小学奥数精讲:余数与同余问题
奥数讲义数论专题:余数及同余
华杯赛数论专题:余数及同余一、带余除法的定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q…r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:(1)当时:我们称a可以被b整除,记作b|a,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,记作,q称为a除以b的商或不完全商二、同余的概念两个整数被同一个大于1的整数m除,所得的余数相同,就说这两个整数对于除数m来说是同余的.也可以换句话来说这个概念,如果两个整数的差能被大于1的整数m整除,那么这两个整数对于除数m来说是同余的.同余的概念和符号都是德国伟大数学家高斯引进的.一般地,两个整数a和b,除以大于1的正整数m,如果所得的余数相同,就说a、b对于模m同余,记作a≡b(mod m).由于一个整数被m除的余数只能是0、1、2、3、…、m-1这m个数,所以全体整数可按被m除的余数分类,凡是余数相同的归为一类,全体整数就被划分成了m类,同一类中的任何两数被m除的余数都相等,即同一类中任何两数的差都能被m整除,不同类的任何两数被m除的余数都不相等.三、同余的性质1.如果a≡b(mod m),那么m|(a-b);如果整数a和b对于模m是同余的,那么a 与b的差能被m整除.2.a≡a(mod m),即任何整数都与自身同余.3.若a≡b(mod m),则b≡a(mod m).4.若a≡b(mod m),b≡c(mod m),则a≡c(mod m).5.若a≡b(mod m),c≡d(mod m),则a+c≡b+d (mod m),a-c≡b-d (mod m),a×c≡b×d (mod m).6.若a≡b(mod m),则an≡bn(mod m)。
(其中n为正整数).例1.用一个两位数除708,余数为43,求这个两位数.【答案】95【解答】根据被除数-余数=商×除数,可知,所求两位数一定是707-43=665的大于43的约数,所以所求的两位数是95.例2.数713、1103、830、947被一个数除所得余数相同(余数不为0),求这个除数.【答案】39,13或3.【解答】1103-713=390=3×13×2×5,947-830=117=3×13×3,1103-947=156=2×13×3×2,除数为39,13或3.例3.从1、2、…100中最多能选出多少个数,使选出的数中每两个的和都不能被3整除?【答案】35【解答】1、2、…100中,除以3余1的数共34个,即1、4、7、10、…、100.除以3余2的数共33个,选出的数中,如果有除以3余1的,就一定不能有除以3余2的;如果有除以3余2的,也就不能有除以3余1的。
六年级奥数同余的解题规律知识
六年级奥数同余的解题规律知识六年级奥数同余的解题规律知识六年级奥数知识:同余的解题规律在作除法运算时,我们有这样的经验:(1)一些不同的数除以一个相同的数可能会得到相同的余数.如,除以5余3的数有5×1+3=8,5×2+3=13,5×3+3=18,5×4+3=23,…………(2)一个相同的'数除以一些不同的数,可能会有相同的余数.如,389分别除以5、7和11会得到相同的余数4.389÷5=77 (4)389÷7=55 (4)389÷11=55 (4)由此,我们可以来讨论下面的两个问题.某数被5除余4,被7除也余4,被11除还余4.要求某数和某数最小是多少?读者一定会想到有:5×7×11+4=389,5×7×11×2+4=774,5×7×11×3+4=1159,…………答案有无数多个,但最小的只能是389.现在,我们把这个问题上升到一般形式.问题一某数分别除以a、b、c、……,都得到相同的余数k.求某数最小是多少?聪明的读者,能得出答案吗?需要请读者注意的是,382、767、1152分别除以5、7和11所得的余数2、4、8,虽然都不相同,但是都与相应的除数相差同样多.即5-2=3,7-4=3,11-8=3.于是,我们也可以提这样的问题:某数被5除余2,被7除余4,被11除余8.问某数是多少和某数最小是多少?读者一定会想到是5×7×11×1-3=382,5×7×11×2-3=767,5×7×11×3-3=1152,…………答案有无数多个,但最小只能是382.这个问题的一般形式是:问题二某数分别除以a、b、c、……得数相应的余数分别是A、B、C、……,并且,这些余数跟相应的除数都相差同样多(也设为k),即a-A=b-B=c-C=……=k.求某数最小是多少?聪明的读者,能得出答案吗?【规律】某数分别除以a、b、c、……,都得到相同的余数k.求某数最小是多少?答案是[a,b,c,……]+k.某数分别除以a、b、c、……,得到相应的余数A、B、C、……,并且这些余数跟相应的除数都相差同样多(设为k),即a-A=b-B=c-C=……=k.求某数最小是多少?答案是[a,b,c,……]-k.【练习】1.某数分别除以3、5和7,都有相同的余数2.求某数最小是多少?(2除外)2.某数被5、6、7除,都得到相同的余数1.问某数在1000以内有哪几个答案?3.某数用5除余3,用7除余5,用9除余7,用11除余9.求某数最小是多少?4.某数分别用5、7、9和11除,刚好都是差3才能整除.求某数最小是多少?5.某数被2000除,余1993;被1999除,余1992;被1998除,余1991.求某数最小是多少?。
