则用于检验注入效果和性能。
3. 应用领域离子注入工艺在半导体制造和研发中具有广泛的应用。
以下是离子注入工艺在不同领域的主要应用:3.1 VLSI集成电路制造离子注入在VLSI(超大规模集成电路)的制造过程中起着至关重要的作用。
通过注入不同类型的离子,可以改变材料的导电性能,实现不同功能的晶体管和电路元器件。
3.2 光电技术离子注入工艺在光电技术中也有广泛应用。
例如,对硅材料进行离子注入可以产生不同的光电特性,用于制造太阳能电池、光电探测器和光纤等器件。
3.3 材料研究离子注入工艺在材料研究中也扮演着重要角色。
通过注入离子,可以改变材料的物理性质,例如硬度、磁性和光学特性。
这对于研究新材料的性能和应用具有重要意义。
半导体工艺之离子注入
半导体离子注入工艺--离子注入离子注入法掺杂和扩散法掺杂对比来说,它的加工温度低、容易制作浅结、均匀的大面积注入杂质、易于自动化等优点。
当前,离子注入法已成为超大规模集成电路制造中不可缺少的掺杂工艺。
1.离子注入原理:离子是原子或分子经过离子化后形成的,即等离子体,它带有一定量的电荷。
可通过电场对离子进行加速,利用磁场使其运动方向改变,这样就可以控制离子以一定的能量进入wafer内部达到掺杂的目的。
离子注入到wafer中后,会与硅原子碰撞而损失能量,能量耗尽离子就会停在wafer中某位置。
离子通过与硅原子的碰撞将能量传递给硅原子,使得硅原子成为新的入射粒子,新入射离子又会与其它硅原子碰撞,形成连锁反应。
杂质在wafer中移动会产生一条晶格受损路径,损伤情况取决于杂质离子的轻重,这使硅原子离开格点位置,形成点缺陷,甚至导致衬底由晶体结构变为非晶体结构。
2.离子射程离子射程就是注入时,离子进入wafer内部后,从表面到停止所经过的路程。
入射离子能量越高,射程就会越长。
投影射程是离子注入wafer内部的深度,它取决于离子的质量、能量,wafer的质量以及离子入射方向与晶向之间的关系。
有的离子射程远,有的射程近,而有的离子还会发生横向移动,综合所有的离子运动,就产生了投影偏差。
3.离子注入剂量注入剂量是单位面积wafer表面注入的离子数,可通过下面的公式计算得出 ,式中,Q 是剂量;I 是束流, 单位是安培;t 是注入时间,单位是秒;e 是电子电荷,1.6×10-19C ;n 是电荷数量;A 是注入面积,单位是 。
4.离子注入设备离子注入机体积庞大,结构非常复杂。
根据它所能提供的离子束流大小和能量可分为高电流和中电流离子注入机以 及高能量、中能量和低能量离子注入机。
离子注入机的主要部件有:离子源、质量分析器、加速器、聚焦器、扫描系统以及工艺室等。
(1)离子源离子源的任务是提供所需的杂质离子。
在合适的气压下,使含有杂质的气体受到电子碰撞而电离,最常用的杂质源有和 等, (2)离子束吸取电极吸取电极将离子源产生的离子收集起来形成离子束。
集成电路工艺基础——离子注入课件
2
通过离子注入技术,可以在光学材料中制造出各 种光电子器件,如激光器、光放大器、光调制器 等。
3
离子注入技术还可以用于制造光子晶体、光子集 成电路等新型光电子器件,提高光电子器件的性 能和集成度。
离子注入在传感器中的应用
传感器是实现智能化、自动化 的重要器件,离子注入技术在 传感器制造中也有着重要的应 用。
通过离子注入技术,可以在传 感器材料中制造出各种敏感元 件,如压力传感器、温度传感 器、气体传感器等。
离子注入技术还可以用于制造 生物传感器、化学传感器等新 型传感器,提高传感器的灵敏 度和稳定性。
CHAPTER
04
离子注入的未来发展
新型离子注入设备的研究
研发更高效、精确的 离子注入设备是未来 的重要研究方向。
与硅材料相比,化合物半导体材 料的离子注入工艺较为复杂,需
要更高的技术和设备条件。
离子注入化合物半导体材料在光 电子器件、高速电子器件和微波 器件等领域具有广泛的应用前景
。
离子注入金属材料
金属材料在集成电路制造中主要用于 互连线、电极和引脚的制造,离子注 入金属材料可以改变其表面特性和导 电性能。
