极坐标与参数方程知识点总结大全

合集下载

(完整)参数方程和极坐标方程知识点归纳,推荐文档

(完整)参数方程和极坐标方程知识点归纳,推荐文档

专题九:坐标系与参数方程1、平面直角坐标系中的伸缩变换设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2、极坐标系的概念在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为),(θρM .注:极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ. 若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。

极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等.极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、极坐标与直角坐标的互化设是平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ,从图中可以得出:)0(tan ≠= x xy θ⎩⎪⎩y图14、简单曲线的极坐标方程 ⑴圆的极坐标方程①以极点为圆心,a 为半径的圆的极坐标方程是 a ρ=;(如图1)②以(,0)a )0(>a 为圆心, a 为半径的圆的极坐标方程是 θρcos 2a =;(如图2) ③以(,)2a π)0(>a 为圆心,a 为半径的圆的极坐标方程是θρsin 2a =;(如图4)⑵直线的极坐标方程①过极点的直线的极坐标方程是)0(≥=ραθ和(0)θπαρ=+≥.(如图1)②过点)0)(0,(>a a A ,且垂直于极轴的直线l 的极坐标方程是a =θρcos . 化为直角坐标方程为x a =.(如图2) ③过点(,)2A a π且平行于极轴的直线l 的极坐标方程是sin a ρθ=. 化为直角坐标方程为y a =.(如图4)5、柱坐标系与球坐标系⑴柱坐标:空间点P 的直角坐标(,,)x y z 与柱坐标(,,)z ρθ的变换关系为:cos sin x y z z ρθρθ=⎧⎪=⎨⎪=⎩.ϕθ=θρcos a=θρcos a -=θρsin a =图4θρsin a -=图5)cos(ϕθρ-=a θρcos 2a =θρsin 2a =图4θρsin 2a-=图5θρcos 2a -=a=ρ图1)cos(2ϕθρ-=a 图6⑵球坐标系空间点P 直角坐标),,(z y x 与球坐标),,(ϕθr 的变换关系:2222sin cos sin sin cos x y z r x r y r z r θϕθϕθ⎧++=⎪=⎪⎨=⎪⎪=⎩.6、参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。

极坐标与参数方程知识点总结大全

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系。

(2)极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数。

特别地,当点在极点时,它的极坐标为(0, )(∈R)。

和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3。

极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:点直角坐标极坐标互化公式在一般情况下,由确定角时,可根据点所在的象限最小正角。

4。

常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为的圆圆心为,半径为的圆圆心为,半径为的圆过极点,倾斜角为的直线(1)(2)过点,与极轴垂直的直线过点,与极轴平行的直线注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同。

所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可。

极坐标与参数方程知识点总结大全

极坐标与参数方程知识点总结大全

参数方程和极坐标1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

极坐标与参数方程知识讲解

极坐标与参数方程知识讲解

参数方程和极坐标系一、 知识要点(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.(二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2B A t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==) 中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或 θθec a y b x s tg ==) 5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0) 直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). J3.2极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

参数方程与极坐标(精华版)

参数方程与极坐标(精华版)

P0 的有向距离, 在 P0两侧 t 的符号相反, 直线的参数方程 t 的几何意义为有向距离)
x x0 t cos y y0 t sin
( t 为参数,
说明:① t 的符号相对于点 ②|P 0P|=| t |
P ,正负在 P
0
0
点两侧
直线参数方程的变式:
x
x0
at
,但此时 t 的几何意义不是有向距离,只有当
参数方程与极坐标
参数方程知识回顾:
一、定义:在取定的坐标系中,如果曲线上任意一点的坐标
x、 y 都是某个参数 t 的函数,
x f (t)