奥数五六年级知识点总结第五讲余数与同余
奥数是指奥林匹克数学竞赛(International Mathematical Olympiad,简称IMO),是世界性的数学竞赛。
奥数竞赛注重学生的思维能力的发展,培养学生的逻辑推理、问题解决和创新思维能力。
数学竞赛中的知识点是教育学生数学基本概念及运算,以及运用数学的方法来解决问题。
下面是我所总结的奥数五六年级第五讲的知识点,主要涉及到“余数与同余”。
一、余数1.定义:在整除的运算中,除法所得的剩下的数就是余数。
2. 例如:11除以3,商为3,余数为2,记作11≡2(mod 3)。
3.基本性质:(1)两个数相加与他们的余数相加的结果相等。
(2)两个数相乘与它们的余数相乘的结果相等。
(3)两个数的商的余数与这两个数余数的商的结果相等。
(4)两个数的幂次方的余数与这两个数的幂次方的余数的结果相等。
二、同余1. 定义:若整数 a、b、m 为任意给定的整数,若 m 能整除 (a-b),即 (a-b) 是 m 的倍数,则称a与b对模 m同余,记作a≡b (mod m)。
2.基本性质:(1)若a≡b (mod m),则a+c≡b+c (mod m);(2)若a≡b (mod m),则ac≡bc (mod m);(3)若a≡b (mod m),c≡d (mod m),则a+c≡b+d (mod m),ac≡bd (mod m);(4)若a≡b (mod m),则a^n ≡b^n (mod m),其中 n 为任意正整数。
三、求余数与同余的方法1.利用除法法则求余数:(1)方法一:将被除数逐位地从左至右除以除数,除的过程中产生的余数就是最终的余数。
(2)方法二:利用整数的性质,寻找适合的数进行整除,或者先利用近似法求商,再求余数。
(3)方法三:利用乘法法则,将除数与整数相乘,再用被除数减去这个乘积来求余数。
2.利用同余法则求余数:(1)将同余公式改写为等式,然后同时减两边的倍数,可以得到一个新的同余公式。
(2)利用同余关系,可以将大数的运算转化为小数的运算,从而简化计算。
小学五年级奥数—数论之同余问题
数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
奥数余数和同余讲义
(十八)余数和同余【知识要点】1、例如:37÷5=7……2,四者之间的数量关系:被除数=除数×商+余数2、同余的概念:两个整数,被同一个大于1的整数m除,所得余数如果相同,那么,这两个整数对于除数m来说是同余的。
例如:14和26这两个数虽然大小不同,但它们分别除以6所得的余数相同,我们把14和26叫做关于模6同余。
3、同余最基本的性质是:几个同余式(模相同)相加、减、乘、乘方仍然同余。
【典型例题】例1、两个整数相除商8,余16;并且被除数、除数、商及余数的和是463.那么被除数是多少?解:因为:被除数=除数×8+16,并且被除数+除数=463―8―16=439,所以除数=(439-16)÷(8+1)=47,被除数=47×8+16=392.例2、被3除余2,被5除余3,被7除余4的最小自然数是多少?解:被3除余2的数有2,5,8,11,…其中8又能被5除余3,并且满足条件最小的,而[3,5]=15,所以8+15=23,23+15=38,38+15=53,53满足了被7除余4这个条件,并且最小。
例3、五(3)班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人,问上体育课的同学最少多少名?解:[3,4,5,6]=60, 60-1=59(人).例4、小刚在一次计算除法时,把被除数171错写成117,结果商少了3而余数恰好相同,这题中的除数是几?解:设除数为m,正确的商位q,余数为r,那么错写被除数后,除数仍为m,商为q-3,余数仍为r。
因为:171=m×q+r117= m×(q-3)+r于是171 -117= (m×q+r)-(m×q-3 m+r)得m=18.【精英班】例5、有一个三位数,其中个位上的数是百位上的数的3倍,且这个三位数除以5余4,除以11余3.这个三位数是多少?解:这个三位数除以5余4,所以它的个位数字是4或9,因为个位数字是百位数字的3倍,所以个位数字只能是9,百位数字是3.因为这个数除以11余3,所以它的十位数字=3+(9-3)=9,这个三位数是399.【竞赛班】例6、11+22+33+44+55+66+77+88+99除以3的余数是多少?解:由数的整除性质和同余性质可推知:(1)3的倍数的任何次方(0除外)除以3的余数为0,可知33+66+99 除以3余0.(2)不是3的倍数的偶次方除以3的余数为0,可知22+44+88除以3余1.(3)11除以3余1,55与25对于3同余,它们除以3余2. 77与17对于3同余,它们除以3余1. 所以(1+2+1)÷3=1……1。
奥数五六年级知识点总结第五讲 余数与同余
第五讲余数与同余一、问题引入上一讲我们已经学习了如何判断一个数能否被另一个数整除(主要总结除数为20以内整数的情况),这一讲中我们将会在此基础上,继续探讨如果一个数不能被另一个数整除,那么余数是多少,这是本讲将要讨论的第一个问题——余数问题。