离子注入硅材料的方法具有较高的精度和可重复性,可以实现对硅材料的微细加工 。
离子注入硅材料还可以提高硅材料的机械性能和化学稳定性,使其更适应于集成电 路制造中的各种工艺条件。
离子注入化合物半导体材料
化合物半导体材料是集成电路制 造中的另一种重要材料,离子注 入化合物半导体材料可以改变其
电子结构和光电性能。
开发具有自主知识产 权的离子注入设备, 打破国外技术垄断。
利用新材料和新技术 提高设备的稳定性和 可靠性,降低生产成 本。
离子注入与其他微纳加工技术的结合
§4离子注入工艺
2019/11/17
9
当具有高能量的离子注入到固体靶面以 后,这些高能粒子将与固体靶面的原子与电 子进行多次碰撞,这些碰撞将逐步削弱粒子 的能量,最后由于能量消失而停止运动,新 城形成一定的杂质分布。
同时,注入离子和晶格原子相互作用, 那些吸收了离子能量的电子,可能激发或从 原子之内游离,形成二次电子。
2019/11/17
11
在一般情况下,杂质浓度最大值在距离 表面0.1um处,其分布有一点像高斯分布, 是由于杂质被电场加速注入到硅片内后,受 到硅原子的阻挡,使其动能完全消失,停留 在原位。但由于杂质离子具有的能量是不均 匀的,也就是使杂质离子的能量有大有小, 这样就形成了按一定的曲线分布,能量大和 能量小的都是少数,而能量近似相等的居多 数。当然注入后,能量最大的注入深,能量 小的注入浅。
2019/11/17
40
2.硼的退火特性
1 区单调上升:点缺陷、
陷井缺陷消除、自由 载流子增加
2 区出现反退火特性: 代位硼减少,淀积在 位错上
3 区单调上升
剂量越大,所需退火 温度越高。
2019/11/17
41
3.磷的退火特性
杂质浓度达1015以上时出 现无定形硅退火温度达到
600℃~800℃
7
基个概念:
(1)靶:被掺杂的材料。 (2)一束离子轰击靶时,其中一部分
离子在靶面就被反射,不能进入靶内, 称这部分离子为散射离子,进入靶内的 离子成为注入离子。 (3)非晶靶成为无定形靶,本章所涉 及道德靶材料,都是按无定形来考虑。
2019/11/17
8
三、离子注入原理
“离子” 是一种经离化的原子和分子,也称
“等离子体”,它带有一定量的电荷。“等离子 发生器”已广泛应用到CVD、金属镀膜、干法刻 蚀、光刻胶的去除等工艺中,而在离子注入的设 备中,它被用来制造工艺所要注入的离子。因为 离子带电荷,可以用加速场进行加速,并且借助 于磁场来改变离子的运动方向。当经加速后的离 子碰撞一个固体靶面之后,离子与靶面的原子将 经历各种不同的交互作用,如果离子“够重”, 则大多数离子将进入固体里面去。反之,许多离 子将被靶面发射。
第4章 离子注入(掺杂工艺)精简
Se(E) ——电子阻止本领 电子阻止本领
dE S n (E ) ≡ dx n
电子信息与计算机工程系
LSS理论 理论
dE − = N Sn ( E ) + S dx
e
( E )
能量为E的 能量为 的 入射粒子在 密度为N的 密度为 的 靶内走过x 靶内走过 距离后损失 的能量
M—质量, Z—原子序数,下标 质量, 原子序数, 离子, 质量 原子序数 下标1—离子,下标 离子 下标2—靶 靶
摘自J.F. Gibbons, Proc. IEEE, Vol. 56 (3), March, 1968, p. 295 摘自
4.1.2 电子阻止本领
例如:磷离子 例如:磷离子Z1 = 15, M1 = 31 注入 硅Z2 = 14, M2 = 28, 计算可得: 计算可得: Sn ~ 550 keV-µm2 µ
1 dE 1 dE S n (E ) = , S e (E ) = N dx n N dx e
-dE/dx:能量随距离损失的平均速率 : E:注入离子在其运动路程上任一点x处的能量 :注入离子在其运动路程上任一点 处的能量 Sn(E):核阻止本领 : 能量E的函数 能量 的函数 Se(E):电子阻止本领 : N: 靶原子密度 ~5×1022 cm-3 for Si ×
电子信息与计算机工程系