y f (t) ,其中, t 为参数,并且对于 t 每一个允许值,由方程组所确定的点
M( x ,
y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系
x、y 之间关系的变数 t
坐标与参数间的关系。 Eg1:已知点 P( x, y)是圆 x 2+y2-6x-4y+12=0 上的动点,求: ( 1) x2+y2 的最值;(2) x+y 的最值;(3)点 P 到直线 x+y-1=0 的距离 d 的最值。
Eg2:将下列参数方程化为普通方程
( 1) x=2+3cos y=3sin
(2) x=sin y=cos
叫做参变数,简称参数. 二、二次曲线的参数方程 1、圆的参数方程:
中心在( x0, y0),半径等于 r 的圆:
x x0 r cos y y0 r sin
( 为参数, 的几何意义为圆心角) ,
特殊地,当圆心是原点时,
x r cos y r sin
注意:参数方程没有直接体现曲线上点的横纵坐标之间的关系,而是分别体现了点的横纵

极坐标与参数方程知识点总结大全

极坐标与参数方程知识点总结大全

极坐标与参数方程知识点总结大全一、极坐标系统极坐标系统是一种用来表示平面上点的坐标系统,它与直角坐标系统相互转化。

在极坐标系统中,一个点的位置由径向和角度两个量来确定。

常用的表示方式为(r, θ),其中r表示点到原点的距离,称为极径,而θ表示与参考轴(通常为正X 轴)的夹角,称为极角。

极坐标系统与直角坐标系统之间可以通过如下的转换关系相互转化:•直角坐标→ 极坐标:x = r * cos(θ),y = r * sin(θ)•极坐标→ 直角坐标:r = sqrt(x^2 + y^2),θ = arctan(y/x)极坐标系统适用于描述旋转对称性的图形,例如圆、花朵等。

二、参数方程参数方程是一种用参数表示函数的方式。

在参数方程中,自变量和因变量都可以是参数。

一般来说,参数方程是将自变量和因变量都用参数表示的方程组。

以平面上的曲线为例,如果将曲线上的点的坐标分别用参数t表示,则曲线上的点的坐标可以表示为(x(t), y(t))。

这种表示方式称为参数方程。

参数方程在描述含有符号导数的曲线段以及曲线段的方向时非常有用。

参数方程可以将复杂的图形分解成多个简单的函数,从而方便进行图形的分析和计算。

它在计算机图形学、物理学、工程学等领域有广泛的应用。

三、极坐标与参数方程的关系极坐标与参数方程之间存在着密切的关系。

可以通过参数方程来描述极坐标系中的曲线。

一个常见的例子是圆的极坐标方程和参数方程的表示。

以圆的极坐标方程为例,极坐标方程为r = a,其中a为圆的半径。

使用参数方程表示时,可以将极坐标方程转化为参数方程x = a * cos(θ),y = a * sin(θ)。

同样地,通过参数方程也可以得到一些特殊的极坐标曲线,例如r = a *cos(θ)可以表示一条心形曲线。

四、极坐标曲线的绘制在计算机图形学中,可以通过极坐标方程或参数方程来绘制各种各样的曲线。

对于一个极坐标曲线,可以选择一系列的角度值,然后根据极坐标方程或参数方程计算出相应的极径或坐标点,再将这些点连接起来就可以绘制出曲线。

(完整版)极坐标与参数方程知识点总结大全

(完整版)极坐标与参数方程知识点总结大全

极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.练习1.若直线的参数方程为,则直线的斜率为( )12()23x tt y t=+⎧⎨=-⎩为参数A .B .C .D .2323-3232-2.下列在曲线上的点是( )sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数A .B .C .D .1(,231(,)42-3.将参数方程化为普通方程为( )222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数A .B .C .D .2y x =-2y x =+2(23)y x x =-≤≤2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。