我们知道,自然数(0和所有正整数),按能否被2整除可以分为偶数和奇数两类,即能被2整除(除以2余0)的数为偶数,不被2整除(除以2余1)的数为奇数,奇数和偶数各自有其特征,它们之间又有相互联系。
同理,如果我们以除以3的余数为标准,就可以将自然数分成三类,余0、余1、余2;如果我们以除以4的余数为标准,就可以将自然数分成四类,余0、余1、余2、余3;以除以n为标准,就可以将自然数划分为n类。
那么除以n余数相同的一类数有何共同的性质呢?除以n余数不同的数之间又有何联系呢?这是本讲将要讨论的第二个问题——同余问题。
二、知识总结1、首先根据上一讲的整除特征,做简单推导,即可得到下列求余方法。
【注】下列方法大家以理解为主,不必死记。
着重掌握除以3、4、8、9、16的余数求法即可。
①求除以2的余数:奇数余1,偶数余0;②求除以3的余数:等于该数的各位数字之和除以3的余数;③求除以4的余数:等于该数末两位组成的数除以4的余数;④求除以5的余数:等于该数个位数除以5的余数;⑤求除以6的余数:该数的各个数字之和除以3得余数a,若该余数与原数同奇同偶,则原数除以6的余数为a,若该余数与原数一奇一偶,则原数除以6的余数为a+3;⑥求除以7的余数:等于该数的末三位与末三位以前的数字组成的数之差除以7的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑦求除以8的余数:等于该数的末三位除以8的余数;⑧求除以9的余数:等于该数的各位数字之和除以9的余数;⑨求除以10的余数:等于该数的个位数;⑩求除以11的余数:(a)等于该数的奇数位上的数字之和与偶数的数字之和的差除以11的余数(b)等于该数的末三位与末三位之前的数字组成的数之差除以11的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑪求除以13的余数:等于该数的末三位与末三位之前的数字组成的数之差除以13的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑫求除以16的余数:等于该数的后四位除以16的余数;⑬求除以17的余数:等于把该数的个位数字去掉,再从余下的数中,减去个位数的5倍,所得到的数字除以17的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑭求除以18的余数:该数的各个数字之和除以9得余数a,若该余数与原数同奇同偶,则原数除以18的余数为a,若该余数与原数一奇一偶,则原数除以18的余数为a+3;⑮求除以19的余数:等于把该数的个位数字去掉,再从余下的数中,加上个位数的2倍,所得数字除以19的余数。
(完整版)小学奥数同余问题
同余问题(一)在平时解题中,我们经常会遇到把着眼点放在余数上的问题。
如:现在时刻是7时30分,再过52小时是几时几分?我们知道一天是24小时,,也就是说52小时里包含两个整天再加上4小时,这样就在7时30分的基础上加上4小时,就是11时30分。
很明显这个问题的着眼点是放在余数上了。
1. 同余的表达式和特殊符号37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。
记作:(mod7)“”读作同余。
一般地,两个整数a和b,除以大于1的自然数m所得的余数相同,就称a、b对于模m同余,记作:2. 同余的性质(1)(每个整数都与自身同余,称为同余的反身性。
)(2)若,那么(这称作同余的对称性)(3)若,,则(这称为同余的传递性)(4)若,,则()(这称为同余的可加性、可减性)(称为同余的可乘性)(5)若,则,n为正整数,同余还有一个非常有趣的现象:如果那么(的差一定能被k整除)这是为什么呢?k也就是的公约数,所以有下面我们应用同余的这些性质解题。
【例题分析】例1. 用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?分析与解答:假设这个自然数是a,因为412、133和257除以a所得的余数相同,所以,,说明a是以上三个数中任意两数差的约数,要求最大是几,就是求这三个差的最大公约数。
所以a最大是31。
例2. 除以19,余数是几?分析与解答:如果把三个数相乘的积求出来再除以19,就太麻烦了,利用同余思想解决就容易了。
所以此题应用了同余的可乘性,同余的传递性。
例3. 有一个1997位数,它的每个数位都是2,这个数除以13,商的第100位是几?最后余数是几?分析与解答:这个数除以13,商是有规律的。
商是170940六个数循环,那么,即,我们从左向右数“170940”的第4个数就是我们找的那个数“9”,所以商的第100位是9。
余数是几呢?则所以商的个位数字应是“170940”中的第4个,商应是9,相应的余数是5。
小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题
小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题小学奥数精讲:带余除法(同余式和同余方程)一、基本性质的复习1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到:(1)b>r 除数大于余数(2)a-r=b×q 被除数减去余数则会出现整除关系,则带余数问题就可以转化为整数问题。