离子注入过程是一个非平衡过程, 离子注入过程是一个非平衡过程,高能离子进入靶 后不断与原子核及其核外电子碰撞,逐步损失能量, 后不断与原子核及其核外电子碰撞,逐步损失能量, 最后停下来。停下来的位置是随机的, 最后停下来。停下来的位置是随机的,大部分不在 晶格上,因而没有电活性。 晶格上,因而没有电活性。
集成电路工艺基础——04离子注入[可修改版ppt]
离子注入应用
❖隔离工序中防止寄生沟道用的沟道截断 ❖调整阈值电压用的沟道掺杂 ❖CMOS阱的形成 ❖浅结的制备
在特征尺寸日益减小的今日,离子注入已经成为 一种主流技术。
离子注入系统的原理示意图
使带电粒子偏转,分出中性粒子流 中性束路径
类似电视机,让束流上下来回的对圆片扫描
❖ 一个离子在停止前所经过的总路程,称为射程R ❖ R在入射轴方向上的投影称为投影射程Xp ❖ R在垂直入射方向的投影称为射程横向分量Xt
❖平均投影射程Rp: 所有入射离子的投影 射程的平均值 ❖标准偏差:
注入离子在无定形靶中的分布
❖ 对于无定形靶(SiO2、Si3N4、光刻胶等),注入离子的 纵向分布可用高斯函数表示:
n(x)N exp1[(xRp)2]
max
2 R
p
其中:
N
N s
0.4Ns
max 2R R
p
p
注入离子在无定形靶中的分布
❖横向分布(高斯分布)
▪ 入射离子在垂直入射方向平面内的杂质分布 ▪ 横向渗透远小于热扩散
注入离子在无定形靶中的分布
❖ 高斯分布只在峰值附近与实际分布符合较好。
▪ 轻离子/重离子入射对高斯分布的影响 ▪ 实践中,用高斯分布快速估算注入离子在靶材料中的
❖ 注入离子在靶内能量损失方式
▪ 电子碰撞(注入离子与靶原子周围电子云的碰撞)
• 能瞬时形成电子-空穴对 • 两者质量相差大,碰撞后注入离子的能量损失很小,
散射角度也小,虽然经过多次散射,注入离子运动方 向基本不变。电子则被激发至更高的能级(激发)或 脱离原子(电离)。
4.2 注入离子在无定形靶中的分布
▪ 离子方向=沟道方向时………离子因为没有碰到晶格 而长驱直入………
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子注入的特点是加工温度低,易 做浅结,大面积注入杂质仍能保证均匀 ,掺杂种类广泛,并且易于自动化。由 于采用了离子注入技术,大大地推动了 半导体器件和集成电路工业的发展,从 而使集成电路的生产进入了大规模及 ULSI时代。
2020/10/8
1
一.离子注入工艺设备结构
离子注入机原理图
2020/10/8
13
离子注入时,由于受到高能量杂质源自子的轰击, 硅片内许多晶格被破坏而出现晶格缺陷,严重时会 出现非晶层。这种缺陷一定要经过退火处理来消除, 所以退火工艺在离子注入工艺中是必不可少的。
与扩散一样,离子注入也需要掩蔽,其掩蔽物 可以是二氧化硅、氮化硅、AL2O3及AL都行,且掩 蔽膜厚度随电场强度和杂质剂量的增加而加厚。
2020/10/8
12
离子注入的杂质分布还与衬底晶向有 关系。如果注入的离子沿规则排列的晶格 方向进入硅中,离子可能要走很长一段路 途才碰到硅原子,因此,进入深度就大, 使杂质分布出现两个峰值,这种现象称为“ 沟道效应”。向<100>, <110>晶向注入 时,往往会发生这种沟道效应,而<111> 再偏离一定角度,情况就好得多。
(9)化合物半导体是两种或多种元 素按 一定组分构成的,这种材料经高温 处理时,组分可能发生变化。采用离子 注入技术,基本不存在上述问题,因此 容易实现对化合物半导体的掺杂
2020/10/8
7
基个概念:
(1)靶:被掺杂的材料。 (2)一束离子轰击靶时,其中一部分
离子在靶面就被反射,不能进入靶内, 称这部分离子为散射离子,进入靶内的 离子成为注入离子。 (3)非晶靶成为无定形靶,本章所涉 及道德靶材料,都是按无定形来考虑。
2020/10/8
10
离子在硅体内的注入深度和分布状态与 射入时所加的电场强度、离子剂量、衬底