应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。

3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。

这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。

圆心为,半径为的圆的普通方程是,它的参数方程为:。

4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。

极坐标和参数方程知识点总结大全

极坐标和参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换在变换的是平面直角坐标系中的任意一点,设点P()称为平面直角坐标系中的坐标伸缩变换P(),对应到点简,作用下,点.称伸缩变换极坐标系的概念2. 极坐标系(1)自极点,引在平面内取一个定点,叫做极点如图所示,,叫做极轴;再选定一个长度单位,一个角度单位一条射线(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标以极轴记为M的极径,;的距离叫做点M设是平面内一点,与点极点M有序数对记为的极角,为始边,射线.为终边的角叫叫做点M 记作,做点M.的极坐标我们认为不作特殊说明时,一般地,可取任意实数.)(∈R).和直角坐标不同,特别地,在极点时当点,它的极坐标为(0,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示的点也是唯一确定的表示,同时;极坐标.1 / 63.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:它的直角坐标是,极坐标:是坐标平面内任意一点设,(2)互化公式),是(于是极坐标与直角坐标的互化公式如表:点直角坐标极坐标互化公式在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程圆心在极点,半径为的圆2 / 6圆心为的圆,半径为圆心为的圆半径为,(1)过极点,倾斜角为的直线(2)过点与极轴垂直的直线,过点与极轴平行的直线,即示的坐的上平由注:于面点极标表形一,唯式不这与点的直角坐都表示同一点的坐标,只要求至所以对于曲线上的点的极坐标的多种表示形式.标的唯一性明显不同,可以表.少有一个能满足极坐标方程即可例如对于极坐标方程点3 / 6 的极坐只有等多种形式,其中,示为.标满足方程二、参数方程 1.参数方程的概念都是某个变如果曲线上任意一点的坐标,在平面直角坐标系中,一般地由方程组①所确定的点的每一个允许值,,数并且对于的函数①联系变数,那么方程①就叫做这条曲线的参数方程,都在这条曲线上直接给出点的坐标间关系,简称参数,相对于参数方程而言的变数叫做参变数,.的方程叫做普通方程参数方程和普通方程的互化2.一般地可以通过消,(1)曲线的参数方程和普通方程是曲线方程的不同形式.去参数而从参数方程得到普通方程把它代入普通例如中的一个与参数的关系,(2),如果知道变数,,求出另一个变数与参数的关系就是曲线的参数方程方程,那么.必须使的取值范围保持一致在参数方程与普通方程的互化中,应用参数方程解参数方程的形式不一定唯一。

极坐标系与参数方程知识点总结

极坐标系与参数方程知识点总结

千里之行,始于足下。

极坐标系与参数方程知识点总结
极坐标系与参数方程是描述平面上的点与曲线的两种坐标系统。

1. 极坐标系:
极坐标系由极径(r)和极角(θ)组成,其中极径表示点到原点的距离,极角表示点在极坐标系中的方向。

- 极径:通常用正数表示,表示点到原点的距离。

- 极角:一般用弧度表示,表示点所在的射线与参考射线(通常为 x 轴正半轴)的夹角。

2. 参数方程:
参数方程是一组用参数表示的方程,通过为变量赋予不同的值来表示曲线上的点。

- 参数:参数是代表自变量的符号,可以用任意字母表示。

- 方程组:在参数方程中,通常会有两个或更多的方程,每个方程用参数表示一个坐标分量,用来描述曲线上的点。

极坐标系和参数方程在描述一些特殊曲线时非常有用,例如圆、椭圆、双曲线等。

其中,使用极坐标系描述曲线更加方便,而使用参数方程描述曲线更加灵活。

应用场景:
1. 极坐标系常用于描述圆心在原点的圆形曲线,以及玫瑰线、阿基米德螺线等特殊曲线。

2. 参数方程常用于描述具有特定形状的曲线,如椭圆的参数方程为 x = a * cos(t), y = b * sin(t),其中 t 为参数,a 和 b 分别为椭圆在 x 轴和 y 轴上的半径。