2、余数的性质:(1)可加性:和的余数等于余数的和。
即:两数和除以m 的余数等于这两个数分别除以m 的余数和。
例:7÷3=2……1 5÷3=1……2,则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。
(2)可减性:差的余数等于余数的差。
即:两数差除以m 的余数等于这两个数分别除以m 的余数差。
例:17÷3=5……2 5÷3=1……2,则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。
(3)可乘性:积的余数等于余数的积。
即:两数积除以m 的余数等于这两个数分别除以m 的余数积。
例:64÷7=9……1 45÷7=6……3,则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。
二、同余式在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。
即:a 与b 同余于模m。
意思就是自然数a 和b 关于m 来说是余数相同的。
用同余式表达为:a≡b(modm).注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。
(余数的可减性)三、例题。
例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个?例2、(1)求多位数1234567891011…20102011除以9的余数?(2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几?(3)一个多位数1234567……979899,问除以11 的余数是多少?例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数?(2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。
小升初奥数余数同余要点总结
小升初奥数余数同余要点总结
小升初奥数余数同余要点总结
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的'余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M 的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:
如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
小升初奥数知识点:完全平方数及余数同余与周期
小升初奥数知识点:完全平方数及余数同余与周期小升初是孩子最重要的起步方向,我们需要关注怎样的信息才能对孩子的未来有帮助呢?店铺网小编告诉大家!小升初奥数知识点:余数、同余与周期一、同余的定义:①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:二、同余的性质:①自身性:a≡a(mod m);②对称性:若a≡b(mod m),则b≡a(mod m);③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);⑥乘方性:若a≡b(mod m),则an≡bn(mod m);⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);三、关于乘方的预备知识:①若A=a×b,则MA=Ma×b=(Ma)b②若B=c+d则MB=Mc+d=Mc×Md四、被3、9、11除后的余数特征①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M 的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
余数及其应用基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0余数的性质:①余数小于除数。
②若a、b除以c的余数相同,则c|a-b或c|b-a。
小学五年级奥数—数论之同余问题
数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
小学奥数模块教程同余
同余知识框架一、余数的性质⑴被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵余数小于除数.余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.二、同余定理1、定义整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即a≡b(modm)2、同余的重要性质及举例。