晶向等有关。通常,在离子剂量和轰击次 数一致的前提下,注入的深度将随电场的 强度增加而增加。实践表明,用离子注入 方法在硅片内部形成杂质分布与扩散是完 全不同的。扩散法得到的杂质分布近似为 余误差函数和高斯函数分布,而用离子注 入法形成的分布,其浓度最大值不在硅片 表面,而是在深入硅体一定距离。这段距 离大小与注入粒子能量、离子类型等有关 。
2020/10/8
9
当具有高能量的离子注入到固体靶面以 后,这些高能粒子将与固体靶面的原子与电 子进行多次碰撞,这些碰撞将逐步削弱粒子 的能量,最后由于能量消失而停止运动,新 城形成一定的杂质分布。
同时,注入离子和晶格原子相互作用, 那些吸收了离子能量的电子,可能激发或从 原子之内游离,形成二次电子。
根据靶材(Si, SiO2, Ge),杂质离子(B,P,
As, N), 能量(keV)
2.单位面积注入电荷:Qss =I t /A, I:注入束 流,t: 时间,A:扫描面积(园片尺寸)
3.单位面积注入离子数(剂量):
Ns = Qss/q =(I t) /(q A) 4.最大离子浓度:NMAX=
2020/10/8
2
2020/10/8
3
二、离子注入工艺的特点
(1)注入的离子是通过质量分析器选 取出来的,被选取的离子纯度高,能量 单一,从而保证了掺杂纯度不受杂质源 纯度的影响。另外,注入过程是在清洁 、干燥的真空条件下进行的,各种污染 降到最低水平。
2020/10/8
4
(2)可以精确控制注入到硅中的掺杂 原子数目。
2020/10/8
8
三、离子注入原理
“离子” 是一种经离化的原子和分子,也称
“等离子体”,它带有一定量的电荷。“等离子 发生器”已广泛应用到CVD、金属镀膜、干法刻 蚀、光刻胶的去除等工艺中,而在离子注入的设 备中,它被用来制造工艺所要注入的离子。因为 离子带电荷,可以用加速场进行加速,并且借助 于磁场来改变离子的运动方向。当经加速后的离 子碰撞一个固体靶面之后,离子与靶面的原子将 经历各种不同的交互作用,如果离子“够重”, 则大多数离子将进入固体里面去。反之,许多离 子将被靶面发射。
2020/10/8
14
§4.1核碰撞和电子碰撞
LSS理论:注入离子在靶内的能量损 失分为两个彼此独立的过程(1)核碰撞, (2)电子碰撞,总能量损失为它们的和。
2020/10/8
15
核碰撞和电子碰撞:
2020/10/8
16
2020/10/8
17
(一)、核阻止本领
能量为 E的一个注入离子,在单位密 度靶内运动单位长度时,损失给靶原子 核的能量。
2020/10/8
18
(二)电子阻止本领
同注入离子的速度成正比,即和注入 离子能量的平方根成正比。
2020/10/8
19
(三)射程的概念
2020/10/8
20
§4.2注入离子的分布
2020/10/8
21
(一)纵向分布
2020/10/8
22
* 注入离子的分布计算
1.平均投影射程Rp,标准偏差R通过查表
2020/10/8
11
在一般情况下,杂质浓度最大值在距离 表面0.1um处,其分布有一点像高斯分布, 是由于杂质被电场加速注入到硅片内后,受 到硅原子的阻挡,使其动能完全消失,停留 在原位。但由于杂质离子具有的能量是不均 匀的,也就是使杂质离子的能量有大有小, 这样就形成了按一定的曲线分布,能量大和 能量小的都是少数,而能量近似相等的居多 数。当然注入后,能量最大的注入深,能量 小的注入浅。
(6)离子注入时的衬底温度低,这样 就可以避免了高温扩散所引起的热缺陷。
(7)由于注入的直进性,注入杂质是 按掩膜的图形近于垂直入射,因此横向 效应比热扩散小的多,有利于器件特征 尺寸的缩小。
2020/10/8
6
(8)离子往往是通过硅表面上的薄膜 注入到硅中,因此硅表面上的薄膜起到 了保护膜作用
(3)衬底温度低,一般保持在室温 ,因此,像二氧化硅、氮化硅、铝何光 刻胶等都可以用来作为选择掺杂的掩蔽 膜。
(4)离子注入深度是随离子能量的
增加而增加,因此掺杂深度可以通过控
制离子束能量高低来实现。另外,在注
入过程中可精确控制电荷量,从而可精
20确20/1控0/8 制掺杂浓度。
5
(5)离子注入是一个非平衡过程,不 受杂质在衬底材料中的固溶度限制,原 则上对各种元素均可掺杂。