第1页/共2页
锲而不舍,金石可镂。

3. 参数方程也常用于描述轨迹问题,例如描述一个物体在运动过程中的位置随时间而变化的轨迹。

总结:
极坐标系和参数方程是两种用于描述平面上曲线的坐标系统,它们在不同场景下有不同的应用。

熟练掌握这两种坐标系统的表示方法和转换方法,可以更好地理解和描述曲线的性质和特点。

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结

千里之行,始于足下。

极坐标和参数方程知识点总结极坐标是一种表示平面上点位置的坐标系统,它是由点到原点的距离(称为极径)和点与极轴的夹角(称为极角)所确定的。

在极坐标系中,每个点的坐标可以表示为(r,θ)的形式,其中r为极径,θ为极角。

参数方程是一种用一对参数变量来表示曲线上的点的坐标的方法。

对于平面上的曲线,常用的参数方程形式为x=f(t)和y=g(t),其中t为参数变量,f(t)和g(t)分别表示x和y的函数关系。

以下是极坐标和参数方程的一些重要知识点总结:1. 极坐标的转换关系:- 直角坐标到极坐标的转换:x=r*cos(θ),y=r*sin(θ)- 极坐标到直角坐标的转换:r=sqrt(x^2+y^2),θ=tan^(-1)(y/x)2. 常见曲线的极坐标方程:- 直线:θ=常数- 圆:r=常数- 椭圆:r=a*b/sqrt(b^2*cos^2(θ)+a^2*sin^2(θ))3. 参数方程的表示方式:- 曲线方程:(x,y)=(f(t),g(t))- 曲线长度的计算公式:L=∫sqrt((dx/dt)^2+(dy/dt)^2)dt4. 参数方程的性质:- 曲线方向:随着参数变量的增大,曲线的运动方向- 曲线对称性:参数方程对称性特点取决于函数f(t)和g(t)的对称性第1页/共2页锲而不舍,金石可镂。

- 曲线切线方向:曲线上某点的切线方向由参数方程的导数决定5. 参数方程与极坐标之间的关系:- 参数方程可以转换为极坐标方程,极径r=f(t),极角θ=g(t)- 极坐标方程可以转换为参数方程,x=f(θ)*cos(θ),y=f(θ)*sin(θ)需要注意的是,极坐标和参数方程在一些问题中可以更方便地描述曲线的特性,而在其他问题中直角坐标系可能更适用。

因此,在应用中需要根据具体问题选择合适的坐标系表示。

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结在数学的广阔天地中,极坐标和参数方程是两个独具特色且非常有用的工具。

它们为我们解决各类几何和物理问题提供了新的视角和方法。

接下来,让我们一同深入探索极坐标和参数方程的奥秘。

一、极坐标极坐标是一种用距离和角度来表示平面上点的位置的坐标系统。

在极坐标系中,一个点由极径和极角来确定。

1、极坐标的定义极径:表示点到极点(通常是坐标原点)的距离,用符号ρ 表示。

极角:表示极径与极轴(通常是 x 轴正半轴)所成的角,用符号θ 表示。

2、极坐标与直角坐标的转换(1)直角坐标转极坐标极径ρ =√(x²+ y²)极角θ = arctan(y / x) (需要根据点所在的象限确定θ 的取值)(2)极坐标转直角坐标x =ρ cosθy =ρ sinθ3、常见的极坐标曲线(1)圆圆心在极点,半径为 a 的圆的极坐标方程:ρ = a圆心在点(a, 0),半径为 a 的圆的极坐标方程:ρ =2a cosθ(2)直线过极点且与极轴夹角为α 的直线的极坐标方程:θ =α过点(a, 0) 且垂直于极轴的直线的极坐标方程:ρ cosθ = a4、极坐标的应用在物理学中,描述物体的平面运动轨迹,如圆周运动,极坐标常常能使问题简化。

二、参数方程参数方程是通过引入参数来表示曲线或曲面的方程。

1、参数方程的定义对于平面曲线,如果曲线上任意一点的坐标 x 和 y 都可以表示为某个变量 t 的函数,即 x = f(t),y = g(t),那么我们称这两个方程为该曲线的参数方程,t 称为参数。

2、参数方程的常见形式(1)直线的参数方程若直线过点(x₀, y₀),倾斜角为α,则直线的参数方程为:x = x₀+ t cosαy = y₀+t sinα (t 为参数)(2)圆的参数方程圆心在点(a, b),半径为 r 的圆的参数方程为:x = a +r cosθy = b +r sinθ (θ 为参数)(3)椭圆的参数方程焦点在 x 轴上的椭圆 x²/ a²+ y²/ b²= 1 的参数方程为:x =a cosθy =b sinθ (θ 为参数)3、参数的几何意义在直线的参数方程中,参数 t 通常具有几何意义,如表示直线上动点到定点的距离。