〈1〉a≡a(modm)(a为任意自然);〈2〉若a≡b(modm),则b≡a(modm)〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm);〈4〉若a≡b(modm),则ac≡bc(modm)〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm);〈6〉若a≡b(modm)则an≡bm(modm)其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性"注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b (modm)3、整数分类:〈1〉用2来将整数分类,分为两类:1,3,5,7,9,……(奇数);0,2,4,6,8,……(偶数)〈2〉用3来将整数分类,分为三类:0,3,6,9,12,……(被3除余数是0)1,4,7,10,13,……(被3除余数是1)2,5,8,11,14,……(被3除余数是2)〈3〉在模6的情况下,可将整数分成六类,分别是:0(mod6):0,6,12,18,24,……1(mod6):1,7,13,19,25,……2(mod6):2,8,14,20,26,……3(mod6):3,9,15,21,27,……4(mod6):4,10,16,22,29,……5(mod6):5,11,17,23,29,……例题精讲一、同余的性质【例1】有一个整数,除100、195所得的余数都是5,求这个数的可能值。
小学的奥数同余问题
同余问题一在平时解题中;我们经常会遇到把着眼点放在余数上的问题..如:现在时刻是7时30分;再过52小时是几时几分我们知道一天是24小时;;也就是说52小时里包含两个整天再加上4小时;这样就在7时30分的基础上加上4小时;就是11时30分..很明显这个问题的着眼点是放在余数上了..1. 同余的表达式和特殊符号37和44同除以7;余数都是2;把除数7称作“模7”;37、44对于模7同余..记作:mod7 “”读作同余..一般地;两个整数a和b;除以大于1的自然数m所得的余数相同;就称a、b对于模m同余;记作:2. 同余的性质1每个整数都与自身同余;称为同余的反身性..2若;那么这称作同余的对称性3若;;则这称为同余的传递性4若;;则这称为同余的可加性、可减性称为同余的可乘性5若;则;n为正整数;同余还有一个非常有趣的现象:如果那么的差一定能被k整除这是为什么呢k也就是的公约数;所以有下面我们应用同余的这些性质解题..例题分析例1. 用412、133和257除以一个相同的自然数;所得的余数相同;这个自然数最大是几分析与解答:假设这个自然数是a;因为412、133和257除以a所得的余数相同;所以;;说明a是以上三个数中任意两数差的约数;要求最大是几;就是求这三个差的最大公约数..所以a最大是31..例2. 除以19;余数是几分析与解答:如果把三个数相乘的积求出来再除以19;就太麻烦了;利用同余思想解决就容易了..所以此题应用了同余的可乘性;同余的传递性..例3. 有一个1997位数;它的每个数位都是2;这个数除以13;商的第100位是几最后余数是几分析与解答:这个数除以13;商是有规律的..商是170940六个数循环;那么;即;我们从左向右数“170940”的第4个数就是我们找的那个数“9”;所以商的第100位是9..余数是几呢则所以商的个位数字应是“170940”中的第4个;商应是9;相应的余数是5..模拟试题答题时间:20分钟1. 求下列算式中的余数..1 23 42. 6254与37的积除以7;余数是几3. 如果某数除482;992;1094都余74;这个数是几同余问题二例题分析例1. 除以7;余数是几分析与解答:例2. 一个自然数除以3余2;除以5余3;除以7余1;这个自然数最小是几分析:假设这个自然数为a那么这道题考虑的困难是它们的余数不相同..如果把这道题改一下;使它们的余数相同;利用整除的知识;便容易考虑了;先看下面一道题:一个自然数除以3余2;除以5余2;除以7余2;那么;这个自然数若减去2;便同时是3;5;7的倍数;这样的自然数有:105;210;315;……分别被3;5;7除余2的数是2;107;212;317;……最小的自然数是2..回过头来看刚才的题;能不能把它也变为余数相同的数呢稍加变式;可以写成:这样同时是3;5;7倍数的数有105;210;315;……那么同时被3;5;7余8的数有:8;113;218;323;……其中最小的自然数为8..所以余数是5刘老师说;小明的算法不仅正确;而且巧妙迅速;你知道其中的道理吗分析与解答:看了下面的算式;你就会明白的..小明用的这种方法;有比较广泛的应用;常称之为“拼凑法”在解关于用几除的余数的问题时;常常“拼凑”出显然是几的倍数的部分;对于这部分;简直可以“置之不理”;这样可以使解答过程简化..例4. 除以3的余数是几为什么分析与解答:在上式的加项中;显然可以被3整除;因此只须计算被3除余数是几..由于因此由此可知;只须计算被3除的余数;它又等于被3除的余数..由于;所以所以余数是1模拟试题1. 今天是星期日;再过天又是星期几2. 求除以3所得的余数..3. 某数除680;970和1521;余数相同;这个数最大是几4. 有一列数排成一行;其中第一个数是3;第二个数是7;从第三个数开始;每个数恰好是前两个数的和;那么;第1997个数被3除;余数是几5. 若将一批货物共千克装入纸箱;每箱装10千克;最后余多少千克若每箱装17千克;最后还余多少千克6、1309被一个质数相除;余数是21;求这个质数..7、1796被一个质数相除;余数是24;求这个质数..8、求2001×2000除以7的余数..9、求123×345+234×456除以11的余数..10、有一个大于1的整数;它除1000、1975、2001都得到相同的余数;那么这个整数是多少11、有三个数1989、901和306被同一个自然数除;得到相同的余数;求这个自然数..12、两个自然数相除;商15;余3;被除数、除数、商、余数的和是853;求被除数..8、两数相除商40余7;被除数、除数、余数和商的和是710;求被除数..13、有一个数除以3余1;除以4余2;问这个数除以12;余数是几14、一个数除以5余1;除以6余3;除以7余4;这个数最小是几15、3867×4253=1644□351;求□里的数.. 4937×6845=3379□765;求□里的数..16、两个自然数相除;商8余16;被除数、除数、商与余数的和为265;求除数是多少17、写出除以8所得的商和余数不为0相同的所有的数..18、2002×2002-2001除以9的余数是多少19、当2002和1781除以某一个自然数;余数分别是2和1;那么这个数最大是多少20、一个数除以17的余数是5;被除数扩大2倍;余数是多少21、有一个数;除以3余数是1;除以4余数是3 ..这个数除以12;余数是多少..22、570被一个两位数除;余数是15;这个两位数是多少23、有一个数加上22的和被9除余3;这个数加上35的和被9被余几B组24、有一个整数;用它去除45;53;143得到的3个伤痕的和是20;这个数是多少25、有一个数用它去除100;余数是1;用它去除50;余数是6;求这个数..26、把几十个苹果平均分成若干份;每份9个余8个;每份8个余7个每份4个余3个..这堆苹果共有多少个27、有一个数被5和11整除均余4;被3正好整除;这个数最小是几28、求被4除余2;被6除余2;被9除余5的两位数..29、一个数能被3、5、7整除;若用11去除则余7;这个数最小是几30、小红收数学学习小组买奥数练习本的钱;她只记下四组各交的钱;第一组6.3元;第二组7.7元;第三组6.3元;第四组9.1元;又知道每本练习本价格都超过1角;求数学学习小组共有多少人提示:练习本单价是总价的公约数..31、五年级两个班的学生一起排队出操;如果8人排一行;多出一个人;如果11人排一行;同样多出一个人..这两个班最小共有多少人提示:如果减去一人那么人数就能被8和11整除了..32、一个数被4除余3;被5除余4;被6除余5;这样的数中最小的是几提示:余数与除数有什么关系33、一筐苹果;如果按5个一堆放;最后多出3个;如果按6个一堆放;最后多出4个;如果按7个一堆放;还多出1个;这筐苹果至少有多少个提示:先满足被7除余1;再从中找出被6除余4……竞赛题精选1、若2836;4582;5164;6522四个自然数都被同一个自然数相除;所得余数相同且为两位数;除数和余数的和为 ..2001小学数学奥林匹克试题决赛B卷2、一个自然数除以3余2;除以5余2;除以7余5;除以9余5;除以11余4;则满足这些条件的最小自然数是 ..1996年我爱数学少年冬令营试题3、某数除以11余8;除以13余10;除以17余12;那么这个数的最小可能值是 ..1998年小学数学奥林匹克试题预赛A卷4、一个小于200的数;它除以11余8;除以13余10;那么这个数是 ..1998年小学数学奥林匹克试题预赛B卷5、在一道有余数的除法算式中;被除数、除数;商和余数的和是599;已知商是15;余数是12;请问;题目中的除数是多少厦门实小2000-2001学年第二学期数学科竞赛卷B组同余问题——提高训练1、求437×309×1993被7除的余数..2、求被3除余2;被5除余3;被7除余5的最小三位数.3、分别求满足下列条件的最小自然数1用3除余1;用5除余1;用7除余1..2用3除余2;用5除余1;用7除余1..3用3除余1;用5除余2;用7除余2..4、有一个整数;除300、262、205得到相同的余数.这个整数是几5、今天是星期四;过14389天后是星期几6.试一试:粮库有717千克大米;用每袋50千克的袋子装;最后余下多少千克7、数2001;2232除以整数n;得到相同的余数;而且这个余数是合数;求n.8、用一个自然数去除715和903所得余数相同;且商相差4.求这个数.9、若2836;4582;5146;6522四个自然数被一个自然数相除;所得余数相同且为两位数;除数和余数的和为多少10、有三个不同的三位数;它们分别除以a ;得到的余数相同而且是最大二位偶数;当a为两位数时;这三个数最小的和是多少11、某年级有将近400名学生..有一次演出节目排队时出现:如果每8人站成一列则多余1人;如果改为每9人站成一列则仍多余1人;结果发现现成每10人结成一列;结果还是多余1人;聪名的你知道该年级共有学生多少名吗12、希望小学六年级和五年级去春游;每辆车可乘36人.六年级先坐满几车;剩下的16人与五年级坐满一车;五年级又坐满若干车.到达目的地后;每一个五年级的学生和每一个六年级学生合影一张;每个胶卷可拍36张.全部学生照相完毕;最后一个胶卷还剩几张未拍13、甲、乙、丙、丁四个学校分别有69人、85人、93人、97人旅行.现在要把这四校学生分别进行分组;并使每组的人数尽可能多;以便乘车参观游览.已知甲、乙、丙三个学校分组后;所剩的人数相同;问丁校分组后还剩下几个人14、试一试:乐乐玩具店有大小相同的红、蓝、黄、绿四种颜色的小球各344个、277个、411个和555个.现在要用一种精致的小盒分别去装这些小球;每只盒子里装的小球同样多.真巧剩下的红、蓝、黄三色小球也恰好同样多.小剩下的绿球有多少个15、计算机录入员平均每分钟可以输入72个汉字;输入一篇有X679Y个汉字的文章所用的分钟数恰好是整数;求五位数X679Y..。