(完整版)极坐标与参数方程知识点、题型总结

(完整版)极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结一、伸缩变换:点是平面直角坐标系中的任意一点,在变换),(y x P 的作用下,点对应到点,称伸缩变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ),(y x P ),(y x P '''一、1、极坐标定义:M 是平面上一点,表示OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极角;一般地,,。

,点P 的直角坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直角坐标极坐标 2、极坐标直角坐标⇒cos sin x y ρθρθ=⎧⎨=⎩⇒222tan (0)x y yx xρθ⎧=+⎪⎨=≠⎪⎩3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程方法二、(1)若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确y x ,t ⎩⎨⎧==),(),(t g y t f x t 定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数),(y x M 的变数叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的y x ,t 方程叫做普通方程。

(二).常见曲线的参数方程如下:直线的标准参数方程1、过定点(x 0,y 0),倾角为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的几何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t| (2)直线上对应的参数是。

极坐标与参数方程大体知识点

极坐标与参数方程大体知识点

极坐标与参数方程全然知识点一、极坐标知识点1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度和计算角度的正 方向(通常取逆时针方向为正方向),如此就成立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴. ①极点;②极轴;③长度单位;④角度单位和它的正方向,组成了极坐标系的四要素,缺一不可.3.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为),(θρM .极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ.4.假设0<ρ,那么0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

若是规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确信的。

5.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;①极轴与x 轴的正半轴重合①两种坐标系中取一样的长度单位.(2)互化公式)0(n t ,sin ,cos ,222≠===+=x xy a y x y x θθρθρρ6.曲线的极坐标方程:1.直线的极坐标方程:假设直线过点00(,)M ρθ,且极轴到此直线的角为α,那么它的方程为:sin()sin()ρθ-α=ρθ-α几个特殊位置的直线的极坐标方程〔1〕直线过极点 〔2〕直线过点M(a,0)且垂直于极轴 〔3〕直线过(,)2M b π且平行于极轴 方程:〔1〕)R (∈=ραθ 或写成及 〔2〕a =θρcos 〔3〕ρsinθ=b2.圆的极坐标方程: 假设圆心为00(,)M ρθ,半径为r 的圆方程为:2222cos()0r ρρρθθρ--+-=几个特殊位置的圆的极坐标方程〔1〕当圆心位于极点,r 为半径 〔2〕当圆心位于)0,(a C (a>0),a 为半径 〔3〕当圆心位于)2,(πa C )0(>a ,a 为半径方程:(1)r =ρ (2)θρcos 2a = (3)θρsin 2a = 7.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.二、参数方程知识点1.参数方程的概念:在平面直角坐标系中,假设曲线C 上的点(,)P x y 知足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数。

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结一、极坐标基础知识极坐标是一种描述平面上点位置的方式,它由两个值组成:极径和极角。

极径表示点到原点的距离,而极角表示点到正半轴的夹角。

二、极坐标与直角坐标系的转换在直角坐标系中,一个点可以用它在x轴和y轴上的投影表示。

而在极坐标系中,一个点可以用它与原点的距离和与正半轴的夹角来表示。

两种坐标系之间可以通过以下公式进行转换:x=r*cosθy=r*sinθ其中,r为极径,θ为极角。

三、常见图形的极坐标方程1. 圆:r=a2. 点:r=03. 直线:θ=k4. 简单叶形线:r=a*cos(2θ)5. 简单心形线:r=a*(1-sinθ)四、参数方程基础知识参数方程是一种描述曲线运动状态的方式,它由两个函数组成:x(t)和y(t)。