小学奥数教程:同余问题_全国通用(含答案)
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711-()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N 被11除的余数等于N 的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当 加11的倍数再减);⑹ 整数N 被7,11或13除的余数等于先将整数N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.模块一、两个数的同余问题【例 1】 有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题 【难度】1星 【题型】解答【解析】 (法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12例题精讲知识点拨教学目标5-5-3.同余问题【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
小学奥数之 同余问题(含详细解析)
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,(12,108)12-=,14739108=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
小学五年级奥数—数论之同余问题
、带余除法的定义及性质:般地,如果a是整数,b是整数(b工0),若有a *b=q r,也就是a = b xq + r,0 wrv b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当r 0时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当r 0时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
、三大余数定理:1•余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23 ,16除以5的余数分别是3和1,所以23+16=39 除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23 , 19除以5的余数分别是3和4,故23+19=42 除以5的余数等于3+4=7 除以5的余数, 即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23 , 16除以5的余数分别是3和1,所以23 X16除以5的余数等于3 x仁3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23 , 19除以5的余数分别是3和4,所以23 X19除以5的余数等于3 X4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a Mb ( mod m ) ,左边的式子叫做同余式。
同余式读作:a同余于b,模m。
由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b 除以同一个数m 得到的余数相同,则a,b 的差一定能被m 整除用式子表示为:如果有a Mb ( mod m ),那么一定有a—b = mk,k是整数,即m|(a —b)三、弃九法原理:在公元前9 世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234 1898 18922 678967 178902 8899231234 除以9 的余数为11898 除以9 的余数为818922 除以9 的余数为4678967 除以9 的余数为7178902 除以9 的余数为0这些余数的和除以9 的余数为2而等式右边和除以9 的余数为3,那么上面这个算式一定是错的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】 437 除以 7 余数为 3,即 473≡ 3(mod7) 309 除以 7 余数为 1,即 309≡ 1(mod7) 1993 除以 7 余数为 5,即 1993≡ 5(mod7) 由同余的性质(4)可知 472×309×1993≡ 3×1×5(mod7)≡ 1
2、 同余不同余的性质:
两个整数 a,b,若它们除以整数 m 所得的余数相等,则称 a,b 对于模 m 同余。一般记为 a≡ b(mod m)。
同余有以下常用的性质:
(1) 如果 a ≡ b (mod m),则 a、b 之差(大数减小数)能被 m 整除。
(2) 传递性 如果 a ≡ b (mod m),b ≡ c (mod m),那么 a ≡ c (mod m);
⑦ 求除以 8 的余数:等于该数的末三位除以 8 的余数; ⑧ 求除以 9 的余数:等于该数的各位数字之和除以 9 的余数;
1
⑨ 求除以 10 的余数:等于该数的个位数;
⑩ 求除以 11 的余数:(a)等于该数的奇数位上的数字之和不偶数的数字 之和的差除以 11 的余数 (b)等于该数的末三位不末三位之前的数字组成的 数之差除以 11 的余数,如果数字仍然太大丌能直接 观察出来,就重复此过程;
小学奥数精讲:余数与同余问题
一、问题引入
我们知道,自然数(0 和所有正整数),按能否被 2 整除可以分为偶数和奇 数两类,即能被 2 整除(除以 2 余 0)的数为偶数,丌被 2 整除(除以 2 余 1) 的数为奇数,奇数和偶数各自有其特征,它们之间又有相互联系。同理,如果我 们以除以 3 的余数为标准,就可以将自然数分成三类,余 0、余 1、余 2;如果 我们以除以 4 的余数为标准,就可以将自然数分成四类,余 0、余 1、余 2、余 3;以除以 n 为标准,就可以将自然数划分为 n 类。那么除以 n 余数相同的一类 数有何共同的性质呢?除以 n 余数丌同的数之间又有何联系呢?这是本讲将要 讨论的第二首先根据上一讲的整除特征,做简单推导,即可得到下列求余方法。
【注】下列方法大家以理解为主,丌必死记。着重掌握除以 3、4、8、9、16 的 余数求法即可。
① 求除以 2 的余数:奇数余 1,偶数余 0;
② 求除以 3 的余数:等于该数的各位数字之和除以 3 的余数; ③ 求除以 4 的余数:等于该数末两位组成的数除以 4 的余数; ④ 求除以 5 的余数:等于该数个位数除以 5 的余数;
3
有一个整数,用它去除 300、262、205,得到的余数相同.这个数是 多少? 【分析】 设这个除数为 m,根据同余的性质(1),300-262=38 能够被 m 整 除,262-205=57 能够被 m 整除,300-205=95 能够被 m 整除。所以 m 为 38、57、95 的公约数,且丌为 1。因此 m=19。
(3) 可加性
2
如果 a ≡ b (mod m),那么 a +c ≡ b +c (mod m); 如果 a ≡ b (mod m),c ≡ d (mod m),那 么 a ± c ≡ b ± d (mod m); (4) 可乘性 如果 a ≡ b (mod m),那么 a ×c ≡ b ×c (mod m); 如果 a ≡ b (mod m),c ≡ d (mod m),那 么 a × c ≡ b × d (mod m); (5) 乘方性 如果 a ≡ b (mod m),那么 an ≡ b n (mod m) 掌握了同余的性质,可以拓展解题思路,也可以简化计算。 3 、 余数互补: 如果 a 除以 m 的余数为 p,b 除以 m 的余数为 q,若 p+q=m 戒 0, 则 a 不 b 除以 m 的余数互补。余数互补在周期性游戏不策略问题中经常 出现。
⑪ 求除以 13 的余数:等于该数的末三位不末三位之前的数字组成的数之 差除以 13 的余数,如果数字仍然太大丌能直接观察 出来,就重复此过程;
⑫ 求除以 16 的余数:等于该数的后四位除以 16 的余数;
⑬ 求除以 17 的余数:等于把该数的个位数字去掉,再从余下的数中,减 去个位数的 5 倍,所得到的数字除以 17 的余数, 如果数字仍然太大丌能直接观察出来,就重复此过 程;
三、例题讲解
例 1: 求余方法 求 2008 除以 7 及除以 9 的余数
【分析】2008 末三位为 008,即 8,末三位不之前数字的差为 8-2=6,所 以 2008 除以 7 的余数为 6。
2008 各个位上的数字和为 10,除以 9 的余数为 1,所以 2008 除 以 9 的余数为 1。
例 2:同余的性质
(mod7)。 所以 437×309×1993 被 7 除的余数为 1。
例 4:除数丌同的同余 一个数用 3 除余 1,用 5 除余 2,用 7 除余 2,则满足条件的最小自
然数是多少? 【分析】
设该数为 m,则 m-2 为 5 和 7 的公倍数,且 m-1=(m-2)+1 为 3 的倍数。5 和 7 的公倍数为 35、70、105、140… … ,其中这些数加 1 后 位 3 的倍数的最小自然数为 35,所以 m 为 37。
⑤ 求除以 6 的余数:该数的各个数字之和除以 3 得余数 a,若该余数不原 数同奇同偶,则原数除以 6 的余数为 a,若该余数不 原数一奇一偶,则原数除以 6 的余数为 a+3;
⑥ 求除以 7 的余数:等于该数的末三位不末三位以前的数字组成的数之差 除以 7 的余数,如果数字仍然太大丌能直接观察出来, 就重复此过程;
⑭ 求除以 18 的余数:该数的各个数字之和除以 9 得余数 a,若该余数不原 数同奇同偶,则原数除以 18 的余数为 a,若该余数 不原数一奇一偶,则原数除以 18 的余数为 a+3;
⑮ 求除以 19 的余数:等于把该数的个位数字去掉,再从余下的数中,加 上个位数的 2 倍,所得数字除以 19 的余数。如果 数字仍然太大丌能直接观察出来,就重复此过程;