这两个函数分别表示曲线上每个点在x轴和y轴上的位置。

五、参数方程与直角坐标系的转换在直角坐标系中,一个曲线可以用y=f(x)的形式表示。

而在参数方程中,一个曲线可以用x(t)和y(t)的形式表示。

两种坐标系之间可以通过以下公式进行转换:x=f(t)y=g(t)其中,t为参数。

六、常见图形的参数方程1. 直线:x=at+b,y=ct+d2. 圆:x=a+r*cosθ,y=b+r*sinθ3. 椭圆:x=a*cosθ,y=b*sinθ4. 双曲线:x=a*secθ,y=b*tanθ七、极坐标与参数方程的联系极坐标和参数方程都是描述曲线运动状态的方式。

它们之间有一定的联系,可以通过以下公式进行转换:r=sqrt(x^2+y^2)tanθ=y/x其中,r为极径,θ为极角。

极坐标与参数方程知识点总结大全

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面一个点的极坐标有无数种表示.如果规定,那么除极点外,平面的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

极坐标与参数方程知识点总结大全

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:点直角坐标极坐标互化公式在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为的圆圆心为,半径为的圆圆心为,半径为的圆过极点,倾斜角为的直线(1)(2)过点,与极轴垂直的直线过点,与极轴平行的直线注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

极坐标与参数方程知识点总结大全

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:点直角坐标极坐标互化公式在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为的圆圆心为,半径为的圆圆心为,半径为的圆过极点,倾斜角为的直线(1)(2)过点,与极轴垂直的直线过点,与极轴平行的直线注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.平面直角坐标系中的坐标伸缩变换
设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.
2.极坐标系的概念
(1)极坐标系
如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.
注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面
直角坐标系都是平面坐标系.
[
(2)极坐标
设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.
一般地,不作特殊说明时,我们认为可取任意实数.
特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.
如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.
3.极坐标和直角坐标的互化
(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:
;
(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是
(),于是极坐标与直角坐标的互化公式如表:
点直角坐标极坐标
互化公式
<
在一般情况下,由确定角时,可根据点所在的象限最小正角.

4.常见曲线的极坐标方程
曲线
图形
极坐标方程圆心在极点,半径为的圆

圆心为,半径为的圆
圆心为,半径为的圆
^
过极点,倾斜角为的直线(1)
(2)
过点,与极轴垂直的直线
[
过点,与极轴平行的直线

注:由于平面上点的极坐标的表示形式不唯一,即
都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少
有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.
二、参数方程
1.参数方程的概念
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数
的函数①,并且对于的每一个允许值,由方程组①所确定的点
都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.
2.参数方程和普通方程的互化
(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.
(2)如果知道变数中的一个与参数的关系,例如,把它代入普通
方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.

注:普通方程化为参数方程,参数方程的形式不一定唯一。

应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。

3.圆的参数
如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。

这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是
转过的角度。

圆心为,半径为的圆的普通方程是,
它的参数方程为:。

4.椭圆的参数方程
:
以坐标原点为中心,焦点在轴上的椭圆的标准方程为
其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为
其中参数仍为离心角,通常规定参数的范围为∈[0,2)。

注:椭圆的参数方程中,参数的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角区分开来,除了在四个顶点处,离心角和旋转角数值
可相等外(即在到的范围内),在其他任何一点,两个角的数值都不相等。

但当时,相应地也有,在其他象限内类似。

5.双曲线的参数方程
以坐标原点为中心,焦点在轴上的双曲线的标准议程为
其参数方程为,其中
焦点在轴上的双曲线的标准方程是其参数方程为
以上参数都是双曲线上任意一点的离心角。

6.抛物线的参数方程
以坐标原点为顶点,开口向右的抛物线的参数方程为
7.直线的参数方程
经过点,倾斜角为的直线的普通方程是
而过,倾斜角为的直线的参数方程为。

注:直线参数方程中参数的几何意义:过定点,倾斜角为的直线的参数方程为,其中表示直线上以定点为起
点,任一点为终点的有向线段的数量,当点在上方时,>0;当点在下方时,<0;当点与重合时,=0。

我们也可以把参数理解为以为原点,直线向上的方向为正方向的数轴上的点的坐标,其单位长度与原直角坐标系中的单位长度相同。

相关文档
最新文档